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Abstract 
Our main goal in the present set of studies was to re-visit the 
question whether people are capable of inducing causal mod-
els from covariation data alone without further cues, such as 
temporal order. In the literature there has been a debate be-
tween bottom-up and top-down learning theories in causal 
learning. Whereas top-down theorists claim that in structure 
induction, covariation information plays none or only a sec-
ondary role, bottom-up theories, such as causal Bayes net 
theory, assert that people are capable of inducing structure 
from conditional dependence and independence information 
alone. Our three experiments suggest that both positions are 
wrong. In simple three-variable domains people are indeed 
often capable of reliably picking the right model. However, 
this can be achieved by simple heuristics that do not require 
complex statistics.  

Keywords: causal induction; causal Bayes nets; heuristics 

Introduction 
How are the causal regularities in the world learned? One 
popular answer can be traced back to the philosopher Hume 
(1748/1974), who famously argued that temporal order 
(causes precede their effects) along with covariation infor-
mation are the basis of the inference about the existence of a 
causal relation. Hume’s analysis creates a puzzle, though, 
when we consider more complex causal models (see also 
Waldmann & Hagmayer, in press). Our everyday 
knowledge is not neatly organized in single cause-effect 
relations but is interrelated in complex models with multiple 
causes of common effects (common effect model), common 
causes of multiple effects (common cause model), or causal 
chains. Just looking at pairwise covariations will often not 
help us to recover the underlying causal model even when 
the temporal order cue is available. Lagnado et al. (2007) 
have therefore proposed the view that people use multiple 
cues, such as temporal order, interventions, or prior 
knowledge, to form hypothetical models (see also Wald-
mann, 1996). Covariation information may be used to vali-
date these hypotheses but it plays a subordinate role entering 
the induction process after the other cues have been applied 
in a top-down fashion. Fernbach and Sloman (2009) have 
even argued that people “do not rely on covariation when 
learning the structure of causal relations” (p. 678). 

Our main goal in the present research is to re-visit the 
question whether people are really incapable of inducing 
causal models from covariation alone in situations in which 
no other cues are available. To anticipate the results we have 
found an amazing ability to select the right causal model 
based on covariation data alone, which surpasses previous 

demonstrations (e.g., Steyvers et al., 2003). Our research, 
which was initially motivated by Bayesian theories of struc-
ture induction, led us to the question what heuristics people 
may use to induce causal models. We present and empirical-
ly test a simple heuristic that mimics these more complex 
theories (Experiment 1). In two further experiments we will 
explore interindividual differences, which led us to propose 
a further heuristic.  

Causal Bayes Nets as Psychological Theories of 
Structure Induction 
One of the most popular theories of causal model represen-
tations is causal Bayes net theory (see Gopnik et al., 2004). 
This theory was originally developed as a normative theory 
of how experts make causal inferences, plan actions, or 
learn about causal models. Among other features, it pro-
vides mechanisms for the induction of causal structures 
from covariation information alone (Spirtes, Glymour, & 
Scheines, 1993; Pearl, 2000).  

Unlike top-down theories, Gopnik et al. (2004) have 
claimed that people should be capable of inducing causal 
structure from conditional dependence and independence 
information alone in a bottom-up fashion. The Markov 
assumption along with additional assumptions (e.g., faith-
fulness assumption) is central for this capacity. Gopnik et al. 
(2004) discuss two Bayesian induction strategies. According 
to constraint-based learning people should analyze triples of 
events (such as in Fig. 1) within causal models and select 
between causal models on the basis of conditional depend-
ence and independence information. For example, common 
cause models with three events imply that the three events 
are correlated but that the two effects are independent condi-
tional on the states of the cause. In contrast, in a common 
effect model two events (the causes) should be independent 
but become dependent conditional on the third event (the 
effect). These differential probabilistic relations allow for 
inducing which of these two models is more probable. 
Sometimes the analysis of triples will yield several (Mar-
kov) equivalent alternatives (see Fig. 1). Additional cues 
(e.g., temporal order) may help to further restrict the set of 
possibilities.  

An alternative to this bottom-up approach are Bayesian 
algorithms, which calculate the likelihood of the data given 
alternative models and combine this information with as-
sumptions about the prior probability of the different models 
to arrive at an inductive guess about which model probably 
underlies the observed correlations. Both learning strategies 
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use conditional and unconditional probability information in 
the data to assess the likelihood of the competing model. 

