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Hyperlocal Monitoring of Traffic-Related Air Pollution to 
Assess Near-Term Impacts of Sustainable Transportation 
Interventions 

EXECUTIVE SUMMARY 

Traffic and air pollution are two of the South Coast Air Basin’s most difficult challenges for 
environmental sustainability. This challenge also exists at local levels, such as in the City of 
Riverside, where two major highways service the area (CA 60/I-215 and CA 91) and background 
air pollution is high in the afternoons due to pollution transport and photochemistry. The South 
Coast Air Quality Management District predicts continued increases in VMT in the Basin, while 
secondary ozone levels are also beginning to increase after decades long reductions. Heavy-
duty trips are also increasing due to increasing goods movement activity in inland Southern 
California. In this project, it was conjectured that traffic-related air pollution would continue to 
be a challenge for the City of Riverside, whose interstate corridors service a high volume of 
logistics activity. 

To better understand the impacts of interstate vs. local traffic along a highly impacted urban 
corridor, a low-cost, measurement-based approach was used to assess the potential for 
sustainable traffic interventions to improve local air quality. Two traffic-related air pollutants, 
NO2 and PM2.5, were measured for one year along an urban corridor that is currently being 
tested for smart intersection interventions. Specifically, the chosen corridor is the City of 
Riverside Innovation Corridor, a six-mile roadway that services downtown Riverside, University 
of California, Riverside, and several businesses and community organizations.  

Gradient boosted regression trees were used to create models to predict hyperlocal PM2.5 and 
NO2 based on traffic conditions, meteorological conditions, and background concentrations 
during the months of May and June of 2021. While the applied methods were not used to 
estimate the exact contribution of a particular variable, partial dependence gave insight into 
the linearity of influence of variables local pollutant concentrations. Preliminary findings 
indicate that the key driving variables for modeled traffic-related pollutants were background 
PM2.5 and relative humidity for local PM2.5, and day of sample for NO2. This was determined due 
to the highly variable nature of partial dependence for these variables, as opposed to the flat 
signal for the other input variables (Figure ES-1).  

The results corroborate a priori knowledge that NO2, a primary pollutant, is driven by day-to-
day activity. However, PM2.5 is largely driven by regional trends and local meteorology. These 
results lend direction for improving local air quality in the Riverside area. Pollution reduction 
strategies should continue to target NO2 polluters in the area through sustainable 
interventions. PM2.5 is composed of primary and secondary in components and should 
therefore be monitored for its responses to NO2 reduction interventions. The findings do not 
identify local vs. highway sources as driver of NO2 along the Innovation Corridor. This will be 
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explored during future efforts to actual modify traffic patterns along the corridor, and a before-
after analysis may indicate whether interventions have a significant impact on local NO2.  

 

Figure ES-1. Key factors influencing modeled PM2.5 and NO2 presented as the partial 
dependence of the predicted model outcome on the driving variables. a.) Dependence of 
predicted local PM2.5 on background PM2.5. b.) Dependence of predicted local PM2.5 on 
relative humidity.  c.) Dependence of predicted local NO2 on sampling day. 
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1. Introduction 

The South Coast Air Basin (SoCAB) is home to more than 16 million people and is historically a 
hotspot for poor air quality in the United States. The Inland Empire was recently given the 
grade of “F” for ozone and PM2.5 pollution by the American Lung Association (2020 State of the 
Air).1 While tremendous progress has been made to reduce PM2.5 and ozone design values for 
SoCAB, the region is still designated as nonattainment for the annual PM2.5 (12 µg m-3) and 8-
hour ozone (0.070 ppm) NAAQS. In the last four years, the ozone design value (ODV) reached 
an inflection point and began to increase, indicating that present-day mitigation strategies are 
losing effectiveness for bringing SoCAB into attainment. An important question that has not 
been completely answered is, “What are the main natural or anthropogenic drivers for this 
reversal?” 

