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ORIGINAL ARTICLE Open Access

Fully automated convolutional neural
network-based affine algorithm improves
liver registration and lesion co-localization
on hepatobiliary phase T1-weighted MR
images
Kyle A. Hasenstab1,2†, Guilherme Moura Cunha1,6*† , Atsushi Higaki1, Shintaro Ichikawa1, Kang Wang1,2,
Timo Delgado1, Ryan L. Brunsing3, Alexandra Schlein1, Leornado Kayat Bittencourt4, Armin Schwartzman5,
Katie J. Fowler1, Albert Hsiao2 and Claude B. Sirlin1

Abstract

Background: Liver alignment between series/exams is challenged by dynamic morphology or variability in patient
positioning or motion. Image registration can improve image interpretation and lesion co-localization. We assessed
the performance of a convolutional neural network algorithm to register cross-sectional liver imaging series and
compared its performance to manual image registration.

Methods: Three hundred fourteen patients, including internal and external datasets, who underwent gadoxetate
disodium-enhanced magnetic resonance imaging for clinical care from 2011 to 2018, were retrospectively selected.
Automated registration was applied to all 2,663 within-patient series pairs derived from these datasets. Additionally,
100 within-patient series pairs from the internal dataset were independently manually registered by expert readers.
Liver overlap, image correlation, and intra-observation distances for manual versus automated registrations were
compared using paired t tests. Influence of patient demographics, imaging characteristics, and liver uptake function
was evaluated using univariate and multivariate mixed models.

Results: Compared to the manual, automated registration produced significantly lower intra-observation distance
(p < 0.001) and higher liver overlap and image correlation (p < 0.001). Intra-exam automated registration achieved
0.88 mean liver overlap and 0.44 mean image correlation for the internal dataset and 0.91 and 0.41, respectively, for
the external dataset. For inter-exam registration, mean overlap was 0.81 and image correlation 0.41. Older age,
female sex, greater inter-series time interval, differing uptake, and greater voxel size differences independently
reduced automated registration performance (p ≤ 0.020).

Conclusion: A fully automated algorithm accurately registered the liver within and between examinations, yielding
better liver and focal observation co-localization compared to manual registration.

Keywords: Gadolinium ethoxybenzyl DTPA, Image processing (computer assisted), Liver, Magnetic resonance
imaging, Neural networks (computer)
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Key points
� Image registration across series can improve lesion

co-localization and reader confidence
� Combining convolutional neural network-based

segmentation with affine transformations created a
fully automated three-dimensional registration
method for magnetic resonance images of the liver

� This algorithm improved liver overlap and focal liver
observation co-localization over standard manual
registration

Background
Characterization of focal liver observations (i.e., areas
distinctive from background liver representing either le-
sions or pseudolesions) [1] requires synthesis of imaging
features across multiple contrast-enhanced phases and/
or series and often demands incorporation of data across
exams acquired at multiple time points. Proper spatial
alignment during and between exams is challenged by
the dynamic morphology of the liver and variability in
patient positioning, body habitus, and physiological mo-
tion [2–4]. For instance, differences in respiratory phase
may shift the liver position by as much as 30 mm between
acquired images [5–8]. Such shifts can significantly reduce
radiologists’ ability to co-localize observations across series,
especially when there are multiple observations and/or
exams [9–11].
Most radiologists in clinical practice rely on manual, and

rigid registration of images (i.e., scrolling through a stack
of images to find the most similar slice position for com-
parison) acquired at different time points, which can be
time-consuming and achieves partial alignment only in the
slice direction. Alignment across the entire liver volume is
not possible in routine clinical practice, and separate align-
ments may be required for each observation. The need for
repeated alignment is tedious, slows workflow, introduces
opportunities for alignment errors, and potentially contrib-
utes to interpretive mistakes. By making images acquired
at different time points, positions, or modalities geometric-
ally similar, image registration can improve observation co-
localization and reader confidence [12, 13].
Affine and deformable liver-focused medical image

registration algorithms have been proposed to address
these challenges but typically require operator supervi-
sion and are slowed by intensive processing and comput-
ing requirements [14–16]. Also, most algorithms have
been evaluated only in small patient cohorts without
generalization and have not been adopted in clinical
radiology practice [10, 11, 17–19].
Convolutional neural networks (CNN) have been used

in deformable registration tasks [20–24] and can poten-
tially overcome some of these barriers. However, since
the nonlinear transformations of deformable registration
can cause anatomical distortions, affine registration

