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Abstract

and prognosis.

Background: Chronic inflammation has been recognized as one of the hallmarks of cancer. We recently showed
that parainflammation, a unique variant of inflammation between homeostasis and chronic inflammation, strongly
promotes mouse gut tumorigenesis upon p53 loss. Here we explore the prevalence of parainflammation in
human cancer and determine its relationship to certain molecular and clinical parameters affecting treatment

Results: We generated a transcriptome signature to identify parainflammation in many primary human tumors
and carcinoma cell lines as distinct from their normal tissue counterparts and the tumor microenvironment and
show that parainflammation-positive tumors are enriched for p53 mutations and associated with poor prognosis.
Non-steroidal anti-inflammatory drug (NSAID) treatment suppresses parainflammation in both murine and human
cancers, possibly explaining a protective effect of NSAIDs against cancer.

Conclusions: We conclude that parainflammation, a low-grade form of inflammation, is widely prevalent in
human cancer, particularly in cancer types commonly harboring p53 mutations. Our data suggest that parainflammation
may be a driver for p53 mutagenesis and a guide for cancer prevention by NSAID treatment.

Keywords: Inflammation, Parainflammation, p53 mutations, NSAID treatment, Cancer prevention, Genomics

Background

Inflammation is one of the enabling hallmarks of cancer
[1] and it has been estimated that approximately 20 % of
cancers are caused by chronic inflammation [2, 3].
Tumor-promoting inflammation can contribute to vari-
ous stages of tumor development, from tumor initiation
to metastasis [4]. We recently developed and character-
ized a mouse model of intestinal cancer based on tissue-
specific ablation of CKla [5, 6]. Inducible ablation of
CKlua in the gut epithelium has several immediate conse-
quences, Wnt activation due to stabilization of pB-
catenin, induction of DNA damage response with robust
p53 activation, and elicitation of a low-grade inflamma-
tory response in the epithelium. This inflammatory
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reaction, which is detected by mRNA and protein ana-
lysis of the gut epithelial cells, is an atypical one, having
a relatively low secretory component and, conspicuously,
is not accompanied by a typical inflammatory cell infil-
trate in CKla-deficient mucosa. We coined this low-
grade inflammatory reaction “parainflaimmation” (PI)
based on its relationship to a term defined by Medzhitov:
a low-grade inflammatory response at an intermediate
state between tissue homeostasis and classic inflammation
which can be induced by persistent tissue stress, serving
to restore tissue homeostasis [7]. It has been proposed
that PI could play a role in several conditions, such as
aging and obesity [8]. In contrast to “classic” inflamma-
tion, often ignited by an extrinsic assault such as bacterial
infection, PI may erupt due to tissue-intrinsic assaults,
such as DNA damage [6, 7], and cooperate with the tumor
suppressor p53, contributing to tissue protective senes-
cence and counteracting tumor progression. Upon p53 ab-
lation, however, PI loses its beneficial role and, instead,
contributes to carcinogenesis [6]. Here we constructed a
PI gene signature based on analysis of the CKla and
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CKla-p53-deficient gut epithelium and, using existing da-
tabases, examined this signature and its implications in
thousands of human tumors and cell lines. We noticed
a striking occurrence of PI in several cancer types dis-
tinct from their normal tissue counterparts. Our study
indicates that PI is an important factor in tumor devel-
opment, with a significant influence on prognosis. Not-
ably, we found that PI can be markedly attenuated in
human samples by non-steroidal anti-inflammatory drug
(NSAID) treatment, possibly alluding to a mechanism of
cancer prevention.

Results

Deriving the Pl gene signature from CKla-deficient mice
Our strategy to derive a gene expression signature for PI
consisted of two steps. First, we compiled a list of 840
inflammatory response genes. This list is based on three
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manually curated databases: the Ingenuity inflammatory
response gene list (http://www.qiagen.com/ingenuity),
InnateDB innate immunity genes [9], and the Immuno-
genetic Related Information Source (IRIS) [10] (Fig. la;
Additional file 1). We then intersected the 840 genes
with a list of genes found to be significantly upregulated
in RNA-seq expression profiles of two mouse models
featuring gut PI: CKla-deficient and CKla-p53-deficient
gut epithelium (Additional file 2) [6]. This procedure
generated a list of 40 inflammatory context genes which
are upregulated in the PI mouse models, possibly repre-
senting a gain-of-function mechanism (Fig. 1b; Additional
file 3: Table S1). Using Ingenuity’s upstream regulator ana-
lysis [11], we revealed a strong resemblance of the PI
signature to the lipopolysaccharide (LPS) response (Fig. 1¢;
Additional file 4). This response is mediated via two major
arms, the NF-kB and the interferon (IFN) signaling
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Fig. 1 The parainflammation signature. a An inflammatory response gene set was generated by combining genes that are found in at least two
of three manually curated databases: the Ingenuity inflammatory response gene list, InnateDB innate immunity genes, and the Immunogenetic
Related Information Source (IRIS). b Differential expression analysis of CKla-deficient and CKla-p53-deficient mice against wild type (WT) revealed
59 and 92 upregulated inflammatory response genes in the single and double knock outs (K/0), respectively, and 40 genes upregulated in both.
The 40 genes were designated as the parainflammation (P)) gene signature. The heatmap shows the expression levels of the 111 upregulated
genes (red, high expression; blue, low expression). ¢ Upstream regulatory analysis revealed a strong enrichment for genes regulated by lipopolysaccharide
and immune pathways that are activated by it. The rows show the top enriched, non-chemical regulators, the columns are the 40 Pl genes,
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pathways [12], only the latter of which is found to be
strongly associated with PI. The Ingenuity analysis also
confirmed our observation of upregulation of the genes:
37 of the genes are known to be upregulated during the
LPS/IEN response (based on manual curation of the litera-
ture). Nevertheless, no common regulator could be found
for all PI genes, suggesting that PI is a unique inflam-
matory response whose origin and mechanism have yet
to be described. It should be pointed out that while
this signature includes innate immunity genes which
are commonly expressed by leukocytes, in the mouse
models these genes are explicitly expressed by epithe-
lial cells [6]. Notably, the signature has a remarkable
paucity of chemokines or other secreted factors, sug-
gesting that PI is primarily cell-autonomous in the epi-
thelial tissue and explaining why it doesn’t tend to
initiate recruitment of immune cells.

