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Composite Metric R2 – R1ρ (1/T2 – 1/T1ρ) as a Potential MR Imaging 
Biomarker Associated With Changes in Pain After ACL 
Reconstruction: A Six-Month Follow-Up

Colin Russell, Valentina Pedoia, Sharmila Majumdar, AF-ACL Consortium*

Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical 
Imaging, University of California, San Francisco, California

Abstract

This study looked to investigate a new quantitative metric, R2 – R1ρ (1/T2 – 1/T1ρ), using magnetic 

resonance (MR) images and voxel-based relaxometry (VBR) for detecting early cartilage 

degeneration and explore the association with patient-reported outcomes measures (PROMs) in 

patients 6 months after ACL reconstruction. Sixty-four patients from three sites were bilaterally 

scanned on a 3T MR with a combined T1ρ/T2 protocol to calculate R1ρ (1/T1ρ) and R2 (1/T2) 

values at baseline and 6 months after reconstructive surgery. Non-rigid registration was applied to 

align images onto a template, allowing VBR to determine VBR rate differences and explore cross-

sectional and longitudinal differences between injured and uninjured knees, generating Statistical 

Parametric Maps (SPMs). Baseline R2 – R1ρ differences were further correlated with change in 

PROMs from the Knee Injury and Osteoarthritis Outcome Score (KOOS) from baseline to 6 

months. Cross-sectional results demonstrated low relaxation rate differences in the injured patella 

(baseline: 21%, p = 0.01; 6-months: 18%, p = 0.02), lateral tibia (baseline: 25%, p = 0.01; 6-

months: 24%, p = 0.01), and weight-bearing regions of the tibia and femur. The uninjured patella 

showed significant longitudinal changes (17%, p = 0.02). R2 – R1ρ differences showed significant 
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correlations with KOOS PROMs, particularly in the lateral tibia, patella, and trochlea. R2 – R1ρ 
difference VBR analyses provide new and highly sensitive parameters for assessing early cartilage 

degeneration in patients after ACL injury by integrating findings from both T1ρ and T2, commonly 

used relaxation time parameters, into a single metric. © 2016 Orthopaedic Research Society. 

Published by Wiley Periodicals, Inc. J Orthop Res
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The association between anterior cruciate ligament (ACL) injury and the subsequent onset of 

early knee osteoarthritis (OA) despite reconstructive surgery (ACLR) is a well-researched 

phenomenon.1–3 Characteristic joint space narrowing and morphological cartilage changes 

are clear indicators of OA, with radiographic joint space narrowing as the gold standard 

modality for OA evaluation.4 However, biochemical and macromolecular changes are 

thought to precede these larger morphologic changes. The degradation of proteins, 

specifically proteoglycan (PG) and glycosaminoglycan (GAG) aggrecan depletion, collagen 

fibrillation, and loss from the extracellular matrix (ECM), have been shown to initiate 

morphologic changes in early stages of OA, which eventually result in cartilage thinning, 

fissuring, and, ultimately, pain.5–8 To date, treatment options for OA are largely relegated to 

pain management or invasive surgical replacement, partially due to poor sensitivity and 

specificity of standard diagnostic methods.6,9 Thus, refining and discovering accurate 

methods to detect early, subtle stages of this debilitating disease are imperative.

Currently, non-invasive magnetic resonance (MR) imaging methods are employed in many 

cartilage and OA studies, as they offer highly sensitive approaches to evaluate cartilage 

compositional changes prior to observable morphologic changes. In particular, T1ρ, the 

parameter describing spin-lattice relaxation in the rotating frame, and T2, spin–spin 

relaxation related to energy changes between proton spins, have shown to provide 

complementary information on cartilage quality and structure.7,10 Many studies have 

investigated the role of the T1ρ parameter in biological tissues, demonstrating that PG 

content, specifically the motion-restricted water molecules in their macromolecular 

environment, contributes to T1ρ relaxation.7,11,12 Elevations of T1ρ have been observed in 

individuals with OA, thought to be due to PG loss.7,9 The dipolar interaction of water 

protons associated with collagen contributes to T2 relaxation, and has been shown to be 

sensitive to water interactions within the cartilage ECM.10,11 In fact, a correlation between 

average T1ρ and T2 relaxation times in cartilage of individuals with OA has been reported.7 