algorithms (which restrict image transformations to scal-
ing, rotation, translation, and shearing) are generally pre-
ferred for diagnostic imaging [25, 26]. Studies have
shown that liver registration is improved by first seg-
menting the liver to create a liver mask and then using
the mask rather than the whole image as input into the
registration algorithm [14, 17]. CNNs can provide the
required segmentation and potentially improve the ac-
curacy of the liver registration. We combined these tech-
nical advances to create a fast, fully automated 3D affine
registration algorithm for liver imaging that incorporates
CNN-based liver segmentation.
The purpose of this study was to assess the performance

of the proposed fully automated 3D affine algorithm to
register intra- and inter-exam liver imaging series and to
compare its performance to standard manual image regis-
tration. Secondary purposes were to confirm that incorpor-
ating CNN-based liver segmentation improves registration
performance, to compare registration performance using
different types of CNN-segmented liver masks, and to show
scalability and generalizability of the results. As an explora-
tory aim, we performed cross-modality (CT to MRI) and
multiphase (arterial phase to hepatobiliary phase MRI)
registration as proof of concept.

Methods
Design
In this retrospective dual-center study, we included
gadoxetate disodium-enhanced three-dimensional (3D)
T1-weighted hepatobiliary phase (HBP) magnetic reson-
ance imaging (MRI) studies in adult patients for clinical
care. A subset of images from an internal dataset was used
to conduct a small-scale reader substudy, which compared
the performance of the algorithm to manual registration
performed by expert radiologists. The complete set of im-
ages from the internal dataset was used to show algorithm
scalability and identify factors that affect registration per-
formance (large-scale substudy). An external dataset was
used to show algorithm generalizability (external validation
substudy). The overall study design is shown in Fig. 1. The
study was Health Insurance Portability and Accountability
Act compliant and approved by the institutional review
board. Informed consent was waived.

Image data
The internal image dataset comprised images from pa-
tients with chronic liver disease undergoing two or more
gadoxetate-enhanced liver MRI examinations at 1.5 or 3
T (General Electric Medical Systems, WI, USA) for he-
patocellular carcinoma surveillance at our institution
from 2011 to 2018. These images were 3D fat-saturated
T1-weighted gradient-echo series, acquired 15 min or
later after contrast injection (HBP images). The contrast
agent was intravenously administered at the dose of
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0.025 mmol/kg. Baseline and follow-up studies of 253
unique patients provided a total of 564 unique HBP
series because some patients had multiple HBP series ac-
quired at different delays after contrast injection in a
given examination. All inter-exam series pairs (different
examinations) and intra-exam pairs (different HBP series
acquired within the same examination) produced a total
of 2,225 possible within-patient series pairs. Table 1
summarizes patient and imaging characteristics.
As part of another study [27], series in the internal

dataset were reviewed by two abdominal fellowship-
trained radiologists (A.H. and G.M.C.), with 5 and 10
years of experience in liver imaging, who independently
determined the presence of imaging artifacts and add-
itionally classified each series as A (adequate HBP con-
trast uptake) or B (suboptimal HBP contrast uptake).
Series were classified according to the Liver Imaging
Reporting and Data System [1] as adequate if the liver
was unequivocally more hyperintense than hepatic blood
vessels and suboptimal if this criterion was not met. Dis-
cordant classifications were adjudicated in consensus.
The external image dataset comprised T1-weighted 3D

fat-saturated gradient-echo HBP acquisitions from patients
who underwent gadoxetate disodium-enhanced 1.5-T liver

MRI examinations (Siemens Healthcare, Erlangen,
Germany) for various clinical indications at an outpatient
imaging center outside the USA (Diagnósticos da América
SA [DASA]) from September to November 2018. A pre-
dosed syringe with 10 ml (0.25 mmol/ml) of gadoxetate dis-
odium-based contrast was infused by peripheral IV at a rate
of 1 ml/s. This dataset included intra-exam series pairs
only, since full anonymization of patient information prior
to data transfer precluded tracking exams acquired at dif-
ferent dates to the same individual. Sixty-one unique pa-
tients provided 192 unique HBP series with 438 possible
within-patient series pairs. Patient characteristics for this
cohort were not available.
For the exploratory aim, we selected by convenience

from the internal dataset one patient (a 47-year-old
male) with contemporaneous contrast-enhanced com-
puted tomography (CT) and one patient (a 78-year-old
female) with arterial-phase 3D T1-weighted images ac-
quired in the same exam as the HBP images.