Pl is suppressed by NSAID treatment in mouse tumors
We next sought to validate the 40-gene signature for PI
in an established model system. PI is associated with cel-
lular senescence and is apparent in a pure primary epi-
thelial tissue, such as gut epithelial organoids [6, 13].
APC-mutated human and mouse polyps represent early
neoplastic lesions which mostly do not progress, possibly
due to senescence-associated PI [14], thus representing a
good source for testing the PI signature we character-
ized. We prepared organoid cultures from APC-mutated
normal gut epithelium (MIN) and adenomatous polyps
of APC™™* mice (adenoma) and analyzed them via
RNA-seq (Additional file 5). Our analysis confirmed the
overexpression of many of the PI genes in adenomatous
polyps in comparison with organoids prepared from the
adjacent normal tissue of APC™™* mouse tumors
(MIN): 17 (42.5 %) of the PI genes showed significant
upregulation in the tumor-derived organoids (false dis-
covery rate < 1 %) compared with 17.5 % of all genes and
17.0 % of all inflammatory response genes (chi-square
test p value =4.9e-5) (Fig. 2a). Only two genes (5.0 %)
showed significant, yet modest, downregulation. Quanti-
tative PCR (qPCR) analysis confirmed these findings
(Additional file 3: Figure S1).

It is not yet known why NSAID treatment has an im-
pact on cancer prevalence, progression, and mortality in
human solid tumors [15-18]. We have previously shown
that gut epithelium PI can be suppressed by NSAID
treatment in the CKla-deficient mouse model [6]. We
therefore hypothesized that cancer cells may harbor
tumor-promoting PI subject to suppression by NSAID
treatment. To test this hypothesis, we generated a tumor
model for examining NSAID treatment effects. We pre-
pared organoids from normal gut and adenomatous
polyps of APC™™* mice, treated them with the NSAID
sulindac, and performed RNA-seq on three biological
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replicates (Additional file 6). Strikingly, of the 17 up-
regulated PI genes observed in the tumor organoids,
11 (64.7 %) were significantly downregulated in the
sulindac-treated samples, compared with 33.2 % of all
genes and 38.3 % of all inflammatory response genes
(p value =0.0053) (Fig. 2a). Immunofluorescence stain-
ing shows that the protein expression of PI gene
Ifitm2/3 (Fig. 2b) is markedly elevated in the tumor
organoids and is mostly suppressed by sulindac treat-
ment. These data validate the PI signature in a new
mouse tumor model, underscoring both the epithelial
origin and the tumor specificity of this new signature,
and show that NSAID treatment can reduce PIL.

Analogously to the procedure described above, we also
found 75 inflammatory context genes which are down-
regulated in the PI mouse models (Additional file 3:
Table S2). This list of genes is again highly enriched with
LPS and IFN y response genes but also contains inter-
leukin (IL)2/IL4 response genes. However, we didn’t ob-
serve expression changes of those 75 genes in the
organoids model, suggesting that the downregulated
genes are not part of the general PI mechanism. There-
fore, while it is well established that activation of innate
inflammation pathways leads to both up- and downregu-
lation of genes involved in activation and inhibition of
this highly regulated network [19-21], we chose to de-
rive the PI signature only from the upregulated genes in
the mouse and organoid PI models.