Despite the non-point-to-point relationship observed, this nevertheless implies 

complementary information for detecting cartilage degeneration.7,13 In another study 

correlating T1ρ and T2 in OA patients, Li et al. proposed that a weaker association may be 

observed in the early stages of disease, as T1ρ may indicate PG loss, while T2 is more 

sensitive to collagen network organization; yet, in later stages of degeneration, both T1ρ and 

T2 values are affected by PG loss and hydration changes, suggesting a stronger association.9
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Brought to the forefront of relaxation time critiques are the experimental parameter-

dependency and effects of different locking field strengths on relaxation times.7,14,15 

Measuring relaxation times at different locking fields negates this frequency dependency, a 

phenomenon known as dispersion.11,14–16 Concurrent research with relaxation dispersion 

also analyzes relaxation rates and relaxation rate dispersions, R1ρ (1/T1ρ) and R2 (1/T2), 

which several studies have correlated with cartilage quality.8,14,17,18 Furthermore, data 

suggests correlations between PG and GAG concentrations with R1ρ rates, as well as 

complementing traditional relaxation time measurements.11,19,20 R2 similarly has been 

correlated with collagen content and orientation.21 In an effort to comprehensively describe 

the cartilage ECM with a single metric, we assessed the difference of R2 and R1ρ (Please see 

Supporting Information Appendix 1 for a further explanation of R2 – R1ρ). Combining 

cartilage relaxation times into a single metric has been suggested in other studies, such as 

the ratio of T1ρ and T2 to assess cartilage macromolecular complexity.20 As previously 

mentioned, other studies have noted the complementary information from T1ρ and T2 

regarding cartilage degeneration.12,14 In this study, the proposed R2 – R1ρ metric offers a 

new gauge of cartilage degeneration, incorporating previous understandings of T1ρ and T2 to 

better understand larger macromolecular changes into a single parameter.

In this multicenter study, voxel-based relaxometry (VBR), a novel and sensitive quantitative 

technique, is used to cross-sectionally and longitudinally analyze cartilage of patients with 

ACL tears at the time of injury and 6 months after ACLR using R2 – R1ρ differences to 

highlight macromolecular changes.22 We further assessed the correlation between R2 – R1ρ 
differences in the injured knee and the change in patient-reported outcome measures 

(PROMs) over time points using the Knee Injury and Osteoarthritis Outcomes Score 

(KOOS) survey, a validated method to accurately measure patient-reported outcomes, to 

assess whether baseline relaxation times could predict the longitudinal change in KOOS.23 

In traditional quantitative relaxation time studies, region of interest (ROI)-based methods are 

employed to quantify average times within a cartilage region. VBR is capable of detecting 

extremely localized cartilage changes in the early stages of degeneration and may reveal 

regions of change where global analyses may not. As compositional changes occur before 

morphological evidence is observed, a composite parameter reflecting both proteoglycan 

and collagen changes may be beneficial in characterizing the macromolecular environment 

of the cartilage and combined with VBR, could provide additional, more targeted 

information on localized cartilage changes, as well as a potential new biomarker to predict 

future patient-reported outcomes.

METHODS

Approval

This study was approved by the Institutional Review Board (IRB). All patients provided 

informed consent prior to scanning by the Committee on Human Research of the home 

institution.
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Calibration

An initial cohort of 16 healthy volunteers was scanned at all sites to establish reliability.24 

Scan/rescan comparisons of group averages yielded a CV of 1.84%, and scan/rescan for 

each subjects yielded a CV of 11.62%. No significant differences were observed between 

scan/rescan or between sites.