One potentially significant driver for a reversal in ODV trends is the increase in logistics activity 
in SoCAB, marked by the expansion of warehouses in the Inland Empire and subsequent 
increase in heavy-duty trips to and from the warehouses. Ongoing research at the University of 
California-Riverside’s Center for Environmental Research and Technology (CE-CERT) investigates 
the contributions of heavy-duty trips to annual vehicle miles traveled (VMT) and basin-wide 
traffic-related emissions. A recent study reported that experimental measurements of NOx 
from heavy-duty diesel vehicles emitted more than three times the certification standard 
during real-world operations.2 The 2016 Air Quality Management Plan for SoCAB estimated that 
on-road vehicles were responsible for 56% of NOx, 33% of VOC, and 63% of CO emissions (as of 
2012).3 Present-day NOx emissions are estimated to be approximately 40% lower despite 
reported increases of 5% in population and VMT since 2012.4  Potential underestimates in 
District-reported on-road emissions may overestimate the effectiveness of mitigation efforts, 
which points to a need for real-world assessment of the effectiveness of sustainable 
transportation interventions for the improvement of in-use traffic-related air pollutant (TRAP) 
emissions and air quality. 

In addition to traffic-related emissions, meteorology also plays an important role in driving air 
pollutant trends.5 This was clearly observable during the COVID-19 shutdown where notable 
reductions in TRAP emissions made meteorological impacts more clearly pronounced.6,7 Upon 
comparison with business as usual cases, and after taking background climate trends into 
account, it was observed that primary NO2 was reduced during the shutdown while ozone saw 
large increases during hotter than normal periods in VOC-limited regions of SoCAB. Given the 
hot and sunny climate of Riverside, ozone and secondary PM2.5 formation is favorable.  

As such, the short-term goals of the project were to: 1) establish a high-density network of low-
cost air pollution monitors along the corridor and 2) carry out hyperlocal monitoring of TRAPs 
with the consideration of meteorological impacts. Longer-term goals for this effort include 3) 
quantifying the near-term impacts of the transportation interventions and 4) evaluating the 
effectiveness of large-scale implementation of the interventions. 



 2 

1.1. City of Riverside Innovation Corridor 

The City of Riverside, CE-CERT and local community organizations are deeply invested in 
improving local traffic and air quality while maintaining and promoting sustainable economic 
growth. As a result, the City of Riverside Innovation Corridor was established, a six-mile section 
of University Avenue between University of California, Riverside and downtown Riverside 
(Figure 1). The Innovation Corridor is being outfitted with modern traffic signal controllers that 
broadcast signal phase and timing, employ video analytics, and will be used for future shared, 
electric, connected and automated vehicle experimentation across different modes (e.g., cars, 
buses, and trucks). Given the location and the efforts underway, the Innovation Corridor offers 
an ideal opportunity to test critical technical research questions on how advanced 
transportation technology can be most effectively deployed. 

 

Figure 1. Project site along University Avenue’s Innovation Corridor in the City of Riverside. 

The research team and the City of Riverside continue to upgrade the infrastructure by 
expanding other capabilities beyond wireless communications. For example, one of the sensor-
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rich intersections, Iowa Avenue & University Avenue, have been equipped with various 
infrastructure-based high-resolution traffic and air quality surveillance systems, including 
GridSmart Fisheye cameras (see figures below) and Ouster LiDAR (Figure 2). These surveillance 
systems can not only provide object-level trajectory information, accurate vehicular counts or 
turning movements for different modes, but also detect and track other road users such as 
pedestrians, bicyclists, and micro-mobility users (e.g., electric scooter riders). 

 

Figure 2. Installation and user interface of GridSmart Fisheye Cameras. a) Researchers at the 
traffic controller cabinet. b) Installing the camera on a streetlamp post. c) GridSmart user 
interface. 
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1.2. Low-Cost Air Monitoring 

A recent mobile monitoring study in Oakland, CA demonstrated that ambient concentrations of 
black carbon and NO2 vary significantly at the street-level, where gradients were influenced by 
local pollution sources, such as traffic, warehouses, and small businesses.8 A cost-effective 
network of monitors along the Innovation Corridor is useful for capturing the spatial and 
temporal variability in NO2 and PM2.5 concentrations. NO2 is a direct tracer for on-road activity, 
while PM2.5 is composed of primary and secondary components. Therefore, we recognize that 
PM2.5 measurements may not have a strong local signal along the corridor, in part due to the 
inability of the PM2.5 sensor within the Node-S to measure ultrafine particles (<100 nm).  

