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Abstract

If a torsion-free hyperbolic group G has 1-dimensional boundary ∂∞G, then
∂∞G is a Menger curve or a Sierpinski carpet provided G does not split over
a cyclic group. When ∂∞G is a Sierpinski carpet we show that G is a quasi-
convex subgroup of a 3-dimensional hyperbolic Poincaré duality group. We also
construct a “topologically rigid” hyperbolic group G: any homeomorphism of
∂∞G is induced by an element of G.

1 Introduction

We recall that the boundary ∂∞X of a locally compact Gromov hyperbolic space X is
a compact metrizable topological space. Brian Bowditch observed that any compact
metrizable space Z arises this way: view the unit ball B in Hilbert space as the
Poincaré model of infinite dimensional hyperbolic space, topologically embed Z in
the boundary of B, and then take the convex hull CH(Z) to get a locally compact
Gromov hyperbolic space with ∂∞CH(Z) = Z. On the other hand when X is the
Cayley graph of a Gromov hyperbolic group G then the topology of ∂∞X ≃ ∂∞G is
quite restricted. It is known that ∂∞G is finite dimensional, and either perfect, empty,
or a two element set (in the last two cases the group G is elementary). It was shown
recently by Bowditch and Swarup [B2, Sw1] that if ∂∞G is connected then it does not
have global cut-points, and thus is locally connected according to [BM]. The boundary
of G necessarily has a “large” group of homeomorphisms: if G is nonelementary then
its action on ∂∞G is minimal, and G acts on ∂∞G as a discrete uniform convergence
group. It turns out that the last property gives a dynamical characterization of
boundaries of hyperbolic groups, according to a theorem of Bowditch [B3]: if Z is
a compact metrizable space with |Z| ≥ 3 and G ⊂ Homeo(Z) is a discrete uniform
convergence subgroup, then G is hyperbolic and Z is G-equivariantly homeomorphic
to ∂∞G.

There are two questions which arise naturally:
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Question A. Which topological spaces are boundaries of hyperbolic groups?

Question B. Given a topological space Z, which hyperbolic groups have Z as the
boundary?

Regarding question A, all finite-dimensional topological spheres and some homol-
ogy spheres [DJ], the Sierpinski carpet and the Menger curve [Be] arise as bound-
aries of hyperbolic groups. Moreover, according to Gromov and Champetier [Ch],
“generic” finitely presentable groups are hyperbolic and have the Menger curve as the
boundary. On the other hand, as was noticed by Bestvina, it is unknown if higher-
dimensional Universal Menger compacta [Bes1] appear as boundaries of hyperbolic
groups (Dranishnikov can construct hyperbolic groups with boundary homeomorphic
to the 2-dimensional Menger compactum, [Dr]).

Considerably less is known about the Question B. If ∂∞G is zero-dimensional then
G is a virtually free group [St, Gr, GH]. Recently it was proven in [Ga, CJ, T] that any
hyperbolic group whose boundary is homeomorphic to S1 acts discretely, cocompactly,
and isometrically on the hyperbolic plane. We call such group G virtually Fuchsian.
The case when ∂∞G ≃ S2 is a difficult open problem:

Conjecture (J. Cannon). If G is a hyperbolic group whose boundary is homeo-
morphic to S2, then G acts isometrically and properly discontinuously on hyperbolic
3-space H

3.

One can also answer Question B for topologically rigid hyperbolic groups:

Definition 1 A hyperbolic group G is said to be topologically rigid if every home-
omorphism f : ∂∞G → ∂∞G is induced by an element of G.

If G′ is a hyperbolic group whose boundary is homeomorphic to the boundary of a
topologically rigid hyperbolic group G, then there is a finite normal subgroup N ⊳ G′

so that G′/N embeds in G as a finite index subgroup. We construct a topologically
rigid group in the section 7.

Most of the results of our paper concern hyperbolic groups with one-dimensional
boundary.

Theorem 1 Let G be a hyperbolic group which does not split over a finite or virtually
cyclic subgroup, and suppose ∂∞G is 1-dimensional. Then one of the following holds
(see section 2 for definitions):

1. ∂∞G is a Menger curve.

2. ∂∞G is a Sierpinski carpet.

3. ∂∞G is homeomorphic to S1 and G maps onto a Schwartz triangle group with
finite kernel.

It is probably impossible to classify hyperbolic groups whose boundaries are home-
omorphic to the Menger curve (since this is the “generic” case), however it appears
that a meaningful study is possible in the case of hyperbolic groups whose boundaries
are homeomorphic to the Sierpinski carpet. Recall that the Sierpinski carpet S has
canonical collection of peripheral circles (see section 2).

2



Theorem 2 Suppose that ∂∞G ∼= S. Then:

1. There are only finitely many G-orbits of peripheral circles.

2. The stabilizer of each peripheral circle C is a quasi-convex virtually Fuchsian
group which acts on C as a uniform convergence group. We call these subgroups
peripheral subgroups of G.

3. If we “double” G along the collection of peripheral subgroups using amalgamated
free product and iterated HNN-extension (see section 5), then the result is a hyperbolic
group Ĝ which contains G as a quasiconvex subgroup.

4. The boundary of Ĝ is homeomorphic to S2. Hence by [BM], [Bes2], Ĝ is a
3-dimensional Poincaré duality group in the torsion-free case.

5. When G is torsion free, then (G; H1, . . . , Hk) is a 3-dimensional relative
Poincaré duality pair (see [DD] for the definition).

Known examples are consistent with the following:

Conjecture Let G be a hyperbolic group Sierpinski carpet boundary. Then G acts
discretely, cocompactly, and isometrically on a convex subset of H

3 with nonempty
totally geodesic boundary.

There is now some evidence for this conjecture. It would follow from a positive
solution of Cannon’s conjecture together with Theorem 2, see section 5. Alternately,
in the torsion-free case, if one could show that (hyperbolic) 3-dimensional Poincaré
duality groups are 3-manifold groups, then Thurston’s Haken uniformization theorem
could be applied to an irreducible 3-manifold with fundamental group isomorphic to
the group Ĝ produced in Theorem 2. Under extra conditions (such as coherence and
the existence of a nontrivial splitting) one can show that a 3-dimensional Poincaré
duality group is a 3-manifold group, [KK].

The conjecture above leads one to ask which hyperbolic groups have planar bound-
ary. Concretely, one may ask if a torsion-free hyperbolic group with planar boundary
has a finite index subgroup subgroup isomorphic to a discrete convex cocompact sub-
group of Isom(H3). Here is a cautionary example which shows that in general it is
necessary to pass to a finite index subgroup: if one takes a surface of genus 1 with
two boundary components and glues one boundary circle to the other by a degree
2 map, then the fundamental group G of the resulting complex enjoys the following
properties:

1. G is torsion-free and hyperbolic.

2. G contains a finite index subgroup which isomorphic to a discrete, convex
cocompact subgroup of Isom(H3). In particular, the boundary of G is planar.

3. G is not a 3-manifold group.

2 Preliminaries

Properties of hyperbolic groups and spaces. For a proof of the following prop-
erties of hyperbolic groups, we refer the reader to [Gr, ABC+, GH, B3].

Let G be a nonelementary Gromov hyperbolic group, and suppose G acts dis-
cretely and cocompactly on a locally compact geodesic metric space X. Then the
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boundary of X is a compact metrizable space ∂∞X on which Isom(X) acts by home-
omorphisms. For any f ∈ Isom(X), we denote the corresponding homeomorphism
of ∂∞X by ∂∞f . The action of G on ∂∞X is minimal, i.e. the G-orbit of every point
is dense in ∂∞X. Let ∂2

∞X := ∂∞X × ∂∞X − Diag be the space of distinct pairs
in ∂∞X. Then the set of pairs of points (x, y) ∈ ∂2

∞X which are fixed by an infinite
cyclic subgroup of G is dense in ∂2

∞X. We let ∂̄2
∞X := ∂2

∞X/(x, y) ∼ (y, x).