Human cancers display the Pl signature discovered in mice

Observing PI in mouse tumors prompted us to look for a
similar phenomenon in human cancers. To that end, we
first analyzed the expression of 40 human homologs of
the mouse PI genes in human cancers, utilizing data from
the Cancer Cell Line Encyclopedia (CCLE) [22]. Whereas
immune and inflammatory genes are normally expressed
in hematopoietic cells, a wide range of carcinoma cell lines
(n=634) expressed the PI genes to a higher level than
hematopoietic and lymphoid cancer cell lines (n=180)
(Fig. 3a; Additional file 3: Figure S2). Further investigation
revealed that, compared with non-PI genes, many PI genes
are broadly overexpressed in a subset of the cell lines. To
quantify the distribution of PI genes in cell lines, we com-
puted the expression distribution in all the carcinoma cell
lines and identified the peak of the distribution. Then, by
defining overexpression as twofold expression level over
the peak (1 in log2 expression levels), we counted the
number of cell lines overexpressing each gene (examples
in Fig. 3b). Our analysis revealed that 74.4 % of the PI
genes are overexpressed in more than 10 % of the car-
cinomas, significantly more than a non-discriminatory
pool of random inflammatory response genes (40.5 %,
chi-square test p value =2.9e-5) and all genes (29.6 %,
p value =1.0e-9) (Fig. 3b). The median number of
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Fig. 2 Parainflammation decreases in response to NSAID treatment in mouse organoids. a The adenoma/MIN log2 expression fold ratio of Pl
genes (x-axis) against the sulindac-treated adenomas/adenoma log2 expression fold ratio of Pl genes (y-axis). Colors represent significance in the
differential expression analyses (false discovery rate (FDR) <1 %). Along the x-axis it can be observed that 17 of 19 significant genes in adenoma/
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same experiment.
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overexpressing cell lines was 125 (19.7 % of carcin- both between cancer types and within cancer types,
oma samples) for the PI genes compared with 39 varying from high levels of PI in head and neck and
(6.2 %, U-test p value=2.7e-5) across random in- pancreatic cancer to low levels in samples originating
flammatory response genes and only 31 (4.9 %, p value=  from prostate and liver (Fig. 3c). Thus, the PI expres-
2.6e-8) across random genes. sion and PI score patterns suggest that PI occurs

We next computed a score for each cell line by per- across most cancer types, although not uniformly. It is
forming single-sample gene set enrichment analysis important to note that while the PI score is based on a
(ssGSEA) [23] for the PI gene signature. We defined this  signature of 40 genes, the PI phenomenon is not re-
score, which is an enrichment measure of the overex- stricted to these genes alone but has a wide effect on
pression of the PI genes, as the PI score (Additional numerous genes over many different molecular func-
file 7). The PI score revealed major differences in PI  tions (Additional file 8). Finally, we observed a high
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Fig. 3 Parainflammation genes are overexpressed in carcinoma cell lines. a Heatmap of the expression of 39 PI genes in 634 carcinoma cell lines
and 180 hematopoietic and lymphoid cancer cell lines from CCLE. One Pl gene, IFITM3, is not represented in CCLE. Of the Pl genes, 19 show
significantly higher expression in carcinomas compared with cancers originated from immune cell types; 10 Pl genes are more abundant in
immune cancers. b Left: the distribution of expression of two representative genes across 634 carcinoma cell lines from CCLE. We detected the
expression peak and counted the number of samples that express the gene twofold (1 in log2 scale) more than the peak. The top example,

the gene CSNKTAT (CKla), which here represents a housekeeping gene, is a typical normally distributed gene with low “overexpression” rate

and the bottom example, BST2, which is part of the PI signature, shows a gene with a bimodal expression pattern, corresponding to a high
“overexpression” rate. Right: the cumulative overexpression rates for the Pl genes, all inflammatory response genes, and all genes. Of the Pl
signature genes, 29 (74.4 %) are overexpressed in at least 10 % of the carcinoma cell lines (=64 samples) compared with 29.6 % and 40.5 % of all
and inflammatory response genes, respectively. The yellow curve (Pl genes) shows remarkably higher levels of overexpression along the whole
graph. ¢ Spread plot of tThe Pl score in 634 carcinoma cell lines grouped by tissue types. The dashed blue line differentiates Pl+ and Pl— samples
as defined by the proportion of Pl+ of tumor samples

correlation between the PI score and scores derived and the relevance of the PI mouse models to a
from the downregulated PI genes (Spearman R =0.654, phenomenon that is also observed in human.

p value <le-20; Additional file 3: Figure S3). This once Next, we explored the representation of the PI signature
again confirms the validity of our gene sets in human  in primary human cancers. As differences in PI expression
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between individual samples may be explained solely by
differences in purity levels of the samples [24], we de-
signed a simple adjustment procedure for removing in-
flammatory gene expression originating from immune
infiltrations (Additional file 3: Figure S4). This adjustment
procedure consists of two steps: first, utilizing expression
data of normal tissues from the Genotype-Tissue Expression
(GTEXx) project [25], we learned the normal association of
gene expression with immune infiltrations in each tissue
type. We then used the expression level of PTPRC
(CD45), a pan-hematopoietic exclusive marker expressed
in all leukocyte cell types but not in other tissues, as an
estimate for immune infiltrations. Finally, we applied the
gene-specific, tissue-specific learned slopes to adjust the
expression levels of The Cancer Genome Atlas (TCGA)
tumor samples. This procedure diminishes expression dif-
ferences among samples which are most likely explained
by differences in purity.

