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Genealogy-Based Methods for Inference of Historical
Recombination and Gene Flow and Their Application in
Saccharomyces cerevisiae
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Abstract

Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic
material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much
interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we
develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the
source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided
that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in
algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA
sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to
single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of
certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for
application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to
highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of
gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and
its evolutionary relevance.
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Introduction

One of the most fundamental questions in population genetics is

how organisms acquire the novel alleles that serve as raw material

for evolutionary innovation. Ancestral and de novo mutations, and

their shuffling by recombination, provide much of the genetic

variation in a given population. Gene flow between isolated

populations within species, or introgression between species, can

serve as an additional source of novel alleles when reproductive

isolation is not complete. Reports in many taxa have identified

introgressed haplotypes that have conferred an evolutionary

advantage in the recipient population [1–4]. As such, detecting

signatures of introgression has become a primary tool in the search

to understand how organisms innovate during adaptation to new

environments.

Powerful genomic analyses of gene flow have been developed

for ecological model systems involving a known pair of populations

in reproductive contact. These approaches seek to detect stretches

of shared alleles between populations against a backdrop of

otherwise high divergence, using broad and deep population

genomic data sets that can be analyzed with metrics of population

differentiation such as FST [5], as well as patterns of linkage

disequilibrium [6]. However, in organismal systems where

population structure is not well understood, the sources of

acquired alleles in a given population may often be unknown or

shallowly sampled in available sequence data. In this regime,

detecting gene flow by many existing methods remains a

challenge. In an alternative approach, studies of horizontal gene

transfer routinely use phylogenetic methods to infer evidence of

historical genetic exchange between species [7–10]. To date, the

computational complexity of ancestral inference incorporating

recombination has limited the use of genealogy-based analyses

within species, and, as a consequence of such methodological

limitations, the extent and evolutionary relevance of gene flow

between divergent populations is largely unknown in many

systems.

In this paper, we propose a scalable genealogy-based method to

detect candidate cases of alleles that are acquired by a population

through gene flow from unsampled sources and are maintained to

the present. Specifically, our aim is to develop an efficient

approach that would 1) enable genome-scale analyses of candidate

cases of haplotypes acquired by gene flow events between

divergent populations, 2) operate on shallowly sampled population

genomic data, 3) allow fine-scale inference of the boundary

positions of those genomic regions with alleles putatively acquired
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by gene flow, and 4) provide signatures of gene flow which could

be analyzed in a theoretical framework.

The key fact that we exploit in our work is that boundaries of

genomic regions inserted by gene flow correspond to recombina-

tion breakpoints. This holds even when the source population is

not sampled; the boundaries of such a region are still detectable

provided we sample some population in which the inserted

haplotype is not fixed. Hence, our method is applicable to

detecting the acquisition of haplotypes such that complete fixation

has not yet occurred—which could occur if, for example, there is

structuring within or between populations from which the samples

were taken. Our goal is to infer historical recombination events

from sampled data, and then consider a certain subset of

recombination events to test for signatures of gene flow events

between divergent populations. We note that there may be no

qualitative difference between the signal from an inter-specific

introgression event and that of a transient gene flow event from a

strongly divergent strain of the same species, and our methods do

not distinguish the two. Throughout, where we refer to

‘‘introgression’’ events, we do not reserve the use of this term for

inter-specific gene flow.

In this paper, we say that a population forms an outgroup at a

given site if one of the two branches adjacent to the root in the

genealogy at that site subtends all samples from that population

and no samples from other populations. An example is illustrated

in the gene genealogy of yeast populations in Figure 1 A: the solid

lines determine a genealogy in which the clade of yeasts of wine/

European origin forms an outgroup. In what follows, as we use

gene genealogies to investigate signals of gene flow between

divergent populations, we focus on the extreme case where the

ancestral lineage of a population undergoes recombination and

modifies the population’s outgroup status; that is, on one side of

the associated recombination breakpoint, the population forms an

outgroup, while on the other side of the breakpoint, it does not.

Our strategy is motivated by the previous observation [8] that

genetic exchange between a given genome and another, as yet

unsampled, donor population divergent from the rest of the

sample tends to place the recipient adjacent to the root of a

genealogical tree. This idea is summarized in Figure 1. In the

absence of gene flow from unsampled sources, we expect

recombinations to occur both in the lineage of the population

becoming the outgroup (Figure 1 A) and in other lineages (Figure 1

B). If additionally there is gene flow from an unsampled source, we

expect to see an excess of the former type of recombination event

(Figure 1 C).

As a testbed for our method, we analyze the recently reported

genomic sequences of environmental isolates of budding yeast

[11]. Well-defined phylogenetic populations have been identified

in this species, but the prevalence of genetic exchange between the

populations is incompletely understood [11–14]. To infer histor-

ical recombination events, we employ an efficient algorithm to

reconstruct, for each gene, a collection of ancestral recombination

graphs (ARGs) that encode putative genealogical histories of the

sample. We then employ a theoretical framework based on

coalescent theory to test for statistical significance of the frequency

of recombination events that modify a population’s outgroup

status, to evaluate the evidence for gene flow from unsampled

sources. Implementing these methods for application to empirical

yeast data, we illustrate the power of efficient genealogy-based

methods to highlight candidate cases of gene flow between

divergent populations.

Materials and Methods

Sequence data
We downloaded from [11] whole-genome alignments of

environmental yeast isolates and scripts to extract sequences.

The prevalence of missing alleles in the original raw sequence data

for these genomes rendered ancestral reconstruction intractable

for the latter sequences, owing to computational constraints.

Instead, we used yeast genomes that had undergone error

correction by a genealogy-based method [11]; we did not

investigate any potential bias from such corrections in our

genealogy inferences, but we reasoned that a likely advantage of

the correction strategy would be a reduction in artifacts arising

from sequencing errors. The available data comprised the

genomes of 21 yeast isolates: three from each of the sake and

Malaysian populations, two from each of the North American and

West African populations, and 11 from the wine/European

population. To improve efficiency and avoid sample size effects,

and to focus on inter-population exchanges, we randomly

subsampled three wine/European strains (DBVPG1373, L-1374,

and YJM978) for use in our analysis. We divided the data into a

window for each gene defined by the open reading frame (ORF)

plus one kilobase up- and downstream, or as far as the next ORF,

whichever was smaller. The reference sequence for S. paradoxus was

used to infer the ancestral allele at each site. To obtain an

incidence matrix of single nucleotide polymorphism (SNP) data,

we scanned each dataset for sites exhibiting variation in our

sample. Unaligned regions or structural variants (labeled ‘ = ’ in

the data) were excluded; indels were treated in the same way as

SNPs. Those sites for which S. paradoxus could not resolve the

ancestral allele unambiguously (such as triallelic sites) were

excluded. We note that despite this preprocessing, we still expect

our results to be affected to some degree by sequencing errors,

recurrent mutations, and errors in assuming that S. paradoxus

carries the ancestral allele at every site polymorphic in S. cerevisiae.