Subjects

A total of 64 patients (28 female; age = 28.3 ± 12.5 years; BMI = 24.5 ± 3.1 kg/m2) were 

recruited from three sites: University of California, San Francisco (San Francisco, CA), 

Mayo Clinic (Rochester, MN), and Hospital for Special Surgery (New York City, NY). Sixty 

of these patients sustained acute, unilateral ACL tears and had no previous history of knee 

trauma or disease, two patients had previous ACLR in the contralateral knee, and two 

patients did not undergo ACLR (n = 64 patients). To date, 56 patients (24 female; age = 29.3 

± 12.7 years; BMI = 24.7 ± 3.1 kg/m2) have returned 6 months after ACLR for follow-up 

studies (Table 1); the two patients without ACLR returned 6 months following injury.

Patient-Reported Outcome Measure (PROM) Questionnaires

Prior to scanning, all patients completed the KOOS questionnaire at baseline and 6 months 

after ACLR (Table 1). The KOOS survey is subdivided into five categories: pain, symptoms, 

activities of daily living (ADL), sport function, and knee-related quality of life (QOL). 

Scores on a 0–100 scale (0 as the worst, 100 as best) allow for quantification these 

categories.23

MRI Protocol

All subjects sat for a standard rest period of 45 min prior to MRI acquisition to unload the 

cartilage. Images were acquired on a 3T MR (General Electric Healthcare, Milwaukee, WI) 

using an eight-channel phased array knee coil (Invivo, Inc., Gainesville, FL) at two time 

points, the time of injury (baseline; Table 1) and 6-month follow-up, on both the injured and 

uninjured knees; the uninjured knee was scanned first. MRI sequence protocol included the 

following: (i) sagittal intermediate-weighted, fluid sensitive, fat-saturated three-dimensional 

(3D) fast spin-echo (CUBE) images (TR/TE = 1,500/25 ms, FOV = 16 cm, 384 × 384 

matrix, slice thickness = 1 mm, echo train length = 50, BW = 50 kHz, NEX = 0.5) and (ii) 

sagittal combined 3D T1ρ/T2 (T1ρ TSL = 0/10/40/80 ms, FSL = 500 Hz, FOV = 14 cm, 256 

× 128 matrix, slice thickness = 4 mm, T2 preparation TE = 0/12.87/25.69/51.39 ms).25 All 

images underwent an automatic quality control procedure designed to check the stability of 

the MRI protocol settings. Duplicate agarose phantoms were scanned monthly at each of the 

three sites to ensure longitudinal cross-calibration, showing CVs of 1.3–2.6% for T1ρ and 

1.2–2.7% for T2.24

Image Processing

All image post-processing was performed at a single site with in-house programs written in 

MatLab (MathWorks, Natick, MA), integrated with the elastix toolbox for non-rigid image 

registration.22,26,27 The minimum deformation template reference was established by 

analyzing the Jacobian determinant (J). Reference sagittal high-resolution CUBE images 
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were rigidly registered using the VTK CISG registration toolkit with the first TSL = 0, T1ρ-

weighted image, and then used for segmentation. Six cartilage compartments were defined, 

the medial femoral condyle (MF), medial tibia (MT), lateral femoral condyle (LF), lateral 

tibia (LT), femoral trochlea (TrF), and patella (P), and semi-automatically segmented using a 

Bezier spline and edge detection-based method.28 The non-rigid registration technique was 

applied between the reference and each first TSL = 0, T1ρ-weighted image in the dataset. 

The transformation field was applied to all later TSL images.