To date, we have installed four Clarity Node-S (Berkeley, CA) units on utility poles at three 
intersections along the Innovation Corridor (University Avenue & Iowa/Cranford/Chicago Aves., 
between CA-91 and CA-60/I-215) and a partnering site to the south and east of the Corridor 
(Tyler St. & Magnolia Ave., upwind of CA-91) (Figure 3). The monitored intersections are located 
along urban commercial corridors that accommodate restaurants, strip malls, gas stations, etc. 
Google Street view images of all intersection approaches and technical specifications for the 
Clarity Node-S are provided in the Appendix.  

 

Figure 3. Maps of study location and air pollution monitoring sites. Left: Study site is in 
Southern California in the South Coast Air Quality Management District. Top right: The study 
features four low-cost monitoring locations (red) and one SCAQMD reference site (Rubidoux 
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air monitoring site; blue). Bottom right: Three low-cost monitors are located directly along 
the Innovation Corridor at the following intersections (west-to-east): University Ave. & 
Chicago Ave., University Ave. & Cranford Ave., and University Ave. & Iowa Ave. The 4th low-
cost monitor is located at the intersection of Magnolia Ave. and Tyler St., south and west of 
the Innovation Corridor.  

2. Data and Methods 

2.1. Data Collection 

Air Quality & Meteorology. NO2 and PM2.5 concentrations were collected at the four Clarity 
sites during the year 2021 at approximately 15-minute intervals. The team collaborated with 
Clarity Inc. to develop near-road correction factors for the sites. Background PM2.5 and NO2 
measurements for were obtained from the Rubidoux air monitoring site via the California Air 
Resources Board AQMIS2 online database. Rubidoux concentrations were available hourly. In 
order to maintain consistency with measurements obtained from Clarity, the Rubidoux data 
were up-sampled, and the hourly concentration was assigned to each 15-minute interval of the 
hour. Historical weather data for the location was obtained from OpenWeather 
(https://openweathermap.org/) for the year of 2021. Weather variables collected include air 
temperature (ºC), air pressure (mbar), relative humidity (%), and wind direction (degrees). 

Vehicle Miles Traveled. VMT data was obtained from the Caltrans Performance Measurement 
System (PeMS) for highways surrounding the Innovation Corridor, which are CA-91 (upwind of 
the Innovation Corridor) and CA-60/I-215 (downwind of the Innovation Corridor) (Figure 4). 
PeMS records VMT and reports the total sum for the hour. Hourly VMT data were upsampled to 
15 minutes, and VMT for the hour was assumed to be consistent.  

https://openweathermap.org/
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Figure 4. Segment selections used for the retrieval of Google trip time data. Specific segments 
used in model training include CA-60/I-215 freeway segments 1 and 4 (blue) and Innovation 
Corridor local segments 2 and 9 (green). Arrows indicate direction of travel. 

Traffic Flow. Traffic flow (vehicles per hour) was obtained for the intersection of University Ave. 
& Iowa Ave. & University from the GridSmart system. The sum of cars passing through the 
intersection was summed into 15-minute intervals.  

Traffic Speed. Specific road segments were selected for collection of Google Maps trip time 
data (Figure 4). Road segments are specified as local (Innovation Corridor) or freeway. By 
dividing the length of the paths by the recorded travel times, the average speed of traffic (v, 
miles per hour) was obtained.  

Traffic Density. Traffic density (vehicles per mile) is the most commonly used variable for 
predicting traffic contributions to air pollution. Local roadway traffic density was obtained by 
using the GridSmart system’s traffic flow and dividing it by the traffic speed. Highway traffic 
density was obtained by first dividing VMT by the length of the highway path to obtain traffic 
flow. Then traffic flow was divided by the traffic speeds calculated previously to obtain highway 
traffic density. Specific segments used in model training include CA-60/I-215 freeway segments 
1 and 4 (blue) and Innovation Corridor local segments 2 and 9 (Figure 4). 
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2.2. Machine Learning-based Predictions 

The machine learning approach, known as gradient boosted regression trees (GBRT), was to 
create models to predict hyperlocal PM2.5 and NO2 for the month of May 2021.9–12 Traffic 
conditions, meteorological conditions, and background concentrations were used as input 
variables for the prediction models (Figure 5). While GBRT did not give the exact contribution of 
a particular variable, calculating partial dependence gave insight into the dependency of local 
(Innovation Corridor) pollutant concentrations on input variables. To obtain consistent time 
intervals across all the variables needed for the regression analysis, all data are resampled using 
cubic interpolation to be available at minutes 00, 15, 30, and 55. All data were also 
standardized before fitting the models. Preliminarily, the prediction model was fitted for the 
University Ave. & Iowa Ave. intersection due to it being the only site with a GridSmart system 
installed. We based modeling methods mainly on a previous study by Sayegh, Tate, and 
Ropkins13, and other studies were accessed for further background investigation.12,14–16 