Fully automated affine registration algorithm
The registration algorithm comprised a previously devel-
oped liver segmentation CNN [28] and an affine transform-
ation network executed on a workstation with a Titan V

Fig. 1 Study design
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Table 1 Demographic and imaging characteristics of the 253 patients in the internal dataset as well as their effects on liver overlap
score

Demographic summary Univariate analysis Multivariate analysis

Stratum Number of image
pairs

Number of
patients

Coefficient 95% CI p Coefficient 95% CI p

Overall 2,225 253 0.86 [0.85, 0.87] < 0.001

Age* (years) 58.38 ± 12.37
(38.60–77)

< 45 (intercept) 260 33 0.89 [0.85, 0.92] < 0.001 / / /

45–64 1,211 142 − 0.02 [− 0.06, 0.02] 0.34 − 0.01 [− 0.04, 0.02] 0.56

> 65 754 78 − 0.05 [− 0.09, − 0.01] 0.02 − 0.04 [− 0.07, 0.00] 0.06

Sex

M (intercept) 1,062 108 0.87 [0.86, 0.89] < 0.001 / / /

F 1,163 145 − 0.03 [− 0.05, 0.00] 0.02 − 0.03 [− 0.05, − 0.01] 0.01

BMI* (kg/m2) 20.06 ± 5.99
(20.65–39.53)

< 24.9 (intercept) 571 62 0.83 [0.81, 0.86] < 0.001

25–30 792 91 + 0.03 [− 0.00, 0.06] 0.05

> 30 842 94 + 0.04 [0.01, 0.07] 0.01

Etiology

Hepatitis B (intercept) 466 37 0.85 [0.82, 0.89] < 0.001

Hepatitis C 1,042 108 + 0.01 [− 0.02, 0.05] 0.50

Alcohol 164 33 − 0.01 [− 0.06, 0.04] 0.63

Nonalcoholic fatty liver
disease

276 35 + 0.02 [− 0.02, 0.07] 0.39

Autoimmune hepatitis 98 11 + 0.03 [− 0.03, 0.10] 0.34

Other 179 29 + 0.00 [− 0.05, 0.05] 0.93

Time between series*
(days)

324.72 ± 407.73
(0–1,255)

Same day (intercept) 674 196 0.9 [0.89, 0.92] < 0.001 / / /

0–1 year 823 135 − 0.05 [− 0.06, − 0.04] < 0.001 − 0.03 [− 0.04, − 0.02] < 0.001

1–2 years 469 93 − 0.08 [− 0.09, − 0.07] < 0.001 − 0.05 [− 0.07, − 0.03] < 0.001

> 2 years 259 29 − 0.10 [− 0.12, − 0.08] < 0.001 − 0.08 [− 0.10, − 0.06] < 0.001

Artifacts

No artifacts (intercept) 1,278 185 0.86 [0.85, 0.88] < 0.001

One image 597 105 − 0.00 [− 0.02, 0.01] 0.68

Both images 350 65 − 0.01 [− 0.02, 0.01] 0.55

HBP contrast uptake
adequacy

Both adequate
(intercept)

1,435 193 0.87 [0.86, 0.88] < 0.001 / / /

One adequate,
one suboptimal

350 54 − 0.02 [− 0.03, − 0.01] 0.01 − 0.02 [− 0.03, 0.00] 0.01

Both suboptimal 340 62 + 0.02 [− 0.01, 0.04] 0.15 + 0.00 [− 0.02, 0.02] 0.96

Missing 100 16 / / / / / /

Voxel volume difference*
(mm3)

0.76 ± 1.52
(0–3.02)

0 (intercept) 746 186 0.90 [0.89, 0.92] < 0.001 / / /

0–1 1,064 141 − 0.06 [− 0.07, − 0.05] < 0.001 − 0.02 [− 0.03, − 0.01] < 0.001

> 1 402 86 − 0.09 [− 0.10, − 0.07] < 0.001 − 0.05 [− 0.06, − 0.03] < 0.001
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graphics processing unit (NVIDIA, CA, USA) and imple-
mented on the Keras Application Program Interface (API)
[29], a widely used open-source toolkit for deep neural net-
work implementation.
For inter-exam registration, the HBP series from the

baseline exam served as the “static” series while the HBP
series from the follow-up exam served as “moving”
series. For intra-exam registration, the earlier HBP series
after contrast injection served as the “static” series
whereas the later HBP series served as “moving” series.
For the exploratory aim, the CT series or the arterial-
phase MR series served as the moving series.
Automated registration of each pair of static and mov-

ing series was accomplished in two steps (Fig. 2). First,
the CNN segmented the liver on each series to create
liver masks. Second, the liver masks were registered
using the affine transformation network. The affine

transformation parameters were then applied to the
whole images, not just the liver masks, to map the mov-
ing series to the static series space. Both the liver seg-
mentation CNN and affine transformation network are
described further below.