Genealogical reconstruction
For each of 5842 yeast genes, we inferred a collection of explicit

genealogical histories, or ancestral recombination graphs (ARGs),

examples of which are given in Dataset S1. To balance the needs

of efficiency and accuracy, we reconstructed ARGs using ideas

based on parsimony. We used the software kwarg [15], which

reconstructs evolutionary histories with a minimal or near-minimal

number of recombination events under the infinite-sites assump-

tion. This is in a manner similar in spirit to the Margarita software

package [16] which has been applied to yeast data previously [11].

While Margarita is based on a heuristic algorithm, kwarg is closely

based on an exact method for reconstructing ARGs with a minimal

number of recombination events [15]. Further details of its

implementation and the software parameters we used are provided

in Text S1. We reconstructed 100 ARGs for each gene in the

genome. For genes with complex histories, these ARGs would

sometimes exhibit variability in properties such as the total

number of inferred recombination events. In analyzing recombi-

nation scores as described in the subsequent sections, we took the

mean score across this set of inferred ARGs for each region; in

analyzing the identity of the outgroup clade for the genealogy of a

given region, we took a majority vote across the inferred ARGs.

With our choice of parameters, the running time for each

chromosome on a single 3 GHz Intel Xeon processor was roughly

two weeks.

Inference of Recombination and Gene Flow
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Recombination score
Using our inferred ARGs, we first counted the number of

recombination events occurring to ancestors of samples from each

yeast population. A recombination event can occur in a lineage which

is ancestral to some or all samples from a given population, or to some

or all samples from the other populations. In order to assign an

inferred recombination event as ancestral to a particular population,

we defined a score to be attributed to each population, as follows. If

we are counting recombination events occurring in ancestors to

population i and a particular recombination event occurs in a lineage

ancestral to a fraction fi of the samples from i, then this

recombination event contributes a score of fi=
P

j fj to population

i, where j sums over all populations. For example, by this measure the

score for the Malaysian population in Figure 1 A is 1, and the score

for each of the North American, sake, and West African populations

in Figure 1 B is 1/3. Other populations are assigned a score of 0.

In many of our analyses, we focused only on recombination

events demarcating regions for which a particular population was

identified as an outgroup in the genealogy. We defined a population

as being an outgroup at a site if one of the two branches adjacent to

the root in the genealogy at that site subtended all samples from that

population and no samples from other populations. For example,

the wine/European population is an outgroup downstream of

position 94864 in Figure 2; upstream of this position, no population

is an outgroup. Over each interval for which a particular population

was determined as an outgroup, we identified up to two disrupting

recombination events at its boundaries—events which caused the

necessary changes in tree topology to make this population an

outgroup and which were identifiable inside the gene window. To

report the strength of the evidence that the historical recombina-

tions at the boundaries of the region involved population i, we

computed recombination scores for i at each boundary as described

above and summed the two. These recombination scores were used

in Figure 3, which reports the identity of the population with the

highest score. Genes for which independent ancestral reconstruc-

tions from kwarg did not agree on the number of recombination

events were excluded from these analyses.

Coalescent model
Our basic observation is that we expect (Figure 1 A, B) to see

recombination events that change the status of a population so that

it becomes an outgroup with respect to the other sampled

populations, even in the absence of gene flow into the population

from an unsampled source. However, should such gene flow occur,

it causes an excess of recombination events in lineages ancestral to

the population that becomes an outgroup (Figure 1 C). To evaluate

empirical data from yeast ARGs, we therefore require a reproduc-

tive model to make predictions with respect to these different types

of recombination event. As a first step, we sought a simple model

which did not incorporate selection or gene flow from unsampled

sources, and which could predict how often the recombination

event that disrupted the outgroup status of a particular outgroup

clade C would occur in a lineage whose descendants are also

members of C. For this purpose, we first assumed a standard

coalescent model, in which the whole population is mating

randomly, population size is constant, no selection is acting, and

so on. In this setting it was possible to make precise theoretical

predictions, which we now develop in detail.

Intuitively, it is useful to think of an instance of transient gene

flow, admixture, or introgression as changing the status of a clade

Figure 1. Examples of recombination events that create an outgroup clade. Each panel shows an example of a local genealogical tree (solid
lines) for the currently sampled yeast populations (green), with samples from the wine/European (W/E), North American (N.A.), sake (S), West African
(W.A.), and Malaysian (M) populations. In each panel, a dot indicates a recombination event. The dashed line indicates the recombinant lineage, which
determines a new local tree on the other side of the breakpoint in which the three Malaysian strains are now at the outgroup position. In the absence
of gene flow from an unsampled donor, two possible causes are A, the recombination occurred in a lineage ancestral to the Malaysian samples; and
B, the recombination occurred in a lineage not ancestral to the Malaysian samples. C, Gene flow into the Malaysian population from an unsampled
source (orange) will manifest as an inference of the former type of recombination.
doi:10.1371/journal.pone.0046947.g001

Inference of Recombination and Gene Flow
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from non-outgroup to outgroup between two local trees in the

ARG (as is illustrated for the Malaysian strains in Figure 1 C).

However, a mathematical presentation is simpler in the opposite

direction: Consider the site at which a clade switches its status

from outgroup to non-outgroup. Note that our concern is with the

formation of outgroups with respect to the pooled collection of

sampled populations, and our use of the term does not refer to a

sample from some distant relative beyond the root of the

genealogy. As we move across the site, we observe a ‘disrupting’

recombination event. Given the event, W , in which a particular

set of c strains forms an outgroup clade, we seek the probabilities

that a recombination event occurred at this site to toggle the

outgroup status of the clade, and that it occurred either to an

ancestor of members of this set (as in Figure 1 A, an event denoted

EA) or to an ancestor of samples only from other populations (as in

Figure 1 B, an event denoted EB). Our goal, therefore, is to

compute the probabilities P(EADW ) and P(EBDW ), at least up to a

common normalizing constant. (The probabilities do not sum to 1

because a recombination event need not be ‘disrupting’, nor even

change the topology of the local tree [17].) Later, we use these to

develop a formal statistical test for an observed excess of type EA

events relative to type EB, consistent with an additional

contribution due to gene flow from unsampled sources.