We collected gene expression data for 6523 primary
tumors and 582 patient-matched normal samples of 18
cancer types from TCGA (Additional file 3: Table S3;
http://cancergenome.nih.gov) and performed the adjust-
ment procedure. As in the cancer cell lines, we com-
puted the scores for the PI gene signatures using the
adjusted expression of each tumor sample (Additional
file 9). Cancer samples demonstrated a wide range of PI
scores regardless of CD45 expression (Fig. 4a; Additional
file 3: Figure S5). Furthermore, malignant tumors dem-
onstrated significantly higher levels than adjacent nor-
mal samples, both overall and across most tested cancer
types (Fig. 4b; Additional file 3: Figure S6). As in cell
lines, the PI score analyses revealed considerable differ-
ences between cancer types and within cancer types
(Fig. 4c). We next defined the PI threshold as the score
that appears in only 5 % of the adjacent normal samples;
cancer samples over the threshold were designated as PI
positive (PI+). Strikingly, over all cancer types 25.9 % of
the tumor samples were PI+, compared with a null ex-
pectation of 5 %, with varying proportions among cancer
types, from 77.7 % in pancreatic adenocarcinoma
(PAAD) to none in kidney renal clear cell carcinoma
(KIRC). The PI score of a sample is highly correlated
with the number of upregulated genes in the sample
(R =0.649; Additional file 3: Figure S7). Accordingly,
the median number of PI genes activated in PI+ samples
is 17 (42.5 %; compared with eight in PI- samples), the
same number we observed to be upregulated in the aden-
oma organoids. Interestingly, we observed that different
sets of PI genes are activated in different cancer types
(Fig. 4d). Finally, using the 25.9 % proportion of PI+ sam-
ples, we determined a threshold of PI+ samples in the
cancer cell lines dataset (where there are no normal sam-
ples to determine the threshold). Remarkably, we found
high concordance in the abundance of PI+ samples in
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cancer types between tumors and cell lines (Pearson co-
efficient R =0.875, p value = 1.9e-4 (Fig. 4e). These re-
sults again suggest that the PI gene signature is being
expressed by the cancer cells, distinct from immune
infiltration.

We noted earlier that the PI gene signature is enriched
in genes related to the IFN signaling pathway but not to
the NF-kB pathway. To test this hypothesis further we
first expanded the list of PI genes, identifying 215 genes
with expression levels highly correlated with the PI score
(R>0.5) in the carcinoma cell lines (Additional file 8).
We then performed transcription factor binding enrich-
ment analysis using the ENCODE ChIP-Seq Significance
Tool [26] (Additional file 3: Table S4). The analysis again
affirmed our claim that PI has a distinct pattern of in-
flammation, where the top enriched transcription factors
were STAT2, IRF1, STAT1 and STAT3, c-Fos, and
PRDM1, but only modest enrichment for a key regulator
of inflammation such as NF-«B. We further utilized
enrichment scores of functional immune gene sets
(Additional file 3: Table S5) and correlated them with
the PI score in both tumors and cell lines. As expected,
this analysis revealed high correlations in all datasets
with the type I IEN response, which is a hallmark of
PI, but a much weaker association with the tumor ne-
crosis factor and NF-«B signaling pathways (Fig. 5a;
Additional file 3: Table S6). We also did not detect any
correlation with the immune cytolytic activity metric
[27], which is a well-described anti-tumor immunity
measure. It should be pointed out that the same corre-
lations were also found in the CCLE dataset, again
showing that PI is activated in the tumor and not in its
microenvironment. These results again support our claim
that PI is distinct from canonical chronic inflammation or
other previously described inflammatory responses.

Notably, certain PI genes are members of the Toll-like
receptor (TLR) activation pathway (TLR2, CD14, and
TIRAP) and, when upregulated, could have mediated an
innate immune response to tissue-associated microbiota,
igniting conventional inflammation with inflammatory
infiltrate, secondary to PI. We therefore hypothesized
that PI may enhance the recruitment of certain immune
cell subsets to the tumors. To this end, we utilized
hematoxylin and eosin (H&E) estimations provided by
TCGA and gene signature enrichments of immune subset
types from Rooney et al. [27] (Additional file 3: Table S5)
and associated them with PI scores in tumor samples
across cancer types. H&E estimations of major immune
subtypes (lymphocytes, monocytes, and neutrophils) did
not, however, show significant associations with PI
scores across different cancer types (Additional file 3:
Table S7). We further correlated PI scores of individual
tumors with specific immune subsets based on gene
signature enrichments in both TCGA and CCLE samples
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(Fig. 5b; Additional file 3: Table S8). Among the immune
subsets the PI score demonstrated highest correlations
across tumor types with the macrophage signature (aver-
age Spearman coefficient = 0.362). However, we observed
the same trend of correlation between the PI score and
macrophages in cell lines (average R = 0.407). This obser-

vation rules out the

possibility that PI is dependent on

macrophages infiltrating the tumor. Moreover, whereas
the role of macrophages in orchestrating PI has been pre-
viously suggested [7], our finding supports this inference
yet suggests that the tumors themselves may fulfill the
macrophage inflammatory function in PI by expressing
macrophage-relevant genes. Importantly, we did not ob-
serve any correlation with CD8+ enrichment, which is the
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Fig. 5 Cancer parainflammation resembles macrophage infiltration. a Heatmap of the Spearman correlations between the Pl score and immune
functional gene sets across different cancer types. Correlations in CCLE are shown as well (Additional file 3: Tables S5 and $6). b Heatmap of the
Spearman correlations between the Pl score and the immune subset enrichments calculated using gene sets (Additional files 6 and 9) across
different cancer types derived from both TCGA (7) and CCLE (C). Similar correlation trends are observed for a cancer type whether the data were
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main component of the “immunoscore” [28], thus suggest-
ing that PI may represent a different immunotype, which,
similarly to the immunoscore, may serve as a clinical par-
ameter in evaluating tumorigenesis.

