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ABSTRACT OF THE DISSERTATION

Enabling Resilience in Cyber-Physical-Human Water Infrastructures

By

Qing Han

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2019

Professor Nalini Venkatasubramanian, Chair

Rapid urbanization and growth in urban populations have forced community-scale infrastruc-

tures (e.g., water, power and natural gas distribution systems, and transportation networks)

to operate at their limits. Aging (and failing) infrastructures around the world are becom-

ing increasingly vulnerable to operational degradation, extreme weather, natural disasters

and cyber attacks/failures. These trends have wide-ranging socioeconomic consequences and

raise public safety concerns. In this thesis, we introduce the notion of cyber-physical-human

infrastructures (CPHIs) - smart community-scale infrastructures that bridge technologies

with physical infrastructures and people. CPHIs are highly dynamic stochastic systems

characterized by complex physical models that exhibit regionwide variability and uncer-

tainty under disruptions. Failures in these distributed settings tend to be difficult to predict

and estimate, and expensive to repair. Real-time fault identification is crucial to ensure

continuity of lifeline services to customers at adequate levels of quality. Emerging smart

community technologies have the potential to transform our failing infrastructures into ro-

bust and resilient future CPHIs.

In this thesis, we explore one such CPHI - community water infrastructures. Current urban

water infrastructures, that are decades (sometimes over a 100 years) old, encompass diverse

geophysical regimes. Water stress concerns include the scarcity of supply and an increase

xiv



in demand due to urbanization. Deterioration and damage to the infrastructure can disrupt

water service; contamination events can result in economic and public health consequences.

Unfortunately, little investment has gone into modernizing this key lifeline.

To enhance the resilience of water systems, we propose an integrated middleware framework

for quick and accurate identification of failures in complex water networks that exhibit uncer-

tain behavior. Our proposed approach integrates IoT-based sensing, domain-specific models

and simulations with machine learning methods to identify failures (pipe breaks, contami-

nation events). The composition of techniques results in cost-accuracy-latency tradeoffs in

fault identification, inherent in CPHIs due to the constraints imposed by cyber components,

physical mechanics and human operators. Three key resilience problems are addressed in this

thesis; isolation of multiple faults under a small number of failures, state estimation of the

water systems under extreme events such as earthquakes, and contaminant source identifica-

tion in water networks using human-in-the-loop based sensing. By working with real world

water agencies (WSSC, DC and LADWP, LA), we first develop an understanding of opera-

tions of water CPHI systems. We design and implement a sensor-simulation-data integration

framework AquaSCALE, and apply it to localize multiple concurrent pipe failures. We use

a mixture of infrastructure measurements (i.e., historical and live water pressure/flow), envi-

ronmental data (i.e., weather) and human inputs (i.e., twitter feeds), combined and enhanced

with the domain model and supervised learning techniques to locate multiple failures at fine

levels of granularity (individual pipeline level) with detection time reduced by orders of

magnitude (from hours/days to minutes). We next consider the resilience of water infras-

tructures under extreme events (i.e., earthquakes) - the challenge here is the lack of apriori

knowledge and the increased number and severity of damages to infrastructures. We present

a graphical model based approach for efficient online state estimation, where the offline graph

factorization partitions a given network into disjoint subgraphs, and the belief propagation

based inference is executed on-the-fly in a distributed manner on those subgraphs. Our pro-

posed approach can isolate 80% broken pipes and 99% loss-of-service to end-users during an

xv



earthquake.

Finally, we address issues of water quality - today this is a human-in-the-loop process where

operators need to gather water samples for lab tests. We incorporate the necessary abstrac-

tions with event processing methods into a workflow, which iteratively selects and refines

the set of potential failure points via human-driven grab sampling. Our approach utilizes

Hidden Markov Model based representations for event inference, along with reinforcement

learning methods for further refining event locations and reducing the cost of human efforts.

The proposed techniques are integrated into a middleware architecture, which enables com-

ponents to communicate/collaborate with one another. We validate our approaches through

a prototype implementation with multiple real-world water networks, supply-demand pat-

terns from water utilities and policies set by the U.S. EPA. While our focus here is on water

infrastructures in a community, the developed end-to-end solution is applicable to other in-

frastructures and community services which operate in disruptive and resource-constrained

environments.
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Chapter 1

Introduction

In this chapter, we motivate this thesis by first introducing the current status of our com-

munity services and urban infrastructures that are aging and failing, and the notion of

cyber-physical-human infrastructures (CPHIs) that will be used throughout this thesis. A

major issue is to enable quick and accurate fault identification in such CPHI systems prone

to unforeseen failures and external malicious attacks. We illustrate key challenges in fault

identification and describe our efforts towards addressing these problems using community

water distribution infrastructures as a driving use case. Because water as a growing scarce

natural resource is a critical lifeline to our daily life. Indeed, there are few things more

important to a functioning society than access to clean water [106]. In particular, to en-

hance resilience of water systems, we propose a sensor-simulation-data integration platform

and strive to fully exploit the potential of this platform by addressing three key resilience

problems.
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Figure 1.1: America’s vulnerable infrastructures in 2017 (grade - D+).

1.1 Cyber Physical Human Infrastructures (CPHIs)

More than half of the World’s population now lives in urban areas [29]. The United Nations

estimates that this shift from a primarily rural to a primarily urban population is projected

to continue for the next couple of decades (68% projected by 2050) [11]. With the surge

in urban populations and the rapid development of the global economy, community-scale

infrastructures (e.g., water, natural gas, power distribution systems and transportation net-

work) are being forced to operate at their capacity limits. As an example shown in Fig. 1.1,

America’s infrastructure scored a D+ based on the 2017 infrastructure report card [9]. It is

reflecting that the infrastructure is in poor to fair condition and mostly below standard, with

many components approaching the end of their service life. As a mainstay of the national

economy, security and societal functioning, these lifelines involve the production, transport

and management of essential goods and services. In recent years, these infrastructures are

subject to stress caused by a variety of factors - aging, rapid urbanization and environmental

change. As a result, they have become increasingly complex and often vulnerable to failures
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due to natural (e.g., hurricane and earthquake), technological (e.g., cyber attacks/failures)

and man-made (e.g., human errors) events.

In this thesis, we introduce the notion of cyber-physical-human infrastructures (CPHIs)

- smart community-scale infrastructures that are instrumented, networked, controlled and

regionally distributed with human embedded in their operations. CPHI systems bridge tech-

nologies with physical infrastructures and people, and they must operate dependably, safely,

securely, efficiently and in real time [104]. As engineered systems, CPHIs are highly dy-

namic stochastic systems characterized by complex physical models that exhibit region-wide

variability and uncertainty under disruptions. Unfortunately, failures in these distributed

settings tend to be difficult to predict and estimate, and expensive to repair, which could re-

sult in community disruptions ranging from temporary interruptions in services to extended

loss of business and mass relocation of residents. Modernizing these infrastructures is the

key to a resilient and sustainable future, which entails revolutionizing their design, deploy-

ment and operation with new architectures and added intelligence. The American Society

of Civil Engineers estimates that investment over $2 trillion are required by 2025 to improve

the resilience to critical deficiencies in the nation’s roads, railroads, drinking water distri-

bution, wastewater management, electrical grids, etc [8]. Resilience is, in general, defined

as “the ability to prepare and plan for, absorb, recover from, and successfully adapt to ad-

verse events” by the National Academies of Science [37]. Specifically in the context of urban

infrastructures, it is the ability to withstand disruption events with little loss in function,

and rapidly and efficiently restore functionality if loss incurred, according to the department

of homeland security. Emerging smart community technologies for sensing, computing and

communication are being embedded in a multitude of objects and structures in the physical

environment - this has shown great potential to transform our failing infrastructures into

robust and resilient future CPHIs [104].

As infrastructure systems become more and more autonomous with advances in cyber tech-
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nologies, humans play critical roles in their operations. Leveraging citizens working together

with cyber and physical worlds as a part of the execution event is a key component of ef-

ficiently running community-scale systems [28]. Urban infrastructures serve as lifelines to

satisfy human needs, the human, in turn, can help a system make intelligent decisions and

achieve its goals (ultimately also citizens’ goals) [117]. Human knowledge and inputs are

indispensable in settings where sensing needs are uncertain and expensive. For example in

firefighting, an expert understanding of fire protection engineering and spread model will

help first responders implement execute suppression and rescue operations. During power

and water outage, technicians are dispatched to deal with issues that can only be solved with

human intervention.

Designing, operating and maintaining CPHI systems for a particular service in a safe manner

during its entire lifetimes has been recognized a critical issue worldwide [130]. Their regional

scope, system wide dynamics and long-term nature distinguishes them from more standalone

cyber-physical systems (CPSs), e.g., medical devices, autonomous vehicles and manufactur-

ing components. This has presented a multitude of unique challenges including operation

- optimization under multiple operational timescales is critical to enable (near) real-time

control and provisioning decisions; architecture - new architectural principles are required to

mediate new supply-demand dynamics driven by the growing urbanization; and adoption -

human, organizational and ecosystem constraints should be considered as an integral part of

the design and operational process. They can only be successfully addressed through a mul-

tidisciplinary approach, integrating together techniques from engineering, computer science,

and social and behavioral sciences.
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1.2 Fault Identification in CPHI Systems

Cyber-Physical-Human Infrastructure systems interact with the physical world and are ubiq-

uitous in our daily life. They must operate reliably in the face of unforeseen failures and

external malicious attacks. Examples of CPHI systems include transportation, utility (power,

water and gas distribution), and communication networks. Many of these systems are prone

to damages in their physical infrastructures, and cyber attacks on their data management

and communication layers. CPHIs, as large-scale, aging and deteriorating systems, suffer

from unique vulnerabilities for which appropriate fault identification techniques need to be

developed. Today, the detection of anomalous events in CPHIs is time consuming and of-

ten takes hours or even days [118]; these failures can cause irreparable harm to people that

depend on them. For example, an electric transformer fire caused massive blackout in Man-

hattan (U.S.) in 2019. The utility company spent 5 hours to identify the exact cause of the

operational failure and weeks to fully recover the system, which left 72, 000 customers in the

dark on that day and more than 50, 000 customers facing a second power outage one week

later [12]. A failed insulator paralyzed the D.C. Metro system (U.S.) in 2015. The entire

subway system was shut down for a whole day in order to perform system-wide inspections

and repair [6]. A SCADA (supervisory control and data acquisition) system breach released

1 million liters of untreated sewage into local waterways at Maroochy Water Services (Aus-

tralia) in 2000. It took over 3 months to discover that someone was hacking into their

SCADA system and deliberately causing the problems [116].

The promise of cyber-physical system (CPS) is pushed by several recent trends: the prolifera-

tion of low-cost, low-power and increased-capability sensing platform (e.g., Internet of Things

(IoT)); the availability of high-speed, high-capacity and flexible computing techniques (e.g.,

machine learning, big data, deep learning); the revolution of wireless communication (e.g.,

5G); continuing improvements in energy management (e.g., renewable energy sources). The

need of CPS innovations is also being pulled by increasingly failure-prone infrastructures
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revealing that the technology base to enhance large-scale lifeline CPHI is seriously lacking

[104]. CPHI systems are complex distributed interconnected networks. This web of intercon-

necting distribution/transmission links makes the system robust and reliable under normal

operation. However a disruption in one location can quickly propagate across the system in

complex ways leading to cascading failures and widespread service outages. It is of utmost

importance to quickly and accurately identify and contain the failures to avoid escalation of

problems, which ensure the health, safety and well-being of citizens.

1.3 Key Challenges

Today’s urban infrastructure has the potential to evolve into a future cyber-enabled physi-

cal systems with human-in-the-loop, that can leverage sensing, networking, computing and

domain knowledge to enable real-time fault identification. Such real-time fault identifica-

tion frameworks are required for supporting reliable and timely decisions in the presence

of faults, and maintaining adequate levels of quality and quantity of flows through critical

infrastructures. This would achieve significant reductions in productivity losses and socioe-

conomic costs resulting from abnormal events. Nevertheless, to date, no city has deployed

a comprehensive community-scale fault identification solution for its infrastructures. The

actual implementation of real-time fault identification has been hindered by the following

challenges.

(C1) Uncertainty and variability: Physical damage (e.g., bridge collapse, transformer

overheating and water main break) and their impacts on physical-world infrastructures are

unpredictable. At the same time, the cyber- assets (e.g., SCADA and IoT sensors) used

for monitoring, networking and controlling are also subject to anomalous variability in com-

munications and operational fidelity. Generally speaking, faults can originate at any point

throughout an infrastructure network at any time. In order to identify the failures, the
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search space can therefore be very large (roughly number of combinations of network nodes

times number of historical time steps considered), making it intractable or even prohibitive

to solve the problem uniquely. Furthermore, the availability of sensing devices is limited

because of high deployment/maintenance costs and measurement precision. The lack of

spatial coverage increases the uncertainty, where the limited observations make it hard to

distinguish between events and can sometimes result in unavoidable ambiguous events.

(C2) Complex engineered system: CPHIs are complex distributed systems, driven by

complex supply-demand models subject to strong operational constraints. They must obey

the underlying physical mechanisms that are non-linear and non-normal, and in many cases

these systems are looped which can provide better continuity of service under normal oper-

ations, yet render them prone to cascading failures under stress conditions. CPHI systems

have, therefore, exhibited highly dynamic behavior and complex dependencies within the

same infrastructure or between different infrastructures, creating computational challenges

in isolating and identifying failures. A key concern is to understand and capture/model how

the system behaves in the presence of faults. Any methods that do not exploit the com-

patibility of the observations with the underlying physical process, then, will be necessarily

ineffective against cyber-physical disruptions that change the system performance.

(C3) Human engagement for decision supports: Cyber technology alone cannot trans-

form the urban infrastructures; necessary strategies must be included to optimally accommo-

date human and community-wide engagement in decision supports [28]. Additional sensing

in the form of human operators can help reduce the aforementioned uncertainty; this process

involves cost and time. Therefore, to effectively build CPHI systems with human-in-the-loop,

it is important to be able to describe what a person can do, when and where their engagement

are needed, as well as to address issues related to unpredictability, accuracy and privacy of

human inputs.

(C4) Cost-accuracy-latency tradeoffs: Fault identification in CPHI systems entails a
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complex tradeoff between the operational costs, accuracy bounds of identifications and exe-

cution latencies. The aforementioned challenges, C1 and C2, draw into question the effort

of spending great computational resources to identify the exact failure locations. Rather, it

may be important to acknowledge the limitations inherent in this complex distributed set-

ting, and consider methods that produce a usable, approximate result with a set of tractable

number of solutions in time. Human capabilities can be leveraged to help decision-making,

however the cost of human involvement should be considered (Challenge C3). This dictates

that a trade-off analysis must be included to develop practical solutions and enable real-time

fault identification.

1.4 Driving Use Case - Community Water Infrastruc-

tures

The rapid population growth and climate change are straining our limited water resources

and services. Freshwater consumption is expected to rise 25% by 2030. In addition, not

only are these resources limited in supply, they are often poorly managed where almost 60%

of the water is wasted due to leaks and inefficient techniques [134]. Across the global (Fig.

1.2), many of the water infrastructures have been deployed over long periods (often decades,

centuries), and the condition of these infrastructures is deteriorating with time and becomes

inadequate to provide services to growing communities. For example, in U.S., drinking water

infrastructure is nearing the end of its intended lifespan, with much of the infrastructure

dating back to the 1940s; the intended lifespan however was 75-100 years. Furthermore,

they encompass diverse geophysical regimes and are subject to extreme geologic conditions

(e.g., in floodplains, along fault lines and proximate to urban areas vulnerable to malicious

attack).
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Figure 1.2: Water is an important but vulnerable lifeline; they are not only limited in supply,
but also poorly managed [2].

Water distribution systems in communities today consist of large and diverse networks with

many different components (pipes, junctions, pumps, valves, tanks and reservoirs); they

are inherently vulnerable to small failures, extreme events and demand/supply variabilities

[44]. Physical damage to water infrastructures (e.g., pipe breaks) can disrupt water service

to citizens; contamination events could result in economic and public health consequences

and long-lasting psychological impacts. Many cities are currently experiencing an increasing

number of failing services, where water outages and interruptions have become a daily oc-

currence. Due to the scarcity of resources and failure-prone infrastructures, it is imperative

to implement smarter ways in which water is conserved. Despite many significant innova-

tions applied to public infrastructures, water infrastructure has not received the same level

of attention and investment. For example, in U.S. during the period from 2016 through

2025, there are an estimated $2 trillion investment for transit infrastructures, $934 billion

for electricity, yet $150 billion for water and wastewater [85].

Current status of water facilities: Today, cyber instrumenting of water systems is
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severely lacking and sparse at best; this is due to the fact that such buried assets were de-

ployed decades ago. Water meters are instrumented primarily for billing, SCADA systems,

when available, are deployed at pump stations above ground, and water quality monitor-

ing is mainly present at water storage and treatment plants. The network of hundreds or

thousands of pipelines is not actively monitored since devices and networks are expensive

to install/deploy and maintain. Furthermore, many cities do not yet have the much needed

data (e.g., water demand history, population distribution and risk analysis) to compute an

optimal sensor placement [43, 24]. Current sensing technologies also present limitations.

While water quality sensors can detect different types of chemical/microbial contaminants,

they often yield binary (yes/no) indications of possible contaminant presence and cannot

provide concentration measurements of arbitrary contaminants [44]. Lab examinations on

water samples are required to obtain detailed information - the realistic response times could

vary from 6 to 24 hours [90].

Fault identification in water infrastructures - challenges: These underground in-

frastructures with buried assets have presented the aforementioned challenges (C1 - C4); in

fact, these challenges are exacerbated on such infrastructures due to inaccessibility. A deeper

inspection of water infrastructures points to some inherent systemic complexities. Water sys-

tems are large-scale complex networks, where flow patterns are driven by time-varying water

demands and distribution systems are looped, resulting in complex interdependencies. These

interdependencies may be especially pronounced in the presence of failures, e.g., the mixing

and dilution of contaminants. Mathematically, fault identification problem is the canonical

“inverse problem”, where we aim to infer the root cause from a set of observations. Inverse

problems are often ill-posed, where multiple solutions or near-solutions may exist [120]. Un-

der such dynamic unpredictable environmental changes (challenges C1 and C2), we argue

that one cannot necessarily solve the problem as a formal inverse problem and spend great

computational effort for a solution as being the most likely. Instead, we focus on identifying

a collection of possible solutions, with the recognition that even partial knowledge can inform
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decision-making. This identified set could then be considered further using other methods

or data. We also believe that humans will be more than just users of CPHI systems and play

critical roles as active agents in the operation and evolution of these systems. How those

roles play out in narrowing down the set of possible solutions is a prime challenge on the

identification of failures (challenge C3).

All of the above point to the need for an integrated view of the state of CPHI systems to sup-

port cost-accuracy-latency tradeoffs inherent in fault identification, which enables improved

real-time event identification frameworks for managing failure-prone water infrastructures

of the future. Such a framework will provide real-time situational awareness and proac-

tively detection of anomalies and concerns, which would trigger timely feedback control and

operational planning.

1.5 Thesis Contributions and Organization

This thesis aims to address the above-mentioned challenges (Section 1.3) in rapidly iden-

tifying failures in mission-critical urban infrastructures, using community water systems as

a driven use case. We propose an integrated approach, AquaSCALE, to fuse multiple

(incomplete) sources of information for fast fault identification in these complex distributed

settings. AquaSCALE integrates multiple sensing modalities (devices, human-as-a-sensor),

computing (ML analysis) and domain knowledge (simulations and physics-based models) to

enable an observation, analysis and adaptation loop in the system. This is required since

the limited sensing devices in today’s lifelines only capture phenomena spread (e.g., pressure

drop due to pipe leaks, contamination due to illegal wastewater discharge), not the fault

source, in the networked system. Furthermore, sensor data exhibits inaccuracies; techniques

to process the data add uncertainties. Additional sensing in the form of human operators can

help reduce these uncertainties by strategic sampling at selected points in the network - this
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process involves cost and time. Holistically, this thesis has produced a suite of discussions

and analytics to explore resilience of CPHI systems in the face of disruptions and failures

from different causes. While our focus here is on water infrastructures in a community,

the developed end-to-end solution will be portable to other infrastructures and community

services which operate in disruptive and resource-constrained environments.

The following is the overall organization and research contributions of the thesis.

• Chapter 2 surveys related work from both practical and theoretical aspects.

• Chapter 3 proposes our AquaSCALE approach in greater detail. We present the archi-

tecture of the AquaSCALE system and leverage it to address the cross-layer concerns at

multiple levels of CPHI systems (devices, networks, data and compute). AquaSCALE is

designed as a workflow based system comprised of multiple components, which help enhance

understanding of underlying physical dynamics, and enable a holistic analysis on heteroge-

neous data using a mixture of techniques.

• Chapter 4 describes our integrated approach to localizing multiple simultaneous failures

in a CPHI system. It can isolate failures at fine level of granularity (individual pipeline

level) with high level of accuracy with detection time reduced by orders of magnitude (from

hours/days to minutes). Our key contributions include a two-phase process using a profile

generated offline for quick estimation and an online live data integration for further local-

ization; a plug-and-play analytic engine for the selection and integration of modeling and

learning techniques; extensive evaluations under diverse failure scenarios using real-world

water networks.

• Chapter 5 considers the resilience of a CPHI system under extreme events (e.g., earth-

quake), where threats to infrastructures are highly unpredictable. It focuses on real-time

state estimation that produces estimates of current operating states and helps detect, locate

and prevent secondary failures. Our key contributions include network topology processing

to model the complex interdependence using factor graph representation; a multi-phase ap-

proach for improving the speed and accuracy of state estimate on the constructed graph;
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design of a series of experiments to explore the performance of the proposed approach.

• Chapter 6 explores the incorporation of human-in-the-loop for fault source identification

in a CPHI system, with the support of inherent cost-accuracy-latency tradeoffs. It can sig-

nificantly reduce the number of human-driven sampling cycles, while ensuring localization

accuracy. Our key contributions include event-driven profile generation to capture the phys-

ical nature of phenomena spread; online iterative event processing to iteratively select and

refine potential failures via human-driven grab samples; real-world performance evaluation

using a complete ensemble of anomalous events.

• Chapter 7 concludes the dissertation with lessons learned and looks forward to future

research problems we must address to enable our vision of resilient CPHI systems.
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Chapter 2

Related Work in Water Infrastructure

Resilience

In this chapter, we introduce relevant work to provide appropriate background for this thesis.

We survey the related work on enabling water infrastructure resilience during its lifecycle.

We categorize this lifecycle into three phases including planning, operation and adaptation

to events (Fig. 2.1). We first describe several existing tools that have been widely used for

modeling water infrastructures.