Convolutional neural network for liver segmentation
The liver segmentation model is a two-dimensional
CNN with U-Net model architecture trained to segment
T1-weighted HBP images and previously validated using
liver volumetry and proton density fat fraction estima-
tions [28]. Axial slices from 3D HBP series were indi-
vidually sent through the liver segmentation network to
produce a set of liver masks (one per slice), which were
then concatenated and post-processed to form a 3D bin-
ary liver mask. For additional details on the development
and implementation of the liver segmentation CNN,

Table 1 Demographic and imaging characteristics of the 253 patients in the internal dataset as well as their effects on liver overlap
score (Continued)

Demographic summary Univariate analysis Multivariate analysis

Stratum Number of image
pairs

Number of
patients

Coefficient 95% CI p Coefficient 95% CI p

Slice thickness* (mm) 4.53 ± 0.73
(3.00–6.00)

Pixel spacing* (mm) 0.82 ± 0.15
(0.70–0.94)

BMI body mass index, HBP hepatobiliary phase
* Mean +/- standard deviation; 5th and 95th percentiles in parentheses

Fig. 2 Scheme of the two-step fully automated affine registration algorithm using intensity masks. First, an independently developed two-
dimensional liver segmentation algorithm was used to extract liver masks populated with intensities. Intensity masks were registered using an
affine transformation network to geometrically align the moving series (follow-up) to the static series (baseline). Optimal affine transformation
parameters were determined by maximizing the similarity between baseline and registered follow-up. Affine transformation parameters were
then used to map the entire moving series to the static image series space
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please refer to Additional file 1: S1. The resulting masks
were binary: pixels within the mask had values of 1 and
pixels outside the mask had values of 0. Automated
registration using the “binary masks” was considered the
primary investigational method, since it used native
spatial resolution and, lacking any pixel intensity infor-
mation, has the potential for generalization to multi-
modality or multiphase registration. A variant of the
binary masks called “intensity mask” was then created by
multiplying the 3D binary mask by the original raw liver
image, thereby populating the masks with the signal in-
tensities from the corresponding image; this was done to
investigate how the additional pixel intensity information
affected registration performance. Each of the two masks
(binary and intensity) was tested as input for the affine
transformation network. As a control, the affine trans-
formation was also tested using whole acquired images
without any liver segmentation; this was done to deter-
mine the effect of focusing the registration on the liver
masks on registration accuracy.

Affine transformation network
The affine transformation was implemented as a neural
network with a single 12-neuron dense layer represent-
ing 3D affine transformation parameters for translation,
rotation, scaling, and shearing. The network estimated af-
fine transformation parameters that optimized alignment
between the moving liver mask (i.e., binary or intensity
mask) and the static liver mask. Using these transform-
ation parameters, the original, unmasked moving series
was transformed to the static series space. A similar
process was used for registering whole images (i.e., with-
out segmentation), except all transformations and map-
pings were done using moving and static whole images
rather than moving and static masks. For additional details
on the implementation of the affine transformation net-
work, please refer to Additional file 1: S1.

Small-scale reader substudy
To evaluate how the automated algorithm with binary
mask compares to radiologist-performed manual registra-
tion and to automated registration with different masks or
no masks, we randomly selected 100 inter-exam series
pairs from the internal imaging dataset and compared per-
formance using three metrics (Fig. 3).

Manual registration of static and moving series
Two expert readers (fellowship-trained body radiologists
[A.H. and S.I.], each with 5 years of experience in liver
imaging), independently, manually registered 100 series
pairs (whole images) in the z-direction using a commer-
cially available DICOM viewer (Osirix, Geneva,
Switzerland) to reflect common clinical practice. Readers
registered the images by aligning slices depicting the

right portal vein bifurcation in both series as an internal
landmark. Slice numbers corresponding to the aligned
slices were recorded for each series for subsequent ana-
lyses described below.

Manual annotation of focal liver observations on static and
moving series
In the same reading session, the two readers independ-
ently annotated any detected focal liver observation on
each of the 100 series pairs (static and moving series,
separately). Usually, these were distinctive hypointense
round nodules. Each annotation included a marker indi-
cating the spatial coordinates of the observation center.
After observations were annotated in all image pairs,
readers measured the single smallest and largest ones to
obtain observations size range.

Fully automated affine registration
The automated registration algorithm (using mask variations
and whole images) was applied to the 100 inter-exam series
pairs. Affine transformation parameters from the 100 auto-
mated registrations were saved for use in subsequent
analyses.

Manual liver segmentation to create ground-truth liver
masks
A senior radiologist (G.M.C.) with 10 years of ex-
perience in liver imaging manually segmented the
livers on the same 100 series pairs (static and mov-
ing series, separately) to create ground-truth liver
masks. As described below, these ground-truth liver
masks were used to compare the accuracy of auto-
mated versus manual registration.