In sum, whereas Gopnik and colleagues argue that people 
are capable of recovering causal models from covariation 
alone using conditional dependence and independence in-
formation, other researchers (Fernbach & Sloman, 2009; 
Lagnado et al., 2007) doubt that people have such sophisti-
cated statistical competencies. 

Empirical Evidence 
Steyvers et al. (2003) introduced the alien mind-reading 

paradigm to test whether people are capable of inducing the 
causal structure underlying three events based on infor-
mation about conditional dependence and independence. 
They presented subjects with three mind readers who, based 
on mind reading, had particular thoughts or not. Overall 
Steyvers et al. observed above-chance but poor performance 
when only covariation information was available. Although 
Steyvers et al. (2003) claimed to have studied purely bot-
tom-up learning, in all experiments participants were pro-
vided with graphs showing alternative models (e.g., com-
mon cause, common effect model) between which subjects 
had to choose. Thus, subjects could use these graphs as 
potential top-down hypotheses. Moreover, although learn-
ers’ performance is partly consistent with the proposed 
Bayesian learning models, Steyvers et al. (2003) acknowl-
edged that people might have used simple heuristics that 
approximate rational inference. We will propose a simple 
heuristic that poses far fewer demands on statistical pro-
cessing capacity. 

Broken link heuristic 
The general idea motivating the proposed heuristic is that 
people enter the task with the bias that causal relations are 
deterministic and causes sufficient for their effects, despite 
the fact that the observable input is typically probabilistic 

(Goldvarg & Johnson-Laird, 2001; Grif-
fiths & Tenenbaum 2009; Lu et al., 
2008; Schulz & Sommerville, 2006). 
One way to reconcile a sufficiency bias 
with probabilistic data is to assume that 
the generating model contains determin-
istic causal relations, which may occa-
sionally be broken due to random dis-
turbances, such as the presence of a 
hidden preventer or the absence of a 
necessary enabler. However, these cases 
should be rare. Thus, relations in which 
the cause is present and the effect is 
absent can be interpreted as largely in-
consistent with the determinism assump-
tion, and should therefore count as evi-
dence against the existence of a causal 
relation. For example, if a case with one 
present and two absent events is present-
ed, a hypothetical common cause model 
in which the present event is assumed to 

be the cause would entail two broken links, which should 
weaken this particular causal model hypothesis. Applying 
the broken link heuristic is simple: (1) Learners observe 
individual learning patterns with three events that can be 
present or absent, (2) based on the hypothetical assumption 
of each of the alternative causal models under consideration, 
the number of broken links (i.e., cause-present, effect-absent 
pairs) is counted across all learning patterns, (3) at the end 
of learning, the causal model is chosen for which the sum of 
the number of broken links proved minimal. This way mod-
els are chosen that are maximally consistent with the deter-
minism bias. Unlike Bayesian models, the heuristic only 
looks at pairwise relations between events, and does not 
need to consider complex conditional dependency infor-
mation.  

Although the broken link heuristic typically approximates 
the normative inference of specific causal Bayes net strate-
gies, it is possible to design patterns in which the predic-
tions of these models and of the heuristic diverge. In Exper-
iment 1 we designed such patterns to provide a more specif-
ic test of the heuristic. Of course, it is not possible to test a 
heuristic against all possible future Bayesian models of 
structure induction. Our test is therefore restricted to a com-
parison between the broken link heuristic and the model that 
has thus far been proposed in the literature as underlying 
structure induction (Steyvers et al., 2003; see also General 
Discussion). 

Experiment 1 
To test our heuristic we presented subjects with sets of 12 
patterns each containing three binary variables being present 
or absent (here: aliens thinking of “POR” or nothing; see 
Fig. 2). The sets were randomly generated so that in each 
case the heuristic predicts exactly the opposite causal struc-
ture as a Bayesian structure selection procedure with unin-
formative priors (which is similar to a maximum likelihood 

 
 

Figure 1: All causal structures of three variables containing one or two causal 
links (based on Steyvers et al., 2003, p. 458). Markov-equivalence classes, i.e., 
structures that are indistinguishable with respect to covariational data, are indicat-
ed by the red dashed lines. 
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selection and in our case corresponds to the solution of 
standard constraint-based methods).  

To avoid the problem of Markov equivalent structures, 
which are indistinguishable with respect to the presented 
covariation data, we constrained the set of possible causal 
structures to common cause and common effect networks 
(see Fig. 1, first two columns, i.e. six structures). Thus, each 
pattern set entailed a unique prediction by the Bayesian 
algorithm as well as by our heuristic. 