Adaptation: Control and 
recovery from failures

Event Occurs
Pre-event

Planning: Design 
and enhancement

Operation: Detection and 
localization of failures.

Post-event

Figure 2.1: Related work is categorized into planning, operation and adaptation phases based
on the lifecycle of services.
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2.1 Existing Tools for Today

In large city-scale infrastructures, effective modeling and understanding of lifeline operations

is key to enabling fast fault identification. Agencies such as U.S. Environmental Protection

Agency (EPA) have been focused on the design of tools to model water distribution systems

and to understand the movement and fate of drinking water constituents.

EPANET (Fig. 2.2) is a commercial-grade simulator used throughout the world to model

drinking water distribution systems, developed by the U.S. EPA [108]. It supports hydraulic

modeling, water quality modeling, and water security and resilience modeling in pressurized

pipe networks. Today, engineers and consultants use EPANET for various applications, e.g.,

design and shape new infrastructure, optimize operations of tanks and pumps, identify small

and silent pipe breaks, reduce energy consumption, and investigate water quality problems.

There are also a number of EPANET based extensions, such as EPANET-MSX specific for

modeling contamination threats [113] and EPANET-RTX for real-time analytics [45].

However, EPANET and its extensions are not designed to handle large or massive failures

that can result in inadequate pressure or rapid changes in the operations. They use demand-

driven (DD) hydraulic model as the simulation engine, assuming that customer demands

are always met event if the pressure is insufficient to deliver potable water. In the context

of extreme events (e.g., earthquakes), this assumption usually does not hold. Large events

often cause increasing number and/or severity of pipe failures, which leads to low pressure

conditions and end-users may lose the access to sufficient water supply. WNTR (water

network tool for resilience) is a tool for assessing the resilience of drinking water systems

to disasters, recently developed by the Sandia National Laboratories and U.S. EPA [68].

WNTR uses the pressure-driven demand (PDD) model, where the amount of water supplied
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Figure 2.2: EPANET hydraulic modeling tool user interface.

to the end-users is a function of the pressure at that node:

d =

{ 0 p ≤ P0

Df

√
p−P0

Pf−P0
P0 ≤ p ≤ Pf

Df p ≥ Pf

(2.1)

where d is the actual volume delivered to the end-users (m3/s), Df is the expected demand

(m3/s), p is the gauge pressure inside the pipe (Pa), Pf is the pressure above which the

customer receives the expected demand (Pa), and P0 is the pressure below which they cannot

receive any water (Pa). While WNTR includes some features of EPANET to model and

analyze water distribution system resilience, it extends these capabilities by providing a

flexible platform for modeling a wide range of disruptive incidents, repair strategies, and

hydraulic behaviors during low pressure conditions given the PDD model.
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2.2 State-of-the-Art in Deployment and Maintenance

of Community Water Systems

We start with the design and enhancement of water CPHI systems in terms of network

structure analysis and optimal cyber instrumentation. We then discuss a wide range of

methodological approaches for detection and localization of failures. Research efforts in

these works motivated and inspired our approaches on fault identification under diverse

conditions, which is our focus of the thesis. Lastly, we briefly overview the study on control

and recovery of critical infrastructures to mitigate and limit cascading negative impacts,

which is important to minimize public health and safety consequences.

2.2.1 Planning: Design and Enhancement of CPHI Systems

The growing demand for clean water has pushed water infrastructures to grow into large-scale

networks which carry fluid under high pressure. Consequently, water networks have evolved

into complex systems with thousands of branched and interconnected lines [144]. This has

attracted increasing interests on the design and enhancement of water CPHI systems to

reduce the likelihood and impact of asset failures.

Physcial Network Structure Analysis

Although many efforts are underway to improve the resilience of water infrastructures, many

of the world’s cities are currently served by old and poorly managed networks with conse-

quential problems in terms of both water quality and quantity reliability [135]. The prime

concerns for practitioners responsible for the design and operation of the water distribu-

tion networks are to improve system reliability and reduce system susceptibility to damage

and perturbation. [145] proposes to enhance service resilience through the incorporation

of strategic network redundancy. They study the structure of water networks using graph
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theory as the underlying analytical tool, and introduce a simplified network-based approach

that allows for a comparison of connectivity patterns for alternative design. In their case

studies, the proposed approach is capable to provide useful insight on where and to what

extent the redundancy to avoid or tolerate bottleneck should be allocated in the network

structure. The authors of [127] focus on how network properties can influence performance in

both hydraulic (e.g., minimum pressure, maximum hourly unit headloss) and water quality

contexts. By leveraging strengths from graph theory and statistical inference, they develop

a methodology for characterizing the relationship between the topological structures and the

system-level performances. They also study the tradeoffs between two network structures:

loops for reliability and branches for cost savings. The approach is evaluated on 10, 001

simplified and functional lattice-like pipe networks. This cost-effective proxy at a structural

level can serve to complement traditional, complicated physics-based domain model of water

networks. In [114], the authors study cascade-based attacks and the nodal vulnerability

of water networks under cascading failures. They evaluate the network vulnerability with

the consideration of two aspects: (1) topological analysis from complex networks; and (2)

hydraulic analysis from water systems. Because, at each time, a water network is required

to meet the equilibrium of water supply and demand. The proposed method is validated by

comparing with methods from betweenness load, flow entropy model and minimum cut-sets

on the same data set.

Cyber Instrumentation

Instrumenting infrastructures with sensors for monitoring is, clearly, the starting point to

enable the quick detection and identification of disruptions. Over the last decade, water util-

ity companies have aimed to make water distribution networks more intelligent to improve

quality of service and reduce water loss and maintenance costs. In order to achieve these

goals, water networks have been augmented with sensor nodes and data loggers for monitor-

ing by transmitting the network state periodically. In parallel, civil engineers advocate that

next generation of water distribution networks will not be passive water delivers, but active
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highly-distributed event-based control systems [7]. Such a dynamical system will heavily

rely on sensing and actuation.

However, devices and networks are expensive to install/deploy and maintain, which is espe-

cially pronounced for underground infrastructures due to inaccessibility. The inherent scale

of todays water networks means that instrumenting the entire network would be prohibitively

expensive, thus calling for selective placement solutions. In practice, SCADA systems, when

available, are deployed at the edges of the network (e.g., pump stations above ground). With

the advent of such sophisticated monitoring systems, it is possible to monitor pressures, flows

and water quality at certain key points within the network in real time. Nonetheless, the net-

work of hundreds or thousands of pipelines is not actively monitored, making it prohibitive

to identify failures at pipeline level.

There have been several efforts towards instrumenting water networks with in-situ (static)

sensors to detect and localize events in a timely manner. PIPENET [119] focuses on the use

of wireless sensor networks (WSNs) for monitoring water transmission pipelines by collecting

hydraulic and acoustic/vibration data at high sampling rates. WATERWISE [141] develops

generic WSN capabilities to enable real-time monitoring of a water distribution network in

Singapore. In [64], the team designs and develops a small-scale testbed, WaterBox, to allow

researchers to test control algorithms in a fail-safe environment. This is necessary because

software simulators are insufficient to reproduce issues that arise in real systems [108], and

contemporary large-scale testbeds are limited due to safety concerns. Although these high-

end static sensors, designed as low-cost devices, can provide continuous measurements, wide

sensing ranges and good accuracy, the instrumentation of civic water infrastructures at

large requires significant investments (millions of dollars). Systems like SmartBall [47] and

PipeProbe [72] drop mobile sensors into the network which traverse and monitor pipelines

by moving with the water flow. Mobile sensors allow for adaptive sensing on-demand at

significantly reduced cost when compared with in-situ sensors. Because they can be deployed
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at different locations, at different times, and with different sensing capabilities based on the

need. However, they only provide a single measurement in time and have low sensing ranges.

These emerging sensing technologies can help enable the real-time monitoring and measure-

ment platform for water infrastructures. Identifying optimal locations to instrument/deploy

in-situ and/or mobile sensors remains a challenge. In practical setting, the most widely

studied sensor placement formulation for water networks is to minimize the expected impact

on communities of an ensemble of anomalous events given a sensor budget [21]. In [23], the

authors present a mixed-integer programming (MIP) formulation that incorporates informa-

tion about the temporal characteristics of an event occurring in water distribution networks,

as obtained from standard domain models. The objective is to minimize the expected impact

of a set of incidents, subject to the given resource constraints. They propose to use GRASP

heuristic to solve this MIP model, which is robust and scalable for large-scale real-world

settings. This work can be viewed as optimizing one particular statistic (i.e., minimization

of exposure of populations), [137] suggests that other statistics may provide more “robust”

solutions under different conditions. For example, they argue that the design objective of

sensor placement should include, other than expected impact minimization, in particular

the minimization of the worst-cast impact. Anomalous events are not necessarily uniformly

distributed, therefore the robust sensor placement is required to address the issue of how

to mitigate against high-consequence events (e.g., 9/11-style attacks). While [136] proposes

that some performance objectives cannot be simultaneously optimized, and therefore the

sensor placement problem must carefully consider the trade-off between multiple, disparate

objectives. Their approach can support the analysis of these trade-offs, by characterizing

the interdependencies among a range of design requirements (e.g., population exposed, time

to detection, number of failed detections). The aforementioned methods make the implicit

assumption that sensors work perfectly. In practice, sensors can fail to detect an anomaly.

[22] addresses this issue by supporting a formulation that models sensor failures, by assigning

each sensor an associated probability of failure.
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In recent years, researchers have worked on combining mobile and in-situ sensor deploy-

ments for resilient water infrastructures [98, 122, 105, 95, 39]. The problem is challenging

due to the large size of the networks and the probabilistic movement of the mobile sensors.

In [39], a novel optimization approach is posed to provide a better coverage of the water

networks using both mobile and in-situ sensors. They partition the objective function into a

set of optimization problems, and show that these problems exhibit submodular properties.

Therefore, a greedy mobile nodes release algorithm is proposed. However, this work, in fact

most of existing work, typically assume the priori placement of static infrastructure - either

in-situ sensors or sink nodes/beacons that support the communication with mobile sensors.

[132] argues that it is essential to consider the deployment of both types of sensors simulta-

neously, because the placement of one type can affect the decision of another. Furthermore,

[132] distinguishes events based on their impact on the community, instead of assuming a

uniform distribution. Build on the previous work [131], they present a cost-effective hybrid

monitoring architecture to minimize the impact of adverse water events on the community,

combining the benefits of mobile and in-situ sensing with various geo-social factors.

2.2.2 Operation: Detection and Isolation of Failures

CPHI systems are becoming common in multiple domains (smart grids, intelligent trans-

portation, natural gas); however, gathering and processing data for operational purposes in

such settings have cross-layer concerns at multiple levels of the system (devices, networks,

data, compute etc.). This section focuses on data-driven methods to isolate faults as applied

to large scale distributed CPHI systems, e.g., water infrastructures; key topics include mod-

eling the underlying systems and their operations as well as enabling efficient data gathering,

data analysis and event processing to support decision making. Integrating human agents

in the sensing, analysis and actuation tasks is a viable path to deployment.
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Current Practices: We start with the introduction of current practices that have been

applied by water utilities for fault identification in water networks. In reality, fault identifi-

cation defines a complex combinatorial optimization problem where finding a solution often

requires extensive computations depending on the network size and capacity, and supply-

demand model driven by terrain specifications and population density of the served area, to

say the least. One current practice used by water utilities for leak detection and isolation is

acoustic inspection. It uses acoustic instruments to listen for variations in reflected signals

caused by the leak. Although this “hear-and-repair” method has also been widely applied in

other fluid networks e.g., nuclear power plants [58], the effectiveness is mainly valid within

an area immediately adjacent to the failure and performing such measurements can be very

expensive [50]. Another practice that has been adopted by utilities is to use a calibrated

hydraulic simulator to enumerate possible leaky points for a best match between the simu-

lation results and the meter data [92]. This appears plausible and is also proposed in other

work e.g., [99, 109, 100]. However, it can be computationally expensive or even prohibitive

for leak localization in community-scale water networks. Because the location and severity

of a leak jointly affects the hydraulic behavior, and, if any, multiple leaks interact with each

other, making it difficult to enumerate a one-to-one match.

Techniques for data and knowledge representations using graph-based techniques, ontologies

and semantic web approaches have been used to model community data. Workflow processing

systems (e.g., Ptolemy) and simulation techniques have been utilized to capture operational

aspects and reason about the state of systems. In the realm of Civil Engineering, there have

been numerous mechanisms used to detect pipe failures using intrusive sensing techniques,

such as in-pipe sensors or even mobile sensors that roam within the pipeline network [65].

However, the limitations are also well-known in terms of the high cost of sensing devices

and deployment, and the risk of water contamination. Methods studied in [75, 33, 76, 121]

are based on fluid transient signal processing, since a sudden break often causes a pressure

change followed by a transient wave traveling along the pipe. These approaches are evaluated
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on the identification of a single pipe failure. Its scalability to the water network is uncertain

due to the difficulty of obtaining an accurate transient model for a pipeline network.

Alternatively, instead of solving it as a formal optimization problem, the use of stochas-

tic (rather than deterministic) formulations to identify pipe leakage have been around for

some time, but their uptake has not been prolific [65]. [100] integrates domain simulator

with SCEM-UA (shuffled complex evolution metropolis) algorithm to estimate the posterior

probability distribution over potential leak locations. The measurements are assumed to be

available at all nodes in the network, which is however not realistic due to the inaccessibil-

ity and costly sensor installation and maintenance. Similar techniques are also proposed in

[99, 109], where they apply the Bayesian network for diagnosing water leakage while consid-

ering limited number of sensors and measurement errors. However, both methods lead to the

issue of computational complexity on community-scale water networks. Other approaches

using current-flow centrality analysis [91, 13] and state estimation [49] have also been in-

vestigated on water networks with small size and simple topology, yet the performance in

real-world settings is not evaluated. Over the last decade, there are increasing number of

machine learning (ML) based techniques [14, 84, 58, 61, 88, 133] proposed for failure lo-

calization in water networks. Unfortunately, only a paucity of methods have explored the

physical mechanism inherent in the network topology to support their analysis. Figure 2.3 is

the summary of limitations and advantages of these existing techniques for fault localization

in water networks, and we aim to design and implement an approach that can quickly and

accurately isolate multiple failures given that only a limited number of sensing devices are

available in such underground infrastructures.

There is a research group at Imperial College London, who has presented several work

on localization using graph theory techniques [146, 147, 138]. In [65], they extend their

prior work and introduce an end-to-end leak localization platform, which exploits the edge

computing and enables the use of low-resourced sensor nodes. The proposed platform is
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Figure 2.3: Comparisons of fault localization techniques applied in water networks.

a highly distributed lightweight scheme that combines data compression techniques and

graph-theory based localization algorithms on the edge to identify leak events. This edge

anomaly localization approach can produce a timely and accurate results and reduce the

communication by 99% compared to the traditional periodic communication. However, these

works overlook the underlying causal dynamics of cascading events/failures in the physical

systems, which captures the spatial-temporal dependency between consecutive failures.

Recently, approaches utilizing HMM [103], that captures the underlying physical dynamics,

have been successfully applied in multiple domains, e.g., social media [148], transporta-

tion [101] and power grids [59]. Particularly, [59] has shown that HMM outperforms the

conventional algorithms in identifying the cause of transmission line outages. HMM is a

probabilistic state transition model, which is commonly used to model systems with the

events we are interested in are hidden: we do not observe them directly [103]. It can capture

both observed events and hidden events that are thought of as causal factors in the model,
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and thus it is useful when we need to discover the best hidden state sequence given a time

series observations. A HMM contains a hidden Markov and an observed processes. In hidden

process, a set of hidden states follow a Markov process with the property that the states

before the current state have no impact on the future except via the current state. Given

this, the observed process is a sequence of conditionally independent variables and depends

on the hidden process only through the corresponding hidden state.

Integrating human agents in the sensing, analysis and actuation tasks is a viable path to de-

ployment. Human-interactive systems have leveraged human capabilities to complex systems

to make intelligent decisions for a while. For example, [150] uses crowd-sourced information

for timely data delivery and [71] models and analyzes customer behavior for efficient energy

management. ML approaches today are becoming available as generalized services and the

role of ML such as RL for rapid analysis of complex events is invaluable. The basic idea of

RL is to have a learning agent interacting over time with its environment to achieve a goal

by capturing the most important aspects of the real problem [124] - this has emerged as a

powerful tool for solving sequential decision-making problems. It is well known for its great

success in online games - AlphaGo Zero [115], and recently has been successfully applied in

natural language processing [46], software development [143], recommendation systems [125]

and ridesharing order dispatching [77].

2.2.3 Adaptation: Control and Recovery from Failures

Should the presence of failures is detected, consequence management must be employed.

Decision-making tools that assist in evaluating and planning various response strategies are

needed to support fast recovery of infrastructures to return to normal operating conditions.

[44] introduces a common operational approach that water utilities use to mitigate water

quality concerns. That is the purging of water from the distribution network using a fire
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hydrant or blow-off port, namely flushing. Flushing can remove the sources of poor water

quality, and it can be made more efficient through the strategic selection of where to imple-

ment flushing activities. This problem is formulated as selecting a set of locations to flush

that minimizes the human exposure to contaminants, and solved using an iterative optimiza-

tion process that requires numerous simulations of the network hydraulics and water quality.

A major limitation is that computational run time grows exponentially as the size of the

network, the number of possible incidents and the number of feasible intervention locations.

Several techniques are therefore studied to decrease the computational complexity, including

parallelization, stop time criteria and skeletonization.

Most of the literature focus on recovering the individual infrastructure as fast as possible with

the consideration of limited available resources. Nonetheless, only a paucity of work that have

been done on recovery planning include the interdependencies between the infrastructure

networks. Such consideration is imperative, given that the interdependence between urban

infrastructures increases the vulnerability of individual network, while imposing additional

constraints to the restoration of each of them [40]. In [53], the authors aim to optimize

the recovery of interdependent networks by considering their functional coupling. Possible

simultaneous recovery jobs in corridors of colocated components are identified such that the

cost of reconstruction is reduced. They also study a simulation-optimization framework to

take into account uncertainty in the physical system by nature, enabling the analysis of the

expected behavior of a system.
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Chapter 3

An Integrated Approach to Resilient

CPHI Systems

We now provide a high-level overview of our proposed approach AquaSCALE - an inte-

gration framework to enable resilience in cyber-physical-human water infrastructures. We

first motivate and study the water CPHI system resilience using two community-scale wa-

ter networks in the east coast and west coast. Then we present our approach, its system

architecture and design decision, that can model and explore the improved performance of

water infrastructures in diverse communities with different structures, scales and concerns.

We further explore our integrated approach to address resilience concerns at multiple levels

of a CPHI system.
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3.1 AquaSCALE: Executable Computational Frame-

work to Explore Resilience of a CPHI System

Water is essential for sustaining the economic and social viability of a community; water

infrastructures are considered an important lifeline to communities worldwide [5]. Recent

events such as water supply disruptions caused by Hurricane Sandy in 2012 and multi-

ple pipeline ruptures caused by Ridgecrest earthquake in 2019, and the looming California

drought crisis clearly indicate society’s dependence on critical lifeline services and the far-

reaching impacts that disruption can cause. In the current setting, the generation, distribu-

tion and maintenance of lifeline services (e.g., water) is managed in a distributed way by local

agencies, who have encountered different concerns. We engage with two cities Montgomery

County (MC), Maryland and the City of Los Angeles (LA) as our focus testbeds, because

they represent diverse communities with different structures, scales and vulnerabilities. In

MC, extreme cold weather and heavy rainfall (e.g., El Niño 2016 and La Niña 2017) can

stress already weakened pipes to the point of causing major pipe breaks or excessive leaks

[10]; while 88% of the water supply to LA cross the San Andreas Fault such that a big

earthquake on the San Andreas could cut off the water services for more than 22 million

people [3]. What is lacking - and what defines the future - is an underlying common platform

allowing to model and explore resilience of water CPHI systems in real-world communities

with different concerns [28].

Designing robust water CPHI systems involves a clear understanding of the structure, com-

ponents and operations of this system, how community infrastructure dynamics (e.g., vary-

ing customer demands, extreme weather and small/large disruptions) impact lifeline service

availabilities, and how service level decisions impact infrastructure control. The ability to

view water service flows as a community wide CPHI system with multiple levels of ob-

servation/control and diverse players presents new possibilities. Built on our experiences
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Figure 3.1: AquaSCALE system architecture. It bridges the infrastructure/application gap
by transforming raw sensor data into higher level semantic streams through a logic observe-
analyze-adapt loop.

on SCALE project [19, 129, 20, 149], we design and develop AquaSCALE, an executable

computational framework and tools, to model, simulate and explore community water in-

frastructures at two layers - (a) a higher layer to capture the availability of features and

services to end users and (b) a lower built infrastructure layer to model components, in-

terconnections and flows. The framework represents spatial and temporal aspects of water

lifelines operating under normal and abnormal conditions, and estimate their vulnerability

to varying levels of shock intensity. It is designed to prevent water service failures by identi-

fying operational degradation in aging infrastructures (e.g., pipe leaks), improve speed and

accuracy of damage estimation in larger hazards (e.g., earthquakes, floods and ice storms),

and improve service restoration times in the presence of disruptions.

3.2 System Architecture

AquaSCALE (Fig. 3.1) is designed as a sensor-simulation-data integration platform to inte-

grate multiple information sources and technologies. An integrated view of a CPHI system is

required to enable resilient and scalable urban infrastructures due to the following observa-

tions. Measurements from underlying infrastructures (e.g., flow rate, pressure head) reflects
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the physical behavior of a network that is dynamically altered by supply-demand variations,

operations designed to conserve resources, as well as cyber-physical disruptions. The in-

stallation/deployment and maintenance of sensing devices is expensive and time consuming,

and many cities do net yet have the much needed data (e.g., demand history, population

distribution and risk analysis) to compute an optimal sensor placement; sensor data has inac-

curacies due to the anomalous variability in devices and communications. This is especially

pronounced for underground infrastructures (e.g., water networks). Furthermore, techniques

to process the data have uncertainties, creating computational challenges on abstracting cor-

rect information from limited measurements in a timely manner. External observations can

provide additional information for decision-making. For example, sub-freezing temperatures

add stress to water pipes; this can - and often does - result in breaks [4]. In the context

of earthquakes, the knowledge of seismic waves can help estimate the possible extent of im-

pact on e.g., electricity and water delivery. Humans and human inputs play a vital role in

decision-making in settings where sensing needs are expensive and uncertain. For example,

the damage to buried infrastructures is often hidden and most pipe leaks are silent until

noticed by people.