Comparison of manual and automated registration
Each radiologist’s observation annotations were overlain
on the ground-truth liver masks, preserving their exact
coordinates, to create “annotated masks.” To create
auto-registered series pairs, the saved affine transform-
ation parameters were applied to the “annotated moving
masks.” To create manually registered series pairs, the
annotated masks were aligned in the z-direction using
the slice positions selected by each reader as described
above. The moving masks were then scaled, rotated, and
translated (rigid transformations) to correct for differ-
ences in field-of-view or patient positioning from the
static masks. This was done to maximize the accuracy of
manual registration in the performance comparisons
below. Three metrics were used to assess and compare
the accuracy of the manual and automated registrations:
(1) Liver overlap score (Jaccard index) [30] between the
static and registered moving liver masks over the entire
liver volume (a score of 1 indicates perfect liver overlap);
(2) Image correlation (mutual information) [31] between
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Fig. 3 (See legend on next page.)
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the ground-truth static intensity mask and the registered
ground-truth moving intensity mask (a larger image cor-
relation indicates better registration performance; of
note, since image correlation relies on the pixel intensity
distribution of the series for calculation, we used image
correlation to make only paired comparisons, i.e., we
would have been unable to determine if differences in
image correlation were attributed to algorithm perform-
ance or pixel distributional differences between unpaired
groups); and (3) 3D intra-observation distance (marker
of focal liver observation co-localization) in millimeter
between matched observation centers on overlain static
and registered moving series (a score of 0 mm indicates
perfect observation co-localization; in addition to quanti-
tative metrics, a separate analysis qualitatively comparing
manual registration and binary mask registration using
reader confidence scores for image similarity assessment
was performed. Details on this analysis are described in
Additional file 1: S2.

Large-scale and external validation substudies
Since the intensity mask was not meaningfully superior
to the binary mask in the small-scale reader study (see
results) and since binary masks were considered the pri-
mary investigational method, the subsequent studies fo-
cused on binary masks. The automated registration
algorithm (using binary masks) was applied to all 2,225
within-patient series pairs in the internal dataset to
evaluate scalability and to all 438 intra-exam series pairs
in the external dataset to evaluate generalizability. Two
metrics were used to evaluate registration accuracy: (1)
Liver overlap score and (2) image correlation. Intra-ob-
servation distance was not assessed as it was not feasible
to manually annotate individual observations on the large
number (n = 2,663) of series in these studies. Similarly,
since ground-truth manual segmentation was not
feasible for all series pairs, liver overlap score and
image correlation were calculated using the masks
produced by the CNN liver segmentation algorithm.
Computation time was recorded.

Feasibility of cross-modality and multiphase registration
The registration algorithm (using binary masks) was ap-
plied to a single cross-modality series pair (CT to MRI)
and a single intra-exam series pair (HBP to arterial phase
MRI) as proof-of-concept examples of cross-modality
and multiphase registration, respectively. After registration,

liver overlap score (Jaccard index) [30] between the static
and registered moving liver masks over the entire liver
volume was calculated.

Statistical analysis
All statistical analyses were performed by a biostatistician
using R v3.4.0 software [32]. Descriptive summaries were
prepared. In the small-scale reader study, the effect of
HBP adequacy on liver segmentation accuracy (liver over-
lap score) was evaluated using linear mixed effects models.
Registration metrics achieved by automated registration
with the binary mask (the primary investigational method)
was compared using paired Bonferroni-corrected t tests to
those achieved by every other method (manual registration
by each reader, automated registration with intensity mask,
and automated registration without any mask [whole
image]). Additionally, readers were compared to each other.
In the large-scale study, intra-exam and inter-exam differ-
ences were compared using unpaired t tests. Influence of
patient demographics, inter-series time intervals, imaging
artifacts, reader consensus-determined HBP adequacy, and
voxel volume differences on one registration metric (liver
overlap score) achieved by the primary automated registra-
tion algorithm (binary masks) was evaluated in univariate
and multivariate analyses, using linear mixed effects models
to account for within-patient dependencies. Significant
characteristics in the multivariate analysis were determined
by backward elimination. Ninety-five percent confidence
intervals (CIs) were analytically calculated as appropriate.
The p values lower than 0.05 were defined as significant for
t tests and linear mixed effects models.

Results
Small-scale reader substudy
Performance metrics (mean ± standard deviation) for the
automated and manual registrations in the small-scale
study are summarized in Table 2; paired mean differences
and their Bonferroni-corrected p values are listed in Add-
itional file 1: Table S1. Figures 4, 5 and 6 provide examples
of higher qualitative spatial concordance on auto-registered
series over manually registered series.

Liver segmentation accuracy
Mean liver overlap score between predicted and ground-
truth liver masks was 0.96 ± 0.04. Liver overlap scores
were not significantly different between series with ad-
equate and suboptimal HBP contrast uptake (p = 0.88).