Method 
Participants 60 students from the University of Göttingen 
participated in exchange for course credit or were paid sev-
en Euros. 

 
Procedure and Material In the instruction phase we pre-
sented subjects with an instruction about three aliens: Gonz, 
Brxxx, and Zoohng, who either thought of nothing or of 
“POR” (indicated by a bubble containing nothing or 
“POR”). It was stated that either one or two of the aliens 
were capable of reading the “POR”-thoughts of the other 
aliens and that participants will have to identify these mind 
readers on the basis of information about thought configura-
tions. Since the thoughts of such a reader of thoughts there-
fore depend upon the thoughts of the non-mind reader(s), 
the mind readers constitute effects and the other aliens rep-
resent causes within the causal model (see also Mayrhofer et 
al., 2010). Participants were requested to choose one out of 
six configurations of mind readers that corresponded to the 
six target structures. We used this task to identify causal 
models to simplify the task. Pilot research had shown that 
subjects are often confused when asked about causes and 
effects in the mind reading alien task, which may have con-
tributed to the low performance in Steyvers et al. (2003). 

In the test phase, participants were presented with 48 sets 
of 12 patterns each showing aliens thinking of “POR” or 
nothing (see Fig. 2 for an example). The patterns within 

each set were presented in random order one by one. The 
aliens and their thoughts appeared simultaneously (i.e., no 
temporal cue was provided). After observing a set, subjects 
were requested to choose the causal structure that presuma-
bly generated that set. 

To generate the pattern sets, we randomly drew five mil-
lion sets of size 12 from a multinomial distribution with 
equal probabilities and preserved all unique sets for which 
the broken link heuristic uniquely predicted a common 
cause structure (CC pattern sets) or a common effect struc-
ture (CE pattern sets) while the Bayesian structure selection 
procedure predicted the opposite structure (i.e., reversed 
causal links). From this pool, for each subject 24 CC pattern 
sets and 24 CE sets were randomly selected (yielding 48 
pattern sets in total per subject), and then presented in ran-
dom order. 

Results and Discussion 
The responses were aggregated within subjects for the CC 
pattern sets and the CE patterns sets separately (left vs. right 
hand side in Fig. 3). For analyzing purposes, all data sets 
and the participants’ corresponding responses were rotated 
so that the structures’ common elements were in the upright 
position. 

Overall, the data demonstrate impressively high perfor-
mance given that only covariation information was availa-
ble. With respect to the CE pattern sets subjects substantial-
ly preferred to select the structures predicted by the heuristic 
compared to the structures predicted by the Bayesian struc-
ture selection procedure (42.7% vs. 12.8%, t[59]=9.26, p < 
.001; see Fig. 3a, right hand side). For the CC pattern sets, 
the results are less clear. Subjects generally showed a pref-
erence for the structures with the correct common element, 
but there seems to be no systematic preference for the struc-
tures predicted by the heuristic vs. those predicted by the 
Bayesian structure selection procedure (24.9% vs. 23.1%, 
t[59]=0.42,  p=.34; see Fig. 3a, left hand side). 

A more detailed analysis of the data on the subject level 
revealed that there are at least two groups of subjects using 
different strategies in solving the task. Based on each sub-
ject’s average response to the CC pattern sets with respect to 
the structure predicted by the broken link heuristic, we di-
vided participants into two groups (Group 1: average re-
sponse above chance level; Group 2: average response be-
low chance level). The groupwise aggregated data are 
shown in Figs. 4b and 4c. 

Group 1 (37 subjects) responded as predicted by the bro-
ken link heuristic: 36.2% (CC pattern sets, left panel) and 
45.8% (CE pattern sets, right panel) of the selections were 
made consistent with the heuristic and only 15.8% (CC sets) 
and 16.0% (CE sets) consistent with the Bayesian proce-
dure. 

Group 2 (23 subjects) responded very differently: Where-
as this group seemed to have adopted the heuristic for the 
CE pattern sets (right panel (37.6% vs. 7.5%), for the CC 
pattern sets (left panel) the structures seemed to be chosen 
according to the Bayesian procedure (6.7% vs. 34.9%). 