Since we consider the effect of the single recombination event, we

are interested in a single, local, tree topology embedded in the ARG,

and its neighboring tree on the other side of the recombination

breakpoint. Denote the local tree topology in which the given set of

strains is an outgroup by t, the duration of time in this tree for which

there exist i ancestors to the whole sample by ti, the number of

ancestors of the sample when the recombination event occurred by

j, and the number of remaining ancestors of the sample when the

new recombinant lineage coalesced back into the tree by m. This

notation is illustrated in Figure 4. We refer to the number of

ancestors of the whole sample at a given time back as the level. Let

t~(t1,t2, . . . ,tn) denote the duration of each level. We first consider

Figure 2. An example ancestral recombination graph for variation at the yeast gene encoding SAW1 (YAL027W) and flanking
sequence. The upper table shows allelic variation across the seven distinct haplotypes in this region; dots represent sites identical to S. paradoxus.
Vertical lines mark boundaries of the region and also two inferred recombination events in an inferred ARG, shown in the bottom panel. In the latter,
nodes represent inferred coalescent and recombination events, and edges represent passage through evolutionary time. Labels on each edge
represent the coordinates of sites that underwent inferred mutations along the respective branch. Extant S. cerevisiae genomes are at the leaves of
the graph. Recombination vertices are indicated by the coordinate of the breakpoint and are shown as ellipses. At recombination vertices, edges
labeled P indicate sites upstream of and including the breakpoint inherited from the ‘‘prefix’’ lineage, and edges labeled S represent downstream
sites inherited from the ‘‘suffix’’ lineage. Annuli indicate vertices which are the most recent common ancestor of the whole sample at some site.
Genomic coordinates for this region encompassed the open reading frame (ORF) and 200 bp upstream. The image is adapted from the output of
kwarg, using Graphviz [37].
doi:10.1371/journal.pone.0046947.g002

Inference of Recombination and Gene Flow
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the probability P(EA,j,mDW ,t,t), which is given by the product of

the probabilities that

(A) a recombination event occurred,

(B) it occurred at level j,

(C) the recombination event occurred to an ancestor of

strains that are members of the outgroup clade,

(D) the recombinant lineage did not recoalesce for the

rest of level j (if mvj),

(E) the recombinant lineage did not recoalesce during

levels j{1,j{2, . . . ,mz1,

(F) the recombinant lineage recoalesced at level m,

(G) the recoalescence occurred with a lineage not

ancestral to the outgroup clade.

Let L(i) be the number of lineages ancestral to the outgroup

clade at level i, and r be the population-scaled recombination rate.

Then the product of these probabilities is

P(EA,j,mjW ,t,t)~

r

2

Xn

i~2

itizO(r2)

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{(A)

: jtjPn
i~2 iti

zfflfflfflffl}|fflfflfflffl{(B)

: L(j)

j

z}|{(C)

%hbrace=t

|

1{e{jtj

jtj

zfflfflfflffl}|fflfflfflffl{(D)

: exp
Xj{1

p~mz1

{ptp

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{(E)

: (1{e{mtm )
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{(F)

: 1{
L(m)

m

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{(G)

, mvj,

1{
1{e{jtj

jtj

 !zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{(F)

: 1{
L(j)

j

� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{(G)

, m~j:

0
BBBBBBBBBBBBB@

ð1Þ

In the above equation we ignore the probability that more than

one recombination event occurred at this position, which occurs

with probability O(r2). Equation (1) is valid for values of m and j

such that EA can occur:

DA~ (j,m) : 1ƒmƒjƒn, and either m§3 or L(j)w1 or bothf g:

Note that not all plausible pairs of m and j work; we must have

(j,m)[DA. For example, if the recombination occurred at a level

Figure 3. Inferred recombination by the outgroup clade at recombination block boundaries, in ancestral recombination graphs
inferred from yeast sequence. Each panel represents results from regions of yeast genes in which the population indicated at the top occupied
an outgroup position in the inferred genealogy. For each such region, the x-axis reports the identity of the population with the strongest evidence
for disrupting recombination at the boundaries of the region, using the recombination score described in MATERIALS & METHODS. The y-axis indicates the
number of regions with inferred recombinations involving the respective population from the x-axis label. Populations are wine/European (W/E),
North American (N.A.), sake (S), West African (W.A.), and Malaysian (M).
doi:10.1371/journal.pone.0046947.g003

Figure 4. A coalescent tree for n strains in which a set of c
strains form an outgroup clade. A recombination occurs (marked
by a dot), and the recombinant lineage (dashed line) recoalesces into
the tree so that the clade is no longer an outgroup (satisfying EA).
Notation is defined in the main text.
doi:10.1371/journal.pone.0046947.g004

Inference of Recombination and Gene Flow
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with L(j)~1, so the lineage undergoing recombination is ancestral

to all members of the outgroup clade, and the recoalescence occurs

at level m~2, then this clade is still an outgroup in the new

topology across the recombination breakpoint.

Equation (1) still applies for m~1 provided we define L(1)~0
and t1~?. When m~1, the recoalescence occurs further back in

time than the most recent common ancestor (MRCA) of t. Under

the standard coalescent model, ti is a realization of an

Exponential
i

2

� �
random variable, for each i~2,3, . . . ,n, and

so, summing (1) over DA and integrating over the distribution of t,
we obtain:

P(EADW ,t)~2r
X

(j,m)[DA

L(j)

j
1{

L(m)

m

� �
m

(j{1)j(jz1)
: ð2Þ

In a similar manner, we find:

P(EB DW ,t)~2r
X

(j,m)[DB

1{
L(j)

j

� �
maxf1,L(m)g

m

m

(j{1)j(jz1)
, ð3Þ

where

DB~ (j,m) : 1ƒmƒjƒn, and either m§3 or j{L(j)w1 or bothf g:

Finally, we need to integrate over the distribution of t, all possible

tree topologies in which a given set of strains forms an outgroup

clade. Equations (2) and (3) depend on t only through L(:). This

dependence is encapsulated by noting that, if kp is the total

number of lineages remaining after the coalescent event that

reduces the size of the outgroup clade to p, then for jw1 we have

L(j)~p where p satisfies kp{1vjƒkp. So for a clade of size c, we

must have that k : ~(k1,k2, . . . ,kc{1) lies in

J~f(k1,k2, . . . ,kc{1) : 2ƒk1vk2v . . . vkc{1ƒn{1g,

(2ƒk1 being necessary to ensure the clade of interest is an

outgroup), and we may write

P(EADW ,k)~P(EADW ,t), ð4Þ

where k is consistent with t. For example, for t as in Figure 4,

c~3, k1~4, and k2~5. Thus, decomposing the probability of

interest as

P(EADW )~
X
k[J

P(EADW ,k)P(kDW ), ð5Þ

it remains to find P(kDW ). We now argue that this is uniform on

J. Observe that

P(kDW )!P(k,W )~P(k,C)P(W Dk,C), ð6Þ

where C denotes the event that c particular samples form a clade

in the genealogy (but not necessarily an outgroup). Lineages

ancestral to the c samples initially coalesce at rate
c

2

� �
, and the

remaining lineages coalesce at rate
n{c

2

� �
. For a randomly

drawn coalescent tree it is straightforward to show that

P(k,C)~

n{c

2

 !
n{c{1

2

 !
. . .

k1

2

 !" #
c

2

 !
c{1

2

 !
. . .