T1ρ and T2 maps were acquired by fitting the morphed T1ρ-weighted/T2-weighted images 

from different TSL/TEs, employing a Levenberg–Marquardt mono-exponential:

S(TSL) = Soe
−TSL/T1p and (1)

S(TE) = Soe
−TE/T2 (2)

applied to each voxel.29 Thresholds for individual relaxation times of each voxel were set 

(T1ρ: minimum >0ms, maximum = 130 ms; T2: minimum >0ms, maximum = 100 ms). The 

inverse of the thresholded T1ρ and T2 were taken to compute the corresponding R1ρ and R2 

values. Finally, the reference-ROIs were applied to the morphed maps, establishing a fully 

automatic atlas-based segmentation procedure.

In prior studies, elevations in T1ρ and T2 have been associated with cartilage degeneration; 

additionally, a correlation between T1ρ and T2 has also been associated with cartilage 

degeneration in osteoarthritic patients.7 In our analysis, strong correlations between R1ρ and 

R2 can also be seen throughout the cartilage (Fig. 1); however, these correlations are not 

always homogeneous, even within compartments, thus further driving our notion for a 

single, combined metric that incorporates both T1ρ and T2. Parametric maps reflecting R2 – 

R1ρ and correlations were computed.

Statistical Analyses

Statistical Parametric Mapping (SPM) was conducted to study the cross-sectional localized 

R2 – R1ρ differences and KOOS correlations of the injured and uninjured knees. Voxel-based 

summary statistics, such as percentages of the voxels showing significance (PSV), average 

percentage differences (APD), and average p-values (p) in the overall compartment were 

computed for each compartment in the injured and uninjured knees. A random field 

correction was used to take into account possible false positive results due to multiple 

comparisons.30 The APD and p-values for compartments with PSV less than 1% of voxels 

were not considered. Values from individual patients that fall outside of the set thresholds 

were not included in the calculations or correlations. Average percent differences (APD) 

were analyzed in the areas of the SPMs that only showed significance (p < 0.05). The same 

procedure was adopted to analyze R2 – R1ρ longitudinal changes, also summarized by 

SPMs. Longitudinal statistical analyses were conducted only with patients with data from 

both time points. Lastly, the Pearson partial correlations between baseline R2 – R1ρ values 
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and the change in KOOS sub-scores over 6 months were calculated and also assessed by 

SPMs, adjusting for age, gender, and BMI.

RESULTS

R2 – R1ρ Difference Analyses: Cross-Sectional Analysis

A summary of statistical values (PSV, APD, and p) for all cross-sectional and longitudinal 

results can be seen in Table 2. In the cross-sectional analysis, R1ρ and R2 were determined 

from the inverse of T1ρ and T2, and the R2 – R1ρ values were computed with an in-house 

program. Comparing injured and uninjured knees at baseline, the patella indicated the largest 

Δ(R2 – R1ρ) difference between sides (Fig. 2A–C); the uninjured patella displayed larger R2 

– R1ρ values than the injured patella (PSV = 64%, APD = 21%, p = 0.01). The LT similarly 

displayed significantly larger average R2 – R1ρ values in the uninjured side when compared 

to the injured at baseline, seen in Figure 3A–C (PSV = 35%, APD = 25%, p = 0.01). 

Particularly different was the most posterior aspect of the posterior LT (pLT). The trochlea 

also had larger R2 – R1ρ values in the uninjured knee when compared to the injured knee at 

baseline (PSV = 24%, APD = 25%, p = 0.02). As with these other compartments, the MT 

and MF both displayed larger average R2 – R1ρ values in the uninjured knee (MT: PSV = 

12%, APD = 25%, p = 0.02; MF: PSV = 24%, APD = 24%, p = 0.01). The LF indicated a 

smaller difference between the sides, also with larger uninjured average R2 – R1ρ values 

(PSV = 11%, APD = 25%, p = 0.02).