Thus, the PI signature is widely expressed in human
tumors, distinguishing the tumor cells from adjacent
normal tissue and the tumor microenvironment, with
certain cancer types having stronger PI signatures than
others. PI appears to be primarily a cancer cell-
autonomous phenomenon, distinct from all other well-
established cancer-promoting immune inflammatory
responses.

Pl is associated with poor prognosis and p53 mutations

Based on the analysis of the CKla-deficient mouse
models, PI itself may either serve as a tumor suppressor
mechanism or help promote carcinogenesis [6]. To de-
termine PI's role in human cancer, we analyzed clinical
data from TCGA, which allowed us to examine the associ-
ation of PI with survival time and other clinical features
available from TCGA database in 18 cancer types. Our
analysis revealed higher mortality rates for patients with

high PI scores in most cancer types (Additional file 3:
Table S9). Prominent examples of high PI score tumors
associated with bad prognosis are head and neck squa-
mous cell carcinoma (HNCS; Cox regression p value =
1.4e-3), low-grade glioma (LGG; p value = 8.4e-4), lung
adenocarcinoma (LUAD; p value = 9.4e-3), and pancre-
atic adenocarcinoma (PAAD; p value = 6.7e-5). Median
time of mortality of PI+ compared with PI- patients
was 1.54-, 3.50-, 1.33-, and 3.53-fold faster, respectively
(Fig. 6a; Kaplan-Meier plots). A pan-cancer survival
analysis of all samples confirmed a negative correlation
of PI with survival, showing a consistent earlier mor-
tality for the PI+ patients (p value =7.1e-29; Fig. 6b).
Notably, low-grade glioma has a low overall PI score;
however the small subset of PI+ patients have a sig-
nificantly lower survival rate, indicating a value of
screening for PI even in tumor types with low PL
Analysis of other clinical features, including age, gen-
der, race, and smoking, showed that the PI score is
generally independent of these variables (Additional
file 3: Table S10). Accordingly, multivariate regression
analysis controlling for age and smoking did not
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Fig. 6 Parainflammation is associated with worse prognosis. a Kaplan-Meier plots for Pl+ samples (blue) versus Pl— samples (red) in head and neck
squamous cell carcinoma (HNSC), lower grade glioma (LGG), lung adenocarcinoma (LUAD), and pancreatic adenocarcinoma (PAAD). The p values
were calculated using Cox proportional hazard regression of the Pl scores and the log-rank method between Pl+ and Pl— samples. b Pan-cancer
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change the power of the PI score in predicting sur-
vival (Additional file 3: Table S9).

In the CKla-deficient mouse model, PI promotes car-
cinogenesis only after loss of p53, suggesting that PI+
samples will be enriched with p53 mutations. We there-
fore investigated the relationship of PI and the status of
p53 in human cancer. By analyzing the mutation data
from whole-exome sequencing provided by TCGA
across all samples with expression data, we found 1309
samples with mutations in the TP53 gene versus 2363
with wild-type (WT) TP53. The PI score was sig-
nificantly higher in the mutated p53 samples (U-test
p value = 1.4e-47) and 35.4 % of the p53 mutated samples
were PI+ compared with 152 % in WT p53 samples
(Fig. 7a). This result was recapitulated in the carcinoma
cell lines—29.3 % PI+ in mutated p53 and 20.6 % in
WT—although less significant (p value = 0.016). p53 mu-
tations are observed more frequently in cell lines than
in primary tumors (59.8 % versus 35.7 %), possibly
reflecting the growth advantage of p53 mutants in tis-
sue culture, which may hinder a stronger association
between p53 mutations and PI in cancer cell lines. Not-
ably, cancer types with known, albeit unexplained low
rates of p53 mutations, such as kidney cancer types and
prostate adenocarcinoma (PRAD) [29], tend to show
low rates of PI, whereas cancers with high p53 muta-
tion rates, such as pancreatic adenocarcinoma (PAAD)
and colon adenocarcinoma (COAD), show high rates of
PI (R =0.740, p value = 0.002) (Fig. 7b). Finally, it is well
known that patients harboring tumors with p53 muta-
tions have significantly worse prognosis [30] (in TCGA:

Cox regression p value =4.9e-15). We tested whether
the association of PI with survival relates to p53 muta-
tions. For 2954 patients with both mutations and clinical
data, our analysis revealed only a small decrease in signifi-
cance between controlled and uncontrolled Cox regression
analyses (p value without controlling for p53 =4.7e-17,
p value with controlling for p53 =2.4e-11), indicating
that the poor survival associated with PI cannot entirely
be attributed to p53 loss.