 

Figure 5. Boosted regression tree flow chart.  
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3. Results and Discussion 

3.1. Traffic Density 

As expected, traffic density (vehicles/mile) was much higher along the CA-60/I-215 freeway 
segments (~65 vehicles/mile) compared to the local segments (~20 vehicles/mile) (Figure 6). 
The traffic density with the highest probability is larger than the median for the highway 
segments, while the traffic density with highest probability is lower than the median for the 
local segments. The northbound segment experienced the overall highest traffic density along 
the highway corridor, and the westbound segment experience the overall highest traffic density 
along the local corridor. 

 

Figure 6. Traffic density (vehicles/mile) distributions for segments (left-to-right): local 9 (blue, 
eastbound), local 2 (orange, westbound), freeway 4 (green, southbound), and freeway 1 (red, 
northbound). The median value is indicated by the central white dots of the inner box plots. 
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3.2. Fine Particulate Matter (PM2.5) 

Year-long distributions of PM2.5 concentrations were relatively similar at all four low-cost 
monitoring locations, where maximums were near the 24-hour standard PM2.5 of 35 µg/m3 

(Figure 7). This indicates that PM2.5 concentrations are spatially smooth with tens of miles in the 
Riverside Area. 

 

Figure 7. PM2.5 concentration (µg/m3) distributions for low-cost monitoring locations. 

The PM2.5 model was evaluated using cross-validation, and the model explained approximately 
75% of the variance in the data (Table 1). Partial dependence analysis identified background 
PM2.5 and relative humidity as significant drivers of model variability (Figure 8). This indicates 
strong regional, meteorological, and diurnal influences on PM2.5 along the Innovation Corridor. 
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Sampling day and hour was also significant, but the trends were non-linear. Partial dependence 
plots for all other input variables can be found in the Appendix.  

Table 1. Cross-validation metrics for the PM2.5 model and testing data subset. 

Model Metrics: Scores 

Fit Time: 70.8678 

Score Time: 0.0447 

Avg. Test R2: 0.756 

Avg. Test MSE: 7.3134 

Avg. Test RMSE: 2.7036 

Avg. Test Explained Variance: 0.7575 

 

Figure 8. Dependence of predicted local PM2.5 on background PM2.5 (left) and relative 
humidity (right). 

3.3. Nitrogen Dioxide (NO2) 

NO2 mixing ratio distributions were similar across all low-cost monitors, except for the monitor 
at University Ave. & Cranford Ave. due to sensor drift (data included for transparency) (Figure 
9). The distributions are bimodal at both along the Innovation Corridor, and mixing ratios were 
generally less than 50 ppb. The Tyler St. & Magnolia Ave (red) distribution saw highest 
probabilities near the upper end of the distribution; this corridor is more heavily used by heavy-
duty vehicles than the Innovation Corridor. Therefore, it is likely that despite more heavy-duty 
traffic along Tyler Street, NO2 mixing ratios along the Innovation Corridor are similar to Tyler 
Street due to significant influence from nearby highway corridors. 
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Figure 9. NO2 concentration (ppb) distributions for low-cost monitoring locations. 

The NO2 model was evaluated using cross-validation, and the model explained approximately 
99% of the variance in the data (Table 2). The NO2 model did not exhibit strong dependence on 
traffic data or meteorology. Partial dependence analysis identified sampling day as the most 
significant driver of model variability (Figure 10). This indicates that day-to-day changes in 
traffic activity is the most significant predictor of modeled NO2 along the Innovation Corridor. In 
future tests, the upwind highway corridor traffic (CA-91) will be used as input to further test 
local model dependence on upwind highway activity. Partial dependence plots for all other 
input variables can be found in the Appendix.  



 12 

Table 2. Cross-validation metrics for the NO2 model and testing and training data subsets. 