(See figure on previous page.)
Fig. 3 Small-scale substudy (a): Registration methods and performance metrics. Binary mask (first, left to right) was considered the primary
investigational method for registration and it was compared to alternate masking method, i.e., whole image registration and manual
registration. Small-scale reader substudy (b): flow and performance comparisons between radiologist-performed manual registration and
automated algorithm (intensity masks displayed). Three metrics: liver overlap score (Jaccard index), image correlation (mutual information),
and intra-observation distance
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Liver overlap score
On manually registered series, mean liver overlap score
was 0.73 or 0.74, depending on the reader; these differ-
ences were not significant. Compared to manual registra-
tion, automated registration with binary mask improved
the mean liver overlap score from 0.73–0.74 by 0.11–0.12
to 0.86, depending on the reader. In pairwise comparisons,
binary mask and intensity mask showed similar overlap
scores (mean liver overlap 0.86) and were not statistically
different. Automated registration without the initial liver
segmentation (i.e., using whole images) was inferior (mean
liver overlap 0.73) to binary mask (adjusted p < 0.001) and
did not improve mean liver overlap score compared to
manual registration.

Image correlation
On manually registered series, mean image correlation was
0.35 or 0.36, depending on the reader; these differences
were not significant. Compared to manual registration, au-
tomated registration with binary mask improved the mean

image correlation from 0.35–0.36 by 0.06–0.07 to 0.42, de-
pending on the reader. In pairwise comparisons, binary
mask yielded statistically lower image correlation than in-
tensity mask (0.42 versus 0.43, adjusted p < 0.001). Auto-
mated registration with whole images provided significantly
lower image correlation than automated registration using
binary masks (0.39 versus 0.42, adjusted p < 0.001).

Observation distance
One reader detected and annotated 139 observations
(range 2–68 mm), and the other reader 147 observations
(range 2–70 mm). On manually registered series, mean
observation distances were 14.7 mm and 16.1 mm,
depending on the reader; these differences were not
significant (p = 0.47). Compared to manual registration,
automated registration with binary mask decreased the
mean intra-observation distance by 6.3–7.7 to 8.4 mm,
depending on the reader. In pairwise comparisons,
binary mask was not statistically or meaningfully super-
ior to any other mask. Automated registration without a

Table 2 Mean ± standard deviation of performance metrics across 100 within-patient series pair for manual and automated
registrations in the small-scale substudy

Registration method Liver overlap
score

Image
correlation

Observation distance (annotated
by reader 1)

Observation distance (annotated
by reader 2)

Manual registration Reader 1 0.74 ± 0.10 0.36 ± 0.14 14.73 ± 8.20 /

Reader 2 0.73 ± 0.12 0.35 ± 0.14 / 16.09 ± 8.49

Automated registration (with
masking)

Binary
mask

0.86 ± 0.06 0.42 ± 0.16 8.40 ± 4.62 8.42 ± 5.78

Intensity
mask

0.86 ± 0.06 0.43 ± 0.16 8.26 ± 4.64 8.49 ± 5.67

Automated registration
(without masking)

Whole
image

0.73 ± 0.15 0.39 ± 0.17 22.95 ± 24.42 18.11 ± 16.06

Statistical comparisons between registration methods were performed using paired t tests (Additional file 1: Table S1)

Fig. 4 Baseline static (a) and follow-up moving images (b, c). In b, the follow-up image registered to baseline manually using the bifurcation of
the right portal vein as anatomical reference: differences in liver morphology are pronounced in the posterior aspect of the liver (circle) and in
the left lobe (circle). In c, the follow-up image registered to baseline using the automated affine algorithm shows better correspondence to
baseline image
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mask (i.e., using whole images) provided mean liver ob-
servation distances of 18 and 23 mm; these values were
significantly inferior to automated registration with bin-
ary mask (p < 0.001).
The automated registration algorithm improved quali-

tative readers’ confidence scores for image similarity
over standard manual registration as described in
Additional file 1: Figure S1.

Large-scale and external validation substudies
Liver overlap and image correlation means ± standard devi-
ations achieved by automated registration with a binary
mask in the large-scale and external validation studies are
shown in Table 3. For the large-scale study, mean liver
overlap score was 0.81 for inter-exam registration and 0.88
for intra-exam registration while mean image correlation
was 0.41 for inter-exam registration and 0.44 for intra-exam

Fig. 5 Manual registration of baseline static (a) and follow-up moving (b, c) images show aligned hepatic veins. A 1.0-cm focal liver observation is
seen in segment IVa in baseline (a) but not seen on follow-up image (circle) (b). In c, follow-up registered image using the automated affine
algorithm parameters applied to the whole image shows correspondence to the baseline image, including the presence of the same focal
observation in segment IVa.