When assessing the injured and uninjured sides at 6 months, the previous trend of greater R2 

– R1ρ values in the uninjured knee from baseline was still observed (Table 2). However, in 

the patella, seen in Figure 2D–F, the quantity of significantly changing voxels (PSV) as well 

as the degree of change (APD) were lower, particularly within the deep layer (PSV = 18%, 

APD = 18%, p = 0.02). The LT displayed a similar quantity of significantly changing voxels 

to baseline, also to a similar degree of change (PSV = 34%, APD = 24%, p = 0.01), with 

only 1% of voxels indicating greater R2 – R1ρ values in the injured compared to the 

uninjured knee (Fig. 3D–F). The trochlea also displayed a similar quantity of voxel change 

at 6 months to baseline, with a similar degree of change (PSV = 22%, APD = 24%, p = 

0.02). In the medial side of the knee, the MT and MF also continued this trend of greater R2 

– R1ρ values in the uninjured knee compared to the injured knee (MT: PSV = 33%, APD = 

28%, p = 0.02; MF: PSV = 22%, APD = 27%, p = 0.01). The LF did not adhere to this trend, 

as seen in Figure 3D–F, displaying some voxels with larger values in the injured knee than 

uninjured (PSV = 9%, APD = 50%, p = 0.02).

R2 – R1ρ Difference Analyses: Longitudinal Analysis

Longitudinal analyses of R2 – R1ρ were conducted to accurately quantify cartilage changes 

over the 6-month period (Table 2). In the injured knee, the LT (Fig. 4A–C) and trochlea (Fig. 

5A–C) showed the most relaxation rate difference changes (Δ(R2 – R1ρ)) over 6 months. 

Both compartments overall demonstrated greater baseline R2 – R1ρ values than 6-month 

differences (LT: PSV = 20%, APD = 25%, p = 0.02; TrF: PSV = 13%, APD = 21%, p = 
0.02). The LT did display a small intense region centered on the most posterior aspect of the 

pLT where the 6-month average R2 – R1ρ values were higher than baseline (PSV = 3%, APD 
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= 48%, p < 0.01). The LF also showed a small intense region with higher 6-month R2 – R1ρ 
values (PSV = 4%, APD = 42%, p = 0.03), and had almost no significant voxels that 

indicated higher baseline R2 – R1ρ values (PSV < 1%). The patella (Fig. 5A–C) and the 

medial compartments of the injured knee had regions of slightly higher baseline R2 – R1ρ 
values than 6-month values (P: PSV = 5%, APD = 19%, p = 0.02; MT: PSV = 8%, APD = 

25%, p = 0.03; MF: PSV = 4%, APD = 21%, p = 0.02).

In the uninjured knee, a large Δ(R2 – R1ρ) was observed in the patella (Fig. 5D–F), 

indicating higher R2-R1ρ at baseline, particularly noticeable in the deeper layers (PSV = 

27%, APD = 17%, p = 0.02). A similar change was detected in the LT after 6 months, seen 

in Figure 4D–F (PSV = 12%, APD = 18%, p = 0.02). Almost no longitudinal change was 

observed in the LF (PSV = 3%, APD = 26%, p = 0.03). The trochlea (Fig. 5D–F) and medial 

compartments did not show much relaxation rate change in the uninjured knee after 6 

months (TrF: PSV <1%; MT: PSV <1%; MF: PSV = 4%, APD = 21%, p = 0.03).

KOOS and R2 – R1ρ Correlation Analyses

Average KOOS for all patients divided by sub-score can be seen in Table 1; each sub-score 

is significantly increasing (p < 0.001) from baseline to 6 months, as assessed by paired 

Student t-tests, despite the large standard deviations. Correlating the change in KOOS sub-

scores over 6 months with baseline R2 – R1ρ values in the injured knee, there is a significant 

correlation with the change in KOOS pain over 6 months in the deep layer of the patella 

(PSV = 4.1%, R = 0.359, p = 0.03) and the weight-bearing LT (PSV = 6.1%, R = 0.356, p = 

0.03) (Fig. 6A and C), as well as with the change in KOOS sport over 6 months in the entire 

injured trochlea (PSV = 29.9%, R = 0.366, p = 0.02) (Fig. 6B and D). Change in KOOS 

ADL also demonstrated a significant correlation with the R2 – R1ρ values in the injured 

trochlea (PSV = 18.1%, R = 0.339, p = 0.02), deep layer of the patella (PSV = 7.8%, R = 

0.347, p = 0.02), and the weight-bearing LT (PSV = 7.9%, R = 0.349, p = 0.03).