The group G acts cocompactly and properly discontinuously on ∂3X := {(x, y, z) ∈
(∂∞X)3 | x, y, z distinct}. There is a natural topology on X ∪ ∂∞X which is a G-
invariant compactification of X, and this is compatible with the topology on ∂∞X.

Recall that a subset S of a geodesic metric space is C-quasi-convex if every
geodesic segment with endpoints in S is contained in the C-tubular neighborhood
of S. Quasi-convex subsets of δ-hyperbolic metric spaces satisfy a visibility prop-

erty (cf. [EbOn]):

Given R, C, δ ∈ (0,∞) there is an R′ with the following property (we
may take R′ = R + 10δ). If X is a δ-hyperbolic metric space, Y ⊂ X is
C-quasi-convex, and x ∈ X satisfies d(x, Y ) ≥ R′, then given any two unit
speed geodesics γ1, γ2 starting at x and ending in Y , and any t ∈ [0, R]
we have d(γ1(t), Im(γ2)) < δ and d(γ2(t), Im(γ1)) < δ.

As a consequence of the visibility property, if Yk ⊂ X is a sequence of C-quasi-
convex subsets of a δ-hyperbolic space X, and d(x, Yk) → ∞ as k → ∞, then a
subsequence of Yk’s converges to a single point ξ ∈ ∂∞X.

Sierpinski carpets and Menger curves. The classical construction of a Sierpinski
carpet is analogous to the construction of a Cantor set: start with the unit square in
the plane, subdivide it into nine equal subsquares, remove the middle open square,
and then repeat this procedure inductively on the remaining squares. If we take
a sequence Di ⊂ S2 of disjoint closed 2-disks whose union is dense in S2 so that
Diam(Di) → 0 as i → ∞, then S2 −∪iInterior(Di) is a Sierpinski carpet; moreover
any Sierpinski carpet embedded in S2 is obtained in this way [W]. Sierpinski carpets
can also be characterized as follows [W]: a compact, 1-dimensional, planar, connected,
locally connected space with no local cut points is a Sierpinski carpet.

We will use a few topological properties of Sierpinski carpets S:

1. There is a unique embedding of S in S2 up to post-composition with a home-
omorphism of S2.

2. There is a countable collection C of “peripheral circles” in S, which are precisely
the nonseparating topological circles in S.

3. Given any metric d on S and any number D > 0, there are only finitely many
peripheral circles in S of diameter > D.

The Menger curve may be constructed as follows. Start with the unit cube I3

in R
3. Consider the orthogonal projections πij : I3 → Fij of the unit cube onto

the ij coordinate square, and let Sij ⊂ Fij be the Sierpinski carpet as constructed
above. The Menger curve is the intersection ∩i<jπ

−1
ij (Sij). The Menger curve is

universal among all compact metrizable 1-dimensional spaces: any such space can
topologically embedded in the Menger curve. By [A1, A2], a compact, metrizable,
connected, locally connected, 1-dimensional space is a Menger curve provided it has
no local cut points, and no nonempty open subset is planar.
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3 Proof of Theorem 1

The fact that G does not split over a finite group implies [St] that G is one-ended,
and ∂∞G is connected. Recall that by the results of [BM, B2, Sw1], the boundary
of a one-ended hyperbolic group is locally connected and has no global cut points;
furthermore, if ∂∞G has local cut points then G splits over a virtually infinite cyclic
subgroup unless ∂∞G ≃ S1 and G maps onto a Schwarz triangle group with finite
kernel. Therefore from now on we will assume that ∂∞G has no local cut points.

A 1-dimensional, compact, metrizable, connected, locally connected space Z with
no local cut points is a Menger curve provided no point z ∈ Z has a neighborhood
which embeds in the plane (see section 2). Hence either ∂∞G is a Menger curve or
some ξ ∈ ∂∞G has a planar neighborhood U ; therefore we assume the latter holds.

Lemma 3 Let Γ ⊂ ∂∞G be a subset homeomorphic to a finite graph. Then Γ is a
planar graph.

Proof. Since the action of G on ∂∞G is minimal, every G-orbit intersects the planar
neighborhood U , and so every point of ∂∞G has a planar neighborhood. Because
∂∞G has no local cut points, we have ∂∞G \ Γ 6= ∅. So we can find a hyperbolic
element g ∈ G whose fixed point set {η1, η2} ⊂ ∂∞G is disjoint from Γ (section 2).
Hence for sufficiently large n, gn(Γ) is contained in a planar neighborhood of η1 or
η2. �

We recall [C, M] that a compact, metrizable, connected, locally connected space
X with no global cut points is planar as long as no nonplanar graph embeds in X.
Therefore ∂∞G is planar. Finally, by [W], ∂∞G is Sierpinski carpet. �

4 Groups with Sierpinski carpet boundary

Let M be a compact hyperbolic manifold with nonempty totally geodesic boundary
and let G := π1(M) be its fundamental group. The universal cover M̃ of M may be
identified with a closed convex subset of H

3 which is bounded by a countable disjoint
collection P of totally geodesic planes. Each P ∈ P bounds an open half-space disjoint
from M̃ . M̃ is obtained from H

3 by removing each of these open half-spaces, and
∂∞M̃ ⊂ ∂∞H

3 is obtained from ∂∞H
3 ≃ S2 by deleting the open disks corresponding

to these half-spaces. The closures of these disks are disjoint since the distance between
distinct elements of P is bounded away from zero. As ∂∞M̃ has no interior points in
S2, it is a Sierpinski carpet (see section 2). Note that the peripheral circles of ∂∞M̃
are in 1-1 correspondence with elements of P, and therefore the conjugacy classes
of G-stabilizers of peripheral circles are in 1-1 correspondence with P/G, the set of
boundary components of M . The stabilizer of a peripheral circle is the same as the
stabilizer of the corresponding element of P, so these stabilizers are quasi-convex in
G.

The next theorem shows that similar conclusions hold for any hyperbolic group
whose boundary is a Sierpinski carpet.

Theorem 4 Let G be a hyperbolic group with boundary homeomorphic to the Sier-
pinski carpet S. Then
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1. There are finitely many G-orbits of peripheral circles in S.

2. The stabilizer of each peripheral circle C is a quasi-convex subgroup G whose
boundary is C.

Proof. We recall that G acts cocompactly on the space ∂3G := {(x, y, z) ∈ (∂∞G)3 |
x, y, z distinct}. Therefore if Ck ⊂ ∂∞G is a sequence of peripheral circles, (xk, yk, zk) ∈
∂3G and {xk, yk, zk} ⊂ Ck, then after passing to a subsequence we may find a sequence
gk ∈ G, (x∞, y∞, z∞) ∈ ∂3G so that (gkxk, gkyk, gkzk) converges to (x∞, y∞, z∞). But
this means that Diam(gk(Ck)) is bounded away from zero, so gk(Ck) belongs to a
finite collection of peripheral circles, and hence gk(Ck) is eventually constant. We
conclude that there are only finitely many G-orbits of peripheral circles, and the sta-
bilizer of any C ∈ C acts cocompactly on the space of distinct triples in C. By [B2]
Stab(C) is a quasi-convex subgroup of G, and ∂∞Stab(C) = C. From now on we will
refer to stabilizers of peripheral circles as peripheral subgroups. By [Ga, CJ, T]
each peripheral subgroup is, modulo a finite normal subgroup, a cocompact Fuchsian
group in Isom(H2). �

5 Doubling Sierpinski carpet groups along peripheral sub-

groups

In this section we prove Theorem 2.