Fig 6 Baseline (a, d) and follow-up (b, c, e, and f) images. Manual registrations show the alignment of slices through anatomical references.
However, focal observations are noted in different slice positions. The mismatch between focal observations and slice position negatively affects
assessment as the observation in d may be interpreted as a new lesion. c, f On the automated affine registered follow-up images, focal liver
observation correspondence is confirmed, and the diagnosis of previous existing growing lesion is made with higher confidence
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registration; differences between intra-exam and inter-exam
registrations were significant (p < 0.001). For the external
validation study, mean liver overlap score was 0.91 and
mean image correlation was 0.41. Mean computation time
for inter-exam binary mask registration (54.6 s) was signifi-
cantly longer than intra-exam binary mask registration
(50.3 s) (p < 0.001).
Table 1 summarizes the influence of patient factors, in-

ter-series time intervals, image artifacts, and inter-series
voxel volume differences on liver overlap achieved by au-
tomated registration with a binary mask in the internal
dataset. In multivariate analyses, older age, female sex,
greater inter-series time interval, and greater inter-series
voxel volume differences independently reduced the liver
overlap score. Additionally, liver overlap score was re-
duced when registering two series with different HBP con-
trast uptake adequacy scores.

Feasibility of cross-modality and multiphase registration
Feasibility of cross-modality and multiphase registration
using binary masks is shown in Fig. 7. Cross-modality (CT
to MRI) liver overlap score was 0.93 and multiphase (ar-
terial phase to hepatobiliary phase MRI) liver overlap
score was 0.89 using the proposed automated method.

Discussion
In this study, we applied a novel fully automated affine-
based registration algorithm to MRI T1-weighted HBP
series acquired at different delays from contrast injection
within the same exam and at different exam dates and
compared its performance against standard manual regis-
tration. The automated algorithm produced better regis-
tration of the liver between series over manual registration
and, most importantly, better co-localization of focal
observations.
In clinical practice, image registration is commonly

performed manually, which confines the registration to
magnification and to alignment in the z-direction. This
means that the radiologist may be able to scroll up or
down, zoom in or out, to find the slice that most closely
aligns to the comparison image, but cannot alter the
image in any other plane. Rotational alignments can be
performed using multiplanar reformation software add-
ons, often time-consuming and difficult to perform. Our
proposed 3D automated registration saves time and

Table 3 Performance analysis (mean ± standard deviation) of all
within-patient pair combinations (2,225) of hepatobiliary phase
images in the internal and external datasets (438 image pairs)

Dataset Liver overlap score Image correlation

Internal dataset (intra-exam) 0.88 ± 0.14 0.44 ± 0.15

Internal dataset (inter-exam) 0.81 ± 0.14 0.41 ± 0.14

External dataset (intra-exam) 0.91 ± 0.06 0.41 ± 0.13

Statistical comparisons between internal datasets were performed using
unpaired t tests

Fig. 7 Feasibility of cross-modality and multiphase registration. The registration algorithm (using binary masks) was applied to a cross-modality
series pair (computed tomography to magnetic resonance imaging; a–c) and one intra-exam multiphase series pair (HBP to arterial phase; d–f) as
proof-of-concept examples of cross-modality and multiphase registration, respectively
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mitigates cross-sectional misalignment attributed to
changes in position or dynamic liver morphology be-
tween series, as the CNN-based liver segmentations/
masks focus the affine transformations to the organ of
interest, which, as shown by others and verified in this
study, improves accuracy [14].
Compared to masks that retained intensity informa-

tion, binary masks achieved overall similar performance,
except for small and likely unmeaningful differences in
image correlation, suggesting that the liver masking (not
the liver intensities) drives registration accuracy. Since
the affine transformation does not meaningfully benefit
from intensity information, the proposed algorithm
using binary masks does not rely on a particular imaging
sequence, phase, or modality and can potentially be
extended to cross-modality and multiphase registration
tasks. Finally, we showed the proposed algorithm is
scalable and generalizable across a large number of
exams and different populations and scanners, achieving
high liver overlap scores and image correlations across
over 2,500 series pairs.
The performance of the proposed automated registra-

tion algorithm was not affected by patient body mass
index, liver disease etiology, and imaging artifacts. Inter-
exam registration performance was significantly affected
by the time between series; compared to intra-exam
series, average liver overlap was reduced by 10% when
images were acquired more than 2 years apart. This was
expected since the liver may change in volume and
shape over prolonged time periods, especially in patients
with chronic liver disease [33, 34]. Differences in voxel
volume between series also reduced registration per-
formance, probably because such differences force the
3D registration to interpolate the moving series across a
different anisotropic space than the static image. Differ-
ences in HBP contrast uptake adequacy within a series
pair reduced registration performance, but the reduction
was small and likely not clinically relevant. We believe
this minor decrease in registration performance could be
related to small differences in liver mask predictions
between adequate and suboptimal series, where small
isointense vessels in suboptimal series may be included
in the liver masks. Registration performance was not
affected when both series in a pair were either adequate
or suboptimal. Older age and female sex each mildly
decreased registration accuracy. We speculate that dif-
ferent breath-hold capabilities or breathing patterns
across age and sex [35] could affect variability in liver
position and shape between acquisitions. Further re-
search is needed to confirm and elucidate the mechan-
ism for these findings.
The incorporation of segmentation techniques to