DISCUSSION AND CONCLUSIONS

In this study, we analyzed the cartilage of patients at baseline and 6 months after ACLR 

using R2 — R1ρ differences to better assess the macromolecular interactions in cartilage 

ECM following ACL injury. Combining cartilage T1ρ and T2 in a single metric has been 

previously proposed; in a recent study by Keenan et al., the ratio T1ρ/T2 is used to assess 

local environment complexity.20 With the proposed relaxation rate difference that we have 

used, lower values indicate more similar R1ρ and R2. A convergence of relaxation rates is 

attributed to increasing T1ρ and T2 relaxation times, just as the T1ρ/T2 ratio in an 

unstructured liquid environment, such as degenerating cartilage, will approach 1.20 As many 

prior studies have noted, T1ρ values are greater than T2 throughout healthy cartilage tissue, 

and together offer complementary information on cartilage degeneration.12,14

In the cross-sectional R1ρ and R2 relaxation rate difference analysis, a general trend of 

higher average differences in the uninjured knee compared to the injured was observed. 

Lower differences in the injured patella, LT, and weight-bearing regions of the tibia and 

femur (Figures 2 and 3), suggest that these injured compartments experience more 

degeneration than the uninjured knee compartments, a phenomenon previously elucidated.

Russell et al. Page 7

J Orthop Res. Author manuscript; available in PMC 2020 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31,32 At 6 months, the LT, MT, and patella still demonstrated lower differences in the injured 

knee, suggesting more degeneration in the injured knee than uninjured. Previous research 

has indicated that the most severe chondral injuries at the time of the ACL injury have been 

observed in the lateral compartments (LT and LF), especially the pLT, precisely where the 

pivot shift and transchondral contusion transpires.3,13 A subsequent elevation in T1ρ has 

been reported in the non-weight-bearing lateral compartments.10,31 Together, these previous 

findings support our observations of lower R2 – R1ρ differences in the injured knees at both 

time points (Figures 2 and 3). Some research has detailed the lack of distinctive T1ρ 
characteristics between injured and uninjured knees in the lateral side.9,31 However, VBR 

analysis was designed to detect extremely localized cartilage changes, and thus may detect 

what global analyses might not.

Previous research has also often cited the MT and MF compartments of the injured knee as 

frequent sites for early degeneration.10,31,32 Li et al. explained that the medial weight-

bearing regions of the MF and MT are regions where the earliest signs of cartilage 

degeneration can be observed.13 Frobell et al. have noted that ACLR was directly related to 

bone marrow lesions and increased joint fluid volume in the MF at six months after ACLR, 

two accepted features of early OA.33 Indeed, at baseline and 6 months, our data clearly 

shows higher R2 – R1ρ differences in the medial compartments of the uninjured knee 

compared to the injured, especially in the deep layer of the weight-bearing regions. 

Comparing the injured and uninjured patella at both times also yielded interesting results, 

with significant disparities at baseline (PSV = 64%; Fig. 2A–C). Much of the dissimilarity 

can be seen in the deep layer of the patella, adjacent to the subchondral bone surface (Fig. 