Let G be a hyperbolic group with ∂∞G ≃ S, and let H1, . . . , Hk be a set of
representatives of conjugacy classes of peripheral subgroups of G. We define a graph
of groups G as follows. The underlying graph has two vertices and k edges (no loops).
Each vertex is labelled by a copy of G, the ith edge is labelled by Hi, and the edge
homomorphisms Hi → G are given by the inclusions. We let Ĝ be the fundamental
group of G.

Next we construct a tree of spaces on which the group Ĝ acts in a natural way.
Let X0 be a finite Cayley 2-complex for G, and let Xi be a finite Cayley 2-complex
for the group Hi. The inclusion Hi →֒ G is induced by a cellular map hi : Xi → X0

between the 2-complexes. Let h : ∪Xi → X0 be the corresponding map from the
disjoint union of the Xi’s to X0, and let X denote the mapping cylinder of h.

Let DX be the double of X along the collection of subcomplexes Xi, i = 1, ..., k.
Consider now the universal cover D̃X of DX with the deck transformation group Ĝ.
Let Y be the 1-skeleton of D̃X. The 1-skeletons of the subcomplexes Xi, i = 1, ..., k
lift to disjoint edge subspaces of Y . The vertex subspaces of Y are closures of the
connected components to the complement to edge spaces. Each vertex space is the
cover of 1-skeleton of X. Let T be the graph dual to the decomposition of Y into
vertex and edge subspaces: vertices v of T correspond to vertex spaces Yv ⊂ Y , the
edges e correspond to the edge subspaces Ye ⊂ Y . An edge e is incident to a vertex
v if and only if Ye is contained in Yv. It is standard that the graph T is actually a
tree (compare [SW]). Let V and E denote the collections of vertices and edges in T
respectively. If v ∈ T we let Ev denote the collection of edges containing v.

Let σ : DX → DX be the natural involution of DX. A map τ : Y → Y is a
reflection if it is a lift of σ and it fixes some point; each reflection fixes some edge
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space in Y , and each edge space Ye is the fixed point set of precisely one reflection re.
Let Γ be the group generated by the reflections in Y . The group Γ is normalized by Ĝ
since conjugation of a reflection by an element of Ĝ yields another reflection; likewise
Ĝ is normalized by Γ. Let v ∈ T be any vertex. Then Γ is the free product of order
two subgroups of the form 〈re〉 where e ∈ Ev. The vertex space Yv is a fundamental
domain for the action of Γ on Y . The group Γ preserves the tree structure of Y , so we
have an induced action of Γ on T by tree automorphisms, each reflection re acting on
T as an inversion of the edge e. The action of Γ on T naturally induces an action of
Γ on ∂∞T . The space Y is a connected graph, and we give it the natural path-metric
where each edge in Y has unit length.

Lemma 5 1. The space Y is Gromov-hyperbolic.

2. Edge and vertex spaces are all K-quasi-convex in Y for some K.

3. There is a function C(R) such that for every R, the intersection of R-neighborhoods
of any two distinct vertex or edge spaces has diameter at most C(R) unless the spaces
are incident.

Proof. The space Y is quasi-isometric to Cayley graph of Ĝ. The group Ĝ is Gromov-
hyperbolic by [BF2, BF3]. The assertions 2 and 3 follow from [Mi] and [Sw2]. �

We have a coarse Lipschitz projection p : Y → T which maps (Yv − ∪e∈Ev
Ye) to

v for each v ∈ V , and maps each edge space to the midpoint of the corresponding
edge of T . If γ : [0,∞) → ∂∞Y is a unit speed geodesic ray, then p ◦ γ is a coarse
Lipschitz path with the bounded backtracking property1 by the quasi-convexity of
vertex/edge spaces. Hence p ◦ γ maps into a finite tube around a geodesic ray τ in
T . If p ◦ γ is unbounded in T , then the equivalence class of the ray τ is uniquely
determined by γ and we label γ with the associated boundary point [τ ] ∈ ∂∞T . By
the quasi-convexity of edge spaces, if γ hits an edge space for an unbounded sequence
of times, then it remains in a quasi-convex neighborhood of the edge space. In this
case, we know that γ eventually remains in a bounded neighborhood of a unique edge
space by property 3 in Lemma 5, and we label γ with this edge. If neither of the
above two cases occurs, then for each edge e of the tree, we know that γ eventually
lies in one of the two components of the complement of the edge space Ye, and we
label the edge with an arrow pointing in the direction of the corresponding subtree of
T . There must be some (and at most one) vertex v ∈ T such that all edges emanating
from v have arrows pointing toward v; otherwise we could follow arrows and leave any
bounded set. There must be an unbounded sequence of times tk such that γ(tk) lies
in the vertex space Yv (by the construction of the edge labelling); by quasi-convexity
of Yv, this means that γ eventually lies in the R-neighborhood of Yv; in this case we
label γ by v. Equivalent geodesic rays are given the same label. We get a labelling
map Label : Y → (T ∪ ∂∞T ) which is clearly Γ-equivariant.

We now examine the topology of ∂∞Y . This space is metrizable and we fix a metric
d on ∂∞Y ; in what follows we will implicitly use d when discussing metric properties
of ∂∞Y . Recall that each vertex space Yv is quasi-isometric to G ≃ X̃; since by
Lemma 5 every subspace Yv is quasi-convex in Y , we conclude that ∂∞Yv ⊂ ∂∞Y is a

1A map c : [0,∞) → T has the bounded backtracking property if for every r ∈ (0,∞) there
is an r′ ∈ (0,∞) such that if t1 < t2, and d(c(t1), c(t2)) > r′, then d(c(t), c(t1)) > r for every t > t2.
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Sierpinski carpet. Similarly, the peripheral circles of the Sierpinski carpet ∂∞Yv are
in 1-1 correspondence with the boundaries of edge spaces Ye ⊂ Yv.

By the visibility property of the uniformly quasi-convex edge spaces, there is at
most one boundary point of ∂∞Y labelled by any ξ ∈ ∂∞T . For each edge e in T , the
set of points in ∂∞Y labelled by e is the ideal boundary of the edge space Ye, i.e. a
circle. For each vertex v ∈ T , the set of points labelled by v is

∂∞Yv −∪e∈Ev
∂∞Ye

i.e. the Sierpinski carpet ∂∞Yv minus the union of its peripheral circles.

Our next goal is to describe the topology of ∂∞Y using the tree T . Choose v ∈ T .
Every edge e of T separates T into two subtrees, and we let Tv,e ⊂ T be the subtree
disjoint from v. We define the outward subset, Outv,e, for a pair (v, e) ∈ V ×E to
be the collection of points of ∂∞Y labelled by elements of Tv,e ∪∂∞Tv,e. The visibility
property of Y implies that for a fixed v ∈ T and any ǫ > 0 there are only finitely
many edges e ⊂ T so that the diameter of Outv,e exceeds ǫ. Outward subsets of ∂∞Y
are open since a geodesic ray γ with ∂∞γ ∈ Outv,e will eventually leave any tubular
neighborhood of the edge space Ye, and so nearby boundary points correspond to
rays which eventually lie in the same component of the complement of Ye in Y . It
follows that if ξ ∈ ∂∞T , and ek is the sequence of edges occurring in the ray vξ, then
the sequence of outward sets Outv,ek

is a nested basis for the topology of ∂∞Y at the
point labelled by ξ. The closure of Outv,e is Outv,e ∪ ∂∞Ye because the complement
to Outv,e ∪ ∂∞Ye is Outw,e where w is the endpoint of e furthest from v (obviously
∂∞Ye ⊂ Outv,e).