Pl response to NSAID treatment in human tumors

Our mouse tumor data indicate that tumor PI is sup-
pressed by sulindac treatment (Fig. 2). Prolonged NSAID
treatment was found to reduce both the incidence and
the mortality of human cancer [15-17]. To study the
relevance of PI in NSAID treatment in humans, we first
searched for public expression data of NSAID treatment
in cancer cell lines. While there are several such data-
bases, notably the Broad Institute Connectivity Map (C-
Map) [31], most of the data are limited to cell lines that
show low PI levels before treatment and, therefore, no
treatment effect is expected. Nevertheless, we observed
one particular cell line with a high PI score, SCC-25, an
oral cancer cell line treated with 2 mM of aspirin
(GSE58162). This cell line has a high PI score, which
ranks it 19th out of 634 CCLE carcinomas. We observed
a sharp decrease in the expression of the PI genes in re-
sponse to the treatment, and in two of the three repli-
cates the PI gene set is significantly downregulated
compared with all genes: U-test p value = 8.6e-4, 0.318, and
0.009 in the three replicates, respectively. Similarly, we
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found that the PI score decreased in all three replicates fol-
lowing aspirin treatment (Fig. 8a). We further noticed that
the response to aspirin is significantly enhanced when
examining a large set of genes that are upregulated in cor-
relation with the PI score; 74.0 % of the top 215 correlated
genes are downregulated in response to aspirin treatment
(U-test p value = 8.1e-25; Additional file 3: Figure S8).

To confirm these computational findings, we treated two
human cancer cell lines, predicted to have high PI scores
from the CCLE dataset analysis, with sulindac: the BxPC3
cell line, a pancreatic cancer cell line with a PI score which
ranks it ninth out of the 634 CCLE carcinomas, and the
T84 cell line, a colorectal cancer cell line ranked 18th.
Sulindac treatment led to a decrease of more than 50 % in
the expression of all tested PI genes which are highly
expressed in BxPC3 and T84 cells, respectively (Fig. 8b, c).
This, together with the analyses of the SCC-25 cell line and
the mouse tumor organoids (Fig. 2), confirms the repressive
effect of NSAID treatment on PI, suggesting that part of
the cancer-prevention mechanism of NSAIDs may be at-
tributed to PI suppression.

Discussion

Inflammation is emerging as one of the hallmarks of
cancer [1] yet histologically detectable chronic inflam-
mation characterizes early tumor development in only a
minority of solid tumors [32]. In this respect it is sur-
prising that NSAID treatment is remarkably effective in

reducing mortality rates associated with major human
solid tumors, albeit their mechanism of action in cancer
is controversial and there is no common property distin-
guishing cancers in which NSAID treatment is benefi-
cial. NSAIDs are non-selective Cox2 inhibitors and it is
thus not surprising that they are effective in cancers where
Cox2 is indeed elevated. However, NSAIDs are also effect-
ive in cancers where Cox2 is not activated, occurring
through hereditary or stochastic mutations and not pre-
ceded by prolonged inflammation. This indicates that in-
flammation may have a covert course that plays a major
unappreciated role in cancer. Accordingly, in spite of
many studies addressing this question, the mechanism of
NSAID action in cancer prevention remains mostly elu-
sive. Medzhitov coined the term parainflammation for a
low-grade inflammatory response, referring to an adaptive
response due to tissue stress or malfunction [7]. Here we
defined PI on the basis of analysis of existing databases
and experimental data: an epithelial-autonomous inflam-
matory response observed in genetically modified mouse
models. We then investigated the occurrence of PI in hu-
man cancer, asking (a) whether PI is a universal cancer
phenomenon and (b) does PI have clinical/prognostic im-
plications in human cancer. Using several large sets of
human cancer samples, we detected frequent occurrence
of PI in human cancers with several interesting features:
PI is cancer cell-autonomous, readily detectable in human
carcinoma cell lines; its repertoire is distinct from other
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common inflammatory signatures; and it doesn’t bear the
phenotypic hallmarks nor some of the regulatory char-
acteristics of common inflammatory reactions (e.g., NF-
kB). PI is very common in certain types of cancer, in-
cluding bladder, head and neck, cervical, and colorectal
cancer, and conspicuously absent in other types, such as
hepatocellular carcinoma, prostate and endometrial
adenocarcinoma, and low grade glioma.

In the CKla-deficient mouse model, PI promotes tumori-
genesis only after loss of p53. We therefore investigated
whether p53 loss/mutation in human tumors is associated
with occurrence of PI Indeed, the p53 status of the tumor
displays a high association with PI in a variety of cancer
types. A similar association of p53 mutation or loss with PI
occurs across the entire spectrum of cancer types: those
with low PI, like prostate, liver, thyroid, and melanoma,
have few p53 mutations. Why certain cancer types have
low p53 mutation frequencies with no evidence of p53
pathway suppression is an enigma. The strong association
between PI and p53 mutations in cancer suggests that PI
may be one of the major driving forces for inactivating the
p53 pathway. This corresponds to the relationship between
PI and p53 deficiency in mouse tumor models, showing a
sharp PI switch from a tumor suppressor to a tumor pro-
moter mechanism upon p53 loss [6]. Such a tumorigenesis
switch mechanism may be a particularly powerful cancer
driver mechanism and is thus possibly one of the main
mechanisms enforcing p53 mutations in cancer, which can-
not be substituted by loss of other tumor suppressor genes.