As shown in Fig. 3.1, the core of AquaSCALE framework is a data-driven simulation engine

that executes a logical observe-analyze-adapt loop. The input to the analyzer is derived

from Observations gathered from diverse data sources and stored in the data management

module. The Analytics module that subsumes models and techniques developed by domain

experts will operate on the near real-time data to generate higher level awareness for specific

application tasks. The awareness will trigger corresponding logical Adaptations within the

framework that will again generate a new set of observations.

To realize this observe-analyze-adapt loop, AquaSCALE is designed as a workflow based

system comprised of multiple modules (Fig. 3.2).

• The Scenario Generation module enables water managers and analysts to provide

30



meaningful and diverse water contexts to the framework by generating a range of situations.

A user of the tool can start defining a situation by choosing a geographic region, entity

elements of interest in that region, and using additional modules to identify hazard, vul-

nerability, restoration and impact of the hazard at a temporal and spatial scales of choice.

In this thesis, we particularly address three resilience problems: isolation of multiple faults,

state estimation under extreme events, and fault source identification. We will explain each

individual work in great detail in the following chapters.

• The Sensor Data Acquisition module enables gathering of real-time field information

for predefined scenarios by projecting the effects of new updates from the field on simulation

outcomes. This module is not merely a collection of sensing data throughout a CPHI system.

Fundamentally, it is information acquisition and management. Beyond each individual data

source, coordination among different data streams is needed to establish a comprehensive

view of the current system status and provide specific, reliable and timely actions in response

to the incident.

• Understanding how a CPHI system will perform during a range of threats and being able

to measure how well an approach would adapt to such threats require an Integrated Simu-

lation and Modeling Engine. Simulation tools can help explore the capacity of a system

to handle disruptive events and guide the planning necessary to make systems more resilient

over time [69]. To explore the resilience of water CPHI systems, we integrate EPANET hy-

draulic and water quality model, WNTR water network tool, NOAA’s hydrometeorological

data, TAS tweet acquisition system and BreZo flood model.

• A Plug and Play Analytics module is used to plug and unplug specific information,

such as data sets and algorithms, at will depending on the specific context of applications,

and to understand the advantages and limitations of diverse strategies in isolation and com-

bination.
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Figure 3.2: AquaSCALE prototype implementation. It is designed as a workflow based
system comprised of multiple modules.

• Users/operators/analysts interact with AquaSCALE using the Decision Support mod-

ule to manage devices at runtime as they identify vulnerable spots and address cost-accuracy-

time tradeoffs, and to optimize sensor placement for a better performance.

3.3 AquaSCALE for Cross-layer Concerns

Gathering and processing data for operational purposes in CPHI systems have cross-layer

concerns. As shown in Fig. 3.3, AquaSCALE enables a higher level knowledge abstraction

from raw sensor data collected at lower infrastructure layer, and resilience techniques to deal

with limitations/disruptions in a CPHI system at multiple levels.

Community-scale sensor placement is important for operational management during nor-

mal conditions and fault detection/localization during disruptive events. Current sensor

placement techniques use heuristics that focus mainly on enabling network coverage while

treating all events uniformly. We argue that identifying the needs of the community and

the impact of the event is also important, because not all events are equally impactful. Our

previous work [131] developed a structured geo-social approach for sensor placement that is

32



Physical Layer
Data

Knowledge

Devices and 
Data Sources sensor human environment

Network

Data Model Algorithm Domain Model
Data Fusion 

and Analytics

Better coverage 
(spatial and event)

Rapid detection 
and isolation

Timely 
countermeasure

Resilience 
Services

Figure 3.3: AquaSCALE addresses cross-layer concerns at multiple levels of the CPHI system
including devices, networks and data analytics.

contextualized to community-scale water distribution networks. We partition the terrain of

the community area into regions using Delaunay triangulation, and determine the criticality

of these regions based on the population density as well as the critical infrastructures (e.g.,

hospital, school, airport) present within the region. Our approach models and quantifies the

real-world impact of a failure on a community using various geospatial, infrastructural and

societal factors. We then integrate failure impact, IoT sensing data and simulation based

analytics to drive sensor placement methods with the objective of reducing community-scale

impact. Build on this work, [132] introduced a general adaptive monitoring framework lever-

aging the strengths of both in-situ and mobile sensing, and provided cost-effective planning

and deployment solutions to mitigate the impact of adverse events. The proposed archi-

tecture can adaptively adjust sensing resolutions on-demand within the network, determine

required sensing capabilities based on the event and respond to varying event severities. We

first integrates network topology and community information to determine the placement of

in-situ sensors and mobile sensor insertion infrastructure, and then incorporate network flow

dynamics to determine mobile sensor deployment locations with the goal of reducing costs
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and minimizing adverse impact while maintaining localization accuracy.

Reliable delivery of sensor data to distributed cloud service instances is crucial consideration

to create dependable awareness and consequently improved decision making. However, this

is challenging in the face of massive geo-correlated communication network outages caused

by large events (e.g., earthquakes). In [20], we described a centrally-controlled Geographi-

cally Correlated Resilient Overlay Network (GeoCRON) to ensure more reliable collection of

data at a cloud service despite geo-correlated infrastructure failures throughout the sensed

region. GeoCRON achieves reliable message delivery by exploiting geographically-redundant

network routes to avoid failures. Particularly, it gathers the underlying routing infrastruc-

ture topology and locations of both IoT nodes in the overlay and routers in the underlay.

It uses this information to establish multiple geo-diverse routes in the overlay according to

the number requested by an applications resilience requirements. Sending multiple copies

of each message along these geo-diverse routes improves the chances of successful message

delivery (to the cloud data exchange) during large-scale geo-correlated failures.

Data-driven analytics for community resilience is key to understanding the behavior of CPHI

systems before, during and after disruptions, and reducing their vulnerability to and enhanc-

ing their recovery after a disruption. An efficient approach should effectively translate (pos-

sibly incomplete) data to meaningful information for timely decision-making by optimizing

tradeoffs between cost, accuracy and time. To better fuse and interpret a multiplicity of

sources, we apply our integrated approach to solving three major problems in regard to fault

identification in a CPHI system, which is the focus of this thesis. We explore the resilience

under small failures (§4) and extreme events (§5), as well as human-enhanced analytics for

resilience (§6). Through these work, we show that AquaSCALE can mitigate the significant

costs associated with various types, timescales and intensities disruptions to water CPHI

systems.
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Chapter 4

Infrastructure Resilience under Small

Failures

In this chapter, we begin our exploration of resilient water infrastructures under multiple

concurrent small failures. We apply our proposed AquaSCALE framework for gathering,

analyzing and localizing anomalous operations of increasingly failure-prone community wa-

ter services. Today, detection of pipe breaks/leaks in water networks takes hours to days.

AquaSCALE leverages dynamic data from multiple information sources including IoT sensing

data, geophysical data, human input and simulation/modeling engines to create a sensor-

simulation-data integration platform. It can accurately and quickly identify areas of potential

water leakage. We propose a two-phase workflow that begins with robust simulation meth-

ods using the commercial-grade hydraulic simulator EPANET, which is then enhanced with

the support for IoT sensors and fault events modelings. The platform generates a profile of

anomalous events using diverse plug-and-play ML techniques, which then incorporates with

external observations (NOAA weather reports and twitter feeds) to rapidly and reliably iden-

tify the locations of damaged water pipes. We evaluate the efficacy of proposed methodology

using canonical and real-world water networks under different scenarios. Our results indicate
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that the proposed approach with offline learning and online inference can improve the pro-

cess of locating multiple simultaneous pipe failures at a useful level of granularity (pipeline

segments) with shorter detection times (from hours/days to minutes).
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4.1 Chapter Overview

Pipe leaks are ubiquitous in aging community water infrastructures [126, 78]. Recent repair

reports from the Los Angeles Department of Water & Power (LADWP) and the Washington

Suburban Sanitary Commission (WSSC) indicate that communities are experiencing an un-

usual increase in pipe breaks, mainly in old pipes that are susceptible to corrosion problems

or pipe joints that are experiencing displacements caused by surface deformations. Like many

other urban infrastructures, water distribution networks consist of multiple interconnected

components, whose individual or simultaneous pipe failures can cause disruption to water

services. Although many problems due to old and poorly maintained infrastructure are in-

dividually small, they can quickly add up. For example, numerous small leaks have caused

some municipal water systems to lose up to 20% of their water during transmission [60].

Approximate 14 - 18% of treated water in the U.S. is lost because of leaks or breaks in faulty

pipelines [91, 66]. The quality of water supplies can also be compromised via contaminant

propagation through a leaking pipe. A large-pipe break can cause severe flooding and impact

other lifelines, e.g., the water main break on Sunset Boulevard flooded the UCLA campus on

July 2014. Extreme weather and heavy rainfall (e.g., Hurricane Sandy 2012, El Niño 2016,

and La Niña 2017) can also stress already weakened pipes to the point of causing major

pipe breaks or excessive leaks. Additionally, large-scale disasters, such as earthquakes, can

cause pipe failures that can drain vital water supplies when most needed, e.g., extinguishing

ensuing fires.

All of the above highlight the need for quick and accurate identification of pipe failures,

such that timely countermeasures can be performed to preserve precious water supplies and

prevent negative impacts on other interdependent lifeline services. The operations of water

infrastructures are subject to complex, highly non-linear temporal and spatial processes,

making it challenge to differentiate between faults and stochastic network behaviors. This

makes multiple-leak identification a non-trivial task, leading us towards a solution based on
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integrating information from multiple sources. IoT sensing data from underlying infrastruc-

tures can track variations in the network and inform pipe breaks based on the reduction

in pressure/hydraulic heads and increase in flow rates at failure points [99]. Pressure head

is essential piece of information that is required for determining water service availability,

which is defined as the mechanical energy per unit weight of fluid. External conditions can

be used as the additional information for failure detection. According to our experience with

WSSC (a water agency at east coast of the U.S.), extremely cold temperature is likely to

cause pipe breaks due to ice blockage - this knowledge can be used to capture patterns of

changes in pressure heads (increase first due to pipe freeze and decrease due to pipe break).

Human leak-related report, in some cases, is the only indicator of the presence of failures

due to the sparse sensor deployment on such underground infrastructures where failures can

be silent until noticed by people. The aggregation of these external observations can help

improve our assessment of pipe failures.

Given that most of the existing work focuses on identifying single pipe failure on small-scale

water networks (Fig. 2.3), our study addresses a more realistic case where the available mea-

surement is limited by the type and number of sensors and the objective is to localize multiple

concurrent leaks of a real-world water network in seconds/minutes (instead of hours/days).

To capture the dynamics of complex water networks, we apply AquaSCALE to enable the

fusion of multiple different data sources, robust simulation engines and plug-and-play ML

techniques. We show that AquaSCALE, as a CPHI-enabled service, can model community

water distribution infrastructures and pipe failures, and support the integration of various

information for identifying potential failures.

Key Contributions of This Chapter:

• Leveraging AquaSCALE computational framework to integrate multiple data sources and

techniques for localizing leaks in community water networks - (Sec. 4.2).
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• A novel two-phase process for leak identification using an offline profile generation for

quickly identifying potential faulty pipes and online live data integration for accurately

localizing damaged pipelines - (Sec. 4.3/4.4).

• A plug-and-play analytic engine that enables selection/integration of statistical ML tech-

niques for fault identification and transforms low level pipeline information into higher level

impact (e.g., floods) - (Sec. 4.4).

• Extensive evaluations of the proposed approach under diverse failure scenarios using real-

world water networks - (Sec. 4.5).

4.2 Approach Overview

To quickly identify leak events in real-world water networks, we argue that an integrated

approach to fusing multiple (possibly incomplete) sources of information is necessary. The

approach allows to explore solutions to problems in cyberspace before instantiating them

into a physical infrastructure.

In the paper, we leverage AquaSCALE for pipe leak identification. AquaSCALE supports

a novel two-phase approach for managing water workflows at multiple levels of observation

and control. In the first phase, statistical approaches are used to drive the offline creation

of a profile model of faults and their impact to help rapid identification of the problem in

near real-time. While this initial phase significantly reduces the online detection time, the

second phase exploits the availability of dynamic data and compensates for the limitation of

the offline model to improve accuracy and efficiency. To support a flexible suite of methods

for leak events detection, we incorporate a plug-and-play analytic engine that enables the

selection/integration of statistical techniques for improved identification of faults. Statistical

based data integration algorithms are used to incorporate IoT measurements with additional
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observations. This analytic engine facilitates the discovery of an efficient composition of tech-

niques for failure localization in a given water network. In our prototype, robust simulations

using an enhanced version of a commercial grade hydraulic simulator EPANET (with added

support for IoT sensors and failure modelings) are used offline to train a profile model of

anomalous events. The profile and multiple information sources are then used for online

rapid coarse fault isolation and fine-grained fault localization (i.e., leak detection).

4.3 Modeling Resilience In Water Infrastructure

Pipe leaks or breaks, as one of the most frequent types of failures, represent a very high

cost vulnerability and is associated with public health implications and wastage of limited

resources. It is often caused by operation degradation of pipelines, extremely cold tempera-

ture, and large-scale disasters (e.g., earthquake). Leak events may be identified through di-

verse information sources - an unexpected reduction on pressure heads; an abnormal increase

in flow rates; leak-related messages posted on social media platforms. Thus we introduce

multiple information sources into AquaSCALE, and evaluate its efficacy in the treatment of

pipe leaks.

This section introduces the modeling of leak event, IoT measurement in water infrastructures,

weather information, and human input. Our experience indicates that IoT measurement

alone may work well to identify a single leak event, but, as we explain later in Sec. 4.3.1,

it is not sufficiently accurate to isolate multiple concurrent failures. The combination of

diverse information sources provides new possibilities for enabling detection of multiple pipe

failures. In the real world, extremely low temperatures can cause ice forming in a pipe that

leads to complete ice blockage, and continued freezing and expansion inside the pipe increase

water pressure heads that leads to pipe breaks. Thus ambient temperature, though is coarse-

grained (city-level information), can provide an additional pattern of pressure changing for
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leak localization. The damage to underground infrastructures is often hidden, and most pipe

failures are silent until noticed by people. In the case where IoT measurement is unavailable,

human reports on leak events provide indispensable information. Such weather temperature

and human input when integrated with IoT measurement can help improve the detection

outcome with a higher accuracy in a shorter amount of time.

4.3.1 Modeling Leak Events

A water system is represented as an undirected graph G(V , E) (water can flow in both

directions) with vertices V that represent nodes (the joint of pipes), and edges E that

represent pipelines. | · | denotes the cardinality of a set. The leak event is denoted as

e = {e}, where an event e = (l, s, t) is identified by location e.l, size e.s, and starting time

slot e.t. The goal is to locate e.l for ∀e ∈ e. We use and enhance EPANET with the

support for IoT devices and failure modelings, named EPANET++. As introduced in Section

2.1, EPANET is a software that models water distribution system and helps to improve

our understanding of the movement of water within distribution systems. In EPANET++,

pipe failures are simulated by emitter that is device associated with node to model the flow

through a nozzle or orifice that discharges to the atmosphere [108]. Leakage continuously

increases with pressure, and it is often computed using Eq.4.1 in civil engineering domain

[89, 52, 51, 100, 84, 92]. More details refer to [73]. The pipe leak is modeled by

Q = EC · pβ (4.1)

where Q is discharge flow rate at the leak point, EC is effective leak area depending on the

discharge coefficient and leak area, p is current pressure head at the leaky node and β is

pressure exponent. β typically varies between 0.5 and 2.5 depending on the leak type, and

we set it to 0.5 for general purpose [73]. EC indicates the leak size, (i.e., e.s) and the greater
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the value of EC the higher the severity of a leak event. In single leak context, a node will

be assigned as an emitter with a EC and a timestamp where the node is leak location (e.l),

EC is leak size (e.s), and time stamp is leak starting point (e.t). In the multi-leak case, one

or more nodes will be assigned as emitters with different EC and identical time stamp, to

simulate multiple concurrent failures.

Compared with single leak identification, multiple pipe failures become much more complex

to detect and locate. By executing EPANET++, our empirical results show that the changes

on pressure head and flow rate are easy to be captured in single failure case (Fig. 4.1). In

scenario 1 where there is a single leak, the total change in pressure values of nodes in a

certain distance range of e1 decreases with increasing distance to e1.l (Fig. 4.1b - Scenario

1), and similarly for flow rates that are not shown in the paper for saving space. Here,

the distance refers to the shortest path between two nodes, and the distance between two

adjacent nodes is the length of the connection pipeline. This is because a sudden pipe leak

often causes a pressure decrease and a flow rate increase which is followed by a transient wave

traveling along the pipe [87, 75]. This pattern can be learnt and captured to identify a leak

event. However it is hard to follow a certain changing pattern when multiple failures occur

simultaneously, as shown in Scenarios 2 and 3 in Fig. 4.1. Multiple leak events interact with

each other and jointly affect the hydraulic behavior, resulting in a set of highly correlated

observations that makes it difficult to extract correct message in a timely manner. In this

case, external data sources and a hybrid of ML based techniques are used to compensate

for the limitation of individual information and improve the localization performance. It is

worth noting that multiple failures refer to multiple concurrent leak events where the interval

between the occurrence of any two events is less than the sampling frequency of IoT devices.

The problem then cannot be reduced to a single failure detection because leak events cannot

be separated by time series.
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Figure 4.1: Failure scenarios with corresponding changes on pressure head. (a) Three failure
scenarios with a single leak event e = {e1}; two events e = {e1, e2}; three events e =
{e1, e3, e4}. (b) The sum of changes on pressure heads of nodes within a certain range of the
location of e1 along with increasing distance to e1.l for each scenario.

4.3.2 Modeling IoT Measurements

The variation in pressure heads and flow rates due to pipe leaks can be used to obtain critical

information on which parts of the system are suffering from the effects of water leaks. To

model IoT measurements, a set of pressure and/or flow rate sensors A are simulated using

EPANET++, where A ⊆ V ∪ E since pressure head is measured on node while flow rate

is measured on pipeline. The hydraulic time step, time interval between re-computation

of system hydraulics, is used to simulate the sampling frequency of IoT devices. The IoT

observations are filtered out based on the pre-defined sensor set A from the computed results

of all nodes and links during the simulation time period.

We consider X as a set of IoT measurements collected from sensors, and Y as a set of event

variables, i.e., the states of each node (leak or not) that we wish to identify. An arbitrary

assignment to X is denoted by a vector x = {xa : a ∈ A}. Similarly for Y , an assignment
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y = {yv : v ∈ V} is a vector of labels taking from the label set L = {0, 1} where yv = 1

indicates a leakage at node v. Note that the leak event is assumed to occur at node (the joint

of pipes), since the interconnect points are more risky than others [5]. In our implementation,

leak locations are arbitrarily assigned meaning that the structure of labels is independent,

therefore the conditional probability p(yv|x) can be modeled and trained by using supervised

ML based techniques [123]. This is a multi-output classification problem since the dimension

of the output is more than one. Due to the mutual independence of labels, the problem is

then transformed into multiple binary classifications where a binary classifier is trained for

each node independently [128]. The goal is to maximize the number of correctly classified

labels by learning a set of classifiers that maps x→ y, which is

ŷv = arg max
yv∈y

fv∈V(x, yv) (4.2)

Each fv is a compatibility function indicating how well yv fits the input x, and ŷv is the

prediction for x that maximizes the compatibility. Given the knowledge of a water network,

ML based techniques can be used to find a solution to (4.2), however the prediction capa-

bility may be limited by the uncertainty of IoT measurements due to noise and interference,

incomplete observations due to inaccessible locations and high cost, and highly overlapped

observations due to tightly interconnected network structures.

4.3.3 Modeling Weather Information

When the ambient temperature falls to 20 degrees F or below, pipes may be subject to freez-

ing in the event of extremely cold weather [1]. According to the general manager’s report

from WSSC and weather report from National Oceanic and Atmospheric Administration

(NOAA), pipes become more brittle during the winter and the chance of water main breaks

rises significantly as the temperature drops (Fig. 4.2). Cold weather can be a root cause of
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Figure 4.2: Average number of pipe breaks per day along with ambient temperatures in the
regions of Prince George’s and Montgomery County’s for recent five years (2012-2016).

pipe breaks. The measurement based study in [1] addresses that frozen pipe itself does not

typically cause a break. Instead continued freezing and expansion inside the pipe increase

water pressure that can dramatically increase stress on a pipe and cause the pipe break

following a pressure decrease. Therefore, the pattern of a pressure increase followed by a

decrease can help isolate a faulty pipe. That is, if the ambient temperature is below 20◦F ,

a time series of pressure values will be processed that may provide additional information

for a faulty pipe. As mentioned, the paper is to evaluate the effect on leak localization by

integrating multiple information sources and techniques. Thus weather information is mod-

eled straightforward using probability representation. For each node v, we define pv(freeze)

as the probability of freezing if the temperature is below 20◦F , and pv(leak|freeze) as the

conditional probability of leak due to freezing. We intend to model weather information

using Markov chains as part of the future work.

4.3.4 Modeling Human Input

To leverage human input, we bring in social media, Online Social Network (OSN), for the

incorporation of human sensing. OSN has become a major platform for information sharing
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in which we can mine interesting patterns. Human reports on pipe leak events, such as leak

messages posted on Twitter, can help identify the potential damaged region by extracting

the associated geographic information. Compared with IoT measurements, human input is

considered as deterministic information because it is highly likely to have pipe breaks in

a region if people living around report it on OSN. The more reports, the higher the level

of confidence about the event. Therefore, we incorporate human input with the predicted

outcome from IoT measurements to improve the detection performance.

Data collected from Twitter represents a previously untapped resource for detecting a pipe

break and locating the failure. Human input to AquaSCALE is enabled by integrating a

novel Tweet Acquisition System (TAS) [110] developed at UC Irvine, which enhances the

monitoring of tweets based on client/application needs in an online adaptive manner such

that the quality and quantity of results improve over time. Given a group of interested

patterns, TAS can extract related tweets that are then used to help track and locate leak.

Twitter users are “sensors” and the posted message with a mention of water pipe break such

as “Pipe bursts @ Sunset Boulevard north of the UCLA campus.” is an indicator of leak

event. To model the human input, let C = {c : c = {v : |lc − lv| < γ ∧ v ∈ V}} represent a

set of subsets of V (i.e., a set of cliques) inferred from tweets. Here, a clique c is associated

with the location lc where people post the event, and |lc − lv| < γ means that the distance

between lv (the location of node v) and lc is less than threshold γ. The threshold γ is a

pre-defined parameter indicating the coarseness of the collected Twitter data. For example,

if γ is set to 1 km, nodes within 1 km distance to lc are considered to be likely to leak and

will be added into the clique c.