Lemma 6 Suppose ξk ∈ ∂∞Y converges to ξ∞ ∈ ∂∞Y . Then one of the following
holds.

1. ξ∞ is labelled by a boundary point Label(ξ∞) ∈ ∂∞T . In this case Label(ξk)
converges to Label(ξ∞) in the compact space T ∪ ∂∞T .

2. ξ∞ is labelled by a vertex v ∈ T . In this case, for any subset E ⊆ Ev containing
all but finitely many elements of Ev, the sequence ξk eventually lies in

∂∞Yv ∪ (∪e∈EOutv,e).

3. ξ∞ is labelled by an edge e0. In this case, if v, w are the endpoints of e0 then
for any subset E ⊆ Ev containing all but finitely many elements of Ev, and any subset
F ⊆ Ew containing all but finitely many elements of Ew, the sequence ξk eventually
lies in

∂∞Yv ∪ ∂∞Yw ∪ (∪e∈EOutv,e) ∪ (∪e∈FOutw,e).

Proof. Case 1. If v is any arbitrary vertex of T , and e1, e2, . . . is the sequence of edges
comprising the geodesic ray vξ∞ ⊂ T , then Outv,ej

⊂ ∂∞Y is a neighborhood basis
for ξ∞. Therefore Label(ξk) converges to Label(ξ∞) by the definition of the topology
on T ∪ ∂∞T .

Case 2. If this weren’t the case, then a subsequence of ξk would converge to an
element of Outv,e = Outv,e ∪ ∂∞Ye for some e /∈ E . This contradicts the fact that ξ∞
is labelled by v.

Case 3. Similar to case 2.

�
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Proposition 7 ∂∞Ĝ is homeomorphic to S2.

Proof. Let G′ be the fundamental group of a compact hyperbolic 3-manifold M with
nonempty totally geodesic boundary. Recall (see section 2) that ∂∞G′ is a Sierpinski
carpet. Using the notation developed above (decorated with “primes”), Ĝ′ is the
fundamental group of the double of M , so ∂∞Ĝ′ is homeomorphic to S2. We will
construct a homeomorphism between ∂∞Ĝ′ and ∂∞Ĝ.

Choose vertices v ∈ T and v′ ∈ T ′, and a bijection Ev → Ev′ . This induces
an isomorphism between Coxeter groups Γ → Γ′, which we will use to identify Γ
with Γ′. There is a unique Γ-equivariant isomorphism T ∪ ∂∞T → T ′ ∪ ∂∞T ′ which
induces the given bijection Ev → Ev′ ; we will use primes to denote corresponding
edges and vertices. Choose an enumeration v = v1, v2, . . . of vertices of T so that
d(vk,∪j<kvj) = 1. Choose a homeomorphism f1 : ∂∞Yv → ∂∞Y ′

v′ . Using reflections
from Γ we inductively extend f1 to a homeomorphism fk : ∪k

i=1∂∞Yvi
→ ∪k

i=1∂∞Y ′

v′i
for

each k, so that the resulting map f∞ : ∪∞
i=1∂∞Yvi

→ ∪∞
i=1∂∞Y ′

v′i
is Γ-equivariant. By

construction, f∞ is compatible with label maps, i.e. the following diagram commutes:

∪∞
i=1∂∞Yvi

f∞
−→ ∪∞

i=1∂∞Y ′

v′i

Label
y Label

y
T ∪ ∂∞T

id
−→ T ∪ ∂∞T

We claim that f∞ extends continuously to a homeomorphism f : ∂∞Y → ∂∞Y ′.
In view of the naturality of our construction it is enough to show that f∞ extends
to a continuous map f : ∂∞Y → ∂∞Y ′ ≃ ∂∞Ĝ′ ≃ S2, since the inverse map may
be produced by exchanging the roles of G and G′. Pick a sequence ξk ∈ ∂∞Y which
converges to some ξ ∈ ∂∞Y . We will show that f∞(ξk) converges.

Case 1: ξ is labelled by some η ∈ ∂∞T . In this case there is a unique ξ′ ∈ ∂∞Y ′

which is labelled by η′ ∈ ∂∞T ′. We know that if ei (resp e′i) is the sequence of edges of
the ray vη (resp v′η′), then the outward sets Outv,ei

(resp. Outv′,e′i) form a basis for the

topology of ∂∞D̃X (resp. ∂∞Y ′) at ξ (resp. ξ′). Since f∞ maps Outv,ei
∩ ∪∞

i=1∂∞Yvi

to Outv′,e′i ∩ ∪∞
i=1∂∞Y ′

v′i
, the sequence f∞(ξk) converges to ξ′.

Case 2: ξ is labelled by a vertex v ∈ T . For each k either ξk ∈ ∂∞Yv or ξk ∈ Outv,ek

for a unique ek ∈ Edgev. By Lemma 6, in the latter case Diam(Outv,ek
) → 0 as

k → ∞. Construct a sequence ζk ∈ ∂∞Yv so that ζk = ξk when ξk ∈ ∂∞Yv, and ζk ∈
∂∞Yek

= Outv,ek
∩ ∂∞Yv otherwise. Note that limk→∞ ζk = ξ since Diam(Outv,ek

) →

0. The sequence f∞(ζk) converges to f∞(ξ) since f|
∂∞Yv

is continuous. Observe that

d(f∞(ζk), f∞(ξk)) is zero when ξk ∈ ∂∞Yv and is at most Diam(Out′v′,e′
k
) otherwise.

Since each ek occurs only finitely often, Diam(Out′v′,e′
k
) → 0 so

lim
k→∞

f∞(ξk) = lim
k→∞

f∞(ζk) = f∞(ξ).

Case 3: ξ is labelled by an edge e0 ∈ T . We leave this case to the reader, as it is
similar to case 2.

�
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Corollary 8 If G is torsion-free, then so is Ĝ, and in this case Ĝ is a 3-dimensional
Poincaré duality group by [BM], [Bes2]. By [DD], if one splits a PD(n) group over a
PD(n−1) subgroup, then the vertex groups (together with the incident edge subgroups)
define relative PD(n) pairs; therefore (G; H1, . . . , Hk) is a relative Poincaré duality
pair. In particular χ(G) = 1

2

∑
i χ(Hi) < 0.

Corollary 9 Let G be a torsion-free hyperbolic group with Sierpinski carpet boundary.
Suppose either

A. Cannon’s conjecture is true

or

B. Every 3-dimensional Poincaré duality group with a nontrivial splitting is the
fundamental group of a closed 3-manifold.

Then G is the fundamental group of a compact hyperbolic 3-manifold with totally
geodesic boundary.

Proof. Let H1, . . . , Hk, Ĝ, Γ, be as in the first part of this section. If A holds,
then Ĝ is the fundamental group of a closed hyperbolic 3-manifold M . Since Ĝ
splits nontrivially by its very definition, if B holds then Ĝ = π1(M) where M is a
closed irreducible 3-manifold. M is Haken since its fundamental group splits, and so
Thurston’s uniformization theorem implies that M admits a hyperbolic structure. In
either case we have Ĝ acting on H

3 discretely, cocompactly, and isometrically.