While we are not aware yet of other means of switching PI
from a cancer suppressor to a promoter, it is possible that
certain other tumor-specific genetic aberrations may fulfill
a function similar to p53 inactivation, pushing cancer pro-
gression. Indeed, PI is associated with worse prognosis, be-
yond the p53 status of the tumor. These retrospective
analyses could indicate the value of screening individual
tumors for PI manifestation as a prognostic or treatment/
prevention tool. Particularly relevant in this aspect is
NSAID treatment. Retrospective analysis of cancer pa-
tients who were routinely treated with aspirin, including
low dose aspirin, for non-cancer indications showed a sur-
prisingly beneficial effect in reducing cancer mortality fol-
lowing surgical removal of the tumor [17]. Nearly all the
cancer types in which beneficial aspirin effects were noted
(e.g., colorectal, pancreatic, lung, and breast) [17, 18, 33]
are characterized by high PI, either throughout the entire
cancer type or a significant subtype, calling for implemen-
tation of PI screening of tumor biopsy or resection
samples. Supporting our hypothesis implicating PI sup-
pression as an important anti-tumorigenic mechanism of
NSAID is our study of a mouse tumor model and human
cancer cell lines displaying high PI: we demonstrated ef-
fective sulindac repression of the majority of the tested PI
genes upregulated in the tumor cells. Thus, whereas we
are still far from understanding the origin and mecha-
nisms of PI emergence in tumors, its recognition and
monitoring may be of great value in the clinical care of
cancer.
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Conclusions

In this work, we have characterized a novel PI signature
present in 25.9 % of all human tumors and in the vast
majority of certain types of cancer, such as gastrointes-
tinal, lung, bladder, and head and neck tumors. PI has a
distinct signature, originating endogenously from the
tumor cells, and does not coincide with canonical in-
flammation. Our data indicate that PI is linked to p53
mutations, suggesting it might be a major driving force
for p53 mutation. As PI is suppressible by NSAID treat-
ment in vitro and is particularly prominent in cancers
in which aspirin treatment is beneficial, we propose
that a tumor PI signature should be tested as a poten-
tial biomarker/clinical indication for NSAID chemopre-
vention and treatment of cancer.

Methods

Data analysis

Pl gene signature

We obtained raw RNA-seq counts from Pribluda et al.
[6] for WT, CKla-deficient and CKla-p53 doubly deficient
gut epithelium, each with two replicates (Additional file 2).
Using the DESeq2 package for R [34], we calculated
p values and fold ratio changes against the WT counts.
Upregulated genes were chosen as genes with fold ratio
>2 and adjusted p value <0.01. Genes upregulated in the
mouse models were then intersected with our list of in-
flammatory response genes. The downregulated gene sig-
nature was defined in the same manner but was more
than twofold lower in the deficient mouse models com-
pared with WT.

Upstream regulator analysis

The analysis was performed through the use of QIAGEN’s
Ingenuity® Pathway Analysis (IPA°, QIAGEN Redwood
City, http://www.qiagen.com/ingenuity). Figure 1c shows
the top 18 non-chemical regulators; Additional file 4
presents all data.

Adjustment for blood admixture

Infiltration of immune cells into tumor samples may in-
fluence the analysis of gene expression profiles of the
tumor cells and these should therefore be adjusted. The
level of blood cells in tumor samples may be efficiently
analyzed using leukocyte-specific expression profiles,
e.g., by the ESTIMATE score [35]. We found tight cor-
relation between the ESTIMATE measurement and
CD45 expression levels over tumor samples across all
cancer types (Additional file 3: Figure S4a). The ESTI-
MATE score, which is calculated using a gene signature
of 141 genes, might be perturbed by our notion of PI;
thus, we adjusted the expression levels of each gene ac-
cording to CD45 expression alone. Using expression
data of normal samples from the Genotype-Tissue
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Expression Project (GTEx) [25], we first fit a linear curve
for each gene according to its expression level and the
expression level of CD45 in each tissue type (Additional
file 3: Figure S4b). The slope learned from this section
represents the normal tissue-specific association between
the gene expression levels and the immune infiltration
levels. Using this slope we then adjust the expression
levels of the gene for all TCGA samples in the corre-
sponding cancer type (Additional file 3: Figure S4c).
Finally, the expression of all samples is shifted so the
minimal level for each gene is 0.

Pl score

The PI score is the ssGSEA score of the 40 PI genes
(Additional file 3: Table S1). A TCGA tumor sample was
considered PI positive (PI+) if its PI score is over 0.2951.
This threshold is found in less than 5 % of TCGA adja-
cent normal samples and corresponds to 25.9 % of the
tumor samples overall. In the CCLE dataset only 9.5 %
of the carcinoma cell lines were over this threshold.
However, the ssGSEA method is highly sensitive to dif-
ferent expression platforms with different numbers of
genes and is thus incomparable between these. Of the
carcinoma cell lines, 25.9 % have a PI score over 0.1859.
This notion is true for other datasets used in this article
for calculating the PI scores: the scores should only be
compared between samples from the same expression-
measuring platform in the species. To allow some de-
gree of comparison between the different datasets, for
visualization the scores were shifted in each data set
such that PI+ samples have positive scores.