Although there is a high probability for a region to have a pipe break if leak message posted

on Twitter, a tweet can be erroneously treated as an indicator of a leak event. For example,

tweets like this “LeakFinderST - innovative leak detection and location in water pipes.” may

be collected but it does not relate to a leak event that we wish to identify. Therefore,
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we define a probability of false positive error as pe, i.e., the likelihood of a tweet that is

improperly considered to be relevant, where 0 < pe < 1. The confidence that there is a leak

within a certain region is represented by

pt = 1− (pe)
k (4.3)

where k is the number of tweets collected over a period of time, and with more tweets collected

the confidence pt increases. To model the number of messages received along with the time,

we use Poisson distribution that is popular for modeling the number of times an event occurs

in an interval of time or space. The human input is assumed to arrive independently of the

time. The average number of human reports received in a sampling interval (of IoT devices)

is designated as λ that is called arrival rate. The probability of receiving k reports in n

elapsed time slots is given by the equation

P (k reports in n intervals) =
(nλ)ke−(nλ)

k!
(4.4)

where e is the Euler’s number and n ∈ N. Combine (4.3) and (4.4), the confidence that there

is a pipe leak in an area can be computed.

4.4 A Composite Leak Identification Algorithm

To enable an accurate and timely leak events identification, we discuss a two-phase approach

where the profile model is generated offline by learning an extensive amount of measurements

in water infrastructure (Phase I) and the additional observations are integrated with the

predicted results from the profile model when live data coming in (Phase II). The proposed

composite algorithm reduces the detection time by orders of magnitude by generating a

profile offline and improve the detection accuracy by incorporating multiple data sources.
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4.4.1 Phase I: Training Profile Model Using Measurements In Wa-

ter Infrastructure

In Phase I, the objective is to train a set of classifiers fv∈V in (4.2) to generate a robust profile

model f using a great amount of measurements collected in water infrastructure. Here we

drop the subscript v and use f to represent a set of trained fv∈V as the profile model. We first

discuss the generation of training features and samples that are then input into the classifiers

for a profile model generation. The enabling of plug and play ML based techniques allows

us to explore the knowledge of which technologies work well in terms of speed and accuracy

under different configurations.

Features of internal measurements in water infrastructure include the topology of the network

and IoT observations. The basic topology information, denoted as T , includes node elevation,

pipe length, diameter and roughness coefficient, which are static parameters for a given water

network. Dynamic IoT measurements X collected from IoT sensors depend on the type and

location of the devices. Techniques based on the measurements from pressure and flow rate

devices allow a more effective and less costly search in situ [112]. Thus we use pressure

transducers and flow meters in the paper. Water pipe leak identification is based on the

premise that leakage in one or more locations of the network involves local liquid outflow

at leaky points, which will change the pressure head and flow rate at monitoring points

[112]. Therefore, we use the difference between the two sets of consecutive readings from

IoT devices as the features of X. That is xa is the change in pressure head or flow rate of

sensor a. The dynamic IoT observations X aggregated with the static topology T are then

the features of a training sample. AquaSCALE in conjunction with EPANET++ enables the

selection of a sensor set A giving the type and number of IoT devices. It allows the study of

sensor placement by evaluating different sensor configurations. The problem of identifying

an optimal sensor placement for leak detection will be studied in future work. In this work,

given the number of available devices, we use k -medoids algorithm to select a group of
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locations as the sensor set. K -medoids is a clustering algorithm related to k -means, but it

is more robust to noise and outliers [80, 81]. k -medoids partitions |V|+ |E| potential sensor

locations into certain number of clusters and assigns cluster centers as the sensor locations,

based on the pressure head and flow rate read from nodes and pipes.

As discussed in Section 4.3.2, this multi-output classification problem is transformed into

multiple binary classification problems where the classifier is trained separately for each

potential leak location v using same datasets and its true labels denoted as Yv. The profile

model f : T ∪ X → R can be an ensemble of a set of linear/nonlinear predictors, decision

trees, or weak learners, and the parameters of f can be learnt by ML based techniques on

the basis of the analysis of pressure and flow rate variations produced by the leak. Note

that the performance of specific techniques depends on the structure of water networks, the

type and number of IoT devices and their deployment. AquaSCALE allows to test different

techniques in isolation or combination, and a hybrid approach may improve the performance

since it is thought of as a way to compensate the limitations of individual algorithms.

In the paper, we used scikit-learn package for data processing and analysis [97], and com-

pared multiple well-known ML algorithms including Linear Regression (LinearR), Logistic

Regression (LogisticR), Gradient Boosting (GB), Random Forest (RF) and Support Vector

Machine (SVM). We proposed a hybrid approach named HybridRSL, a combination of RF

and SVM via LogisticR, because RF and SVM remain robust with decreasing number of IoT

sensors, and LogisticR has low variances and is less prone to overfitting. As shown in Fig.

4.3, the same dataset is trained and predicted by RF and SVM separately, and their pre-

dicted results, i.e., leak probabilities for each node, are then aggregated as a new feature set

and input into LogisticR for further learning. Algorithm 1 shows how classifiers are trained

and updated to generate the profile model for Phase II.
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Figure 4.3: A sketch of the workflow of HybridRSL approach.

Algorithm 1 Training the Profile Model

1: Input water network topology T , IoT measurementsX, true leak events Yv and classifiers
fv for v ∈ V

2: Output the profile model f = {fv : v ∈ V}
3: Objective update fv to best fit training samples

4: for v in V do
fv.fit(T,X, Yv)

5: end for

4.4.2 Phase II: Inferring Leak Locations Using Live Ingress Data

In Phase II, we sequentially aggregate multiple data sources to infer the leak locations.

Compared with human input, IoT measurements and ambient temperatures are relatively

stable data sources. We can expect telemetry readings from these two sources at a certain

interval once the sensing devices are deployed. Due to dynamic and complex social behavior,

however, human reports on leak event may not be available. Therefore, we first use IoT and

temperature streams for event prediction, and use additional human input for event tuning.

The live IoT observations x = {xa : a ∈ A} together with the topology information T

are firstly learnt by the profile model f . It uses predict proba and predict methods built in

the scikit-learn package, whose outcomes are the score/probability of leak for each node,

i.e. P = {pv(i) = score(yv = i) : 0 6 pv(i) 6 1 ∧
∑

i pv(i) = 1 ∧ i = {0, 1} ∧ ∀v ∈ V}
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with yv = 1 indicating having a leak at node v, and a subset of V that are predicted to

leak, i.e. S = {v : pv(1) > pv(0) ∧ v ∈ V}. If the ambient temperature is below 20◦F

and a location v is detected to be frozen, its predicted leak probability pv(1) will aggregate

with pv(leak|freeze) based on Bayes’ theorem [32]. This is a well-known method to combine

probability distributions from experts in risk analysis, and to apply it into AquaSCALE, we

simply consider each information source as an expert. The updated leak probability at node

v is

p∗v(1) =
q∗v(1)

1 + q∗v(1)
(4.5)

where

q∗v(1) =
n∏
j=1

g1j(pj|qv = 1)

g0j(pj|qv = 0)
(4.6)

q∗v(1) is the posterior odds of the occurrence of leakage at node v; g1j (g0j) represents the

probability of source j giving probability pj conditional on the occurrence (non-occurrence) of

leakage at node v. Here, the predicted probabilities come from two information sources, IoT

measurements and weather data. In this manner (4.5), more sources of information means

more certainty. For example, if the probability of leak is 0.6 predicted by both two sources,

then p∗v(1) will tend to be much higher than 0.6. The aggregated results then updated P

and S correspondingly. In set S, potential faulty pipes are identified. However ML based

techniques with noisy IoT sensing data work on the predictive perspective whose output is

probabilistic. We use entropy to measure the uncertainty of a predicted event (leak or not)

at node v on the basis of its leak probability, which is defined as

H(yv) = −
1∑
i=0

pv(i) log pv(i) (4.7)
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The corresponding uncertainty function is given by

E[y] =
∑
v∈V

H(yv) (4.8)

In order to minimize (4.8), we integrate additional human input to help to enhance the

knowledge of leaks and increase the determinacy of the predicted events.

Human reports on leak events as deterministic information are able to correctly reflect pipe

failures within a certain region, but are unable to specify an exact damaged position due

to various social behaviors. Therefore, the human input is used as an additional subzone-

level information, working with the pipeline-level outcomes P and S, to enforce the event

consistency and improve the prediction results. The event consistency here refers to the

consistency of the pipeline-level and subzone-level predictions. An inconsistent event means

that none of pipes in the subzone identified by human input is currently predicted to leak.

To leverage the human input, we apply the higher order potential concepts used in the image

segmentation problems, which is used to enforce label consistency in image regions [70]. We

define a higher order potential function Φc : L|c| → R on clique c to assign a cost to each

possible configurations (or labelings) of y. By incorporating human input, (4.8) can now be

written as

E[y] =
∑
v∈V

H(yv) +
∑
c∈C

Φc (4.9)

that is the energy function to be minimized. Because the effects of human input is considered

to be non-negative in the paper, Φc can assign a very high cost to clique c if none of nodes

in c is currently predicted to leak, i.e. @v ∈ S for ∀v ∈ c. In this case, the node in clique c

with the highest entropy (uncertainty) will be selected for further processing.
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The higher order potential used by us can be written as

Φc =


0 if ∃v ∈ S for v ∈ c

0 else if H(yv) < Γ for ∀v ∈ c

Inf else

(4.10)

Here we introduce a threshold Γ to decide if a pipeline-level prediction is considered to be

determinate enough to ignoring the subzone-level information. That is if the entropy for

node v is less than the threshold Γ meaning that the current predicted event is likely to

occur, then the leak information on node v will not be updated by human input. According

to (4.9) and (4.10), an inconsistent event can push the energy to the infinity. In order to

minimize (4.9), in Algorithm 2, a set of leak locations S is firstly identified by the profile

model f and then updated based on clique c by adding a candidate v∗ if Φc = Inf and

v∗ = arg maxv∈cH(yv). Correspondingly, pv∗(0) and pv∗(1) will be updated to 0 and 1, and

H(yv∗) will be 0. In this manner, the inconsistent events will be forced to change and the

total energy will be reduced because the infinite potentials are eliminated and the entropy

of certain nodes are reduced.

4.5 Experimental Study - Using AquaSCALE for Leak

Event Identification

In this section, we evaluated the proposed identification approach on single- and multi-failure

scenarios, tested multiple ML based techniques in isolation and combination, and examined

the impact of incorporating IoT measurements and additional observations. We begin by

describing the setup and datasets under which the experiments are conducted, and introduce

the performance metrics and the results.
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Algorithm 2 Inferring Leak Events

1: Input water network topology T , IoT measurements x, profile model f , leak probability
due to frozen pv∈V(leak|freeze) and human input C

2: Output an updated set of leak locations S
3: Objective minimize E[y] in (4.9)

4: /* Event Prediction */

5: P = f.predict proba(T,x); S = f.predict(T,x)
6: for v in V do
7: if v is detected to be frozen then
8: q∗v(1) = pv(1)

pv(0)
∗ pv(leak|freeze)

1−pv(leak|freeze)

9: pv(1) = q∗v(1)
1+q∗v(1)

10: pv(0) = 1− pv(1)
11: S = S ∪ {v} if pv(1) > pv(0)
12: end if
13: end for

14: /* Event Tuning */

15: C = {c : c = {v : |lc − lv| < γ ∧ v ∈ V}}; Φc∈C = Inf
16: for c in C do
17: if ∃v ∈ S for ∀v ∈ c then
18: Φc = 0, break
19: end if
20: if Φc 6= 0 then
21: v∗ = arg maxv∈cH(yv)
22: if H(yv∗) > Γ then
23: pv∗(1) = 1, pv∗(0) = 0, S = S ∪ {v∗}
24: end if
25: end if
26: end for
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EPA-NET WSSC-
SUBNET

Figure 4.4: A graph representation of EPA-NET - a canonical water network provided by
EPANET with 96 nodes, 118 pipes, 2 pumps, one valve, 3 tanks and 2 water sources, and
WSSC-SUBNET - a subzone of WSSC service area with 299 nodes, 316 pipes, 2 valves and
one water source.

4.5.1 Experimental Setup and Datasets Generation

Water Networks. AquaSCALE is evaluated using two water networks - a canonical water

network provided by the EPANET (named EPA-NET) and a real subzone of WSSC water

service area provided by WSSC (named WSSC-SUBNET). A graph representation of EPA-

NET with |V| = 96 and |E| = 118, and WSSC-SUBNET with |V| = 299 and |E| = 316 is

shown in Figure 4.4. The elevation of pipes varies with the topography, and each pipe has

four attributes - length, diameter, roughness coefficient, and status (open or close controlled

by a valve). Each node has a pattern of time variation of the demand (i.e. consumption),

and leak events are simulated at nodes. EPANET++ is used to perform extended period

simulation of hydraulic behavior, which computes pressure heads at nodes and flow rates at

pipes.

IoT Sensing Data. Extensive simulations are run on these two networks using EPANET++.

Given the number of devices, we first identify a set of sensor locations, and generate a great

amount of IoT measurements for profile training. As mentioned, features of a training

sample are the topology of a water network and changes on sensing values. The number of
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training and testing samples are 20, 000 and 2, 000 respectively. For each simulation run,

there is at least one and at most 5 leak events, and the number of events follows the uniform

distribution i.e., U (1, 5). The leak events are generated with arbitrary locations and sizes

but same starting time, since we aim to study concurrent failures that are harder to pinpoint.

The sensor set A is selected using k -medoids algorithm based on the given information of IoT

devices. The sampling frequency of IoT devices is 15 minutes. Since the goal is to identify

leak locations, we assume that the leak starting time e.t is known. The change in pressure

heads and flow rates is then computed by taking the differences between the sensing values

at e.t− 1 and e.t+ n, where n is the number of elapsed time slots after leaking, as in (4.4).

Human Sensing Data. From January 6, 2016 to April 1, 2016, the east coast of the US

experienced extremely cold temperatures, while the west coast experienced high precipitation

due to El Niño effects. We collected 30 million “leak-related” tweets posted in the US during

this period using TAS system. Since this data contains significant noise, it was treated as

described (Sec. 4.3.4). Based on the result statistics, the arrival rate λ of human input is set

to 1 per 15 minutes, and the false positive error pe is set to 0.3. The coarseness parameter

γ, determining the clique c, is set to different values to test the impact of incorporating

with human input. More in-depth analysis of those tweets, such as the distribution among

different facilities and how soon after the leaks are the tweet posted, will be discussed in

future work. In Algorithm 2, the node in c with the highest entropy will be considered as the

most risky point, and it will be predicted to leak if the entropy is greater than threshold Γ.

Here Γ is set to 0 to always consider human effect. For each simulation run, given an elapsed

time slot n, a random number between 0 and 1 is generated for obtaining the number of

received tweets k based on (4.4), and the confidence probability pt can then be computed

based on (4.3). With the lapse of time, more human reports can be collected to help identify

pipe failures.

Environmental information - Ambient Temperatures. In the paper, the probability
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pv(freeze) and pv(leak|freeze) are set to 0.8 and 0.9 respectively for all v ∈ V . It might be

different for every node since the vulnerability to low temperatures depends on a variety of

factors, e.g., material, age, location, which will be studied in future work. For each simulation

run, a random number between 0 and 1 is generated for each node and it will be used to

decide if the connected pipe is frozen based on the pre-defined probabilities. It is likely to

have more pipe failures under extreme cold temperatures, which will be used to drive failure

scenarios.

Failure Scenarios. We evaluate the proposed composite algorithm of pipe leak identifica-

tion through two-failure scenarios over different evaluation strategies. We generated 20, 000

single- and multi-failure scenarios separately for training and 2, 000 for each for testing. The

single pipe failure represents that there is only one leak event, which is denoted as e = {l, s, t}.

While multiple pipe failures represents that multiple leak events occur simultaneously, de-

noted as a set of events e = {ei : i = 1, ...,m} where m is the number of leaky points and

ei = {li, si, ti}. Multi-failure is often caused by the ice blockage in winter, thus Pipe Failures

due to Low Temperature is considered as the use case of multiple leaks. The faulty pipes will

be located by using different strategies - measurements in water infrastructures with diverse

ML based techniques, weather information, and/or human input.

4.5.2 Performance Metrics

The effectiveness of the proposed algorithm is evaluated in terms of following metrics.

Hamming Score is defined as
∑
v∈V

1[ŷv=1∧yv=1]
1[ŷv=1∨yv=1]

where 1 is an indicator function. It is the

number of leak events correctly predicted divided by the union of predicted and true leak

events. The score is bounded by 1 and the higher the score the greater number of leaks that

are identified.
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Precision is defined as
∑
v∈V

1[ŷv=1∧yv=1]
1[ŷv=1]

, which is the number of leak events correctly predicted

divided by the total number of events labeled as leak. It is the fraction of predicted leak

events that are true. A perfect precision score of 1 means that every predicted leaky node

does indeed leak but says nothing about the number of leaky nodes that are labeled correctly.

Recall is defined as
∑
v∈V

1[ŷv=1∧yv=1]
1[yv=1]

, which is the number of leak events correctly predicted

divided by the total number of true leak events. In contrast with precision, recall is the

fraction of leak events that are actually identified. A perfect recall score of 1 indicates that

every leaky node is identified but says nothing about how many other nodes are incorrectly

also labeled as leak.

Percentage of IoT Observations is the percentage of IoT deployment penetration. In

practice, we want to reduce the number of devices since the installation and maintenance

are very expensive. Here A = V ∪ E with |A| = |V| + |E| refers to the full (100%) IoT

observations.

Elapsed Time Slot is the number of time slots elapsing after the leak event, denoted as

n. A time slot is a 15 minutes time interval, determined by the sampling frequency of IoT

device. With n increasing, on one side, more observations including IoT data and human

input will be collected, which may provide more information. On the other side, it may also

waste more water, and increase the risk to public health due to water contamination and

other infrastructures due to cascading events.

4.5.3 Experimental Results

In this section, the proposed approach for leak event identification is validated through a

detailed simulation study. We begin by plugging and playing several ML based techniques

for both single- and multi-failure scenarios using EPA-NET network, and apply Hybrid-RSL
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Figure 4.5: EPA-NET with Single Failure - Comparison of ML techniques for single leak
identifications using (a) full and (b) 10% IoT observations.

technique that outperforms others for following experiments. The effectiveness of integrating

diverse data sources for failure detection is evaluated by running extensive simulations on

both EPA-NET and WSSC-SUBNET networks. Flood as a cascading event is modeled and

predicted to help explore the impact of pipe failures.

Figure 4.5 illustrates the comparison of different ML based techniques for single leak identifi-

cation. Those techniques have similar high hamming scores as using 100% IoT observations

(Fig. 4.5a), while RF and SVM can keep a better performance even with 10% IoT (Fig.

4.5b). Figure 4.6 and 4.7 show the comparison of RF, SVM and Hybrid-RSL in terms of

hamming score, precision and recall for single- and multi-failure scenarios. With a lower

percentage of IoT observations, RF yields a better performance compared with SVM. With

more IoT data available, SVM outperforms RF as using around 70% IoT in multi-failure

scenarios (Fig. 4.7). With the aggregation of RF and SVM, HybridRSL has the best per-

formance in both single- and multi-failure cases. It also shows that multi-failure is much

harder to locate. Other ML and data fusion techniques can also be plugged and tested using

AquaSCALE.

In the following result, HybridRSL with the highest score will be used, and the integration of

multiple data sources will be examined. Here the distance threshold γ for human input is set
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Figure 4.6: EPA-NET with a Single Failure - Comparison of RF, SVM and Hybrid ma-
chine learning techniques in terms of hamming score, precision and recall for single leak
identifications.
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Figure 4.7: EPA-NET with Multiple Failures - Comparison of RF, SVM and HybridRSL
techniques in terms of hamming score, precision and recall for multiple leaks identifications.
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to 30 meters. Figure 4.8 and 4.10 describes how much do weather and human data together

contribute toward identifying Multiple Failures due to Low Temperature using EPA-NET

and WSSC-SUBNET water networks. In Fig. 4.8a and 4.10a, only IoT data is applied, and

the result obtained by aggregating temperatures and human input is shown in Fig. 4.8b

and 4.10b. The plotted surface shows how the hamming score varies with the percentage

of IoT observations and the elapsed time slots. It clearly illustrates that the integration

of weather and human information is robust for locating leak events even with limited IoT

data. Incorporating with human input can increase the score, however, more human input

as the time elapsing do not provide significant improvement. Because the false positive

error of human data is set to a small number in our experiments. Figure 4.9 and 4.11

present the increment on hamming score by incorporating weather and human data, and the

incrementation is more significant with less IoT data. Figure 4.12 shows that the efficacy

of incorporating with human input decreases with the coarser Twitter data. Combined

with temperature information, it can compensate for the impact of loose human data and

yield a better performance with the higher score. In Fig. 4.13, detection using only IoT

data is sensitive to the maximum number of leak events, but the aggregation of additional

information can help locate failures and output a better result.

4.5.4 Exploring Impact - Flood modeling and prediction

To capture the impacts of pipe failures and improve post-event awareness, we incorporate

flood modeling and prediction to study cascading events. We apply the BreZo simulator for

flood prediction on WSSC-SUBNET water network. BreZo is a hydraulic model and has been

successfully applied in simulation of dam breaks [17, 18] and floods [94, 93]. It can efficiently

simulate water flows in varying shapes of the earth’s surface. A detailed description can be

seen in [25]. In BreZo, the flood is predicted based on the digital elevation map (DEM),

interpolated from node elevations, shown in Fig. 4.14a. To feed leak information into the
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Figure 4.8: EPA-NET with Multiple Failures due to Low Temperature - Average hamming
score for multiple leaks identifications using (a) IoT observations and (b) the aggregation of
multiple data sources.
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on hamming score by adding weather and human input.

62



Percentage of IoT Observations (%)

0
100

0.2

80

0.4

Elapsed Time Slots (n)

8

H
am

m
in

g
 S

co
re

0.6

60 6

0.8

40 4

1

20 2
0 0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) IoT

Percentage of IoT Observations (%)

0.3
100

0.4

0.5

80

0.6

Elapsed Time Slots (n)

8

0.7

H
am

m
in

g
 S

co
re

60

0.8

6

0.9

40 4

1

20 2
0 0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) IoT + Weather + Human

Figure 4.10: WSSC-SUBNET with Multiple Failures due to Low Temperature - Average
hamming score for multi-leak identifications using (a) IoT and (b) multiple data sources.
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Figure 4.11: WSSC-SUBNET with Multiple Failures due to Low Temperature - Average
increment on hamming score by adding weather and human input.
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Figure 4.12: WSSC-SUBNET with Multiple Failures due to Low Temperature - Average
hamming score with coarser twitter data using different information sources.
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Figure 4.13: WSSC-SUBNET - Average hamming score for failure identifications with in-
creasing number of leak events using different information sources.
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Figure 4.14: Flood prediction based on (a) DEM of WSSC-SUBNET with leaks at v1 and
v2. (b) Zoom-in flooding map overlaying over the DEM. Flood flows from the center to the
outer. H represents the flood depth in meter.

flood model, we use (4.1) to calculate the outflow rate based on pressure readings, which

is then input into BreZo for flood simulations. Two leak events are simulated at v1 and v2

with different leak sizes but same start time, and Fig. 4.14b shows that the flood spreads

along the earth’s surface. This information can be used by water agencies and city planners

for damage control, community notifications and evacuation plans.