2

2

 !" #
n

2

 !
n{1

2

 !
. . .

k1z1

2

 !

~

k1

2

 !
c

2

 !
c{1

2

 !
. . .

2

2

 !
n

2

 !
n{1

2

 !
. . .

n{cz1

2

 ! :
ð7Þ

In total there are k1 lineages remaining at the time the c strains coalesce

into a single lineage, cementing their status as a clade. With probability

P(W Dk,C)~
k1

2

� �{1

ð8Þ

the single lineage ancestral to this clade participates only in the final

coalescence of the whole genealogy, in which case the clade is also an

outgroup, satisfying W as well as C. Thus, combining equations (6)–

(8), we see that P(kDW ) is independent of k, and we can bring

P(kDW ) outside the sum in (5). Combining this observation with

(2) and (4), we find:

P(EADW )!
X
k[J

X
(j,m)[DA

L(j)

j
1{

L(m)

m

� �
m

(j{1)j(jz1)
: ð9Þ

In a similar manner,

P(EBDW )!
X
k[J

X
(j,m)[DB

1{
L(j)

j

� �
maxf1,L(m)g

m

m

(j{1)j(jz1)
: ð10Þ

The normalizing constants in (9) and (10) are the same, and so

from these equations it is straightforward to compute the relative

probabilities of the two events on W\(EA|EB), which was our

aim. Specifically, we can find

fA : ~P(EADW ,EA|EB) ~
P(EADW )

P(EADW )zP(EBDW )
, and

fB : ~1{fA~P(EBDW ,EA|EB) ~
P(EBDW )

P(EADW )zP(EBDW )
,

ð11Þ

which govern our expectations regarding the relative frequencies

of the two types of recombinations events EA and EB (Figure 1 A,

B, respectively). The quantity fA is used in Tables 1 and 2, below,

and compared with empirical data in Tables 3 and 4. Because the

lineage ancestral to all members of the outgroup clade persists

further back in time conditional on the fact that the clade is an

outgroup, fA is substantial for most values of c and n, as noted

below. There is in fact also an opposing effect, in which the strains

of any given clade have a younger MRCA conditional on the fact

that they form a clade. This provides less opportunity for genetic

exchange with other strains, but manifested only for very small

values of n (Table 1).

Migration model
We generalized the results (9) and (10) to incorporate population

structure by simulation. Specifically, we considered a simple island

model in which each of the five yeast populations was isolated and

was mating randomly within each population. In the basic
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simulations used to interpret much of the results below, each island

was assumed to have the same effective population size N;

migration occurred symmetrically between islands and at the same

rate, governed by the population migration parameter M. (On a

coalescent timescale, the total rate of migration out of each island

is M=2.) This island model has been used previously to investigate

gene flow in S. cerevisiae [13]. We simulated local tree topologies

under this model, retaining for analysis only those for which a

particular pre-chosen population was an outgroup clade. For an

accepted tree t, a set of times between coalescent and migration

events was then simulated. A recombination event was placed

uniformly at random on the branches of the tree, and the new

recombinant lineage was allowed to migrate and to recoalesce with

the tree at the prior rate specified for the simulation. To correct for

the fact that under this proposal distribution each accepted tree

experienced a recombination event with probability 1, each

accepted tree was given an importance weight equal to its total

branch length,
Pn

i~2 iti . For this tree we recorded whether EA was

satisfied, or EB, or neither. The latter outcome occurred when the

coalescence of the recombinant lineage resulted in no disruption of

the status of the outgroup clade, in which case the simulation was

discarded. The fractions of the first two events across a large

number (105) of accepted simulations provided an estimate of the

relative probabilities of fA and fB under this model [equation (11)].

To summarize, these methods enabled us to compute, for each

choice of M, the expected fraction of disrupting recombination

events that occurred in a lineage ancestral to the outgroup clade,

fA, either exactly [M~?, equations (9) and (10)] or by simulation

[Mv?, by importance sampling]. That our simulation results

approach theoretical predictions as M?? (Table 2) provides

strong validation of the two methods.

We further estimated fA by simulation in the manner described

above, but under a broader class of models, exploring the impact

of perturbations from the symmetric island model (Table S2). First,

we considered a model with more recent population substructure,

in which each island appears from a previously panmictic

population 12N generations ago. We then further considered

the effect of unequal effective population sizes, by estimating fA

when the population A with the outgroup clade has either a five-

fold larger or five-fold smaller effective population size, or when

one other population B has either a five-fold larger or smaller

effective population size. Similarly, we considered the effect of

asymmetric migration by estimating fA under a model in which

the migration rate into population A was five, 10, or 50 times

every other migration rate, or when the migration rate out of

population A was five, 10, or 50 times every other migration rate.

Finally, we considered various combinations of different popula-

tion ages by estimating fA under a model in which islands are

allowed to split from the ancestral panmictic population at

different times. For example, population A can be modeled as

older than the rest by maintaining all the other islands as fully

panmictic until a more recent 6N generations ago.

Table 1. Recombination by the outgroup clade at block
boundaries, in theoretical predictions from a simple
coalescent model of a single panmictic population.

n c~2 c~3

3 0.750 -

4 0.500 0.733

5 0.436 0.564

6 0.407 0.500

7 0.390 0.466

8 0.378 0.444

9 0.370 0.428

10 0.364 0.417

11 0.359 0.408

12 0.356 0.401

13 0.352 0.395

14 0.350 0.390

15 0.347 0.386

20 0.339 0.371

100 0.315 0.327

Each row represents results from a hypothetical genomic region in which a
given set of c sequences forms an outgroup clade in the genealogy, in a sample
of total size n. Listed is the probability that, under a panmictic coalescent
model, the disrupting recombination event at the boundary of the region
toggling the status of the outgroup clade occurs in a lineage ancestral to
members of that same clade.
doi:10.1371/journal.pone.0046947.t001

Table 2. Fractions of disrupting recombination events that
occur in lineages ancestral to members of the outgroup clade
in yeast ARGs, from simple coalescent simulations.

