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Time Dom-ain Greenls Function for a P-hased 
Semi-Infinite Periodic Line Array of Dipoles 

Filippo Capolinol and Leopold B. Felsen2 
1) Dept. Inform. Eng., Universiti di Siena, via %ma 56, Siena, Italy 

2) Dept. Aerosp. Mech. Eng., Boston Univ., 110 Cummington St., Boston, MA 

I. INTRODUCTION 
We have begun a systematic investigation of the time domain (TD) behavior of 
Green’s functions which are relevant for the characterization of truncated planar 
periodic arrays, with emphasis on the TD Floquet waves (FW) in the propagating 
and evanescent parameter regimes. Our principal aim is to understand the TD 
wave physics and phenomenologies on simple prototypes, invoking various meth- 
ods that synthesize the solution from different perspectives. The first prototype, 
an infinite phased periodic line array of axial dipole radiators arranged along the 
z-axis of a cylindrical (p,  z )  coordinate system (Fig.1) has been studied in [l], and 
is reviewed in Sec. 111. This prototype is a basic building block for transversely 
truncated plane arrays formed by a finite number of infinite line sources, which 
has so far been studied only in the frequency domain (FD)[2]. Truncation along 
the axis of a phased line array of dipoles is explored in this paper for the FD and 
TD. This modification of the infinite line dipole array leads to a new set of FD 
and TI) truncation phenomena. 
11. STATEMENT OF THE PROBLEM 
The geometry of the truncated semi-infinite linear array of dipoles with period d ,  
oriented along the t direction and excited by transient currents in free space, is 
shown in Fig.1. The E field is related to the z-directed magnetic scalar potential 
A which shall be used throughout. The FD (exp(jwt)) and TD currents J(w)  and 
j ( t ) ,  respectively, due to the dipoles, are related via a Fourier transform pair, 

with the caret A denoting time-dependent functions. In the n-tagged element 
current amplitudes multiplying the delta function in (l), the FD portion wy,d 
accounts for an assumed (linear) phase difference between adjacent elements, with 
7= denoting the interelement phase gradient normalized with respect to w. The 
TD portion identifies sequentially pulsed dipoles, with the element at z’ = n d  
turned on at time t,, = -/,nd. In this paper, we only consider the radiating case 
v,@) = 7;l > c, where c is the ambient propagation wave speed. 

The truncated Poisson summation formula plays an essential role in con- 
verting the collective radiation from the truncated periodic array of individ- 
ual phased dipole radiators into an infinite superposition of truncated linearly 
smoothly phased equivalent line source radiators. For the series of spherical 
wave fields A,, due to the n-indexed individual dipole radiators, the formula is 5 An = -i- Ao + O0 A, , A’, = hm A(u)~2*q”du, 

which converts the n-series fields into a q-series whose summands A, are the 
truncated Fourier transforms of the smoothed-out spherical wave function A ( v ) ,  
sampled at  integer multiples of 2n. Since n and therefore U in (2) are tied only 
to a spatial coordinate (see(l)), A,, and A ( v )  can be either functions of w or t .  

0-7803-5639-X/99/$10.00 01999 EEE. 

(2) 
,-, n=O q=-m 
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111. FD- AND TD- FLOQUET WAVES FOR THE INFINITE ARRAY 
Results pertaining to the infinite prototype phased (sequentially excited) periodic 
line array of dipoles in [l] are now summarized. In this case the n-sums in ( l ) ,  (2), 
and Fig.l+extend from -w to +ea, the truncation term Ao/2 in (2) is omitted, 
and the A, integral, now from v = -cm to fw ,  becomes the complete Fourier 
transform (FT). The ”infinite version” of (2) is written ( 2 ~ 0 ) .  
Fiequency domain FW. AppLwg (2m) to the radiated spherical FD fields 
from each dipole [l] yields for A, at r = (p , z )  a tabulated FT which is the 
FD-FW, smoothly phased line source field 