constrain registration focus on the organ of interest and
improve performance over whole image registration has

been proposed [4, 9, 14, 18, 19]. However, these often relied
on laborious manual or semiautomated segmentation and/
or were validated on small cohorts [9, 11, 14, 17]. Being
completely automated, and hence, less time-intensive than
semiautomated or manual methods, our registration algo-
rithm can be applied to a large set of image series pairs
while achieving greater accuracy than whole image registra-
tion (i.e., without segmentation). Additionally, most prior
works proposed deformable techniques to address the non-
linear morphology of the liver [9, 10, 17, 18]. Although
achieving good performance overall, deformable registration
can be unreliable and inadvisable for diagnostic purposes
since distortions in organ or lesion appearance may lead to
erroneous measurements or characterization [13, 25, 26].
Hence, some investigators favor non-deformable image
registration for lesion evaluation and follow-up [25, 26]. Car-
rillo et al. [11] and Fujioka et al. [19] proposed rigid registra-
tion of liver images to evaluate locoregional therapy
response with promising results, reporting mean registration
errors ranging from 3.05 to 13.00 mm. Although similar to
the intra-observation distances reported in our study, results
were reported on small cohorts (< 20 patients) and relied on
extensive image preprocessing, manual registration, and/or
manual liver segmentations, possibly limiting application to
busy clinical settings [11, 19]. Additionally, Carrillo et al.
[11] reported the exclusion of slices close to the diaphragm
in the reference volumes as well as the exclusion of 2 out of
17 individuals due to low-image quality (low signal-to-noise
ratio [SNR] or motion artifacts). Overall, our algorithm was
not affected by the presence of imaging artifacts, likely due
to the robustness of our liver segmentation algorithm.
Foruzan and Motlagh [14] have used a multistep ap-

proach to register liver images for interventional therapy
purposes. In their study, a semiautomated liver segmenta-
tion was followed by a rigid and a non-rigid registration.
Their liver segmentation achieved slight lower overlap
(0.93) than our CNN-based liver segmentation. For their
rigid and non-rigid registration algorithms, mean liver
overlap and intra-observation distance were 0.75 and 11.7
mm and 0.78 and 10.11 mm, respectively. These values
are slightly worse than those achieved by our algorithm.
Although the robustness of our CNN-based liver segmen-
tation may in part be the reason why we found slightly
better results, their study performed multimodality regis-
tration on low-field strength MR data with very low SNR
images, making their registration task more challenging.
Conversely, Fernandez-de-Manuel et al. [36] proposed a

liver-focused deformable registration algorithm using high
SNR gadoxetate disodium-enhanced 3D T1-weighted HBP
images for liver lesion evaluation. In their study, they re-
ported a mean intra-observation distance of 7.07 mm after
registration, which is similar to our results. However, since
they used a deformable registration technique, a direct com-
parison to our results may warrant some caution.
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Unfortunately, we could not find any publicly available data-
sets or CNN-segmentation-based algorithms for liver regis-
tration to test our approach and/or perform a head-to-head
comparison. Our proposed algorithm also achieved shorter
computation times than previously proposed liver registra-
tion algorithms, which ranged from under 2 min [14] to 2
to 30 min [8, 9]. However, faster computation times may be
attributed to technological advances in computing (using
graphics processing units) and differences in the registration
task (affine versus deformable). Hence, it is likely the compu-
tation time reported in our study will be easily overcome as
technology advances in the next few years.
A limitation of our study was its retrospective design,

which precluded the assessment of how our algorithm
would impact radiologist performance in a clinical set-
ting. Additionally, our cohort was comprised mostly of
patients with chronic liver disease and under surveil-
lance for HCC. Hence, the number of patients with ad-
vanced neoplastic disease, locoregional treatment, or
liver resections was small. Therefore, we could not assess
how major alterations in liver size and shape related to
these procedures would impact the registration. Finally,
since ground-truth manual segmentations were not feasible
for all 2,663 series pairs used in the large-scale and external
validation studies, liver overlap score and image correlation
were calculated using the masks produced by the CNN
liver segmentation algorithm.
In conclusion, our proposed two-step fully automated

affine registration algorithm accurately registers the liver
within and between examinations and yields significantly
better overall liver and focal observation co-localization
compared to the manual alignment commonly per-
formed in clinical practice.
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