2C), an observation also noted by Li et al.9

Longitudinally, one of the most significant findings was observed in the LT of the injured 

knee. An average longitudinal decrease of R2 – R1ρ differences in the 6-month LT of the 

injured knee was observed, when compared to baseline, except for the most posterior aspect 

of the pLT (Fig. 4C). This region, encompassing the 3% of voxels (PSV) that indicated a 

48% difference change (APD) from baseline to 6 months, shows that the R2 – R1ρ 
differences at baseline are lower than the 6-month differences. Such a finding echoes the 

results from a previous subcompartmental analysis conducted by Li et al., which noted that 

the T1ρ and T2 values in this region of the LT superficial layer decreased one year after 

ACLR, and were comparable to the values observed in the uninjured knee.13 Another 

significant finding from the longitudinal analysis was the significant decrease in R2 – R1ρ 
differences over 6 months in the uninjured patella (Fig. 5D–F). A slight decrease was also 

observed in the injured patella (PSV= 5%), possibly caused by the longitudinal degeneration 

of patella cartilage following injury, as described by Potter et al.3

The drastic change observed in the uninjured patella may be due to altered ambulatory 

kinematics following ACLR.32 This dynamic, longitudinal change (PSV = 27%, APD = 

17%, p = 0.02) could be a response to the delayed structural restitution of the ACL in the 

injured knee.33 Gait change following ACLR has been well studied and even targeted as a 

potential cause for post-traumatic cartilage degeneration.34–36 In one study, the internal–

external rotation of the reconstructed knee during the stance phase of walking was found to 

be significantly different than the uninjured contralateral knee, with the reconstructed knee 
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showing consistent external rotation offset across majority of subjects; such an offset was 

hypothesized to place loads on cartilage with differing ability to withstand loads, thus 

leading to degeneration.37 Moreover, surgical reconstruction of the ACL may not completely 

restore the injury-induced anterior tibial translation, providing more evidence for a shift in 

kinematic gait following reconstruction; such an anterior shift may place more load on the 

patellar cartilage.38 In the injured knee, reevaluations of surgical procedures have been made 

in response to this evidence of insufficient restoration of joint kinematics.39

To further assess the relationship of R2 – R1ρ with the cartilage after ACL-injury and 

reconstruction, we correlated PROMs using KOOS sub-scores with the R2 – R1ρ differences 

in the injured knee. KOOS is a frequently used PROM that has been shown to accurately 

monitor disease course and outcomes.23 Furthermore, KOOS has been previously correlated 

with T1ρ and T2 in a different ACL-injured cohort, and thus stands as an appropriate 

measure to compare this proposed R2 – R1ρ metric.40 Fortunately, all KOOS sub-scores 

increased significantly following ACLR, indicating a trend toward recovery of function and 

lower pain for the majority of individuals (Table 1). However, the high standard deviations 

indicate that not all patients demonstrated this upwards trend; in fact, nine of the 54 patients 

at 6 months (16%) had lower KOOS sub-scores in every category. Thus, we sought to 

correlate the change in KOOS sub-scores between the scan times with the R2 – R1ρ 
differences on a voxel-by-voxel basis in the injured knee. As seen in Figure 6, a strong 

correlation with ΔKOOS Pain in the deep layer of the patella and LT can be seen, as well as 

a strong correlation with ΔKOOS Sport in the trochlea; other subcategories, such as ΔKOOS 

ADL, showed similar trends. Interestingly, when KOOS sub-scores were correlated 

individually with the T1ρ and T2 on a voxel-by-voxel basis in the injured knee, these regions 

previously demonstrating a strong correlation with R2 – R1ρ, showed a similar trend, though 

not as significant as with R2 – R1ρ (see Supporting Information Figures).

This study is the first to employ VBR to relaxation rate analysis, yet is not the first endeavor 

to use estimated relaxation rates computed from acquired T1ρ and T2 values.14 In this study, 

the R2 – R1ρ difference offers a possible new gauge of cartilage degeneration, incorporating 

previous understandings of T1ρ and T2 to better understand larger macromolecular changes 

into a single parameter. The high sensitivity of VBR further accentuates the early stages of 

degeneration, which sometimes goes undetected in global ROI-based methods.7,22

It is important to note that the Magic Angle effect may play a role in the R2 – R1ρ difference 

results, as T1ρ and T2 are not equally influenced.41 However, considering the strict 

positioning of the knee during scanning, employing VBR and using an atlas-model, the 

effect from the Magic Angle would be in the same anatomical region in the injured and 

uninjured knees, as well as at both time points. Thus, when assessing cross-sectional or 

longitudinal changes, the Magic Angle effect should be minimized. An aspect not explicitly 

assessed in this study was the confounding factor of meniscal tears. As Potter et al. 