The FW, wavenumber along t, k,,(w), represents the Floquet-type dispersion 
relation. The square root defining the radial wavenumber k is defined so that 
Sm k ,  5 0 on the top Riemann sheet, consistent with the ra%ation condition at 
p = 00. In (3), FWs with z-domain propagation constants lkr,l < Ikl characterize 
radially propagating FWs (PFW) while those with lkz,l > Ik/ characterize radially 
evanescent FWs (EFW). Each PFW contributes at r a ray asymptotic field lying 
on a ray cone with semiangle P,(w) = cos-’(k,,/k) (for both positive and negative 
frequencies)(see Fig.1 for q = 0). When Ikz,l > lkl, the cone angle becomes 
complex, with evanescent field along p;  the EFW portion of E, A,Fw converges 
rapidly away from the array axis and may require only a few terms. 
Time domain FW. Applying (203) to the TD impulsive individuallyzadiated 
fields &(r, t )  = 6(t-yznd-R,/c)/(4r&), see Fig.1, the v-integral for X,(r, t )  is 
again evaluated in closed form. Since the d function in &,U, t )  contributes to the 
integral only for those U-values in -m < v < 00 that satisfy (t-y,vd-R,/c) = 0, 
one finds for the propagating TD-FW, 

In this causal fundamenta2 solution for the (q, t) indexed TD-FW, with i = 1,2,  

(6) 
yp = ( c - ~  - 7i)1’z, Smy, 5 0, and U(T)  = 1 or 0 if 7 > 0 or T < 0, respectively. 
Note that 4(t) and &(t) do not depend on q, are real for T > TO and coincide 
at 7 = TO, which represents the causal turn-on time t = t o  = yZz -k TO.. For a 
stationary observer at P, each of the i = 1 or t = 2 smooth PFW contnbutions 
in (5) are shown in Figs. 2a,b when extended from z = -CO to +W. At the 
turn-on time to (i.e. T = T~), when the conical wavefront reaches P in Fig. 
2a, the current impulse is located at  2 = to/Tz = to@) ,  where the wavefront 
originates. At the earlier time t’ = t - R(~‘,)/c, the current impulse was located 
a t  the point zh = d(to) = z!JtO), with R(zA)/c as the time required for the field 
launched from 2’, to reach the observer. The angle DO is here defined as cos Po = 
( z  - 2’,)/R(4) and coincides with that in the FD case for q -= 0 (i.e. ap = 0). 
This implies that at  the turn-on time t o  pertaining to the fixed observation point 
P, the wavefront amves from a direction coincident with that of the FD-FWo 
wave vector rCtw = (krO,kpO). At times t > t o  (i.e. T > TO), the wavefront 
moves beyond P to the location shown in Fig. 2b, which is tagged on the z 

zi(t) = z - 7;’ + (-l)ic-ld-) , T = t - ryzz, TO = yPp, 
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axis by z' = t/7, = tu$'). The observer now receives two distinct contributions 
that arrive simultaneously but are launched from points zi(t), i = 1,2 at times 
6 = t - R(d(t))/c, respectively. The two angles pi(t) depicted in Fig. 2b are 
defined as cosai = (z-d( t ) ) /R(d(t)) .  The results in (5) are complex. To obtain 
a physical (i.e., real causal) field from (5), we take the real part. 

, Fig.2 

IV. FD- AND TD-FW F O R  THE SEMI-INFINITE ARRAY 
With the infinite array results in mind, we procede to the semi-infinite case. 
Frequency domain truncated FW. Applying (2) t s t h e  FD radiated fields 
A,,?, w )  leads to the truncated integral representation A,(r, U )  which is asymp 
totically evaluated via the following steps. First, the spherical wave function 
A(r, v, w )  is expressed as a wavenumber spectral integral over axially phased 
cylindrical waves. Interchanging the order of integration, the v-integral is calcu- 
lated exactly as a wavenumber spectral pole. The remaining spectral integral is 
deformed via the saddle point method into the steepest descent path (SDP) and 

where the FW AY arises from the residue of the pole encountered in the de- 
formation, and the p t h  spherical diffracted fields A,d due to the truncation are 
obtained from a uniform saddle point evaluation along the SDP. U is the Heaviside 
unit function; 4" is the shadow boundary of the truncated FW, which, for prop- 
agating FWs, coincides with the FW, propagation angle p, = cos-'(k,,/k) (see 
Fig.1 for q = 0); F ( z )  is the transition function of the Uniform Theory of DifFrac- 
tion (UTD)[2], with argument 6, = -sin((P, - ad)/2); = cos-'(z/Rd) is 
the observation angle mesured kom the truncation of the array, see Fig.1. Every 
FW, in (7) is the same as that for the infinite array, except that its domain of 
existence is the region a d  < a,"". The disconthuity of the PFW, at the shadow 
boundary p d  = a,"" is compensated by the diffracted field At. 