4.6 Chapter Summary and Discussion

In this chapter, we leverage the AquaSCALE framework to localize multiple concurrent pipe

failures in community water infrastructures. We formulate multi-leak identification problem,

develop an ML based integration mechanism for efficiently fusing information from multiple

sources, and evaluate it using real-world water networks.

In this work, we first develop and evaluate a range of interventions in the AquaSCALE

platform to understand the structure, components and operations of this CPHI system, which

is the first step to design robust systems under different situations. Given that, we apply it to

65



Scenario 
Generation

Pipe Leaks 
Identification

Sensor Data 
Acquisition

Ambient 
temperatures

Pressure and flow 
measurements

Human inputs

Simulation & Modeling Engine

EPANET++ NOAA TAS BreZo
Decision 
Support

City planners

Agencies

Public

Analyzer

Data 
Training

Phase I: Profile Generation

Profile 
Generation

Event 
Prediction

Phase II: Leak Localization

Event 
Tuning

Flood 
Prediction

Database

Network Topology

Profile/Signature

Historical/live Data

Figure 4.15: This chapter leverages the AquaSCALE system architecture for multi-leak
isolation under a small number of failures.

isolate multiple faults under small number of failures (Fig. 4.15), where data from multiple

information sources including infrastructure measurements, ambient temperatures, human

inputs from social media, and domain models is gathered. In order to efficiently utilize and

fuse these data with different characteristics (e.g., spatial granularity, sampling frequency and

uncertainty), we propose a two-phase workflow that begins with robust simulation methods

using a commercial grade hydraulic simulator, enhanced with the support for IoT sensor and

failure modelings. It generates a profile of anomalies using a hybrid ML method. The profile

then incorporates with live sensor readings, temperatures and human inputs (if available) to

isolate broken pipelines. This joint analysis of heterogeneous data captures the spatial and

temporal coherence at different levels of granularity, which can inform the decision-making.

Our initial study shows that the integration of spatiotemporal data sources supported by

simulation engines and ML techniques can generate near real-time information with high

level of accuracy and detection time reduced by orders of magnitude.
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Chapter 5

Infrastructure Resilience under

Extreme Events

In this chapter, we explore the resilience of water infrastructures under extreme events (e.g.,

earthquakes), where massive failures can occur. In our previous work (Chapter 4), since we

start with the consideration of failures caused by the operational degradation, the maximum

number of pipe breaks is set to 8 (less than 3% of the number of network nodes). It draws

into question efficient isolation of a large number of failures caused by e.g., earthquakes.

Water distribution infrastructures often exhibit extreme fragilities during large-scale disas-

ters resulting in massive pipe breaks, water contamination and disruption of service. To

monitor and identify potential problems, hidden state information must be extracted from

limited and noisy data environments. This requires estimating the operating system states

of the water infrastructures quickly and accurately. We therefore present a graphical model

based approach for on-line state estimation of water distribution networks during large-scale

disasters. We model the water network as a factor graph, characterizing the non-linearity

of fluid flow in the network that is dynamically altered by leaks, breaks and operations de-
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signed to minimize water loss. The approach considers a structured probabilistic framework

that models complex interdependencies within a high-level network topology. The proposed

two-phase approach, which begins with a network decomposition using articulation points

followed by the distributed Gauss-Newton Belief Propagation (GN-BP) based inference, can

deliver optimal estimates of the system state in near real-time. The approach is evaluated in

canonical and real-world water networks under different levels of physical and cyber disrup-

tions, using the Water Network Tool for Resilience (WNTR) recently developed by Sandia

National Lab and EPA. Our results demonstrate that the proposed GN-BP approach can

yield an accurate estimation of system states (mean square error 0.02) in a relatively fast

manner (within 1s). The two-phase mechanism enables the scalability of state estimation

and provides a robust assessment of performance of large-scale water networks in terms of

computational complexity and accuracy. A case study on the identification of “faulty zones”

shows that 80% broken pipelines and 99% loss-of-service to end-users can be localized.
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5.1 Chapter Overview

Natural disasters, e.g., earthquakes, hurricanes and winter storms, and other types of hazards

have resulted in different types of water service disruptions, and caused financial, social,

environmental and human health consequences [37, 69]. The ability to maintain delivery of

water supplies during and after catastrophic events is critical to ensure public safety and

welfare. Additionally, fire-following hazards are of major concern, especially in highly-dense,

urban areas. Water infrastructure resilience is important not only for individuals, but also

for hospitals, fire stations, schools and for other industries that rely on water.

In this work, earthquakes are particularly concerning since buried water pipelines are ex-

tremely vulnerable to damage from earthquake-caused ground failures, e.g., liquefaction,

landslide, surface faulting and other effects. Water infrastructures consist of large and di-

verse networks, constructed over long periods of time, crossing diverse geologic conditions,

and as a result are expected to suffer damage after large earthquakes [41]. For example,

the 1994 magnitude 6.7 Northridge Earthquake (US) damaged over 1,000 distribution pipes

and caused 7 days water outages; the 2010 magnitude 8.8 Chile Earthquake damaged 3,000

distribution pipes and caused over a month of water outages; the 2011 magnitude 9.0 Tohoku

Earthquake (Japan) damaged thousands of distribution pipes and caused several months of

water outages. Furthermore, a recent earthquake report published by the Water Research

Foundation indicates that the bulk of the damage to infrastructures as well as the resulting

loss of access to facilities and supplies are mainly due to failure of hundreds/thousands of

distribution pipelines in zones of infirm ground. Over the past 25 years or so, many U.S.

water utilities in high seismic hazard zones have been upgraded with seismic-resistant pipes

or joints at a rate of 0.1% to 0.3% per year (about a 100 to 1, 000 year replacement cycle)

[41]. Although the level of damage can be controlled or minimized using proven seismic

retrofit practices, we should never expect water infrastructures to be damage free after a

significant earthquake.
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Once pipeline networks are damaged, water service areas will immediately shutdown via

closure of valves. In the meantime, potable water is distributed to customers using mobile

water tankers, while service crews are dispatched to repair and restore the system to normal

operating conditions. Without a robust and efficient approach to localize the damaged

component or section, water agencies are forced to shutdown a greater area to minimize

the loss of cascading failures, which may impact a greater population and cause significant

financial losses due to long out-of-service periods. This scenario highlights the need for a

holistic and efficient state estimation that produces estimates of the current operating states,

and helps detect, locate and prevent possible secondary failures in the water infrastructure.

An efficient hydraulic state estimation enables timely countermeasures that can mitigate

and limit failure propagation, e.g., cascading failures such as release of waste, flooding and

possible contamination.

Despite promising applications, the actual implementation of a real-time monitoring and

measurement platform that adapts to perturbations caused by disruptive events is lacking.

One reason is that, as mentioned in Sec.1.4, water flow and pressures are generally not mon-

itored in real-time at an individual customer level (i.e., households). Water is a relatively

inexpensive resource. Consequently, most water networks are metered only for billing pur-

poses, and there is no intelligent supervisory control and data acquisition (SCADA) system

on distribution pipelines. However, civil engineers advocate that the next generation water

networks will not be passive water delivery systems, but active highly-distributed event-based

control systems [7]. Such a dynamical system will heavily rely on an efficient operating state

estimation to facilitate effective water management under dynamic and nondeterministic

environmental changes.

Challenges: The analysis of hydraulic behaviors requires an accurate representation of net-

work topology as well as real-time measurements of water flows and pressures. However,

instrumenting the entire system of underground pipelines with sensing devices (pressure
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Figure 5.1: Design of probabilistic model based state estimation.

transducers and/or flow meters) is both unfeasible (inaccessibility of locations) and expen-

sive. Also urban water infrastructures are densely connected and complex networks crossing

diverse geologic conditions, where system performance measurements are highly correlated.

It is non-trivial to infer operational states even with a complete observation. When limited

numbers of metering devices are available, probabilistic state estimation can serve as a useful

technique to “fill-in” missing performance data as well as “smooth-out” noisy measurements.

Upon convergence, the optimization should reflect the current state of the water network

which, in turn, should allow the prioritization of immediate responses and after-event repairs,

and eventually restoration of the system.

In this chapter, we provide a systematic study of water CPHIs performance estimation under

limiting conditions, i.e., less than fully instrumented network and noisy data environment,

and combine this with distributed graphical model to identify failures caused by disasters.

This is a key step to the aforementioned distributed event-based control system. Though

inspired by water infrastructure resilience under earthquakes, the proposed methodology is
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designed for generic state estimation and analysis for other pipe based CPHI systems and

beyond.

Key Contributions of This Chapter:

• Network topology processing (Fig.5.1): Design of a methodology that formulates

the water network as a hydraulic model with measurement configurations, and transfers it

into a factor graph representation to incorporate non-linear hydraulic principles within a

structured probabilistic framework - (Sec.5.2).

• Probabilistic state estimation (Fig.5.1): A novel two-phase approach for improving

the speed and accuracy of state estimation on the constructed factor graph: (I) split the water

network into conditional independent components using articulation points; (II) estimate

the hydraulic states using a distributed Gauss-Newton Belief Propagation based approach -

(Sec.5.3).

• Evaluation in real-world water networks: Design of a series of experiments to explore

the performance with respect to the time complexity and accuracy of the proposed approach

on real-world water networks provided by the EPA and WSSC - (Sec.5.4).

• Extensive evaluations under different levels of physical and cyber disruptions, and a case

study on the faulty zones identification - (Sec.5.4).

5.2 Modeling Water CPHI System using Graphical Model

An efficient system state estimator requires to provide optimal estimations under dynamic

and nondeterministic operational and environmental changes. In order to properly model

the system stochastic properties and to conduct computationally-tractable inferences, we

propose a graphical model description of the water system. It can discover and analyze
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desired informative data by abstracting the physical nature into a cyber network of nodes

and links, such that nodes interact with each other along their incident links in a distributed

message-passing manner. Specifically, we model hydraulic heads at water nodes as state

random variables on the graph vertices, and the edges of the graph determine the interaction

of state variables according to the hydraulic physical law (i.e., Hazen–Williams equation

[108]). Viewed together, the graphical model is specified by the joint density of hydraulic

head random variables in the network for state estimation, subject to the constraints imposed

by the fundamental fluid mechanics.

5.2.1 Graphical Model based Inference

We first briefly introduce the concept of graphical model and motivate a graphical model

based approach for efficient state estimation. Graphical models are used to represent the

conditional independence relationships among a set of random variables. It has been success-

fully deployed in many fields, such as computer visions [86], gene regulatory networks [140],

medical diagnostics [140], communication systems [42], and recently power grids [139]. Belief

propagation (BP) is an efficient message-passing algorithm that gives exact inference results

in linear time for tree-structured graphs [74]. Though widely used, tree-structured models

possess limited modeling capabilities, and many stochastic processes arising in real-world

applications cannot be well-modeled by cycle-free graphs [62]. Loopy belief propagation

(LBP) is an application of BP on loopy graphs, however, the convergence and correctness

of LBP are not guaranteed in general. LBP has fundamental limitations when applied to

graphs with cycles: local message-passing cannot capture the global structure of cycles, and

thus can lead to convergence problems and inference errors. [79] presents a feedback message

passing algorithm for an efficient inference in loopy models, which makes use of a special

set of vertices whose removal results in a cycle-free graph. Inspired by the exciting results

made available by graphical models, we consider a graph representing the water distribution
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Figure 5.2: Water physical network and its cyber network with end-users and pipe joints as
communication nodes, and distribution pipelines as communication links.

infrastructure as a probabilistic model, and apply BP based methods for state inference. The

BP method has shown its capability to break the current centralized monitoring architecture

that requires both large communication and computation overhead and tight data synchro-

nization. It enables the estimation of unknown or uncertain parameters in a distributed

message-passing manner.

5.2.2 Graphical Model of Water Systems

A water system is defined as an undirected graph G(V , E) (water can flow in both directions)

with vertices V = {1, ..., n} that represent nodes (end-users – nodes with demand, and

junctions – pipe joints), and edges E ⊆ V × V that represent transmission/distribution

pipelines (Fig.5.2). The set of measurements is defined asM that is connected to the graph G.

There are two kinds of measurements, real measurements and pseudo measurements denoted

byMR andMP respectively, whereMR ⊆M,MP ⊂M,MR∪MP =M andMR∩MP =

∅. Because the number of real measurements will be limited by the cost of installation

and maintenance of sensing devices, and to initiate the state estimation algorithm, pseudo

measurements will be added in order for the entire system to be “observable”. The initial

values of pseudo measurements are assigned based on the knowledge of real measurements,
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and usually with large noise variances. It is worth noting that in the context of seismic

hazards, there is no enough priori knowledge (e.g., historical data) that can be used for an

appropriate initialization.

The probabilistic measurement model of hydraulic system state estimation is expressed as

z = g(x) + u (5.1)

where the vector x = (x1, ..., xn) represents the probabilistic water system states; the vector

u = (u1, ..., uk) where ui is the additive measurement noise assumed to be independent

Gaussian random variable with zero mean, i.e. u ∼ N (0,Σ), Σ is a diagonal matrix with

the ith diagonal element σ2
i ; z = (z1, ..., zk) is the vector of measurement readings such as

flow rate and hydraulic head; and g = (g1(x), ..., gk(x)) is the vector of non-linear functions

associated with each measurement following hydraulic physical laws. Each measurement

Mi ∈ M is associated with measured value zi, measurement noise ui, and measurement

function gi(x).

The probabilistic state estimator aims to find an estimated x̂ of the true states x that achieves

the maximum a posteriori probability (MAP), given the measurement set z and the priori

state information of x according to the measurement model in (5.1). It is mathematically

expressed as

max
x

p(x|z) =
p(x)p(z|x)

p(z)
(5.2)

where p(·) represents the probability density function. Assuming that the prior probability

distribution p(x) is uniform, and given that the measurement probability distribution p(z)

does not depend on x, MAP solution of (5.2) reduces to maximization of the likelihood
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function L(z|x), which is defined via likelihoods of k independent measurements:

x̂ = arg max
x

L(z|x) = arg max
x

k∏
i=1

N (zi|x, σ2
i ) (5.3)

One can find the solution of (5.3) by weighted least squares (WLS) estimator [34]:

x̂ = arg min
x

k∑
i=1

(zi − gi(x))2

σ2
i

(5.4)

To obtain the WLS estimate in (5.4), we need to first obtain a proper formulation for g(x)

(Sec.5.2.3), and employ an efficient algorithm to conduct marginalization over p(x|z) in (5.2)

with respect to x (Sec.5.3).

5.2.3 Hydraulic Network Model

The hydraulic system model is defined using the non-linear measurement functions g(x)

that follow the physical laws to connect measured variables with state variables. This model

takes hydraulic head denoted by h as state variables x (i.e., x ≡ h), since hydraulic head

measurements are essential pieces of information that are required for determining water

service availability. Hydraulic head represents the mechanical energy per unit weight of fluid

in the system, and is defined on water node i as hi = pi+ei, for i ∈ V , where pi is the pressure

head and ei is the elevation head at node i. The typical set of measurements M in water

systems includes: the status of valves Vij (open or closed) and flow rates Qij (cubic meter

per second, cms or m3/s)) at pipes (i, j) ∈ E , and the hydraulic head hi (meter, m) at special

nodes i ∈ V (e.g., reservoir, pump and tank). That isM = {MVij ,MQij ,Mhi} for (i, j) ∈ E

and i ∈ V , where {Mhi} is referred to as the direct measurement Mdir since it measures

state variables directly, and {MVij ,MQij} is referred to as the indirect measurement Mind.

Noted that real/pseudo measurements (MR and MP) and direct/indirect measurements
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(Mdir and Mind) are just two different classifications of measurements that are defined for

the convenience to present the proposed approach. For reasons of completeness, a short

elaboration of the hydraulic background is given following. Reader may safely skip this part.

The measurement functions used in the PDD model are specified based on the measurement

types and readings.

For flow-rate measurement zQij :

gQij(·) = (1/Rij)
1

1.852 · |hLij |
1

1.852 if zQij > 0.0004 (5.5a)

gQij(·) = (1/(Rij ·m)) · hLij if zQij < 0.0002 (5.5b)

gQij(·) = a′(hLij/Rij)
3 + b′(hLij/Rij)

2 + c′(hLij/Rij) + d′ if 0.0002 ≤ zQij ≤ 0.0004

(5.5c)

For hydraulic head measurement zhi :

ghi(·) = hi (5.6)

Here hLij = |hi − hj| is the headloss in the pipe (m), and Rij = 10.667C−1.852d−4.871L is the

pipe resistance coefficient (unitless) [108] where C is the Hazen-Williams roughness coefficient

(unitless), d is the pipe diameter (m) and L is the pipe length (m). Constant m=0.001 in

(5.5b), and constants a′=1.524 · 1015, b′=−2.530 · 109, c′=1.830 · 103, d′=−7.695 · 10−5 in

(5.5c), which are calculated using polynomial curve fitting. In (5.5), different functions are

used according to the values of flow-rate measurements. Because when Qij ≈ 0, it can cause

the Jacobian of the set of hydraulic equations to become singular, and [68] proposed to split

the domain of Q into several segments to create a piecewise smooth function.
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Figure 5.3: Transformation of (5.3a) the hydraulic network with measurement configuration
into (5.3b) the corresponding factor graph with variable nodes and factor nodes.

5.2.4 Factor Graph Construction

To solve the optimization problem in (5.2), we instead need to find an optimal solution of

(5.3) in an efficient manner. We first construct a factor graph to describe a factorization

of the likelihood function L(z|x). Factor graphs comprised of the set of variable nodes and

factor nodes have been widely used to represent factorization of a probability distribution

function, enabling efficient computations [82].

As shown in Fig.5.3a, a factor graph can be formed from the hydraulic model, where the

variable node characterizes the probability distribution of the hydraulic head at nodes, and

the factor node is determined by the set of measurements. The pseudo measurements will

be filled in based on the real measurement readings, to make the entire system “observable”.

That is, the vector of state variables h defines the set of variable nodes X = {h1, ..., hn}, while

the set of measurements M defines the set of factor nodes F = {f1, ..., fk}. A factor node

fi connects to a variable node xs ∈ X if and only if the state variable hs is an argument of

the corresponding measurement function gi(x) according to (5.5) and (5.6). In this manner,

hydraulic head and flow rate are modeled separately, and their correlations can be captured
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in the corresponding factor nodes.

5.2.5 Leak Event Model

Leaks can cause large changes in network hydraulics, and we use WNTR to model the pipe

breaks [68]. A new junction is added onto each pipeline to model the event node, and if a

pipe breaks, its event node will be used as the leaky point. In WNTR, the mass flow rate of

fluid through the hole, dleak, is expressed as:

dleak = CdA
√

2ρpα (5.7)

where Cd is the discharge coefficient (unitless) with default value 0.75, A is the area of

the hole (m2), ρ is the density of the fluid (kg/m3), p is the pressure (Pa) computed using

elevation and hydraulic head (m), fluid density and acceleration due to gravity (m/s2), and

α is set to 0.5 for large leaks out of steel pipes.

5.3 A Multi-phase Probabilistic State Estimation

The industry paradigm is shifting from the traditionally deterministic model based central-

ized monitoring architecture to probabilistic model based highly distributed interactive data

and resource management. Therefore, a multi-phase, distributed implementation of the state

estimator is likely to be the preferred approach, which enables a fast and accurate hydraulic

behavior assessment.

The belief propagation algorithm efficiently calculates the marginal distribution for each state

variables by passing messages (a) from a variable node xs to a factor node fi and (b) from a

factor node fi to a variable node xs. Variable and factor nodes locally process the incoming
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messages and calculate outgoing messages in a distributed manner. Under the assumption

that measurement errors {ui} follow a Gaussian distribution, the probability density function

of {xs} and {fi} are Gaussian. The passing-message can then be characterized by mean and

variance. The marginal inference provides marginal probability distributions p(x|z) that is

used to find an estimate x̂ of the true states x. It is well-known that the key assumption of

the BP algorithm converging to the optimal solution is that the applying graph has no cycle,

i.e., tree-structured [82]. Such assumption often does not hold for most water distribution

networks, which are locally dense and contain loops. In addition, due to the non-linearity

of the measurement functions, the BP based approach will be sequentially applied over

the factor graph until the stop criterion is satisfied, which increases the time complexity

of convergence. Our experience shows that the inference on a large-scale water systems

can take more than 30min to converge, which is too slow for an on-line state estimation,

especially under seismic events. Ideally, state estimation should run at the scanning rate or

at least less than the sampling rate of industrial metering devices (15min) [15], to handle the

new measurement as soon as it is delivered from telemetry to the computational unit. To

overcome these limitations, we proposed a two-phase approach: (I) decomposes the hydraulic

network into conditional independent connected components, and (II) performs the GN-BP

based inference on each of them. It is worth noting that Phase II can be done in parallel for

all components that can further reduce the time complexity.

5.3.1 Phase I: Network Decomposition by Articulation Points

Phase I aims to generate several disjoint connected components where each one has a mod-

erate size and they are conditional independent given specific nodes being observed. Artic-

ulation points (APs) are vertices in an undirected connected graph, whose removal along

with the removal of their incident links disconnects the graph. The APs can divide a graph

into several biconnected components, where a biconnected component is a connected and
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1. Get all biconnected 
components by APs

2. Merge bridge-type 
components and get a forest

3. Output the remaining biconnected 
components and the forest

Figure 5.4: The work flow of Phase I - network decomposition.

“nonseparable” subgraph, meaning that if any one of vertices is removed, the subgraph will

remain connected. Noted that a biconnected graph has no APs. In the context of the water

system, it is important to know the relatively structural prominence of nodes or links to

identify key elements in the network. A water node that is an articulation point often has

higher information centrality and will be considered as the critical location - a single point

whose failure would cause network disconnection [26]. A water network subzone that is a

biconnected graph is considered as more resilient and less susceptible to damage and pertur-

bation [145]. The existing of the alternative supply paths provides a two-fold redundancy

and improve system robustness and resilience by avoiding critical locations and network

bottlenecks. This redundancy, in turn, may improve the performance of state estimations,

since the incorrect measurement on one path may be compensated by measurements from

alternative paths, and an estimate on the variable node can be derived by the cooperation

of messages from multiple incident links. The work flow of Phase I is shown in Fig.5.4, and

summarized in following:

1. Find the articulation points and biconnected components of the water network. For

example, in Fig.5.5a, this is the hydraulic network of the water system operated by North

Marin Water District, and nodes that are labeled by stars are APs, which are used to generate

all biconnected components.