 
Figure 2: An example of a pattern set presented in Experi-
ment 1. For each of these sets subjects were requested to 
choose the causal structure that presumably generated the 
data. 
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In sum, Group 1 behaved largely consistent with the bro-
ken link heuristic, whereas Group 2 deviated from this heu-
ristic. One possible interpretation of these differences is that 
the two groups interpret their preference for deterministic 
structures differently. Determinism may be associated with 
a bias for sufficiency, which leads to the maximization of 
causal strength. The broken link heuristic used by Group 1 

is consistent with such a sufficiency bias. However, the 
preference for deterministic structures may also be associat-
ed with a bias for necessity. This bias leads to a preference 
for effects with low base rates because effects are expected 
to be accompanied by observable causes. A third possibility 
is the strong and sparse (SS) prior by Lu et al. (2008) which 
qualitatively entails that people should expect that either the 

observable cause or the unob-
served background cause are nec-
essary and sufficient for the effect, 
respectively. 

Experiment 2 
To test the idea that different prior 
assumptions about sufficiency or 
necessity in the causal system 
underlie different strategies in 
solving the induction task, we 
used networks with two variables, 
A and B, only. It is well known 
that the question whether A caus-
es B or B causes A is not decida-
ble with covariation data alone. 
Both graphs are Markov equiva-
lent (see also Fig. 1). For each 
parameterization for graph 1 (A 
→ B) there exists a parameteriza-
tion for graph 2 (A ← B) yielding 
the exact same likelihood. A po-
tential preference for graph 1 or 
graph 2 is therefore necessarily 
due to prior assumptions about the 
causal system’s parameterization. 
The goal of Experiment 2 was to 
test whether we can identify dif-
ferent classes of people that differ 
in their prior assumptions in this 
simple task (sufficiency, necessi-
ty, or SS prior).  

Method 
Participants 50 students from the 
University of Göttingen partici-
pated in exchange for course cred-
it, or were paid 8 € per hour. 
Procedure and Material  We 
used the same cover story and 
instructions as in Experiment 1. 
The only difference was that there 
were only two aliens. Subjects 
were instructed that only one of 
the two aliens was able to read the 
“POR”-thoughts of the other alien 
and that they had to find out 
which one had this capacity. 

In the test phase, participants 
were presented with 16 sets of 12 

(a) Overall data 

 
(b) Group 1 (37 subjects) 

 
(c) Group 2 (23 subjects) 

 
Figure 3. Each panel shows how often on average each target structure was chosen giv-
en the CC pattern sets (left panels) or the CE pattern sets (right panels). Uxx/Lxx/Rxx 
indicate the position of the common element (upper, left, right), and xCC/xCE whether 
a common cause or a common effect structure was selected.  
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patterns (see Table 1) with each of the two aliens thinking of 
“POR” or nothing. After observing each set, subjects were 
asked to decide whether Alien A or B could read the mind 
of the other alien. 

Using the same method as in Experiment 1, we chose sets 
of patterns that yielded distinctive predictions for the three 
assumed priors. Table 1 shows the frequencies of the eight 
pattern sets (each was presented twice) along with the pre-
dictions of the three priors. 

 
Table 1: Used pattern sets in Experiment 2 
 

    Data     Prior 
 00 01 10 11  P1 P2 P3 

1 7 4 0 1  A B A 
2 6 5 0 1  A B A 
3 1 5 0 6  A B B 
4 1 4 0 7  A B B 
5 7 0 4 1  B A B 
6 6 0 5 1  B A B 
7 1 0 5 6  B A A 
8 1 0 4 7  B A A 

 
Notes. The four “data” columns (left side) show how often each pattern 
was shown within each of eight pattern sets (e.g. “01”means that A=0 and 
B=1). The “prior” columns show the predictions of the three different 
priors. The letters indicate which variable should be chosen as cause ac-
cording to the respective prior (P1: high causal strength, P2: low bases rate 
of effects, P3: strong and sparse. Each set was shown twice. 

Results and Discussion 
For analyzing purposes, we coded participants’ selections of 
cause A and B with respect to the different prior profiles (1: 
as predicted, 0: not as predicted) and assigned each subject 
to the profile cluster that minimized the mean squared dis-
tance. Additionally, we included a “random guesser” clus-
ter. 

Using this procedure, 28 out of 50 subjects (56%) were 
assigned to the sufficiency (i.e., high causal strength) clus-
ter, 7 subjects (14%) to the necessity (i.e., low base rate) 
cluster, 2 subjects (4%) to the strong and sparse prior clus-
ter, and 10 subjects (20%) to the “random guesser” cluster. 
Three subjects (6%) could not be assigned by the procedure. 
Within the sufficiency cluster, 91.7% of participants’ selec-
tions were consistent with the sufficiency bias. The corre-
sponding numbers were 92.0% for the necessity cluster, and 
77.1% for the strong and sparse prior cluster. 