Sample size

M c~3 c~2

0.1 0.262 0.260

1 0.316 0.307

10 0.367 0.338

100 0.390 0.350

? 0.395 0.352

Each row represents results from a simulated genomic region in which a given
set of c sequences forms an outgroup clade in the genealogy. Shown is the
probability that a recombination event at the boundary of the region occurs in
a lineage ancestral to members of the outgroup clade, when the outgroup
clade has size c and the total sample size is n~13. We assumed a structured
coalescent model with five islands of equal size, allowing random mating within
islands and symmetric migration between islands, governed by the population
migration parameter M . Probabilities were estimated by importance sampling,
except for the model M~? which was calculated exactly.
doi:10.1371/journal.pone.0046947.t002

Table 3. Observed fractions of disrupting recombination
events that occur in lineages ancestral to members of the
outgroup clade in yeast ARGs.

Outgroup c Fraction

Wine/European 3 0.366

Sake 3 0.398

Malaysian 3 0.378

West African 2 0.439

North American 2 0.442

Each row reports the results of analysis of ARGs inferred from empirical yeast
data. Each fractional value indicates the frequency with which, given a region
whose inferred genealogy positioned the indicated clade as an outgroup, the
recombination event at the region’s boundary occurred in a lineage ancestral to
the outgroup clade. Total tree size was n~13 in each case. c, clade size.
doi:10.1371/journal.pone.0046947.t003
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Realistic choices for M were estimated from the sequence data

by calculating FST in each gene window. For a given pair of

populations, FST was estimated by one minus the ratio of within-

to between-population diversity (eq. 3 in [18]), where diversity is

given by the mean number of pairwise sequence differences. Each

gene therefore provided an estimate of FST for each pair of

populations. We then converted each point estimate of FST to a

point estimate, M̂M, of M (eq. 7 in [18]). This collection of estimates

also provided a measure of confidence in our estimation: we used

this distribution, weighted by gene length and corrected for sites

with missing data, to compute percentiles of our distribution of M̂M.

Model-based tests of the frequency of disrupting
recombinations in the ancestry of the outgroup clade

We used predictions from our coalescent models and simula-

tions to evaluate the genome-wide distribution of recombination

events in empirical ARGs inferred from yeast data, as follows. For

each genomic region in which a particular population formed an

outgroup clade in our inferred ARGs, we tallied whether its

disrupting recombination events occurred in a lineage ancestral to

members of that same clade (event EA). Under the null model

above, and assuming the local tree at each disrupting recombi-

nation event was independent of every other tree, this tally follows

a Binomial(R,fA) distribution, where R is the total number of

disrupting recombination events inspected. We used one-tailed p-

values from this distribution to test for an excess of such events. To

account for the non-independence of recombination events, we

conservatively scaled down R and our observation from the

binomial distribution so that R was equal to the number of genes

rather than the total number of relevant disrupting recombination

events (scaled by the fraction of intervals for which the given

population was an outgroup).

Our predictions are based on the true genealogies being

observed, but in reality the test will be based on inferred ARGs.

Thus, both the random process of mutation and the parsimony

underlying our ARG reconstruction algorithm could introduce

additional sources of error and bias the test described above. To

confirm that it is well calibrated despite such potential distortions,

we applied it to a number of simulated datasets. For this purpose

we simulated synthetic whole-genome datasets using ms [19]. We

used the same sample sizes and number of gene windows as in the

real dataset described under Sequence Data, matching each gene

for length and number of polymorphic sites. A constant

recombination parameter of r~0:02 per bp was chosen to

approximately match the number of inferred recombination

events, using a coalescent scaling in terms of the population size

of each deme, N [19]. One such whole-genome dataset was

simulated under each of two models: [(i)]

(i) A symmetric five-island model with migration parameter

M~0:1 (i.e. the null model) as far back as 12N generations

ago, beyond which all populations undergo fully random

mating.

(ii) A symmetric five-island model with M~0:1 and an

additional admixture event into the first of the five sampled

populations from a sixth, unsampled population. The

admixture was modeled as an instantaneous event 2N
generations ago replacing 30% of the gamete pool of the

recipient population. Aside from this sole admixture event,

the sixth population is reproductively isolated. Farther back

in time, 12N generation ago and beyond, all six populations

are in contact again, with fully random mating.

We processed each of these datasets in the same manner as we

processed the yeast dataset: namely, we carried out genealogical

reconstruction using kwarg, calculated the relative frequencies of

occurrence of events EA and EB as described above, and

computed one-tailed p-values based on the binomial distribution.

Notice that carrying out this procedure on each dataset is highly

computationally intensive, and it is not feasible to explore the

effects of a wide range of models on the robustness of our test.

Nonetheless, the control analysis on these simulated genomes

should give an indication of whether the test is miscalibrated.

Results

Inference of historical recombination and gene flow
We set out to analyze the relatedness between environmental

yeast isolates, using the whole-genome sequences of strains

previously identified for their membership in five well-defined

populations [11]: sake isolates from Japan, North American

isolates from oak trees, West African brewing isolates, isolates from

the Malaysian bertam palm, and isolates of European or vineyard

origin. As described in Materials & Methods, for each of 5842

yeast genes, we inferred a collection of 100 ancestral recombina-

tion graphs (ARGs) using the software kwarg [15]. This approach

reconstructs evolutionary histories with a minimal or near-minimal

number of recombination events under the infinite-sites assump-

tion. We were motivated to consider this approach because related

Table 4. Evaluating observed fractions of disrupting recombination events that occur in lineages ancestral to members of the
outgroup clade in yeast ARGs.

Outgroup

M Wine/European Sake Malaysian North African North American

0.1 2.00|10{21 5.08|10{11 7.73|10{18 4.57|10{39 1.33|10{23

1 1.64|10{05 2.26|10{04 1.67|10{05 1.25|10{20 8.29|10{13

10 1 3.90|10{01 1 3.06|10{12 7.64|10{08

100 1 1 1 1.16|10{09 2.65|10{06

? 1 1 1 3.04|10{09 4.74|10{06

p-values reporting significance of observations in Table 3 by comparison with model expectations in Table 2. Each row represents a comparison of inferred genealogies
from yeast genome sequence with coalescent simulations under a model of isolation with migration, with the indicated population migration parameter M . Values
report one-tailed p-values for the likelihood of the observed data under the model, calculated according to binomial sampling of recombination events, and Bonferroni-
corrected to account for the testing of five populations.
doi:10.1371/journal.pone.0046947.t004
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methods have been used successfully in applications including fine