specified, meniscal tears sustained during the ACL injury have an increased risk of post-

traumatic cartilage degeneration, muddling the evaluation of isolated ACL injuries and post-

reconstruction effects.3 A larger sample size and extended longitudinal analysis would also 

further augment and validate the findings of this study.
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Another possible advantage of developing a composite metric based on R2 – R1ρ is if the 

images were obtained in this combined sequence for identical values of TE and TSL, then 

combining Equations (1 and 2), and taking the negative logarithm of the signals R2 – R1ρ 
could be computed:

R2 − R1ρ
= − ln[S(TE)/S(TSL)]/TE . (3)

This would obviate the need for acquiring multiple images with TE and TSL values as well 

as computing each of the parameters, thus making imaging faster. Clearly, further research 

on the propagation of errors, reproducibility of the measure, and susceptibility to artifacts 

will need to be assessed. However, the notion of reducing imaging time coupled with our 

fully automatic post-processing pipeline would have tremendous impact on the translation of 

these techniques to routine clinical applications. In conclusion, we have acquired multi-site 

quantitative MR imaging data, proposed a new metric for characterizing the cartilage ECM, 

and using VBR in subjects with ACL injury, shown differences in injured and uninjured 

knees at baseline and 6 months following reconstructive surgery, as well as correlated this 

composite metric with a well-validated PROM. These results suggest the possible use of the 

compositional R2 – R1ρ parameter as an imaging biomarker to stratify patients after ACL 

injury.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average cross-sectional R1ρ and R2 correlation SPMs of all patients overlaid onto registered 

image at baseline. Higher correlations indicate more similar R1ρ and R2 values. Correlation 

between R1ρ and R2, despite being high throughout the cartilage, clearly shows regions of 

higher and lower correlation heterogeneously throughout compartments.
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Figure 2. 
Average cross-sectional R2 – R1ρ SPMs of all patients overlaid onto registered image (A, B, 

D, and E) with the corresponding average percent difference maps (C and F) in the patella 

and trochlea. Lower relaxation rate differences indicate more similar R1ρ and R2 values.
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Figure 3. 
Average cross-sectional R2 – R1ρ SPMs of all patients overlaid onto registered image (A, B, 

D, and E) with the corresponding average percent difference maps (C and F) in the lateral 

part of the knee. Lower relaxation rate differences indicate more similar R1ρ and R2 values.
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Figure 4. 
Average longitudinal R2 – R1ρ SPMs of patients with data from both times overlaid onto 

registered image (A, B, D, and E) with the corresponding average percent difference maps 

(C and F) in the lateral part of the knee. Lower relaxation rate differences indicate more 

similar R1ρ and R2 values. While the majority of the injured LT shows larger differences at 

baseline, the most posterior aspect of the pLT shows the opposite.
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Figure 5. 
Average longitudinal R2 – R1ρ SPMs of patients with data from both times overlaid onto 

registered image (A, B, D, and E) with the corresponding average percent difference maps 

(C and F) in the patella and trochlea. Lower relaxation rate differences indicate more similar 

R1ρ and R2 values. The uninjured patella indicates lower differences at six months when 

compared to baseline.
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Figure 6. 
Average correlation between ΔKOOS sub-scores and the R2 – R1ρ differences overlaid onto 

registered image (A and B) with corresponding significance (p-value) SPM (C and D). The 

deep layer of the patella and the weight-bearing LT show high correlation with ΔKOOS 

Pain, where the entire trochlea shows a strong correlation with ΔKOOS Sport.
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