We assume that the broken link heuristic may underlie in-
ferences of subjects with a sufficiency bias. But what about 
the necessity oriented subjects? A corresponding heuristic 
for the necessity bias might be to preferentially select struc-
tures that minimize the occurrence of unexplained effects. 
Future research will have to further test this hypothesis. 

In sum, the results show that different prior assumptions 
may play a role in causal structure induction. In Experi-
ments 1 and 2 we have shown that different groups of learn-
ers either are biased in the direction of a sufficiency or a 
necessity bias. However, the evidence for interindividual 
differences is only correlational. To strengthen our case that 

differences in prior assumptions are the relevant causal 
factor, in Experiment 3 we experimentally manipulated 
subjects’ biases. 

Experiment 3 
To test whether different prior assumptions play a role in 
strategy selection, we used the materials of Experiment 2. 
Through instructions we manipulated whether learners ex-
pect high causal strength (i.e., sufficiency prior) or low base 
rate of effect (i.e., necessity prior). Based on the results of 
the previous experiment we did not test the sparse and 
strong prior again. 

Method 
Participants 40 students from the University of Göttingen 
participated in exchange for course credit, or were paid 8 € 
per hour. 
 
Procedure, Materials, and Design  The procedure, instruc-
tion and pattern sets were identical to those used in Experi-
ment 2, except for the manipulation of the priors. In one 
condition, subjects were told that mind readers mostly suc-
ceed in reading the mind of the other alien (= high causal 
strength), whereas in the other condition we instructed par-
ticipants that mind readers only rarely think of “POR” on 
their own (= low base rate of effects). The priors were ma-
nipulated between subjects (2 × 20). 

Results and Discussion 
We recoded subjects’ answers so that the selection of the 
variable predicted by a sufficiency prior was coded as 1 and 
the selection of the other variable, which is predicted by a 
necessity prior, as 0. For each subject, an average score was 
calculated. The results are shown in Fig. 4; higher ratings 
indicate the use of a sufficiency prior. 

 

 
Figure 4: Results of Experiment 3 for the high-causal-
strength vs. low-base-rate-of-effect conditions. 

 
In the high causal strength condition, 95.0% of the selec-

tions corresponded to the sufficiency prior (i.e., broken link 
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heuristic), in the low base rate condition only 53.4% of the 
selections were predicted by this prior (hence 46.6% of the 
cases were consistent with a necessity prior). Thus, the 
manipulation of prior information made a substantial differ-
ence, t(38)=3.98, p<.001. Although our manipulation 
proved successful, there was a general tendency toward the 
sufficiency bias. 

General Discussion 
Our main goal in the present set of studies was to re-visit the 
question whether people are capable of inducing causal 
models from covariation data alone without further cues, 
such as temporal order or intervention. In the literature, 
there has been a debate between bottom-up and top-down 
learning theories of causal learning: Whereas top-down 
theorists claim that covariation information plays none or 
only a secondary role after cues have been used to select 
potential hypothetical models, bottom-up theories, such as 
causal Bayes net theory, assert that people are capable of 
inducing structure from conditional dependence and inde-
pendence information alone. Our three experiments show 
that both positions may be wrong. In simple three-variable 
domains with clear instructions and a (relatively large) set of 
alternative models people were indeed often capable of 
reliably picking the right model. However, in Experiment 1 
we also showed that learners can solve the task using a 
simple heuristic that does not require conditional depend-
ence and independence information. Another novel discov-
ery was that subjects may differ with respect to their pre-
ferred bias, and consequently their preferred heuristic. We 
have shown that the determinism bias can come in two vari-
ants, a sufficiency or high causal strength bias, or a necessi-
ty or low base rate of effect bias.  

We have focused on the Bayesian model without specific 
priors, proposed by Steyvers et al. (2003), because it is the 
only one that has so far been tested as underlying structure 
induction. It is certainly possible to adapt more complex 
models incorporating various biases (e.g., Lu et al., 2008) to 
the present task. Some of these models incorporate suffi-
ciency and necessity biases, so that it is likely that they will 
fare equally well as our simple heuristics. However, thus far 
there is no unambiguous empirical evidence that people in 
fact can make the elaborate, complex statistical computa-
tions required by these models. Moreover, our much simpler 
heuristics represent an existence proof that causal induction 
may be equally successful with much simpler procedures 
motivated by intuitive biases, such as the intuition that caus-
es should be typically accompanied by their effects). 
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