The reflection group Γ acts on Ĝ by conjugation, with each reflection centralizing
a unique quasi-convex edge subgroup of Ĝ. By Mostow rigidity, Γ acts isometrically
on the universal cover of M normalizing the action Ĝ y H

3. G ⊂ Ĝ is a quasi-convex
subgroup, and so it acts on H

3 as a convex cocompact subgroup. The limit set of
G in ∂∞H

3 is a Sierpinski carpet, and because every peripheral subgroup of G is
centralized by a unique reflection in Γ ⊂ Isom(H3), the peripheral circles are fixed
by reflections in Γ. Thus each peripheral circle of the limit set of G is a round circle,
and so the convex hull of the limit set is a convex subset bounded by disjoint totally
geodesic hyperbolic planes. It follows that G is the fundamental group of a compact
hyperbolic manifold with totally geodesic boundary.

�

6 Examples

We now use Theorems 1 and 2 to see that some classes of hyperbolic groups have
Menger curve boundary.

We first remark that a torsion-free hyperbolic group with Sierpinski carpet bound-
ary has negative Euler characteristic by Corollary 8. So if G is a torsion-free hyper-
bolic group with 1-dimensional boundary, G doesn’t split over a trivial or cyclic group,
and χ(G) ≥ 0, then ∂∞G is a Menger curve.

Theorem 10 Let G be a torsion-free 2-dimensional hyperbolic group that does not
split over trivial and cyclic subgroups and which fits into a short exact sequence:

1 → F → G → Z → 1

where F is finitely generated. Then ∂∞G is the Menger curve.

10



Proof. In view of Theorem 1, it is enough to show that ∂∞G is not Sierpinski carpet.
Suppose it is. Note that if F admits a finite Eilenberg-Maclane space, then it is easy
to see that χ(G) = χ(F )χ(Z) = 0, so ∂∞G cannot be a Sierpinski carpet by the
remark above. However there are examples such that F is not a finitely presentable
group (see [R]). We now consider the general case. Then (G; H1, . . . , Hk) is a relative
Poincare duality pair. Let K0 be a finite Eilenberg-Maclane space for the group G, let
D be a disjoint union of finite Eilenberg-Maclane spaces for the groups H1, . . . , Hk,
and let K be the mapping cylinder for a map D → K0 which induces the given maps
Hi →֒ G. We view D as a subcomplex of K. Consider the finite cyclic coverings

(Kn, Dn) → (K, D)

which are induced by the homomorphisms G → Z → Zn. Then each pair (Kn, Dn)
again satisfies relative Poincare duality in dimension 3, so

H∗(Kn, Dn; Z/2) ∼= H̃3−∗(Kn; Z/2)

We will use the notation bj(L) to denote the rank of Hj(L, Z/2). Thus limn→∞ b1(Dn) =
∞ and b1(Kn) ≤ b1(F ) + 1 < ∞. Consider the exact sequence of the pair (Kn, Dn):

... → H1(Kn; Z/2) → H1(Dn; Z/2) → H2(Kn, Dn; Z/2) → ...

Since b1(Kn) is bounded by b1(F ) + 1 and limn→∞ b1(Dn) = ∞, it follows that
limn→∞ Dim(H2(Kn, Dn; Z/2)) = ∞. This contradicts the fact that H2(Kn, Dn; Z/2) ∼=
H1(Kn; Z/2). �

Now let F be a finitely generated free group and φ : F → F be a hyperbolic

automorphism (see [BF2] for the definition). Consider the extension

1 → F → G → Z → 1

induced by φ. The group G is hyperbolic by [BF2]. The cohomological dimension of
G is 2 by the Mayer-Vietoris sequence, thus the boundary of G is 1-dimensional by
[BM].

Corollary 11 ∂∞G is the Menger curve.

Proof. We will show that the group G does not split over a cyclic (possibly trivial)
subgroup. Suppose that it does. Then we have the corresponding action of G on a
minimal simplicial tree T with cyclic edge stabilizers. Consider the restriction of this
action on the subgroup F . Let T ′ ⊂ T be the minimal F -invariant subtree, then T ′

is Z-invariant (since Z normalizes F ), thus T ′ = T . By Grushko’s theorem (in the
case of trivial edge stabilizers) and the generalized accessibility theorem [BF1] (in the
case of infinite cyclic stabilizers), the quotient T/F is a finite graph Γ. The action
of Z = 〈z〉 projects to action on Γ, after taking a finite iteration of φ (if necessary)
we may assume that z acts trivially on Γ. Since G does not contain Z

2-subgroups,
the edge stabilizers for the action of F on T must be trivial. Thus we get a free
product decomposition of F so that each factor is invariant under some iterate of z.
This contradicts the assumption that the corresponding automorphism φ : F → F is
hyperbolic. �
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Theorem 12 Let G be a finite graph of groups. Suppose

1. Each vertex group is a torsion-free hyperbolic group whose boundary is either a
Menger curve or a Sierpinski carpet; and at least one vertex group has Menger curve
boundary.

2. Each edge group is a finitely generated free group of rank at least 2, and includes
as a quasi-convex subgroup of each of the corresponding vertex groups.

3. If T is the Bass-Serre tree for G, and e1, e2 ⊂ T are two edges emanating from
the same vertex v ∈ T , then their stabilizers intersect trivially.

Then the fundamental group G of G is a hyperbolic group with Menger curve boundary.

Proof. Conditions 2 and 3 imply that G is hyperbolic by [BF2], and vertex groups
are quasi-convex subgroup of G by [Mi, Sw2]. G is torsion-free since all vertex groups
are torsion-free. G has cohomological dimension 2 by the Mayer-Vietoris sequence,
so ∂∞G has dimension 1 by [BM].

We claim that G does not split over trivial or infinite cyclic groups. To see this,
let T be the Bass-Serre tree of G, and let S be the Bass-Serre tree of a splitting of
G over trivial and/or cyclic groups. Consider two adjacent vertices v1, v2 ∈ T , let
Gvi

⊂ G be their stabilizers, and let Ge be the stabilizer of the edge joining them.
Since Gvi

does not split over trivial or cyclic subgroups [B2], Gvi
has a nonempty

fixed point set in S. If si ∈ S is fixed by Gvi
, then the segment joining s1 to s2 will

be fixed by Ge. Since Ge is free of rank at least 2, we see that s1 = s2. Therefore by
induction we find that G has a global fixed point in S, which is a contradiction.

If the stabilizer of v ∈ T has Menger curve boundary, then by the quasi-convexity
of Gv in G, the Menger curve embeds in ∂∞G. This shows that ∂∞G cannot be
homeomorphic to S1 or the Sierpinski carpet. By Theorem 1 ∂∞G is a Menger curve.

�

7 Topologically rigid groups

In this section we will construct some examples of topologically rigid groups. Before
proceeding, we first note a consequence of Theorem 1.

Corollary 13 Let G be a nonelementary hyperbolic group with Dim(∂∞G) ≤ 1.
Then G is not topologically rigid.

We will sketch a proof of the corollary, and leave the details to the reader.

Case I: G has more than one end. Then G splits as an amalgamated product or
HNN extension over a finite group. Let G y T be the action of G on the Bass-Serre
tree associated to such a splitting, so there is only one edge orbit in T . Following along
the same lines as in section 5, we construct a tree of spaces X, with vertex and edge
spaces corresponding to vertices and edges in T . For each vertex v ∈ T , the vertex
space Xv ⊂ X is quasi-convex in X and as in section 5 we may label points in ∂∞X
with elements of T ∪ ∂∞T . The outward sets (see section 5) are open and closed in
∂∞X. If e1 and e2 are incident to a vertex v then they lie in the same Gv-orbit (since
G/T has only one edge). Outv,e1

and Outv,e2
are disjoint and homeomorphic, so we
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may define a homeomorphism of ∂∞X by swapping them while holding everything
else fixed. This construction yields a continuum of homeomorphisms of ∂∞X, so
G → Homeo(∂∞X) cannot be surjective.