2/3. One observation on branched water networks is that there are many bridge-type

biconnected components, that consist of a single edge. A bridge, in graph theory, is defined

as an edge whose deletion increases the number of connected components, and a bridge-type

biconnected components is any biconnected components that consists of a single edge.
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The purpose of the network decomposition is to reduce the time complexity while obtaining

the optimal state estimates. This will require to use as many sensing devices as the number

of split points to make disjoint components conditionally independent. Without using many

sensors, we do not want to split the network into many small parts (components with a single

edge). Thus, we merge those bridge-type biconnected components and obtain a disjoint union

of trees, which can be proved by contradiction as shown in Theorem 5.1. For example, in

Fig.5.5, the network decomposition outputs 3 biconnected components that are not bridge-

type, and 9 (bi)connected components after merging.

Lemma 5.1. For any graph G, all edges in a cycle will be in the same biconnected component.

Theorem 5.1. The subgraph Gsub generated by merging bridge-type biconnected components

of a specific graph G is a forest, i.e. a disjoint union of trees.

Proof. To prove it by contradiction, assume that there is a cycle on the subgraph Gsub. Since

Gsub ⊆ G, it means that this cycle is also in G. According to Lemma 5.1, all edges along

with this cycle will be in the same biconnected component, which contradicts the initial

statement that they belong to different biconnected components. Therefore the assumption

must be false.

Without losing the structural information after decomposition, the node that is the in-

tersection of 2 or more generated disjoint connected components needs to be observable.

In Fig.5.5b, nodes labeled by stars are intersection points and will be observed. That is

Mhi ∈ MR if node i is such a point. The paper focuses on efficient state estimation

by utilizing limited and noisy measurements. The problem to find a minimum amount of

measurements that are required to deliver optimal system states is out of the scope. The

corresponding study is referred to as observability analysis.
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Biconnected 
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(b) Network decomposition

Figure 5.5: Decomposition of (a) Novato water network into (b) 3 biconnected components
(solid lines) and 9 (bi)connected components (dashed lines).

5.3.2 Phase II: Hydraulic State Inference

In Phase II, we describe an efficient Gauss-Newton Belief Propagation (GN-BP) based hy-

draulic state estimation algorithm, which converges to the optimal inference results for all

water nodes in a reasonable time. To speed up the convergence time on loopy networks,

we then introduce a feedback vertex set (FVS) selection criterion to break all loops, and a

modified version of the proposed algorithm to use FVS.

GN-BP based on-line inference

The BP based algorithm allows the state of end-users to be estimated in a distributed,

message-passing manner with the neighboring end-users where flow meters are located. Then

the aggregated information is communicated in a bottom-up way to the backbone system

operator for driving system control. However, due to the non-linearity of measurement

functions g(·) in (5.5), the closed-form expressions for certain classes of BP messages cannot

be obtained. Therefore we integrate Gauss-Newton (GN) method with BP based inference to

solve the WLS problem in (5.4). The GN algorithm is used to solve non-linear least squares
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problem by minimizing a sum of squared function values and it has advantage that second

derivatives, which can be challenging to compute, are not required.

Based on k number of measurements M, the solution of (5.4), which is a vector of n state

variables x̂ ≡ ĥ, can be found using the GN method [34]:

[J(x(ν))TWJ(x(ν))] ·∆x(ν) = J(x(ν))TWr(x(ν)) (5.8a)

x(ν+1) = x(ν) + ∆x(ν) (5.8b)

where ν = {1, 2, 3, ...} is the iteration index, and at each iteration step ν, ∆x(ν) ∈ Rn is the

vector of increments of state variables x, J(x(ν)) ∈ Rk×n is the Jacobian matrix of measure-

ment functions g(x(ν)), W ∈ Rk×k is a diagonal matrix containing inverses of measurement

variances, i.e. W = Σ−1, and r(x(ν)) = z − g(x(ν)) is the vector of residuals, i.e., the dif-

ference between measured and estimated values. The Jacobian expressions corresponding

to gQij(·) and ghi(·) can be computed based on (5.5) and (5.6). The Jacobian expressions

corresponding to gQij(·) are:

If zQij > 0.0004, based on (5.5a):

∂gQij(·)
∂hi

= (
1

1.852
) · (1/Rij)

1
1.852 · |hLij |

1
1.852

−1 (5.9a)

∂gQij(·)
∂hj

= −(
1

1.852
) · (1/Rij)

1
1.852 · |hLij |

1
1.852

−1 (5.9b)

If zQij < 0.0002, based on (5.5b):

∂gQij(·)
∂hi

= 1/(Rij ·m) (5.10a)

∂gQij(·)
∂hj

= −1/(Rij ·m) (5.10b)
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If 0.0002 ≤ zQij ≤ 0.0004, based on (5.5c):

∂gQij(·)
∂hi

= 3a′(h2
Lij
/R3

ij) + 2b′(hLij/R
2
ij) + c′/Rij (5.11a)

∂gQij(·)
∂hj

= −3a′(h2
Lij
/R3

ij)− 2b′(hLij/R
2
ij)− c′/Rij (5.11b)

The Jacobian expression corresponding to ghi(·), based on (5.6), is:

∂ghi(·)
∂hi

= 1 (5.12)

Consider the GN method in (5.8) where, at each iteration ν, the algorithm returns a new

estimate x̂, and (5.8a) represents the minimization problem:

min
∆x(ν)

||W1/2[r(x(ν))− J(x(ν))∆x(ν)]||22 (5.13)

Hence, the probability measurement model (5.1) can be re-defined as a group of linear

equations:

r(x(ν)) = φ(∆x(ν)) + u (5.14)

where φ(∆x(ν)) = J(x(ν))∆x(ν) comprises linear functions. The MAP solution of (5.2) can

be reduced to maximum likelihood problem, and the equation (5.3) can be re-defined as an
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iterative optimization problem:

∆x̂(ν) = arg max
∆x(ν)

L(r(x(ν))|∆x(ν))

= arg max
∆x(ν)

k∏
i=1

N (ri(x
(ν))|∆x(ν), σ2

i ) (5.15a)

x(ν+1) = x(ν) + ∆x̂(ν) (5.15b)

Next, we show that the solution of (5.15) can be efficiently obtained using BP based algo-

rithm applied over the underlying factor graph introduced in Sec.5.2.4. The factor graph

constructed by the factorization of the likelihood function in (5.15a) is slightly different from

the one in (5.3). The set of variables nodes is defined as the increments of state variables

instead of the state variable itself, i.e. X = {∆h1, ...,∆hn}, while the set of factor nodes

is defined as before based on the measurements M, i.e. F = {f1, ..., fk}. The factor node

fi connects to a variable node ∆xs if and only if ∆xs is an argument of the corresponding

function φi(∆x), that is if the state variable hs is an argument of the measurement function

gi(x). The BP algorithm on factor graphs proceeds by passing two types of messages along

the edges: from variable nodes to factor nodes and from factor nodes to variable nodes. BP

messages represent “beliefs” about variable nodes, thus a message that arrives or departs a

variable node is a probability distribution of the random variable associated with this node.

The “beliefs” will be iteratively updated by incoming messages and propagated by outgoing

messages until the stopping criterion is satisfied.

Message from a variable node to a factor node: Since we consider the Gaussian

graphical model, the message from a variable node ∆xs to a factor node fi at iteration step
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τ can be characterized by mean r
(τ)
∆xs→fi and variance σ

2 (τ)
∆xs→fi :

r
(τ)
∆xs→fi =

 ∑
fa∈Fs\fi

r
(τ−1)
fa→∆xs

σ
2 (τ−1)
fa→∆xs

 · σ2 (τ)
∆xs→fi (5.16a)

1

σ
2 (τ)
∆xs→fi

=
∑

fa∈Fs\fi

1

σ
2 (τ−1)
fa→∆xs

(5.16b)

where Fs is a set of factor nodes incident to ∆xs, and Fs\fi is a subset by excluding the

factor node fi. The incoming messages used for calculation are obtained in previous iteration

(τ − 1).

Message from a factor node to a variable node: Similarly, the message from a factor

node fi to a variable node ∆xs can be characterized by mean rfi→∆xs and variance σ2
fi→∆xs

:

r
(τ)
fi→∆xs

=
1

Ci,∆xs

ri − ∑
∆xb∈Xi\∆xs

Ci,∆xb · r
(τ)
∆xb→fi

 (5.17a)

σ
2 (τ)
fi→∆xs

=
1

C2
i,∆xs

σ2
i +

∑
∆xb∈Xi\∆xs

C2
i,∆xb

· σ2 (τ)
∆xb→fi

 (5.17b)

where Xi is a set of variable nodes incident to fi, and Xi\∆xs is a subset by excluding the

variable node ∆xs. Ci,∆xp for ∆xp ∈ Xi are Jacobian elements of the measurement function

gi(·) associated with fi as shown in (5.9, 5.10, 5.11, 5.12):

Ci,∆xp =
∂gi(·)
∂xp

(5.18)

Marginal inference: The marginal of the state variable is the estimated value of the
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increment, which will be calculated when rfi→∆xx and σ2
fi→∆xx

converge:

∆x̂s =

∑
fi∈Fs

rfi→∆xx

σ2
fi→∆xx

 ·
1

/ ∑
fi∈Fs

1

σ2
fi→∆xx

 (5.19)

The GN-BP based inference subroutine is summarized in Algorithm 3. To present the

algorithm precisely, we define different types of factor nodes based on the measurementsM.

The factor nodes that correspond to real measurements MR are real factor nodes FR ⊆ F ,

and similarly pseudo factor nodes FP ⊂ F are associated with pseudo measurements MP.

The direct/indirect measurements Mdir and Mind are represented by direct/indirect factor

nodes Fdir ⊆ F and Find ⊆ F respectively. In Algorithm 3, the outer loop stops when the

difference on estimated values is less than a very small number εO, and the inner loop stops

when the difference on BP messages is less than a very small number εI(ν) that varies with

the outer iterations.

Feedback vertex set selection

The non-bridge biconnected components generated by Phase I contain loops - it provides

path redundancy for resilience but can also add difficulty for BP inference. We consider

a particular set of nodes called a feedback vertex set (FVS) denoted by F whose removal

breaks all the cycles and results in a cycle-free graph, which is inspired by [79]. The algorithm

proposed in [79] runs in time O(m2n) where m is the number of feedback nodes and n is the

total number of nodes. When m is bounded by a small number, this is a significant reduction

from O(n3) of LBP. [79] further proposed a pseudo-FVS selection process with bounded size

and this procedure works well for grid graphs with fast convergence and high accuracy. The

problem of finding the minimum FVS for general graphs is still an active research area,

and the fastest algorithm for finding the minimum FVS runs in time O(1.7548n) where n is

number number of nodes [48].
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Algorithm 3 The distributed GN-BP based inference

1: Input factor graph Gf (X ,F), state variables x with initial values, state threshold
[xL, xH ], measured values z, outer loop stopping threshold εO, and a vector of inner
loop stopping thresholds εI

2: Output estimated states x̂

/* Outer state update loop ν = 1, ...; τ = 0 */

3: while |x(ν) − x(ν−1)| < εo do
4: for fi ∈ Find do
5: r

(ν)
i = zi − gi(x(ν)) using (5.5)

6: C
(ν)
i,∆xp

= ∂gi(·)
∂xp

, ∆xp ∈ Xi using (5.9, 5.10, 5.11, 5.12)

7: end for
8: for fi ∈ Fdir do
9: r

(ν)
i = zi − gi(x(ν)) using (5.6)

10: end for
11: for ∆xs ∈ X do
12: if fxs ∈ FR then

13: r
(ν,τ=0)
∆xs→fi = r

(ν)
s ; σ

(ν,τ=0)
∆xs→fi = εσ for fi ∈ Fs

14: else
15: r

(ν,τ=0)
∆xs→fi = εr; σ

(ν,τ=0)
∆xs→fi =∞ for fi ∈ Fs

16: end if
17: end for

/* Inner message update loop τ = 1, ... */

18: while |r(τ)
f→∆x − r

(τ−1)
f→∆x| < εI(ν) do

19: for fi ∈ Find do
20: r

(τ)
fi→∆xs

, σ
2 (τ)
fi→∆xs

using (5.17) for ∆xs ∈ Xi
21: end for
22: for ∆xs ∈ X do
23: r

(τ)
∆xs→fi , σ

2 (τ)
∆xs→fi using (5.16) for fi ∈ Fs

24: end for
25: end while

/* Marginal inference */

26: for ∆xs ∈ X do
27: ∆x

(ν)
s using (5.19); x

(ν+1)
s = x

(ν)
s + ∆x

(ν)
s

28: end for
/* State validation */

29: for ∆xs ∈ X do
30: if x

(ν+1)
s 6∈ [xL, xH ] then x

(ν+1)
s = x̄(ν+1)

31: end if
32: end for
33: end while
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Figure 5.6: Example of 1st iteration of the FVS selection criterion.

Many of water infrastructures in the U.S. have a hybrid network topology (a combination of

loops and branches), and thus it is possible to find a FVS with a reasonable size to remove

all loops in a water network [57]. Without losing much structural information in terms of

removing nodes, the goal is to find a minimum FVS to break all cycles and enable a fast LBP

convergence on the remaining graph. After Phase I, all non-cycle-free graphs are biconnected,

meaning that all nodes in the graph are part of a cycle. To find an optimal FVS with a small

size, we propose a greedy heuristic algorithm: one feedback node is chosen at each iteration,

and at each stage we examine the graph excluding the nodes already included in the FVS

F and select the node with the largest degree. We then remove the node along with its

incident edges and put it into F . The same procedure will be continued on the remaining

graph T until it is empty. The motivation for this method is given that since the number of

cycles is reduced with the removal of nodes, it makes sense to choose nodes with the highest

degrees to remove more cycles at each iteration. When multiple nodes have same, highest

degree, we randomly select one of them. As an example shown in Fig.5.6, node 1, one of the

nodes with the highest degree, is selected and put into F . The removal of node 1 and its

incident edges leave T with 2 tree branches that are further removed from T . This selection

procedure continues until T is empty. The complexity of this algorithm is O(km), where k

is the size of F and m is the number of edges in given graph G. Compared with O(n3) of

LBP, constructing a FVS in this manner significantly reduces the computational complexity.

The selection algorithm is summarized in Algorithm 4.
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Figure 5.7: The message update scheme with 2 feedback nodes. The nodes here represent
variable as well as factor nodes.

To utilize FVS, we use a special update scheme for feedback nodes. Consider the loopy graph

in Fig.5.7a, FVS identified by Algorithm 4 contains two feedback nodes. (1) Algorithm 3 is

first applied on the cycle-free graph GT by removing feedback nodes and its incident edges

(Fig.5.7b). We obtain inaccurate “partial states” for the nodes in the cycle-free graph. (2)

We then compute the inference results for the feedback nodes by applying Algorithm 3 on

the subgraph of feedback nodes, their incident edges and neighbors GT (Fig.5.7c). (3) Last,

we make corrections to the “partial states” of the non-feedback nodes by running Algorithm

3 on the cycle-free graph again (Fig.5.7d). Optimal inference results are obtained for all

nodes. Noted that in (2) and (3), the initial states of nodes that are neighbors of feedback

nodes (e.g., nodes appear both in Fig.5.7c and 5.7d) are determined by the previous stage.

Algorithm 4 The FVS selection criterion

1: Input biconnected component G generated by Phase I
2: Output a FVS F
3: Objective find an optimal F to break all cycles in G

4: Let F = ∅ and T = G
5: while T is not empty do
6: (a) Get node degrees of T
7: (b) Put the node with the highest degree into F and
8: remove it with its incident edges from T
9: (c) Clean up T by eliminating all tree branches.

10: end while
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Hydraulic state estimation

Given a water network, Phase I first splits it into several disjoint connected components,

whose hydraulic states are then estimated by Phase II. To execute the GN-BP based inference

on a graph G(V,E), the state variables on nodes V need to be initialized and the pseudo

indirect measurements on edges E need to be set. The initial values of observed state

variables equal to their real measured values, while for those that are not observed, their

initial values are set to the average of the observed states. The value of a pseudo indirect

measurement is set to the same value as its closest real indirect measured value. The state

estimator is summarized in Algorithm 5.

Algorithm 5 The multi-phase hydraulic state estimation

1: Input water network G, measurements M
2: Output estimated hydraulic heads of water nodes

/* After Phase I */

3: for each connected component Gc(V,E) of G do
/* Initialization */

4: For ∀i ∈ V : if Mi ∈MR, xi = zi; else xi = average value of Mi ∈Mdir ∩MR.
5: For ∀j ∈ E: if Mj ∈ MP, zj = zc, where c = arg minl distance(j, l) and Ml ∈
Mind ∩MR.
/* Inference */

6: if Use FVS then
7: Find FVS of Gc, and get GT and GF .
8: Alg.3 on factor graphs Gf (X ,F) of GT and GF .
9: else

10: Alg.3 on factor graph Gf (X ,F) of Gc.
11: end if
12: end for

5.4 Experimental Study

In this section, we examine the effectiveness of the proposed multi-phase state estimation

algorithm on a small-scale canonical water network and two real-world water systems where
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they have different configurations on topology, network size and pressure range (Fig.5.8).

The inference approaches we compared include: GN-BP - directly estimate the states of the

entire network by Phase II; FVS+GN-BP - find FVS and estimate the states using FVS by

Phase II; Decomp+GN-BP - split the network by Phase I and estimate the states of each

component by Phase II; Decomp+FVS+GN-BP - find FVS for each components generated

by Phase I and estimate the states using FVS by Phase II. We begin by describing the setup

under which the experiments are conducted, and introduce the performance metrics and the

results.

5.4.1 Experimental Setup

Figures 5.8b/5.8c show the real-world water systems that are used to evaluate the scalability

of the proposed approach. NET3 is the service area, containing multiple pressure zones, of

North Marin Water District (NMWD) provided by EPA, and WSSC-SUBNET is a single

pressure zone of WSSC service area provided by WSSC. Figure 5.9 illustrates that NET3

has relatively large variances on both hydraulic heads and flow rates, where the variance on

hydraulic heads is 5.989m compared with 1.386 ·10−4m of WSSC-SUBNET, and the variance

on flow rates is 1.5 · 10−2m3/s compared with 2.755 · 10−6m3/s of WSSC-SUBNET.

We use WNTR to simulate the earthquake impacts on the water distribution system by

generating an earthquake event with magnitude 5.5 (unitless) and shallow depth 5000m at

a random location. The pipe failure probabilities are then calculated using the attenuation

model of peak ground acceleration (PGA) where PGA = 403.8× 100.265M(R + 30)−1.218 and

the fragility curve that defines the probability of exceeding a damage state as a function of

PGA (Fig.5.10). Here M is the earthquake magnitude and R is the distance to epicenter

(km). The leak diameter of the broken pipe is generated following the uniform distribution

between 0.15 and 0.3 of the pipe diameter. Each pipeline may have different lengths and
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(a) Sample Net

Net3, CA
- Multi-pressure Zones
- Pipe Length: 65.75km
- # of Nodes: 214
- # of Pipes: 234

(b) NET3

WSSC-Zone300A, MD
- Single Pressure Zone
- Pipe Length: 19.04km
- # of Nodes: 615
- # of Pipes: 632

(c) WSSC-SUBNET

Figure 5.8: (5.8a) A sample network provided by EPA and two real-world water systems:
(5.8b) the water distribution network operated by NMWD and (5.8c) a single pressure zone
operated by WSSC.
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Figure 5.9: Comparisons on (5.9a) hydraulic head (m) and (5.9b) flow rate (m3/s) between
WSSC-SUBNET and NET3 water systems at 11am under normal condition.
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PGA (g)

Epicenter

(a) Peak Ground Acceleration (b) Fragility Curve

Figure 5.10: (a) PGA of pipelines for a magnitude of 5.5 earthquake. (b) Fragility curve for
pipe damage.

diameters. We assume that 50% pipelines are instrumented by flow meters with varied noise

variances, and the critical points are instrumented by SCADA monitoring systems with a

small noise variance, since, in reality, SCADA systems are less susceptible to physical and

cyber failures. The critical points include reservoirs, tanks, pumps, and those articulation

points that are used to split the network in Phase I. There are 19 (≈ 8%) and 48 (≈ 8%)

critical nodes in NET3 and WSSC-SUBNET respectively.

5.4.2 Performance Metrics

The effectiveness of the hydraulic state estimator is first evaluated in terms of the time

complexity and the accuracy. The sampling rate of industrial flow meters is 15min,

meaning that the estimator needs to infer the current system states in less than 15min

before new measurements arrive. The faster the estimation converges to the optimal values,

the quickly the countermeasures can be adopted. The time complexity is evaluated by the

number of iterations to converge, and the accuracy is evaluated by the mean square error

(MSE). We also consider two resilience metrics: pipe damage state and water service

availability. There are two damage states: “no damage” and “break”, and the goal is to
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identify faulty zones where pipes are in the “break” state. To demonstrate this identification

performance, we define True Positive (TP) as the number of predicted broken pipes within

the distance threshold to the leaky points divided by the number of true broken pipes, and

False Positive (FP) as the number of predicted broken pipes not in the distance threshold

divided by the number of predicted broken pipes. A higher TP with a lower FP means

a better performance. Water service availability at each node is computed as Vi/V̂i for

i ∈ V , where Vi the actual water volume (m3) received at node i and V̂i is the expected

water volume (m3) received at node i. The water service availability can be influenced by

failures and operational changes after a disaster, and it is important to estimate the received

volume at end-users to localize the areas where they loss the access to the supply and facility.

Precision and recall are used to demonstrate this estimation performance.

5.4.3 Complexity and Accuracy of Hydraulic State Estimation

In this section, the proposed state estimation approach is validated through a detailed sim-

ulation study on a small-scale canonical water network and two real-world water systems.

We first demonstrate the performance of the approach on the small-scale water network

(Fig. 5.8a), where the flow rate measurements have a large noise variance (5m3/s). Figures

5.11a/5.11b illustrate that our approach can generate an accurate estimation on hydraulic

heads (MSE = 0.02) with a flat start of 305m in a fast manner (converge in 1s). The rea-

son for simulating a flat start is to mimic the water system environment with strong state

variation, making typical initial guess method (from the last static state estimation) less

informative for the new estimation process. Figure 5.11c shows the fact that the proposed

GN-BP based estimation approach does not rely heavily on the initial guess.