Time domain truncated FW. The TD-FW field 2, is merely a truncated 
version of the infinite array field in (5) since it is generated by the v 2 0 con- 
tributions in the v-integral of (2) instead of the -m < v < 00 range in (5 ) .  

+ 

Accordingly, z 
g,(r,t) = 5 A:rW(r,t)U(zj(t)), (8) 

i=i 

where the fundamental TD-FW 2;rw(r, t) and z i ( t )  are the same as in (5),(6) 
and the U function expresses the truncation at  the v = 0 end point. The 
space-time phenomenology has already been explained in connection with (5), 
except that due to the truncation, at later times (Fig.Zc) than those in Figs.2a,b, 
the observer receives only the contribution arriving from zi ( t ) .  The (dashed) 
contribution from G(t) is off the array and is therefore not excited. Since z i ( t )  = 0 
corresponds to Bi(t) = p d ,  the FW existence condition U(z:(t))  = U(pi( t )  - p d ) ,  
i = 1,2, can be parameterized in terms of instantaneous propagation angles. 
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4 
Asymptotic inuersion. The TD field $,(r, t )  can also be found through Fourier in- 
version of the high-frequency FD field in (7). Due to their nondispersive behavior, 
the q = 0 FW and diffracted field in (7) can be inverted exactly, while the disper- 
sive case IpI # 0 is evaluated asymptotically. The FW field AfW(r, w )  exp(jwt) 
has a high frequency asymptotic phase $(CO) = kz,z+kp,p-wt (see (3),(4)). The 
uniform diffracted field A,d(r, w )  exp(jwt) in (7) has a more complicated phase 
which simpliies, however, close to the SB at P d  = Pq where it can be shown 
to have the same phase as the FW [2] .  This common phase 4 contributes to 
the inverse FT through the two asymptotic instantaneous frequencies w,,<(r, t),  
i = 1,2, which satisfy the saddle point condition $$(U) = 0 and are real in the 
radiating domain T > TO (t > to). Thus the asymptotics yields A, N ~ ~ = , [ ~ [ ~ "  
U(pi( t )  - pa) + A;,+], in which A:fw is the same as in (5) and the TD diffracted 
field A$ is a spherical contribution centered at the array truncation. The in- 
stantaneous shadow boundaries @f(t) = cos-l(kzq/k),,(t) (see (7)) and the FW 
propagation angle &,i = psg are found to be independent of q and equal to the 
above pi(t). Thus, all ,$:fir, t) fields at  a given instant t reach an observer at  
r from the same direction Pi(t). The asymptotic diffracted field $$ provides 
the required continuity across the instantaneous FW shadow boundaries 
and is negligible elsewhere (see also (8)). When each ditole in (1) radiates a 
band-limited pulse &(t -yznd), the band-limited TD field AqBL is found by mul- 
tiplying each i = l, 2 constituent by the pulse spectrum G(w) evaluated at  the 
instantaneous frequency w,+. Thus, only those TD-FW, fields with wp,i in the 
&(t) signal bandwidth contribute to the actual field. In Fig. 3, this TD asymp 
totic solution is compared with a reference solution obtained by an element by 
element summation over the pulsed radiation from all dipoles, for an array of 10 
elements with interelement phasing 7= = 0.2/c (Po = 78"). Both left and right 
truncation effects have been considered, treating the actual array as the differ- 
ence between two semi-infinite arrays. In Fig.3, we have chosen a Rayleigh puke 
&(t) = sie[j/(j + ~ ~ t / 4 ) ~ ] ,  with w~ = 4nc/d, d being the interelement spac- 
ing. The field is plotted vs. normalized time t /T,  with T = d/c .  The observer 
is located at two points z = 0 (a), and z = -5d (b) with the same radial dis- 
tance p = 10d. In both cases, the included asymptotic terms are IQ( 5 3, thereby 
demonstrating the good convergence property of the TD-FW field representation. 
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