mapping of disease loci [16], SNP detection and missing data

imputation [11,20]. Such a model-free, parsimony-based para-

digm also avoids assumptions about the mating scheme in the

ancestry of extant strains, and its efficiency enables the

reconstruction of many plausible ARGs for every gene in the

entire S. cerevisiae genome. Moreover, we note that parsimony-

based methods [18,21] have been well used in the past for

estimating levels of gene flow from DNA sequence data. We

interpret our sample of near-minimal ARGs, as reconstructed by

kwarg, as an approximation of the true evolutionary history of

each gene. Inference with kwarg provided ARGs for each of 5842

yeast genes (Figure 2 and Dataset S1 give examples), establishing

for each gene the relationship between the strains of the five

populations, using data polarized with respect to S. paradoxus. To

avoid biases deriving from the more highly sampled wine/

European population relative to the others in the data set, we

subsampled three random wine/European strains for use in our

analyses. We note that the windowing of the genome so that each

gene is analyzed separately introduces an upper bound to the size

of introgressed haplotypes that can be detected. Therefore, the

distribution of lengths of putatively introgressed haplotypes as

inferred by our method will not be representative of the true

distribution. This windowing was made to ensure that analysis of

the whole genome was computationally feasible, and we note that

it would be straightforward to apply our method to larger

contiguous regions of the genome.

We sought to use the yeast ARGs to trace patterns of ancient

genetic exchange between yeast populations, focusing on loci

harboring sequence signatures consistent with gene flow from

unsampled sources. To this end, we first tabulated the number of

recombination events inferred in ARGs of each gene and observed

that most genes harbored few inferred recombinations, reflecting

the parsimony of our inference approach (Figure S1). Next, we

tabulated the identity of the outgroup clade in inferred ARGs. The

results, summarized in Figure 3, revealed considerable variation in

ARG tree topologies across loci as expected [11]. Using arguments

similar to those given in equations (7) and (8) we reasoned that, if

five lineages ancestral to each of the five populations were evolving

according to a randomly mating population as we trace them

farther back in time, then at any given locus, one of these lineages

will be an outgroup with probability 0.1; with probability 0.5 none

of these lineages will be an outgroup. In contrast to this

expectation, 35.5% of loci supported an outgroup status in the

tree for the wine/European population (Figure 3). We conclude

that the model of a panmictic population is not sufficient to

describe patterns of yeast genealogies, and that in particular,

wine/European genomes are the most likely in the sample to

display the outgroup status in a given ARG.

The simplest explanation for the outgroup positioning of a given

clade C in an ARG does not invoke a model of historical genetic

exchange. Rather, a population which has experienced ancient

reproductive isolation, during which time gene flow with other

populations was rare or absent, will be inferred as an outgroup to

the rest of the species. We considered this notion a compelling

interpretation for the excess of genomic regions whose inferred

ARGs positioned the wine/European strains as an outgroup to the

rest of the sample. To pursue analyses of gene flow more generally

in yeast genealogies, however, we focused on two other models

likely to explain most instances in which a given population C was

inferred to occupy an outgroup position in an ARG, illustrated in

Figure 1 for the case in which the set of Malaysian samples is the

clade C made an outgroup by a recombination event. As shown in

Figure 1 C, under one model, C could acquire alleles by

recombination from an unsampled donor population whose

reproductive contact with the sampled population may be limited.

On the other hand, alleles could be exchanged via recombination

events involving the common ancestors of populations within the

sampled metapopulation (Figure 1 A, B) —that is, between

ancestors of the sampled populations for whom reproductive

contact is ongoing. As shown by the dotted lines in Figure 1, the

former model (Figure 1 C) must invoke recombination events in

the ancestors of only the C strains. The latter model (Figure 1 A, B)

invokes recombination events in lineages ancestral to any

population, provided they result in a change which drives C to

the base of the local tree. For example, in Figure 1 B the

recombination event results in a sharing of haplotypes among all of

the wine/European, North American, sake, and West African

lineages, putting the Malaysian clade as an outgroup.

To begin to evaluate these models of historical genetic exchange

as interpretations of yeast ARGs, and ultimately to develop

methods that identify candidate cases of gene flow into the

sampled populations from unsampled sources, we examined the

inferred instances of historical recombination at the boundaries of

each locus where a given population was inferred to be an

outgroup. For each such boundary position, we first identified the

recombination event in the genealogy defining the breakpoint. We

then developed a scoring scheme, described in Materials &

Methods, to identify those populations subtended by the recom-

bination. Figure 1 A shows an example in which a recombination

event subtends the Malaysian isolates, and the example in Figure 1

B illustrates a case in which a recombination event subtends the

North American, sake, and West African isolates. We tabulated

the recombination scores for every stretch of the genome in which

the inferred ARG placed a single population at an outgroup

position. The results, shown in Figure 2, revealed a striking

imbalance: most often, when a population occupied an outgroup

position in the tree in a given genomic region, the recombination

events at the boundaries of the region showed the strongest

evidence for subtending that same population.

Recombinations disrupting the outgroup status
To interpret the above finding, we focused on each recombi-

nation event that disrupted the status in the tree of strains of a

given yeast population, changing their status from outgroup to

non-outgroup as we scan along the sequence over the recombi-

nation breakpoint. Throughout, we refer to this type of

recombination event as disrupting. We sought a theoretical estimate

of the probability that a given disrupting event occurred in an

ancestor of the outgroup, relative to the occurrence of such a

recombination among the other lineages of the tree. We used the

structured coalescent [22] to predict the prevalence of disrupting

recombination events under a null model with no selection and no

incoming gene flow from unsampled sources.

We first considered a simple model of a single, neutral,

panmictic population to describe the entire yeast data set, which

enabled us to obtain a closed-form expression for the probability

under this model that a disrupting recombination event occurs in

an ancestor of the outgroup strains (see Materials & Methods). As

Table 1 shows, at a locus with a given population C occupying an

outgroup position in the tree, under the standard coalescent model

the disrupting recombination event is generally more likely to

involve an ancestor of C than to involve some other lineage, in a

manner qualitatively consistent with our empirical findings from

yeast ARGs. In the model, for example, if c~3 samples form an

outgroup clade in a genealogy involving a total of n~13 strains,

the disrupting recombination event occurs in a lineage ancestral

only to members of that clade with probability 0.395, much higher
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than a naı̈ve guess such as c=n~0:231 (Table 1). This shift

manifests because the lineage of the most recent common ancestor

of the members of the outgroup clade conditionally persists further

back in time, maximizing the opportunity for genetic exchange

between the strains of this clade and other individuals.