In the following set of simulations, we study the performance under different levels of sensing

and infrastructure disruptions, with respect to the number of iterations to converge and the
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Figure 5.11: Sample Network - (a) estimated hydraulic heads with a flat start 305m and (b)
mean square error versus number of outer iterations. (c) Errors versus initial head values.

mean square error of the headloss at pipes. Headloss is the absolute difference on hydraulic

heads at the end nodes of a pipeline (5.5), and it can be used to identify pipe failures, since

the headloss of a broken pipeline will increase due to the leaking. An earthquake event

is generated on NET3, and it causes 10% (≈ 20) pipe failures with varied leak volumes.

Different percentages of the disrupted sensing devices are simulated based on the locations

of broken pipelines, where those disrupted meters are considered with a large noise variance

2.5 · 10−3m3/s compared with the noise variance 10−6m3/s of non-disruptive meters. Figures

5.12a/5.12b illustrate that compared with FVS+GN-BP, the proposed two-phase approach

(Decomp+) can dramatically reduce the time complexity using less number of iterations

and improve the accuracy with lower errors. Because the network decomposition separates

the network into several subnets, and each of them has a relatively small size. In addition,

each subnet can yield a better initialization by capturing its local information compared

with the initialization over the entire network, since the initial states of unobserved state

variables are set to the average of the directly observed values in its connected component.

The performance of GN-BP (without FVS and Decomp) on NET3 is not shown, because

it takes more than 30min to converge and makes the estimation too long to be meaningful.

The approach of Decomp+FVS+GN-BP can further decrease the computational complexity

but with the cost of less accuracy. Because the removal of feedback nodes breaks the original

graph structure, which can result in the loss of topological information. Figures 5.13a/5.13b

97



0 15 30 45 60 75 90

Percentage of Disrupted Meters

0

50000

100000

150000

200000

250000

300000
N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s

FVS+GN_BP

Decomp+GN_BP

Decomp+FVS+GN_BP

(a) Number of Iterations

0 15 30 45 60 75 90

Percentage of Disrupted Meters

0

1

2

3

4

5

6

7

M
S
E
o
f
H
e
a
d
lo
s
s
a
t
P
ip
e
s

FVS+GN_BP

Decomp+GN_BP

Decomp+FVS+GN_BP

(b) Mean Square Error

Figure 5.12: NET3 - (5.12a) total number of iterations to converge and (5.12b) mean square
error of headloss at pipes versus the percentage of sensor failures.

show the estimation results on WSSC-SUBNET where there are 5% (≈ 30) pipe failures,

and the noise variances of disrupted and non-disruptive meters are 10−4m3/s and 10−8m3/s

respectively. Likewise, the two-phase approach yields a better performance with less time

complexity and high accuracy.

In Fig.5.14, the comparison is performed on NET3 under different levels of infrastructure

(pipe) failures, where the noise variance of meters is 10−6m3/s. It can be seen from Fig.5.14a,

that as the number of pipe failures increasing, our approach is able to converge in approxi-

mately the same number of iterations. Fig.5.14b shows that Decomp+GN-BP can achieve a

0.71 MSE of headloss when 9% (≈ 22) pipe breaks.

5.4.4 Faulty Zones Identification

This section explores the hydraulic state estimation for the faulty zones identification. To

enable the ability of a system to minimize disruptions and return to the normal function

after disruptive incidents, it is important to quickly detect and localize faulty regions such

that this information can be used by water agencies and city planners for damage control,
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Figure 5.13: WSSC-SUBNET - (5.13a) total number of iterations to converge and (5.13b)
mean square error of headloss at pipes versus the percentage of sensor failures.
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Figure 5.14: NET3 - (5.14a) number of iterations to converge and (5.14b) error of headloss
at pipes versus percentage of pipe failures.
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(a) Pipe Damage States
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predicted point
Missing point

(b) Loss of Services Nodes

Figure 5.15: WSSC-SUBNET - (a) predicted damaged pipes with TP = 0.8, FP = 0.4 of
distance threshold 200m; (b) predicted loss-of-service nodes with precise = 1 and recall =
0.99.

community notifications and evacuation plans. We use WSSC-SUBNET in this case study,

since the coordinates of its water nodes are their true geo-locations. In this study, 5 major

leak events with different large leak volumes are generated at random locations, which are

indicated by circles in Fig.5.15a. According to the modeling of leak events (Sec.5.2.5), each

pipeline is split into two segments, and the leaky point on a pipe can cause the difference

on the headloss between these two segments. The key observation is that the true headloss

can be used to identify the broken pipes with TP = 1, FP = 0. In Fig.5.15a, our approach

is able to localize damaged pipes with TP = 0.8 of a distance threshold 200m. It can be

seen that though the predicted locations are not the exact leaky points, it can help narrow

down and target the potential faulty regions such that detailed examinations can be executed

effectively. Water service availability is another important resilience metric to identify the

places where they loss the access to the facility. The delivered water volume can be calculated

using (2.1) where the node pressure is computed using its elevation and estimated hydraulic

head. Figure 5.15b shows that 99% of loss-of-service nodes can be localized. With this

information, the portable water can be delivered for drinking and other sanitary purposes.
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Figure 5.16: This chapter leverages the AquaSCALE system architecture for state estimation
under extreme events.

5.5 Chapter Summary and Discussion

In this chapter, we present a novel probabilistic state estimation approach for fault identifica-

tion, which combines physical constraints with structured nondeterministic information into

a single cyber-physical graphical model, for water distribution infrastructures. We consider

the real-world water networks under disasters, where different percentages of physical infras-

tructures and monitoring devices are disrupted, and the proposed two-phase mechanism is

scalable for state estimation in large-scale water networks. This paves the way for distributed

control for next generation water CPHI systems. One can imagine that the estimated dam-

aged state information is fed into a control decision process, where the pipe network would

be reconfigured using remotely controlled valves to save both water and customer demand

issues [65].

We add to the previous chapter’s approach by improving the resilience of water infrastruc-

tures under large massive failures through our proposed AquaSCALE platform introduced in
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Chapter 3. The operation of water infrastructures is governed by partial differential equations

(5.5) and parameters embedded in these equations are spatially dependent. It is intractable

to efficiently abstract useful and correct information from such non-linear, dynamic environ-

ment for state estimation. Therefore, as shown in Fig. 5.16, we leverage data from multiple

information sources including network topology, failure model and fragility curves as the

source for a priori knowledge, hydraulic state estimates as the source for posterior informa-

tion, and simulation/modeling engines for analysis support. With this comprehensive view

of the system, we identify and pre-process some tasks that can be executed offline to save

the computational complexity at the run time. Altogether, this enables an efficient state

estimation of the water CPHI system when a large number of failures are presented.
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Chapter 6

Human-enhanced Analytics for

Resilience

Real-time fault source identification is critical in complex distributed infrastructures, e.g.,

water infrastructures, where failures are difficult to isolate and human operators are often

involved (Section 1.3). While previous two chapters explore the water quantity (pipe failures)

problem, this chapter focuses on the contaminant source identification in water networks

using human-in-the-loop based sensing.

We present AquaEIS, an event-based middleware tailored to the problem of locating sources

of failure (e.g., contamination) in community water infrastructures. The inherent complex-

ity of underground hydraulic systems combined with aging infrastructure presents unique

challenges. AquaEIS combines online learning techniques, model-driven simulators and data

from limited sensing networks to intelligently guide human participants (e.g., domain expert,

field staff, consumers) in identifying contaminant sources. The framework integrates the nec-

essary abstractions with event processing methods into a workflow that iteratively selects

and refines the set of potential failure points for human-driven grab sampling. The integrated
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platform utilizes Hidden Markov Model (HMM) based representations along with field re-

ports for event inference; reinforcement learning (RL) methods have also shown promise for

further refining event locations and reducing the cost of human engagement. Our approach

is evaluated in real-world water networks under a range of distinct events. The results show

that AquaEIS can significantly reduce the number of sampling cycles, while ensuring lo-

calization accuracy (identified 100% of the failure events in less than 5 sampling cycles as

compared to a baseline that can only identify 38% of the events).
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6.1 Chapter Overview

In recent years, water utilities have had increasing concerns about the possibility of harm

due to accidental or intentional contamination of water systems [44]. [96] shows that, today

in the U.S., an estimated 19 million people are exposed to the contaminated water and at

least 610 contaminated locations. Public awareness has increased dramatically due to media

coverage since 9/11 - incidents have exposed the vulnerability of populations to toxins and

contaminants [56, 27]. Accidental contamination events are also becoming more frequent,

for instance, metals in pipe materials can leach into the system, ground contaminants can

permeate plastic pipes, persistent or transient pressure loss can result in chemicals entering

the network through backflow and contaminated soil water entering through leaky joints

[90, 108]. In such scenarios, water utilities must quickly identify contaminant sources to

ensure the maximum effectiveness of intervention strategies and the minimization of exposure

of populations at large to the contaminants.

Challenges: Given that the hydraulic behavior is dynamic and non-deterministic, it is

non-trivial to infer the contaminant source with binary measurements (current sensing tech-

nologies yield binary indications of possible contaminant presence) from spatially-sparse in-

situ sensors (network of hundreds or thousands of pipelines is not actively monitored). Such

problem is the canonical “inverse problem”, and therefore multiple solutions or near-solutions

often exist. Since source injections can originate at any point throughout the network at any

time, the solution space can be very large (roughly number of network nodes times number

of historical time steps considered), making it intractable to solve the problem uniquely. The

choice of a solution is further complicated by the shortage of measurements as compared to

source parameters. A pragmatic approach proposed by civil engineers argues that a unique

solution is not needed, one can identify a set of locations for which a contaminant injection

is possible [111]. Manual samplings (grab samples) can help further reduce the resulting set

that is likely to be large due to the low density of in-situ sensing - the human engagement
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however involves cost and time [142]. This highlights the need for an integrated view of

the state of CPHI system to support cost-accuracy-time tradeoffs inherent in fault source

identification.

Key Contributions of This Chapter:

• Integrated platform for event identification in CPHI systems: We propose and

develop AquaEIS, a platform that supports a holistic approach to fault source identification

in complex distributed settings. AquaEIS integrates multiple sensing modalities (devices,

human-as-a-sensor), computing (ML, simulations) and domain knowledge to enable an obser-

vation, analysis and adaptation loop in the system. Though inspired by water infrastructure

resilience, the proposed end-to-end solution can be applied to other “flow/traffic/current”-

path-dependent systems. (Sec.6.2).

• Event-driven profile generation: Our approach abstracts the physical nature of phe-

nomena spread (i.e., contaminant transport) into apriori profiles of anomalies represented

using impact matrices, which are integrated with live readings from multiple data sources

for event processing (Sec.6.2).

• Online iterative event processing: AquaEIS is intended to execute in an operational

setting on-the-fly, where event processing learns from executions and triggers needed actions

to reduce human efforts. At runtime, an iterative event processing strategy is executed in two

steps: location inference and location refinement. Here, an approximate set of contaminant

sources (often fairly large at early stages) is inferred using current available measurements,

which is then refined through human-driven grab samples. The process is repeated until the

number of likely sources is sufficiently small. For inference, we propose an HMM model with

a pruning technique to quickly eliminate solutions that are inconsistent with physics (i.e.,

hydraulics) and measurement information (Sec.6.3); the refinement step implements a RL

based approach used to determine optimal sampling locations such that it can help locate
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the source within a small number of sampling cycles (Sec.6.4).

• Evaluation in real-world water networks: We evaluate the AquaEIS approach using

a complete ensemble of contamination events on two real-world water networks (Sec.6.5).

6.2 The AquaEIS Approach Overview

AquaEIS (Fig.6.1) is built on the AquaSCALE platform and operated as a real-time event

processing service, which can offer utilities the ability to more accurately locate the point of

failures. Timely detection can provide valuable information to enable rapid decontamination

and disposal response e.g., hydrant flushing. AquaEIS composes ML (RL), modeling (HMM),

and data collection methods (in-situ and grab-sampling) at different levels of granularity

and latency for a comprehensive system. This is required since limited sensing devices only

capture phenomena spread (e.g., contamination), not the fault source, in the networked

system. Sensor data has inaccuracies; techniques to process the data have uncertainties.

Additional sensing in the form of human operators can help reduce these uncertainties by

strategic sampling at selected points in the network, which involves cost and time.

The first step to enable such a system is accurate modeling of features of the physical

system and its operations. Water systems are usually described as a set of links and nodes,

where links represent pipes, valves and pumps, and nodes represent reservoirs, tanks, joints

and end-users (e.g., building). The contaminant spreads through the system based on the

network topology and its flow patterns taking the system from one configuration (state)

to another. We represent configurations of interest using an event-based architecture and

design abstractions that can capture the state of the system.

Event-driven profiles generation - In this step, our goal is to capture signatures/profiles

of how contamination events manifest in the underlying network. Given a contaminant
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Figure 6.1: AquaEIS integrated event identification system.
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injected at a certain node (source), the associated time delays and impact on other nodes

depend on the transient flow paths and rates, which are made explicit and thus available for

use [111]. To incorporate this knowledge, we generate apriori profiles of anomalies using a

commercial-grade water quality model - EPANET [107], where the contaminant is assumed

to be injected continuously over time and its transport behavior is modeled as the movement

of a non-reactive tracer material through the network [108]. Specifically, we simulate a large

ensemble of contamination events over a long enough period such that the length of the

simulation is as long as the longest travel time from sources to other nodes. A contamination

event is an injection of the contaminant at a particular node beginning at a particular time

of day and we consider events that can occur at every node in the network starting at any

time of a day. It is worth noting that the contaminant injected at same node but at a

different time can propagate differently due to time-varying flows. We assume one event

at a time, where the contaminant is injected continuously over time. This ensemble of

simulations generates profiles of anomalies which we represent using a collection of impact

matrices indexed by time. The impact matrix is an explicit event-to-impact mapping, which

contains contamination events as rows and all network nodes as columns. Entries are given

a value of 1 to indicate that the event can contaminate the given node, and a value of 0

otherwise. For example in Fig.6.2, 9 events are simulated on NET1 water network (from US

EPA) by introducing a contaminant at a random node at an arbitrary time. A matrix at

2PM captures contaminated nodes (columns) caused by these 9 events (rows) at 2PM. As

time progresses, the matrix may or may not change depending on the flows and events. This

collection of matrices can reflect the flow-path-dependent contaminant transport and will be

integrated with live readings from in-situ sensors and human inputs for event identification.

Event monitoring and data acquisition - Often, a contamination event is witnessed

and detected by in-situ sensing platforms, and the initial identification with sparse and

limited measurements is likely to result in a fairly large set of possible sources. Given

the inherent complexity of instrumenting underground systems; utilities in practice obtain
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additional measurements in the form of grab samples through human participants (e.g.,

field staff, community manager, customer), which can help in narrowing down the resulting

set. Humans-as-sensors are indispensable in settings where sensing needs are uncertain

and expensive. The advantage of manual grab sampling is its flexibility to provide spatial

diversity at significantly reduced cost when compared with in-situ sensors, however, a grab

sample at a certain location would only provide a single measurement in time as opposed to

continuous monitoring from a sensor. Due to their characteristics, live sensor readings and

human inputs are leveraged differently during the event processing.

Online iterative event processing - To enable a timely and reliable fault identification,

event processing occurs in an iterative manner in two key steps: location inference and loca-

tion refinement. When a contamination is detected, an approximate set of source locations is

inferred using current available measurements. If the resulting set is large, optimal sampling

locations are determined and human participants are invoked to gather additional informa-

tion. The cycle of collecting grab samples and inferring source locations is continued until

the true source of contamination is identified.

Location Inference - In the presence of an unknown contamination event, water quality varies

in time subject to constraints imposed by the fluid mechanics. Live sensor readings capture

quality changes over time, however, they are spatially sparse and only provide yes/no indi-

cations. To better infer the fault source from limited observations, a methodology should
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incorporate the knowledge of spatio-temporal variations of physical system dynamics. As

such, this information allows to rule out the solutions that are inconsistent with the physical

laws that govern the contaminant propagation. The aggregation of information over time

can help distinguish the events resulting in the same instantaneous readings. The sequence of

quality measurements reveals the information about how the water quality condition evolved

in the past, which can potentially be used to backtrack the entire realization path of the con-

taminant propagation, identify the source location and inform appropriate actions to remove

the source of poor water quality. We therefore propose to formulate the problem of source

identification as an HMM inference problem, i.e., inferring the unobserved/hidden water

quality status based on time series of sensor readings. In addition, we can also use HMM to

estimate the mostly likely propagation path and predict the future extension of contamina-

tion - this information is necessary to help devise appropriate control and clean-up strategies

to limit cascading failures and reduce exposure to contaminated water. Human inputs as

point measurements are used within a proposed pruning technique. It allows an efficient

pruning of the search space by imposing the physically based “structural regularization” on

the solution via the apriori generated profiles.

Location Refinement - Due to the limited measurements available at the early stages, the

identified set of possible sources may be large or small depending on the sensor configuration

and the contamination event. Additional efforts (using grab samples) may be required to

reduce this uncertainty. Observe that, depending on the number of likely sources and max-

imum number of samples that can be taken at the same time, multiple sampling cycles may

be required. Obviously, it is desirable to reduce the resulting set to a tractable number in as

few cycles as possible. Therefore, location refinement is considered as a sequential decision

problem, where the current selection should learn from previous decisions and consider its

“long-term” influence on subsequent ones. However, it is non-trivial for an informed decision

making in such a stochastic environment due to the dynamic flows and unknown events. We

therefore formulate it using a RL framework, which offers an online mechanism to learn an
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optimal policy that selects sampling locations with more contributions in the “long run”

[63, 124].

As indicated earlier, the inference and refinement cycle is repeated until the size of the

candidate source set is reduced to a desired bound or the solution converges. Recall that the

fault source identification is an inverse problem where the existence of a unique solution is

not guaranteed. The final resulting set of possible sources may be not singleton depending

on the network topology and the contamination event.

6.3 Event Location Inference

We now introduce the first step of event processing, i.e., location inference. Here we use mea-

surements from both in-situ platforms (Sec.6.3.1) as well as human participants (Sec.6.3.2),

along with pre-built profiles, to estimate contaminant sources. An in-situ sensor or a human

input would yield a positive measurement (unsafe) if the contaminant concentration is above

a certain threshold and a negative measurement (safe) otherwise.

6.3.1 Inferring using Live Sensor Readings

Due to the fact that a contaminant spreads through the water network based on the time-

varying flows, the propagation behavior is considered as a structured stochastic process. We

model it as an HMM and formulate the event identification as an HMM inference prob-

lem. We first apply the standard forward-backward algorithm and propose an approximate

approach using particle filter that offers a viable alternative for improving the speed of

estimation.
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Figure 6.3: (a) Example of contaminant transport on NET1. (b) Illustration of the HMM
for contaminant transport.

Modeling Contaminant Transport using HMM

We consider a water network consisting of V nodes denoted by V = {1, ..., V } and use

v ∈ V to index node v. The water quality status of a network is represented by a vector

c = (c1, ..., cV ) ⊆ {0, 1}V , where cv = 1 indicates that node v is contaminated. Let Γ(c) =

{v ∈ V : cv = 1} denote a set of contaminated nodes for quality status c, and ct and

Γt = Γ(ct) denote the status at time t. Since sensors can only provide binary measurements,

sensor reading at node v at time t is denoted by Lv,t ∈ {0, 1}, where Lv,t = 1 indicates

contamination. Let Vo ⊆ V denote the subset of nodes where sensors are deployed. The

objective is then to infer about quality status ct or Γt given observation LVo,t over time.

To locate the source, we want initial status ct=0 or Γt=0. It is worth noting that due to

the sparse sensor network, many events may be noticed by same sensor at the early stages,

adding to the difficulty of inferring the source. At time t, we model the water quality status

Γt, which is not directly observed, as the hidden state ht ≡ Γt, and the sensor readings LVo,t

as the observed state ot ≡ LVo,t. For example in Fig.6.3a, a contamination event occurs at

node N10 starting at 10AM on NET1 water network. As the time progresses, nodes may be

contaminated (ht) and sensors may detect the contamination (ot). In Fig.6.3b, the evolution

of ht is formed as a Markov chain with state transition probability P(ht|ht−1) and conditional
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on ht, the observation is an independent process following observation probability P(ot|ht).

Given a water network, assuming there are N number of hidden states and M number

of observed states, an HMM is characterized by the three elements: (a) state transition

probability matrix - AN×N = {P(hj|hi)} for 1 6 i, j 6 N ; (b) observation probability matrix

- BN×M = {P(ok|hj)} for 1 6 j 6 N and 1 6 k 6 M ; (c) initial state distribution vector -

π0, which are represented as λ = (A,B, π0). Matrices A and B can be learnt from the apriori

generated impact matrices by the Expectation Maximization algorithm [103]. Here the detail

is omitted due to the page limitation. Given an observation sequence o0:T = (o0,o1...,oT )

and a model λ, our goal is to find a probability distribution πt(h) to estimate the hidden

state ht, where πt(h) ≡ P(ht = h|o0:T , λ) for 0 6 t 6 T and T is the length of observation

sequences. We use P(ht = h|o0:T ) for P(ht = h|o0:T , λ), since λ is fixed once a model is

learnt. In particular, to locate the source, we want the state distribution at t = 0, i.e.,

πt=0. Following Bayes’ rule and the conditional independence of ot+1:T and o0:t given ht,

P(ht = h|o0:T ) can be written as

πt(h) ≡ P(ht = h|o0:T ) = P(ht = h|o0:t, ot+1:T )

∝ P(ot+1:T |ht = h)P(ht = h|o0:t)

(6.1)

The Forward-Backward Algorithm

To solve (6.1), a short elaboration of standard forward-backward algorithm [102] is first given.

This algorithm solves it by recursively computing a set of forward probabilities P(ht = h|o0:t)

and a set of backward probabilities P(ot+1:T |ht = h). Given model λ = (AN×N , BN×M , π0)

and a sequence of observations o0:T , the forward messages FT×N can be computed using:

Ft,∗ = Ft−1,∗ · A · diag(ot) 1 6 t 6 T (6.2)
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where diag(ot) is a diagonal matrix of vector ot, and Ft,i ∝ P(ht = hi|o1:t) for 1 6 i 6 N

with F0,∗ = 1/N . The initial forward message can be set uniformly among all states as

F0,∗ = 1/N , indicating no prior knowledge on the state before observations. Similarly, the

backward messages RT×N are computed using:

Rt,∗ = A · diag(ot) ·Rt+1,∗ 0 6 t 6 T − 1 (6.3)

where Rt,i ∝ P(ot+1:T |ht = hi) for 1 6 i 6 N with RT,∗ = 1. The algorithm runs in time

O(N2T ). However, we observe that the transition probability matrix A is sparse (Remark

6.1). This implies that substantial computation on zero entries can be reduced. We thus

propose a particle filter based algorithm that exploits this specific structure of our HMM

model and can reduce the computational complexity.