Model Metrics Scores 

Fit Time: 53.1859 

Score Time: 0.0382 

Avg. Test R2: 0.9928 

Avg. Test MSE: 2.2159 

Avg. Test RMSE: 1.4881 

Avg. Test Explained Variance 0.9928 

Avg. Train R2: 0.9935 

Avg. Train MSE: 2.0092 

Avg. Train RMSE: 1.4164 

Avg. Train Explained Variance 0.9935 

 

Figure 10. Dependence of predicted local NO2 on sampling day. 

3.4. Limitations 

The analysis presented here is preliminary in nature due to the limited availability of GridSmart 
data during our air monitoring sampling period. The one-month modeling analysis did not span 
the entire year and therefore does not accurately represent seasonal variability. Partial 
dependence does directly calculate the variables’ contributions to local pollutant 
concentrations, but the analysis is useful to elucidate the relationship between pollutants and 
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their environmental drivers. The models both performed well in cross-validation tests, and 
RMSEs for the tests were low (2.7 for PM2.5 and 1.5 for NO2). While these are important metrics 
for measuring the accuracy of the model on a given dataset, they are potentially subject to 
overfitting bias. 

4. Future Work 

In future efforts, the time period of analysis will be extended to determine seasonal trends. We 
will also seek to quantify NO2 impacts from the surrounding highways vs. local impacts by 
isolating the effects of transportation interventions along the innovation corridor. Traffic data 
and signal timing data will be continuously collected from the innovation corridor to support 
the future research. Advanced roadside sensors including camera, LiDAR and radar will be 
further deployed to monitor the traffic volume and vehicle speed. The vehicle activity data from 
Connected Vehicles will be also utilized in future analysis. 
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Data Summary  

Products of Research  

In this project, we collected vehicle speed trajectories and energy consumptions data for all the 
host vehicles from all the numerical and micro-simulation experiment. Those data are used to 
validate the proposed algorithms and estimate the performance on energy savings. 

Data Format and Content  

The data were saved in CSV files in the format of second-by-second trajectories. For each time 
stamp, the vehicle’s dynamic state, e.g. location, speed and acceleration rate, the signal timing 
information and the traffic information are archived along with the estimate energy 
consumption calculated by the specific models for gasoline vehicles or electric vehicles. 

Data Access and Sharing  

The data are publicly available via Dryad, which is in compliance with the USDOT Public Access 
Plan. The data can be accessed at https://doi.org/10.6078/D1K992.  

Reuse and Redistribution  

The data are restricted to research use only. If the data are used, our work should be properly 
cited:  

Ivey, Cesunica, Alexander Nguyen, Ruoming Xu, Khanh Do, Peng Hao, and Matthew Barth. 
(2023). Hyperlocal monitoring of traffic-related air pollution to assess near-term impacts of 
sustainable transportation interventions [Dataset]. Dryad. https://doi.org/10.6078/D1K992.  

  

https://ntl.bts.gov/public-access
https://ntl.bts.gov/public-access
https://doi.org/10.6078/D1K992
https://doi.org/10.6078/D1K992
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Appendix 

A.1. Low-Cost Monitoring Locations 

All intersection images were sourced from the Google Maps Street View tool. 

 

Figure 11. Iowa Ave. and University Ave. 
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Figure 12. Cranford Ave. and University Ave.  

 

Figure 13. Chicago Ave. and University Ave. 
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Figure 14. Tyler St. and Magnolia Ave. 
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A.2. Clarity Node-S 

 

 

Figure 15. Clarity Node-S hardware and technical specifications 
(https://www.clarity.io/products/clarity-node-s).  

https://www.clarity.io/products/clarity-node-s
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A.3. Rubidoux Air Monitoring Site 

Table 3. Rubidoux Site Information 

Attribute Data 

AQS Number 06-065-8001 

CARB Number 33144 

Site Address 5888 Mission Bl, Riverside, CA 92509 

County Riverside 

Air Basin South Coast 

Latitude 33.99952 

Longitude -117.41595 

Elevation 248 m 
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A.4. PM2.5 Partial Dependence Plots  

PM2.5 Partial dependence plots are included below for the following input variables:  

• Sampling day (day of month) 

• Day of week 

• Hour of day 

• Sampling minute 

• Sampling month 

• Air pressure (mbar) 

• Temperature (ºC) 

• Traffic density of local and interstate corridors (vehicles/mile) 

• Wind direction (degrees) 

• Wind speed (miles per hour) 
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