Case II: G is 1-ended. If ∂∞G is homeomorphic to S1, the Sierpinski carpet, or
the Menger curve then G cannot be topologically rigid since each of these spaces has
uncountable homeomorphism group. Therefore by Theorem 1 we may assume that
G splits as an amalgamated free product or HNN extension over a virtually cyclic
group. Let G y T be the action of G on the Bass-Serre tree associated with such a
splitting. If e is an edge in T , e = v1v2, then Outv1,e − ∂∞Xe and Outv2,e − ∂∞Xe are
open and closed in ∂∞X − ∂∞Xe, and are preserved by Ge. Take a g ∈ Ge so that
∂∞G fixes both points in ∂∞Ge, and define a homeomorphism f : ∂∞X → ∂∞X by

f|
Outv1,e

= ∂∞g|
Outv1,e

and f|
Outv2,e

= id|
Outv2,e

. This type of construction will give

a continuum of homeomorphisms of ∂∞X, so again G → Homeo(∂∞X) cannot be
surjective. �

Our construction of topologically rigid groups is based on the idea (realized pre-
cisely in Proposition 16) that a homeomorphism of S2 must be a Möbius transforma-
tion provided it preserves a sufficiently rich family of round circles. We begin with
an analogous statement for homeomorphisms of S1.

Line configurations in H
2. Let L be a locally finite collection of geodesics in

H
2 so that the complementary regions of ∪L∈LL are bounded, and we assume that

there is a cocompact lattice Γ ⊂ Isom(H2) stabilizing L. Let ∂̄2
∞H

2 be the space of
unordered distinct pairs in ∂∞H

2, and let ∂∞L be the collection of pairs of endpoints
∂∞L for L ∈ L, ∂∞L := {∂∞L | L ∈ L} ⊂ ∂̄2

∞H
2. Note that if L1, L2 ∈ L and

∂∞L1 ∩ ∂∞L2 6= ∅ then L1 = L2. Let Stab(∂∞L) ⊂ Homeo(∂∞H
2) be the group of

homeomorphisms of ∂∞H
2 which preserve ∂∞L ⊂ ∂2

∞H
2.

Lemma 14 1. If L1, L2 ∈ L have nonempty intersection and g ∈ Stab(∂∞L) fixes
∂∞L1 ∪ ∂∞L2 pointwise then g = id.

2. {∂∞γ | γ ∈ Γ} ⊂ Homeo(∂∞H
2) is a finite index subgroup of Stab(∂∞L).

Proof. Our arguments essentially follow [CB, Proof of Theorem 2.7]. We will identify
the space of geodesics in H

2 with ∂2
∞H

2.

(1) Suppose L1, L2 ∈ L and g ∈ Stab(∂∞L) fixes ∂∞L1∪∂∞L2 pointwise. If σ1, σ2

are the connected components of ∂∞H
2 −∂∞L1, then g(σi) = σi since |∂∞L2 ∩σi| = 1

and ∂∞L2 is fixed by g. Observe that Σi := {∂∞L∩σi | L ∈ L and |L ∩ L1| = 1} ⊂ σi

is a discrete subset of σi with the order type (with respect to the ordering on σi ≃ R)
of the integers, and g(Σi) = Σi. But g fixes the point ∂∞L2∩σi ∈ Σi and is orientation

preserving, so g|
Σi

= idΣi
. Therefore g fixes ∂∞L for every L ∈ L with L ∩ L1 6= ∅.

The incidence graph of L is connected, so we may apply this argument inductively to
see that g fixes ∂∞L for every L ∈ L. The set ∪L∈L∂∞L is dense in ∂∞H

2, so g = id.
This proves the first assertion of the lemma.

(2) We now show that every sequence gk ∈ Stab(∂∞L) has a subsequence which
is constant modulo Γ, which proves that [Stab(∂∞L) : Γ] < ∞. Pick L1, L2 ∈ L
such that L1 intersects L2 in a point p. For each k let gk∗Li ∈ L be the unique line
with ∂∞(gk∗Li) = gk(∂∞Li). Then (gk∗L1) ∩ (gk∗L2) = pk for some pk ∈ H

2, and we
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may choose a sequence γk ∈ Γ such that sup d(γk(pk), p) = R < ∞. Then the lines
(γk ◦ gk)∗Li lie in the finite set {L ∈ L | L ∩ B(p, R) 6= ∅}, so after passing to a

subsequence we may assume that (γk ◦ gk)|∂∞Li
independent of k for i = 1, 2. By the

previous paragraph the sequence γk ◦ gk ∈ Homeo(∂∞H
2) is constant. �

Plane configurations in H
3. Below we prove an analog of Lemma 14 for a collection

H of totally geodesic hyperplanes in H
3.

Let H be a locally finite collection of totally geodesic planes in H
3, with stabilizer

G := {g ∈ Isom(H3) | g(H) ∈ H for every H ∈ H}. Let ∂∞H := {∂∞H | H ∈ H}.
We assume that H satisfies the conditions:

1. G is a cocompact lattice in Isom(H3).

2. The complementary regions of ∪H∈HH are bounded.

3. If H ∈ H, then reflection in H does not preserve the collection H.

Such examples will be constructed later in this section.

The local finiteness of H implies that there are finitely many G-orbits in H, and
that the stabilizer of each H ∈ H acts cocompactly on H .

Definition 2 We will say that three circles ∂∞H1, ∂∞H2, ∂∞H3, where Hi ∈ H, are
in standard position if the three planes Hi intersect transversely in a single point
x ∈ H

3.

Note that if the circles ∂∞H1, ∂∞H2, ∂∞H3 are in standard position and C1, C2, C3

is another unordered triple of circles which bound elements of H, then C1, C2, C3 is in
standard position if and only if there is a homeomorphism f : ∂∞H1∪∂∞H2∪∂∞H3 →
C1 ∪ C2 ∪ C3 which carries elements of H to elements of H.

Let Stand denote the collection of unordered triples of circles in standard position.
We will say that two elements of Stand are incident if they have exactly two circles
in common.

Lemma 15 1. The incidence graph of Stand is connected.

2. If γ ⊂ ∂∞H
3 is homeomorphic to S1, then either γ = ∂∞H for some H ∈ H,

or there is an H ∈ H so that ∂∞H intersects both components of ∂∞H
3 − γ.

Proof. The union ∪H∈HH determines a polygonal subcomplex in H
3 with connected

1-skeleton. Therefore the assertion 1 follows.

To prove the assertion 2, let U and U ′ denote the connected components of ∂∞H
3−

γ. We may find H, H ′ ∈ H so that ∂∞H ⊂ U, ∂∞H ′ ⊂ U ′. Since the incidence graph
for H is connected we can find a chain of planes H0 = H, H1, ..., Hn = H ′ in H so
that consecutive planes intersect each other. We see that either γ = ∂∞Hj for some
Hj in this sequence or for some Hj the circle ∂∞Hj intersects both U and U ′. �

Proposition 16 Let Stab(∂∞H) be the group of homeomorphisms of ∂∞H
3 which

preserve ∂∞H, Stab(∂∞H) := {g ∈ Homeo(∂∞H
3) | g(∂∞H) ∈ ∂∞H for all H ∈ H}.

Then Stab(∂∞H) = {∂∞g | g ∈ G}.