We also used a simulation strategy to investigate a null model

more closely approximating yeast population structure [13]: a

series of isolated and panmictic populations exchanging rare

migrants. As shown in Table 2, in coalescent simulations under

this model, disrupting recombination events again involved the

outgroup clade more often than would be expected under a naı̈ve

random model (0:231; see above). Thus, theory and simulation of

neutral models in the absence of gene flow from unsampled

sources predicted that, for loci at which a particular clade occupies

an outgroup position in the inferred tree, recombination events at

the locus boundaries have often occurred in the lineage leading to

that clade. Such a propensity is in qualitative agreement with the

trends in the ARGs inferred from yeast sequence (Figure 3). We

conclude that at many loci, the outgroup position of a set of yeast

isolates in a genealogy is at least partially explained by inheritance

through random coalescence events involving the currently

sampled genomes. Conditioning on a given such outgroup

position, we detect signatures of recombination at the boundaries

of the locus owing to genetic exchange events ongoing throughout

history at the flanking regions of this region.

Having established that panmictic and simple migration models

could drive qualitative patterns of recombination at loci with

genealogies displaying outgroups, we next asked whether a

quantitative interpretation of the data would shed light on the

prevalence of candidate cases of gene flow and introgression from

unsampled sources in yeast evolution. In formulating a test for this

purpose, we again considered boundaries of the yeast genomic

regions where a given population C was inferred to be the

outgroup clade, and we calculated, across this set, the frequency of

recombination events involving the C lineages relative to events

involving all other lineages. We sought to evaluate this observed

frequency against the analogous quantity from simulations of

neutrally evolving, isolated populations whose exchange of

migrants we modeled by the population migration parameter

M. We first generated empirical estimates of M via metrics of the

population differentiation parameter FST as follows. For each pair

of populations and for each gene we used sequence diversity to

estimate FST , which in turn provided an estimate of M following

the procedure in [18] (see MATERIALS & METHODS). The results,

summarized in Table S1, show that data from every pair of

populations were consistent in estimating M close to 0:1, with

Mw2:4 outside the estimate of 95% of genes in most calculations

(Table S1).

Before using our estimated migration parameter to evaluate the

frequency with which recombinations were inferred in lineages

ancestral to outgroup clades in yeast ARGs, we developed a

simulation-based check on the power and specificity of our

approach. For this purpose, we simulated whole genomes as

described in Materials & Methods, first under (i) a symmetric five-

island model matching the real data for sample sizes, gene lengths,

and levels of polymorphism, migration, and recombination; and

second under (ii) a similar model with the sole addition of an

admixture event into one of the five populations from an

unsampled source. We then evaluated these simulated data against

predictions from the coalescent model with migration. Results are

shown in Tables 5 and 6. As expected, under model (i), observed

frequencies of recombination events involving the lineage of the

outgroup population were close to those predicted by the

coalescent. Under model (ii), observations of the population

undergoing incoming gene flow from an unsampled source

deviated from the predictions of the coalescent, to a degree

significant at the 5% level when the model was consonant with the

true underlying migration regime; we observed no such deviations

for the remaining populations, again as expected. We conclude

that our test is indeed able to identify a population subject to gene

flow from an unsampled source, under the reasonable model we

consider here. We note that statistical power is diminished if the

modeling step assumes that the true value of M is large; thus, a

conservative application of this test to real data would be to

overestimate M.

With this evidence in hand that our coalescent-based test of

recombination in lineages ancestral to outgroup clades performed

as expected on simulated data, we applied the test to true

inferences from yeast ARGs. Results, reported in Tables 2, 3, and

4, provided strong evidence in every yeast population for a

departure from the assumed migration model with M~0:1.

Remarkably, even under the conservative assumption of larger M

values (see above), neutral models of genetic exchange between the

populations of the sample still could not fully account for the

prevalence of recombination by outgroup lineages (Table 4).

Conclusions from the wine/European, sake, and Malaysian clades

were unchanged when we analyzed two strains from each rather

than three, ruling out an influence of the number of isolates on the

significance results in this test (data not shown). We conclude that

over and above the predictions of simple population genetic

models, yeast genealogies exhibit an excess of disrupting recom-

bination events by outgroup clades.

To investigate the dependence of this conclusion on the

assumptions of our symmetric island model, we explored by

simulation the consequences of differences in demography

between populations. Models in which migration rates or

population ages were not identical across the five yeast clades

had modest impact on the predicted frequency of disrupting

recombination events ancestral to the outgroup clade (Table S2B,

S2C), with the exception of positing unrealistically high migration

rates between some populations, as discussed above. For models in

Table 5. Fractions of disrupting recombination events that
occur in lineages ancestral to members of the outgroup clade
in ARGs, from complex coalescent simulations.

Outgroup c Model (i) Model (ii)

# 1 3 0.295 0.366

# 2 3 0.244 0.222

# 3 3 0.219 0.204

# 4 2 0.245 0.243

# 5 2 0.213 0.189

Observed fractions of disrupting recombination events in lineages ancestral to
members of the outgroup clade, from simulated genomic data for a
hypothetical population with five populations (labeled #1–#5). Each row
reports analyses of genomic regions in which the indicated population of
sample size c occupied an outgroup position in the inferred genealogy, where
the total tree comprised n~13 sequences in each case. Across all such regions
was tabulated the frequency with which boundaries of the regions were
defined by recombination events occurring in lineages ancestral to the same
outgroup population. Genomic data was simulated under two models: (i) a
symmetric five-island structured coalescent model with M~0:1, and (ii) a
model in which again M~0:1 between the five populations, but also with an
admixture event into population #1 from an otherwise isolated and unsampled
sixth population. In both models the populations revert to a completely
panmictic metapopulation beyond 12N generations ago.
doi:10.1371/journal.pone.0046947.t005
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which one yeast clade C had a larger effective population size than

the rest, the frequency of disrupting recombination events

ancestral to the outgroup was inflated relative to the symmetric

model when C was the outgroup, and reduced otherwise (Table

S2A). The latter finding renders it unlikely that the recombination

patterns we observed in ARGs inferred from empirical yeast data

are a consequence of increased size of any one population, since

for most parameter sets, the excess of disrupting events in

outgroup lineages in the empirical ARGs relative to symmetric

models was not particular to any one clade (Tables 3, 4). We

conclude that our simulation methods can be a powerful tool in

the evaluation of recombination patterns in empirical ARGs, and

that the frequency of disrupting recombination events in yeast

ARGs exceeds the predictions of most parameter combinations we

explore here.

Discussion

Commonly used methods to detect introgression from DNA

sequence data can require a depth and breadth of genome sampling

that is unavailable for many populations of interest. Alternative

strategies have the potential to revolutionize the study of migration

and natural selection in non-model systems. We have developed

analysis approaches based on genealogical inference to trace

evidence for gene flow into outgroup lineages. We established a

scoring scheme for genetic exchange events involving populations in

genealogies, and we derived theoretical predictions, in conjunction

with simulated data, to analyze this metric. In application to

genome data from environmental yeast isolates, this approach

revealed evidence for recombination events on outgroup lineages

over and above the expectation from many neutral models of the

population sample. The possibility that such recombination events

may be a product of gene flow from unsampled sources is supported

by the known impact of introgression on deviations from predictions

of the standard coalescent [23,24].