Organoid culture

Organoids were produced from WT and AP mice as
previously described [13, 36]. For adenoma and APCMin/+
organoids, adenomas and normal adjacent tissue were sep-
arated and processed accordingly. All organoids were
grown in Advanced DMEM/F12 culture medium (Gibco)
supplemented with Noggin, EGF, bFGF (Peprotech,
1:1000), R-spondinl (Peprotech, 1:500) and B27 (Gibco,
1:50). For staining, organoids were fixed in 4 % paraformal-
dehyde and incubated overnight with the primary antibody
(IFITM2/3 - 1:200, Abcam). Secondary antibody was Alexa
fluor-647 donkey anti-rabbit (Molecular Probes, 1:1000).
Hoechst (1 pg/ml, Molecular Probes) was used to stain
nuclei.

Cmin/ +

NSAID treatment of human cancer cell lines
BxPC3 cells were grown in RPMI medium. T84 cells
were grown in 1:1 DMEM/F12 medium. For sulindac
treatment, cells were incubated with 400 uM sulindac
(Sigma) for 48 h before harvesting. Controls were
treated with DMSO, the NSAID vehicle.
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RNA extraction and qPCR analysis

RNA was extracted using the miRNeasy kit (Qiagen).
c¢DNA was produced using qScript cDNA kit (Quanta).
Primers used for qPCR analysis can be found in Additional
file 3: Table S11.

Additional files

Additional file 1: List of 840 inflammatory response genes based on
three manually curated databases: inflammatory response gene lists
curated by Ingenuity, InnateDB innate immunity genes, and the
Immunogenetic Related Information Source (IRIS). (XLSX 74 kb)

Additional file 2: Results from differential expression analyses of
CKla-deficient and CKla-p53-deficient gut epithelium versus wild-type gut
epithelium. Raw RNA-seq counts were obtained from Pribluda et al. [6].
Each set has two replicates. The analysis was performed using the
DESeq2 package for R. (XLSX 4406 kb)

Additional file 3: Figure S1. qPCR of Pl genes in organoids. Figure S2.
Expression of Pl genes in cell lines. Figure S3. Correlation between the Pl
scores derived from up- and downregulated genes. Figure S4. Adjusting
TCGA expression levels to immune infiltrations. Figure S5. Correlation of
the PI score with CD45 expression. Figure S6. Pl scores in TCGA cancer
and adjacent normal samples. Figure S7. The PI score is correlated with
the number of activated Pl genes. Figure S8. Pl-associated gene responses
to aspirin treatment. Table S1. Parainflammation gene signature. Table S2.
Down-regulated parainflammation genes. Table S3. List of samples
acquired from TCGA. Table S4. Transcription factor binding enrichment
analysis of PI genes. Table S5. Immune gene signatures. Table. S6. PI score
and functional immune gene sets. Table S7. Pl score and immune subsets
estimated by hematoxylin and eosin staining. Table S8. Pl score and
immune subset estimate by gene signatures. Table S9. Survival and
parainflammation. Table S10. Clinical features and parainflammation.
Table S11. Primers used for gPCR analyses. (PDF 1608 kb)

Additional file 4: Results from an Ingenuity upstream regulator analysis
performed on the 40 Pl genes. (XLSX 123 kb)

Additional file 5: Results from a differential expression analysis of
organoid cultures from APC-mutated normal gut epithelium (MIN) versus
adenomatous polyps of APC™™* mice (Adenoma). See “Methods” for
organoid culture. Each set has three biological replicates. Raw reads and
counts are available at the GEO under accession GSE81836. The analysis
was performed using the RSEM software package. (XLSX 773 kb)

Additional file 6: Results from a differential expression analysis of
organoid cultures from adenomatous polyps of APC™™* mice
(Adenoma) versus adenomatous polyps of APC™™* mice treated with
sulindac. See “Methods” for organoid culture and sulindac treatment.
Each set has three biological replicates. Raw reads and counts are
available at the GEO under accession GSE81836. The analysis was
performed using the RSEM software package. (XLSX 731 kb)

Additional file 7: Parainflammation (Pl) scores for 634 carcinoma cell
lines from the CCLE project. The Pl score is calculated using ssGSEA for
the 40 PI genes. (XLSX 69 kb)

Additional file 8: Spearman coefficients of correlations between gene
expression profiles and the Pl scores across the carcinoma cell lines.
Many genes not in part of the Pl signature are highly correlated with the
Pl score, suggesting their role in PI. (XLSX 422 kb)

Additional file 9: Parainflammation (Pl) scores for 6523 primary tumors
and 582 patient-matched normal samples of 18 cancer types from TCGA.
The PI score is calculated using ssGSEA for the 40 Pl genes using the
immune-adjusted expression profiles. (XLSX 260 kb)
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