14



Proof. Suppose {∂∞H1, ∂∞H2, ∂∞H3} ∈ Stand, f ∈ Stab(∂∞H), and f(∂∞Hi) =
∂∞Hi for 1 ≤ i ≤ 3. Then for 1 ≤ i ≤ 3 we may consider the collection Li of
geodesics in Hi of the form Hi ∩H for H ∈ H−Hi. Part 1 of Lemma 14 then implies

that f|
∂∞Hi

= id∂∞Hi
.

Now suppose {∂∞H1, ∂∞H2, ∂∞H3}, {∂∞H1, ∂∞H2, ∂∞H4} ∈ Stand are incident,

f ∈ Stab(∂∞H), and f|
∂∞Hi

= id∂∞Hi
for 1 ≤ i ≤ 3. Then f(∂∞H4) = ∂∞H4

since H4 is the unique element of H whose boundary contains the 4 element set

∂∞H4 ∩ (∂∞H1 ∪ ∂∞H2). Therefore by the previous paragraph we have f|
∂∞H4

=
idH4

. Since the incidence graph of Stand is connected we see by induction that

f|
∂∞H

= id∂∞H for all H ∈ H, and this forces f = id∂∞H3.

Reasoning as in Lemma 14 we conclude that [Stab(∂∞H) : G] < ∞.

Let G′ ⊂ G be a finite index normal subgroup of Stab(∂∞H). Each f ∈ Stab(∂∞H)
normalizes the action G′

y ∂∞H
3, so by Mostow rigidity each f is a Möbius trans-

formation. Therefore for every f ∈ Stab(∂∞H) we have f = ∂∞g for some g ∈ G. �

Constructing topologically rigid groups. Let G′ ⊂ G be a finite index torsion-
free subgroup of G. Let {H1, . . . , Hk} be a set of representatives of the G′-orbits in
H, and let Gi := Stab(Hi). For any 1 ≤ i ≤ k, the set of geodesics {H ∩ Hi | H ∈
H−Hi, H∩Hi 6= ∅} ⊂ Hi is finite modulo the action of Gi. Hence for each 1 ≤ i ≤ k,
there is a finite collection Zi of conjugacy classes of maximal cyclic subgroups of Gi

with the property that for any g ∈ G′−Gi, the intersection gGjg
−1∩Gi is an element of

Zi. We now construct a double2 G′ along the collection of subgroups Gi := Stab(Hi),
1 ≤ i ≤ k as follows: construct a graph of groups G with two vertices v1, v2 and k
edges e1, . . . , ek, where Gvi

is isomorphic to G′ and Gei
is isomorphic to Gi. Identify

Gvi
with G′. We choose the embeddings ιij : Gei

→ Gvj
so that the image coincides

with Gi ⊂ G′, but so that the ιij ’s satisfying the following condition:

(Twisting) ι−1
i1 (Zi) ∩ ι−1

i2 (Zi) = ∅.

Let Ĝ := π1(G), let T be the Bass-Serre tree associated with G, and let V and
E denote the collections of vertices and edges in T respectively. Ĝ acts (discretely,
cocompactly) on a tree of spaces X constructed as in section 5, with vertex spaces
Xv, v ∈ V and edge spaces Xe, e ∈ E.

Lemma 17 Ĝ is a hyperbolic group. All vertex and edge groups Gx, x ∈ V ∪ T are
quasi-convex subgroups of Ĝ.

Proof. By [BF3], [Sw2], [Mi] it suffices to show that there is an upper bound on
the length of essential annuli (see [BF3], section 1) in the graph of groups G. Or
equivalently, we need to show that there is an upper bound on the length of any
segment in T which is fixed by a nontrivial element g ∈ Ĝ. We claim that if e1, e2, e3

are 3 consecutive edges in the tree T , then Ge1
∩Ge2

∩Ge3
is trivial; for the twisting

condition implies that the intersections Ge1
∩Ge2

and Ge2
∩Ge3

are cyclic subgroups
of Ge2

with trivial intersection. �

2If we double G′ without “twisting” the edge inclusions then the resulting group Ĝ is not hy-
perbolic. But it acts on a CAT (0) space X so that Homeo(∂∞X) contains Ĝ as a finite index
subgroup.
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Lemma 18 1. For every vertex v ∈ V , ∂∞Xv ⊂ ∂∞X is a 2-sphere.

2. For every edge e ∈ E, ∂∞Xe ⊂ ∂∞X is a circle.

3. If v1 6= v2 ∈ V then ∂∞Xv1
∩ ∂∞Xv2

≈ S1 implies that v1 and v2 are the
endpoints of an edge e ∈ E, and ∂∞Xv1

∩ ∂∞Xv2
= ∂∞Xe.

4. ∪v∈V ∂∞Xv is dense in ∂∞X.

5. Pick e ∈ E, and let T1, T2 ⊂ T be the two subtrees that one gets by removing
the interior of the edge e. Then ∂∞X −∂∞Xe has two connected components, namely
the closures of (∪v∈Ti

∂∞Xv) − ∂∞Xe in ∂∞X − ∂∞Xe for i = 1, 2.

The proof of the lemma is similar to arguments from section 5, so we omit it.

Lemma 19 If γ ⊂ ∂∞X is homeomorphic to S1 and γ separates ∂∞X, then γ =
∂∞Xe for some e ∈ E.

Proof. We first claim that γ ⊂ ∂∞Xv for some v ∈ V . Otherwise by Alexander duality
∂∞Xv−γ is connected for every v ∈ V , and (∂∞Xv1

∪∂∞Xv2
)−γ is connected for any

pair of adjacent vertices v1, v2 ∈ V . By induction this implies that ∪v∈V ∂∞Xv − γ
is connected. By part 4 of Lemma 18 we conclude that ∂∞X − γ is connected, a
contradiction.

Hence we may assume that γ ⊂ ∂∞Xv for some v ∈ V . Suppose γ 6= ∂∞Xe for
any e ∈ E adjacent to v. Then any point ξ ∈ ∂∞X − γ lies in the same component
of ∂∞X − γ as one of the two components of ∂∞Xv − γ. By Lemma 15 we can find
an edge e adjacent to v so that ∂∞Xe intersects both of the components U1, U2 of
∂∞Xv − γ. So we may connect U1 to U2 within ∂∞Xw − γ where w is the other
endpoint of e. This contradicts the assumption that γ separates ∂∞X. �

Thus, any homeomorphism f : ∂∞X → ∂∞X preserves the collection of circles
{∂∞Xe, e ∈ E}.

Let C denote the collection of unordered triples of circles Ci = ∂∞Xei
, ei ∈ E,

which are in standard position, i.e. there exists a triple H1, H2, H3 ∈ H which are
in standard position and a homeomorphism f : ∂∞H1∪∂∞H2∪∂∞H3 → C1∪C2∪C3

which carries each circle ∂∞Hi to one of the circles Cj(i). We define the incidence
relation for elements of C the same way as before, let Γ(C) denote the associated
incidence graph. Thus C contains the subsets Sv where Sv consists of triples of circles
in standard position which are contained in ∂∞Xv. Then the incidence graph Γ(Sv)
is isomorphic to the incidence graph of S, thus it is connected (see part 1 of Lemma
15). For each vertex v ∈ V the union of triples of circles {C1, C2, C3} ∈ Sv is dense
in ∂∞Xv.

Lemma 20 The subgraphs Γ(Sv) are the connected components of Γ(C).

Proof. It is enough to show that any {C1, C2, C3} ∈ C is contained in ∂∞Xv for some
v ∈ T , since there is at most one ∂∞Xv containing any given pair of circles.