A key conclusion from our work is that patterns suggestive of

gene flow from unsampled sources can be detected in many yeast

populations. The notion of a sink of undiscovered sequence diversity

in wild yeast would be consistent with the prevalence of singleton

alleles in currently sampled yeast genomes [11]. Likewise, the notion

of frequent genetic exchange with unsampled populations echoes

extensive previous reports of evidence for recombination between

sampled S. cerevisiae strains [11,13,14,25,26] and between Saccharo-

myces species [27–33]. The emerging picture is that reproductive

contact between isolated yeasts is relatively common, likely as a

function both of trafficking by humans and natural dispersal

mechanisms, including insects [34].

Although we have focused on evidence for gene flow in this work,

our inferred genealogies hold promise as a powerful complement to

current approaches [35,36] for analysis of larger-scale population

genetic questions in the yeast system. Surprisingly, for example, in

our ARGs the wine/European strains most often occupied the

outgroup position of gene genealogies. This is in intriguing contrast

to analysis of smaller data sets [12] and suggests a model in which

the wine/European population underwent a period of ancient

reproductive isolation, allowing the accumulation of distinct alleles

that manifest as an outgroup position in inferred ARGs. Alterna-

tively, the outgroup positioning of the wine/European strains in our

ARGs could be the consequence of genetic exchange with divergent

populations through recent, worldwide trafficking of vineyard

strains. However, since our methods focus on ancient genetic

exchange events inferred in the common lineage leading to the

wine/European isolates, recent admixture events involving one or a

few strains are unlikely to influence our results. As such, our findings

are most consistent with the notion that the wine/European clade of

S. cerevisiae represents an ancient and divergent population which in

recent times has come into contact with the rest of the sample. This

effect would likely be part of a complex and largely unknown history

of genetic exchange across the full set of yeast isolates in the current

sample [11,13,14,25,26], of which reproductive models described in

this work must necessarily be only an approximation. Nevertheless,

our results suggest that scalable genealogy-based methods, of the

type we develop here, will serve as a springboard for future analysis

of genetic exchange between these sampled populations, and of the

effects of natural selection on exchanged material in their

environmental niches.

Supporting Information

Text S1 Description of kwarg.

(PDF)

Dataset S1 Sample output of genealogical reconstruc-
tions using kwarg. An ancestral recombination graph is

provided for each gene in the S. cerevisiae genome, in dot format

[37]. See Figure 2 for an example.

(TGZ)

Figure S1 Distribution of the number of inferred
recombinations across yeast genes. Shown is the inferred

minimum number of recombination events per gene from

ancestral recombination graphs for 5842 yeast genes; genes with

five or fewer SNPs and those for which independent ancestral

reconstructions did not agree on the number of recombination

events were eliminated from the data set.

(TIF)

Table S1 Genome-wide estimates of the migration
parameter M under a symmetric island model, as
inferred from FST . Each row reports estimated population

differentiation and migration parameter values for one pair of

yeast populations. a In a given gene window, FST is calculated as

one minus the ratio of within- to between-population diversity, as

given by the mean number of pairwise sequence differences. Mean

Table 6. Evaluating observed fractions of disrupting
recombination events that occur in lineages ancestral to
members of the outgroup clade in ARGs from complex
coalescent simulations.

Outgroup

M #1 #2 #3 #4 #5

Model (i) 0.1 6.19|10{1 1 1 1 1

1 1 1 1 1 1

10 1 1 1 1 1

100 1 1 1 1 1

? 1 1 1 1 1

Model (ii) 0.1 1.20|10{3 1 1 1 1

1 3.31|10{1 1 1 1 1

10 1 1 1 1 1

100 1 1 1 1 1

? 1 1 1 1 1

p-values reporting significance of observations in Table 5 by comparison with
expectations in Table 2. Calculation of p-values and theoretical predictions are
as described for Tables 2, 3, and 4.
doi:10.1371/journal.pone.0046947.t006
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FST is the mean of this value across genes, weighted by length. b A

point estimate of the migration parameter M in a symmetric five-

island model, inferred from mean FST and using a theoretical

prediction of the relationship between M and FST (see MATERIALS

& METHODS). Also given are percentiles for this estimate, inferred

from the distribution of FST across genes.

(PDF)

Table S2 Changes in fA caused by deviations from the
symmetric five-island model. Each cell reports an estimate,

by simulation, of fA=fA0, where fA is the fraction of disrupting

recombination events toggling the outgroup status of population A

which also occur in a lineage ancestral to population A, under the

indicated model; fA0 is the analogous quantity for a five-island

population model with constant, symmetric migration with

parameter M~0:1 and reference effective population size N per

population, which reverts to a fully panmictic population 12N
generations ago. Under this model, fA0~0:287. A. One

population has a different effective population size. The first

column perturbs the population size of the population experienc-

ing the disrupting recombination event, denoted A, while the

second column perturbs the population size of one of the other

four populations, denoted B. B. The population whose outgroup

status is disrupted, A, experiences higher incoming (first column)

or outgoing (second column) migration rates, relative to the other

populations. C. An alternative model in which certain populations

have an older origin. In the first column, each island joins a single,

panmictic, population 6N generations ago, with the exception of

population A, which joins the panmictic population at the time

indicated. In the second column, it is instead one of the other four

populations, which we call B, that joins the ancestral panmictic

population farther back in time.

(PDF)

Table S3 Parameters for parsimony score used in
kwarg to reconstruct ancestral recombination graphs.
Shown are parameter choices used in the parsimony score at

differing stages of genealogical inference by kwarg. At a given

stage in the calculation, the set of recombination, mutation, and

coalescence events inferred by previous steps determines a set of

remaining sequences referred to as the configuration. Each row in

the table represents parameter values used to calculate the

parsimony score when evaluating move choices for the next step,

at the indicated configuration complexity. a The maximum

number of segregating sites remaining after any proposed move.
b The number of recombination events in the proposed event (zero

or one). c The resulting length of ancestral material after the

proposed step (maxam is the maximum across all proposed

moves). d The number of sequences remaining after the proposed

step (maxseq is the maximum across all proposed moves). e The

Hudson-Kaplan lower bound on the remaining data after the

proposed step. f A composite lower bound combining the exact

minimum across disjoint intervals. g The haplotype lower bound.
h The exact minimum number of recombination events remaining.

Parameters for these bounds are described in [15].

(PDF)
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