Pick {C1, C2, C3} ∈ C, with Ci = ∂∞Xei
for ei ∈ E. Note that d(ei, ej) ≤ 1 for

1 ≤ i, j ≤ 3 for otherwise we would have Ci ∩Cj = ∅. Also, observe that if two of the
circles lie in some ∂∞Xv, then the third one must too (because |∂∞Xe ∩ ∂∞Xv| ≤ 2
unless ∂∞Xe ⊂ ∂∞Xv). Clearly this forces the edges ei to share a vertex. �
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Define the incidence graph with the vertex set {geoXv, v ∈ T}, where the vertices
v, w are connected by an edge if and only if ∂∞Xv ∩ ∂∞Xw ≈ S1. Lemma 18 implies
that this graph is isomorphic to the tree T .

Proposition 21 Any homeomorphism f : ∂∞X → ∂∞X preserves the collection of
spheres {∂∞Xv, v ∈ V }. In particular, f induces an isomorphism of the tree T .

Proof. The homeomorphism f induces an automorphism f# of the graph Γ(C), thus
it preserves its connected components. Therefore for each v ∈ V there is w = f#(v)
such that f#Γ(Sv) = Γ(Sw). However

∪T∈Sv
C

is dense in ∂∞Xv. Thus f preserves the collection of spheres {∂∞Xv, v ∈ V }. The
paragraph preceeding Proposition implies that f induces an automorphism of the tree
T . �

Theorem 22 The homeomorphism group of ∂∞X contains Ĝ as a subgroup of finite
index. Therefore Homeo(∂∞X) is a topologically rigid hyperbolic group.

Proof. For every v ∈ V , we identify ∂∞Xv with ∂∞H
3 via a homeomorphism which

carries the collection {∂∞Xe | e ∈ E, v ⊂ e} to ∂∞H; this homeomorphism is unique
up to a Möbius transformation by Proposition 16.

Suppose f ∈ Homeo(∂∞X) and f|
∂∞Xv

= id|
∂∞Xv

for some v ∈ V . Then f fixes

∂∞Xe pointwise for every e ∈ E containing v. Hence if v′ ∈ V is adjacent to v then

f(∂∞Xv′) = ∂∞Xv′ . By Proposition 16 f|
∂∞Xv′

is a Möbius transformation. Either

f|
∂∞Xv′

= id|
∂∞Xv′

or f|
∂∞Xv′

is a reflection. But condition 3 on H rules out the

latter possibility. Therefore by induction we conclude that f fixes ∂∞Xw for every
w ∈ V , and so f = id.

Pick v ∈ T , and consider the possibilities for f|
∂∞Xv

where f ∈ Homeo(∂∞X).
There are clearly only finitely many such possibilities up to post-composition with ele-
ments of Ĝ; therefore by the preceding paragraph Ĝ has finite index in Homeo(∂∞X).

�

An example of a plane configuration H.

We now construct a specific example of a plane configuration H satisfying the
three required conditions. We start with the 3-dimensional hyperbolic polyhedron Φ
described in Figure 1: the edges of the polyhedron are labelled with 2 and 3, they
indicate that the corresponding dihedral angles of the polyhedron are π/2 and π/3
respectively. Such a polyhedron exists by Andreev’s theorem [An]. Note that Φ has an
order 3 isometry θ which is a rotation around the geodesic segment CE and reflection
symmetries in each of three quadrilaterals, two of which are depicted in Figure 2.

The polyhedron Φ contains three squares which “bisect” Φ; one of them β1 =
PQRS which is indicated in Figure 1, the other two β2, β3 are obtained from β1 by
applying the rotation θ.
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Figure 1: The hyperbolic polyhedron Φ.

Lemma 23 The bisectors β1, β2, β3 are realized by totally-geodesic 2-dimensional poly-
gons in Φ which are orthogonal to the boundary of Φ. More precisely, for each
1 ≤ j ≤ 3 there is a totally geodesic plane Hj ⊂ H

3 which intersects the same
four edges of Φ as βj and Hj intersects the faces of Φ orthogonally.

Proof. It is enough to prove the assertion for β1, the other two polygons are obtained
via the rotation θ. The proof is similar to [Ka]: we first split open the cube Φ
combinatorially along the bisector β1 into two subcubes Φ+ and Φ−. Each polyhedron
Φ+, Φ− has a face F+, F− which corresponds to the bisector β1. We assign the label
2 to each edge of Φ± is contained in F±. Andreev’s theorem again implies that
Φ+ and Φ− can be realized by polyhedra in H

3 (we retain the names Φ± for these
polyhedra). Our goal is to show that the homeomorphism F+ → F− (which is given
by identification with the bisector β1) is isotopic (rel. vertices) to an isometry of
the hyperbolic polygons. The polyhedron Φ admits a reflection symmetry which
fixes the rectangle EJCA, and this symmetry also acts on the polyhedra Φ+, Φ− and
quadrilaterals F± so that the fixed point sets are the geodesic segments corresponding
to PR. However it is clear that there exists a unique (up to vertex preserving isotopy)
hyperbolic structure on quadrilateral PQRS so that the edges are geodesic, angles
are π/2, π/3, π/2, π/3 and the quadrilateral has an order 2 isometry fixing PR. Thus
we have a natural isometry F+ → F− and we can glue Φ+ to Φ− using this isometry.
The result is a hyperbolic polyhedron Ψ which is combinatorially isomorphic to Φ
this isomorphism preserves the angles. Thus by uniqueness part of Andreev’s theorem
(alternatively one can use Mostow rigidity theorem) the polyhedra Φ, Ψ are isometric.
On the other hand, the polyhedron Ψ contains totally geodesic 2-dimensional polygon
F+ = F− which is orthogonal to the boundary of Ψ. �

We retain the notation βj (j = 1, 2, 3) for the totally-geodesic 2-dimensional
hyperbolic polygons orthogonal to ∂Φ which realize the bisectors βj . These polygons
split Φ into 8 subpolyhedra Pi, i = 1, ..., 8, which are combinatorial cubes. Note that

18



2

2

2

2

3

3

3

3

3

A B

CD

E F

JK

2

2

3

Figure 2: Symmetries of the hyperbolic polyhedron Φ.

the dihedral angles between βj, j = 1, 2, 3 are all equal and are different from π/2
(otherwise the combinatorial cube Pi which contains the vertex E would have all right
angles which is impossible in hyperbolic space).

Now we construct the collection of planes H as follows: let R ⊂ Isom(H3) be
the discrete group generated by reflections in the faces of Φ; the polyhedron Φ is a
fundamental domain for R. The 2-dimensional hyperbolic polygons βj = Hj ∩ Φ are
orthogonal to ∂Φ, the plane Hj is invariant under the subgroup Rj of R generated by
reflections in the faces of Φ which are incident to βj. The R-orbit of these hyperplanes
is H. Note that

(0) If H is a member of H and the intersection H ∩Φ 6= ∅ then H ∩Φ is equal to
one of the bisectors βj .

We next check that H satisfies the required properties:

(1) The fundamental domain Φ for R is compact, hence the group R is a cocom-
pact lattice.

(2) The complementary regions to H in H
3 are finite unions of the polyhedra

Pi, i = 1, ..., 8, thus they are bounded.

(3) Let ρj be the reflection in the plane Hj . Since the planes Hj, 1 ≤ j ≤ 3 are not
mutually orthogonal it follows that this reflection maps Hi, i 6= j, to a plane which
does not belong to H (see Property (0) above); it follows that ρ does not preserve the
configuration H.
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