Remark 6.1 (Sparsity in transition matrix). A feature of contaminant transport is the spar-

sity of transition probabilities, in the sense that only a small portion of nodes is contaminated

in initial stages and with high probability, the new contaminated nodes Γt+1\Γt only occur

on a small subset of nodes.

A Particle Filter Based Approach

We present a particle filter based approximation, taking the advantage of Remark 6.1, to

estimate efficiently the hidden water quality status. Particle filter uses a set of randomly

chosen weighted samples (particles) to estimate the parameters of a system (filter procedure)

by implementing a recursive Bayesian filter using Monte Carlo (MC) simulations. The basic

idea is to represent P(ht|o0:T ) by a set of random particles with associated weights and to

estimate πt(h) in (6.1) based on them [16]. The number of particles P determines the com-

putational complexity, which allows to control the running time by choosing an appropriate

P .
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Let {hi0:t, w
i
t}Pi=1 denote a set of particles that characterizes P(ht|o0:T ) where {hi0:t, i =

1, ..., P} is a set of support points with weights {wit, i = 1, ..., P}, and h0:t = {hτ , τ = 0, ..., t}

is a set of all states up to time t. The weights are normalized such that
∑

iw
i
t = 1. Then,

πt(h) can be approximated as

π̂0:t(h) =
P∑
i=1

witδ(h0:t − hi0:t) (6.4)

where δ(x− x0) is the Dirac delta function with the delta mass at x0 and π̂0:t(h) = {π̂τ (h) :

τ = 0, ..., t}. Algorithm 6 outlines the proposed particle filter based inference, where the two

main steps at each time instant are: (a) sampling particles based on transition probabilities

such that the probabilities can be reflected by the frequencies of particles, mathematically

expressed as

hit ∼ Ahit−1,∗ = P(ht|hit−1) 1 6 i 6 P, (6.5)

and (b) updating weights based on the instantaneous observations such that particles can

be weighted based on the evidence, mathematically expressed as

wit = wit−1Bhit,ot
= wit−1P(ot|hit) 1 6 i 6 P. (6.6)

In this manner, one can approximate π̂0:t by augmenting existing particles that constitute an

approximation to π̂0:t−1 with new observations ot. As the algorithm runs, some weights may

become very small. To reduce the effects of degeneracy and concentrate on those with large

weights, we follow the rule of thumb to resample particles based on their weights {wit}Pi=1

when the ratio 1/
∑P

i=1(wit)
2 falls below the threshold P/2 [54]. The basic idea of resampling

is to concentrate on particles with large weights by eliminating those with small weights.

In this paper, we use systematic resampling scheme [67], since it takes O(P ) linear time

and minimizes the MC variation [16], while other resampling techniques can be applied as
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alternatives. The resampling will generate a new set of particles {hi∗0:t, w
i∗
t }Pi∗=1 and weights

are reset to wi
∗
t = 1/P since particles are i.i.d samples.

The proposed algorithm runs in O(PT ) time, where the computational complexity scales

linearly with the number of particles. In addition, according to the law of large numbers

theorem, the accuracy of the discrete approximation increases in the order of O(1/
√
P ) [36].

By choosing the number of particles, one could have a tradeoff between the computational

cost and the estimation accuracy.

Algorithm 6 The particle filter based inference

1: Input state transition matrix A, emission matrix B, initial state vector π0, observations
{ot : t = 0, 1, ...}

2: Output hidden state estimation π̂τ (h) for 0 6 τ 6 t

3: Initialization at t = 0: draw particles {i, i = 1, ..., P} from π0: hi0 ∼ π0; set weights
wi0 = P−1

4: for t = 1, 2, ... do
5: for i = 1, 2, ..., P do
6: Sample particle hit; update weight wit via (6.5, 6.6)
7: end for
8: if 1/

∑P
i=1(wit)

2 < P/2 then
9: Resample {ij = j}Pi=1, j ∈ {1, ..., P} using {wit}Pi=1

10: Set hi
∗

0:t = hi
j

0:t, w
i∗
t = P−1 for i∗ = 1, ..., P

11: end if
12: end for
13: Compute π̂0:t(h) using (6.4)

6.3.2 Inferring using Human Inputs

The fact that in-situ sensors are sparsely deployed and can only provide binary measurements

leads to the issue of event detectability (Remark 6.2). As an example shown in Fig.6.4, we

use the small water network NET1 configured with two in-situ sensors (as in Fig.6.3a), and

generate 9 contamination events with different injection locations. The figure shows that

some events ((a, i), (b, d, f, g), and (c, h)) are inherently indistinguishable based on the
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Figure 6.4: Time series of observations from in-situ sensors with a sampling rate of 15min.
Contaminant is injected at different nodes, starting at 10AM on NET1 water network.

network topology and sensor network configuration, i.e., same field sensor readings at any

time instant. We also examine the incident detectability on a large-scale water network

with total pipe length 65.75km and 10% in-situ sensors deployment penetration. The result

shows that 30% of contamination events cannot be distinguished with only in-situ sensor

measurements. Recall that this is an inverse problem where a unique solution is naturally

not guaranteed. Not to mention that the limited measurements will make the problem even

harder. Therefore, it is necessary to collect and incorporate additional measurements in

order to refine the estimate. Human involvement in data capture is valuable. Human-driven

grab samples as single measurements in time are used to prune away inconsistent solutions.

As hinted above in Sec. 6.2, the flow-path-dependent hydraulics determines if response from

a node is positive (unsafe), contaminant sources will be its upstream nodes, while if negative

(safe), its upstream nodes can then be excluded.

Remark 6.2 (Detectability of in-situ sensors). It is likely that multiple contamination events
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Figure 6.5: Impact matrix to source-to-node bipartite graph.

manifest same sensor readings over time, i.e., o0:t(h) = o0:t(h
′) for h 6= h′, thus are not

distinguishable using only in-situ sensors.

To better illustrate the pruning process, we first build a bipartite graph for each impact

matrix (Fig.6.5). The bipartite graph is a source-to-node map indicating whether or not a

network node can be contaminated by an event occurring at a particular source node but

starting at any historical time step. A bipartite graph at time t is Gt = (X ,Y , E), where

X ⊆ V is a set of sources, Y ⊆ V is a set of nodes and E ⊆ X ×Y is a set of edges connecting

source i ∈ X and node j ∈ Y , namely an event occurring at i can have an impact on j at time

t. We refer an edge e ∈ E as (i, j) where i ∈ X and j ∈ Y , and G as Gt in general. Let U(j)

define the upstream reachability set of nodes j ∈ Y , that is U(j) = {i : (i, j) ∈ E , i ∈ X}.

Then, we can use the response from node j, which is either positive or negative, to determine

if its upstream nodes U(j) are possible sources (positive) or must be excluded (negative).

Note that without such pruning, the number of unknown incidents is on the order of the

number of network nodes multiplied by the number of starting times - easily exceeding

106 unknown parameters for practical problems [111]. Algorithm 7 describes this pruning

operation, which is straightforward. Given a set of nodes with positive response PR and a

set with negative response NR, graph G can be pruned by taking the intersection of sources

that are upstream reachable from PR and removing those that are upstream reachable from

NR.
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Algorithm 7 The pruning process

1: Input a source-to-node map G = (X ,Y , E), nodes with positive response PR and nega-
tive response NR.

2: Output a pruned map G ′ = (X ′,Y ′, E ′).

3: Initialization X ′ = ∅
4: Update X ′ using positive response X ′ =

⋂
j∈PR U(j)

5: Update X ′ using negative response X ′\ =
⋃
j∈NR U(j)

6: Generate G ′ by pruning G using X ′

6.4 Event Location Refinement

After event inference is performed following the detection of a contamination (often by

in-situ sensors), it is likely that the identified set of potential sources is fairly large due

to the limited measurements. Additional efforts in the form of manual grab samples will

be required to help refine the identified set, such that countermeasures can be executed

effectively. This motivates us to design an intelligent strategy to provide optimal decisions

on sampling locations. We first define the location selection of grab samples as a sequential

decision problem and motivate a reinforcement learning (RL) framework for solving it. We

discuss two challenges while applying RL and finally propose a RL based approach integrated

with an entropy-constraint filter.

6.4.1 The Location Selection Problem

Recall that Sec.6.3.2 introduced the source-to-node graph with an edge indicating that a

contaminant injected at a particular node can have an impact on a certain node. Given a

set of sources X ′ identified by location inference at time t, a source-to-node map is Gt =

(X ′,Y , E). The objective is to select location(s) {j, j ∈ Y} based on Gt over time to reduce

X ′ in as few sampling cycles as possible, subject to the maximum number of samples that

can be taken at the same time. Figure 6.6 shows an example of 2 sampling cycles with
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Figure 6.6: Example of sequential decisions on grab-sample locations with maximum 2 sam-
ples allowed at a time.

maximum 2 grab samples allowed at a time, where given a set of 28 likely sources, 2 grab

samples are taken which reduces the set to 7, followed by another round of sampling with 1

grab sample, and finally 2 possible sources are located.

Intuition behind RL approach - One could consider that the optimal sampling location

in each cycle is a set of nodes with the maximum entropy on graph G. As information

theory dictates, the data with a larger entropy has more uncertainty and thus conveys more

information. It is possible to quickly narrow down the search space by querying nodes with

highest uncertainty (maximal information) [35]. However, entropy itself for this problem

suffers from two drawbacks: (a) we observe that due to the physical nature of contaminant

transport, multiple (collections of) nodes can have same maximum entropy, but result in

different source locations. This variance raises the question how to select node(s) from those

with maximum entropy which can identify the true source. (b) More importantly, reducing

uncertainty greedily is not completely aligned with our objective to seek an optimal sequence

of locations over time. To address above issues, we propose to apply the RL framework, which

is learning to optimize not only the immediate decision but also the next and, through that,

all subsequent decisions [124].
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Figure 6.7: The comprehensive view of RL based approach with an entropy filter for sequen-
tial location selections.

6.4.2 Modeling Location Selection using RL

Figure 6.7 represents a comprehensive view of adapting RL framework into our problem

of selecting sampling locations, where the learner and decision maker together is called

agent, and the thing it interacts with, comprising everything outside the agent, is called

response environment. The agent selects grab-sample locations and the response environment

responds to it based on the abstracted source-to-node graph. The environment gives rise to

numerical rewards that the agent seeks to maximize over time through its choice of sampling

locations. In this manner, the agent is able to sense the state of response environment to

some extent, takes actions that affect the state and meanwhile has a goal relating to it. The

internal components of Fig.6.7 will be explained as follows.
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To frame the problem of learning from executions to achieve a goal, we first define four key

components:

State: At time step t, the state of response environment st ∈ S is defined as the source-to-

node graph st ≡ Gt = (X ,Y , E), where S is the state space. Specifically, a state s contains

a set of sources X and a set of possible impacted nodes Y that are considered as potential

grab-sample locations. The initial state s0 is determined by the estimate from the location

inference step.

Action: On the basis of state st = Gt and maximum number of samples that can be taken at

the same time θ, the agent takes an action at ∈ A(st), where at is a set of nodes from which

grab samples are taken, A(st) is a set of action candidates - combinations of nodes in Y

based on θ, i.e., A(st) = {(x1, ..., xθ′) : xi 6= xj if i 6= j, xi,j ∈ Y , i, j = 1, ..., θ′, θ′ = 1, ..., θ},

and A is the action space.

Reward: One step later at t+ 1, in part as a consequence of action at, the agent receives a

numerical reward rt+1 ∈ R ⊂ R and finds itself in a new state st+1. R is the reward space -

a subset of real numbers R. Since the aim is to locate the source in as few sampling cycles

as possible, we count a penalty (negative reward) of −1 for each sampling cycle and give a

delayed reward until the terminal state. A terminal state is either a single source or a set of

indistinguishable sources (i.e., have exactly same impact at this time step, in other words,

form a complete bipartite graph). A delay reward is given below, assuming true source is

TS and st = Gt = (X ,Y , E):

rt =


1/|X | if TS ∈ X , |X | < threshold

−
∑

i∈X dist(i, TS) otherwise

(6.7)

where st is a terminal state, dist(i, j) computes the shortest distance in terms of number of

links (pipes) between nodes i and j and the threshold is to encourage the agent to reduce
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the set of likely sources as much as possible, ideally, a singleton with one source. A negative

reward is given if the first condition of (6.7) is not satisfied and closer to the true source

receives a higher reward. This is to take care of the situations where the contamination

event can not be located in a reasonable number of cycles. Instead, nodes that are close to

it will be considered. The reward function allows to reflect different criteria that users are

interested in. Other metrics such as population exposed to a contaminant and the length of

contaminated pipe can also be included.

Policy: A policy defines the agent’s way of behaving by mapping states to probabilities of

selecting each action, i.e., a probability distribution over set S × A. The policy function

p(a|s) ≡ P(at = (x1, ..., xθ′)|st = Gt) takes as input the current state and outputs the

probability of actions. The policy is a stochastic rule by which agent can explore the action

space and select appropriate actions as a function of states.

According to the definitions above, the agent’s goal at t is to select an action so as to

maximize the cumulative reward in the long run:

Jt ≡
T∑
k=1

γk−1rt+k (6.8)

where T is the final step (reach a terminal state) and γ ∈ [0, 1] is called the discount rate.

The concept of discounting is to control how strongly the agent takes future rewards into

account. As γ approaches 1, the agent will strive for a long-term high reward. To train the

agent to execute an action in a given state toward the goal, we define a state-action-value

function for policy p as qp, i.e., qp : S × A → R. If the agent is following policy p, then

qp(s, a) is the expected reward return starting from state s taking the action a:

qp(s, a) ≡ Ep[Jt|st = s, at = a]. (6.9)

The objective is to find the optimal state-action values qp(·) following policy p that maximize
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the expected return for all state-action pairs, which is defined as:

q∗(s, a) ≡ max
p
qp(s, a) for all s ∈ S and a ∈ A(s). (6.10)

6.4.3 An efficient RL-based Approach

We first discuss two observations (Remarks 6.3 and 6.4) when solving the optimization

problem in (6.10) and propose an efficient online temporal difference (TD) based learning

approach. Once the optimal state-action values are learnt, grab-sample locations can be

selected based on it.

According to the Bellman optimality equation [38], for a specific state-action pair (s, a),

(6.10) can be rewritten by substituting (6.8) and (6.9) as:

q∗(s, a) = max
p

Ep[Jt|st = s, at = a]

= max
p

Ep[rt+1 + γJt+1|st = s, at = a]

= E[rt+1 + γ max
a′∈A(st+1)

q∗(st+1, a
′)|st = s, at = a]

=
∑

s′∈S,r∈R

f(s′, r|s, a)[r + γ max
a′∈A(s′)

q∗(s
′, a′)] (6.11)

where f(s′, r|s, a) ≡ P(st+1 = s′, rt+1 = r|st = s, at = a) is the probability of those values

(s′, r) occurring at step t+ 1, given preceding (s, a). To solve (6.10), we instead need to find

a solution of (6.11) for all s ∈ S, a ∈ A(s) in an efficient manner.

Remark 6.3 (Stochastic response environment). The response environment is stochastic

because of the time-varying flow patterns and the presence of unknown contamination events.

This uncertainty makes it infeasible to obtain the probability distribution of f(·|·) in an

explicit form. However, it is possible to estimate f(·|·) through sequences of states, actions
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and rewards from actual or simulated interactions with the response environment. This se-

quence, called an episode in RL, likes this: s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT , sT (terminal

state). With a certain amount of these episodes, we can average the reward returns for each

state-action pair and estimate the distribution of f(·|·).

Remark 6.4 (Large state and action space). The state space S and action space A are

combinatorial and can be enormous. Generally speaking, a water network with V nodes can

have |S| = 2V numbers of possible sources and given a state s = G = (X ,Y , E), there are

|A(s)| =
∑θ

i=1 i
|Y| numbers of candidates from which grab samples can be taken.

The problem with large S and A is not just the memory needed for a large set of state-action

values q(S,A), but the time and data needed to compute them correctly. Consider a sequence

of T sampling cycles, it may need |A(s0)×A(s1)× · · · × A(sT )| numbers of trial-and-error

learning to encounter every state and make a good decision. It quickly makes the search

space intractable for a real-world water network (usually with > 100 nodes). We therefore

propose a TD based approach - n-step expected Sarsa (NESarsa) integrated with an entropy-

constraint filter. Roughly speaking, the TD method uses Monte Carlo (MC) experiments

such that it can learn the distribution of f(·|·) directly from repeated random interactions

between the agent and its response environment (resolve Remark 6.3). One advantage is

that the TD method is naturally implemented in an online, fully incremental fashion such

that it can capture the stochastic behavior of an environment without an explicit model of

the environment’s dynamics [124]. The entropy-constraint filter can help significantly reduce

the state/action space by eliminating the nodes with lower entropy (less uncertainty), such

that the learning speed can be improved (resolve Remark 6.4).

Mathematically, to find an optimal solution of (6.11), NESarsa learns and updates the state-

action value q for policy p recursively along with the interactions using

qt+n(st, at) = qt+n−1(st, at) + α(st, at)[Jt:t+n − qt+n−1(st, at)] (6.12)
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for 0 ≤ t < T , where T is the last step of an episode, n ≥ 1 is the number of steps and

α(s, a) ∈ (0, 1] is the learning rate. We set α(s, a) the reciprocal of the number of occurrences

of (s, a). As such, the agent can update q(·) values largely depending on new information at

the beginning due to no prior knowledge and adjust it slowly as more information available.

The subscripts on Jt:t+n indicate a truncated expected return for t using rewards up until

t+ n, instead of the full return shown in (6.8),

Jt:t+n =


rt+1 + · · ·+ γn−1rt+n + γnEt+n−1(st+n) t+ n < T

Jt t+ n ≥ T

(6.13)

and Et(s) is the expected reward return of state s.

Et(s) =
∑
s∈A(s)

p(a|s)qt(s, a) (6.14)

In order to find optimal q(·) values for {(s, a) : s ∈ S, a ∈ A} using limited computational

resources within a certain time, we propose an entropy-ε-greedy policy p(·|·). Here we filter

out nodes carrying less information (small entropy on G) and focus on the exploration and

exploitation of relatively unpredictable nodes. The ε-greedy ensures that we not only exploit

an action that has maximal estimated q value (greedy action), but also explore alternative

actions with probability ε (non-greedy actions). Therefore, every action a has a chance of

being executed in each state s, i.e., p(a|s) > 0. As illustrated in Alg.8, given a state s

and action candidates A(s), we create a new set of candidates AH by eliminating those

whose entropy H(·) is lower than a given threshold ho. We then give the minimal probability

ε/|AH| of selection for all non-greedy actions and the remaining bulk of the probability

1− ε+ ε/|AH| to the greedy action. Note that
∑

a∈A(s) p(a|s) = 1. Algorithm 9 summarizes

the learning procedure of an agent through the interactions with its environment. The

algorithm terminates when changes on q values are less than a very small number. It is

worth noting that this learning converges very fast (often seconds) depending on X0. The

127



output state-action values q(·) are then used for location selection: given a state s, an action

a with maximum q(s, a) value will be selected.

Algorithm 8 The Entropy-ε-greedy policy

1: Input state-action values q(·), very small number ε > 0, maximum number of samples
at a time θ and state s.

2: Output policy p(A(s)|s)

3: Initialize p(a|s) = 0 for ∀a ∈ A(s); AH = ∅
4: for a ∈ A(s) do
5: if H(a) > ho then AH = AH ∪ {a} end if
6: end for
7: a∗ = arg maxa∈AH

q(s, a)
8: for a ∈ AH do
9: p(a|s) = ε/|AH|

10: if a = a∗ then p(a|s) = p(a|s) + 1− ε end if
11: end for

6.5 Experimental Study

To evaluate AquaEIS approach in practical settings, we implement a functional service for

fault source identification that integrates and coordinates multiple sources and entities.

This includes real data (from utilities), commercial-grade models (WNTR simulator and

EPANET, TEVA-SPOT and CANARY domain models), and policies set by the US EPA in

actual settings. We begin by describing the experimental setup and compare the proposed

approaches with several existing baselines. Finally we evaluate the effectiveness of AquaEIS

using a wide variety of contamination events.

6.5.1 Experimental Setup

Water Network Model - Figure 6.8 shows two real-world water networks. NET3 (from

US EPA) covers the Novato, CA water service area serving 78, 823 people operated by
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Algorithm 9 The online NESarsa based learning

1: Input a set of sources X0, entropy-ε-greedy policy p(·|·) (Alg.8) and number of steps n.
2: Output optimal state-action values q(·)

3: Initialize q(·) = dict()
4: while stop criterion is not satisfied do
5: Initialize state s0 = G0 = (X0,Y , E); T =∞
6: Select action a0 ∼ p(A(s0)|s0)
7: for t = 0, 1, 2, ... do
8: if t < T then
9: Take action at; compute state st+1 via Alg.7

10: if st+1 is terminal then
11: Compute reward rt+1 via (6.7); T = t+ 1
12: else
13: rt+1 = −1; select at+1 ∼ p(A(st+1)|st+1)
14: end if
15: end if
16: τ = t+ 1− n
17: if τ ≥ 0 then Update q(sτ , aτ ) via (6.12-6.14) end if
18: if τ = T − 1 then Break end if
19: end for
20: end while

North Marin Water District (NMWD). WSSC-SUBNET (from WSSC) is a subnet of Prince

George’s County in Maryland serving 1, 137 people operated by Washington Suburban San-

itary Commission (WSSC). These two networks have different characteristics in terms of

number of components, pipe properties (diameter, length, etc.), flow patterns and so forth.

The average time of contaminant transport from one node to another is around 24min

(NET3) or 15min (WSSC-SUBNET). The mean values can be interpreted in the following

way: if a node is randomly selected as the contaminant source, one could expect that, de-

pending on the sensor configuration, it needs at least this amount of time to have a new set of

measurements. To discriminate the onset of either an anomalous event or natural variations

in water quality, the event detection system CANARY needs to examine multiple outliers

within a prescribed window [55]. We therefore set the detection window to 75min for NET3

and 45min for WSSC-SUBNET to allow for multiple readings. Once a contamination is con-

firmed by CANARY, collected data from past 75min (NET3) or 45min (WSSC-SUBNET)
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NET3, CA
- Multi-pressure Zone
- Pipe Length: 65.75km
- # of Nodes: 107
- # of Pipes: 117 Quality Stations in 2004

(a) NET3 and its stations config in 2004

WSSC-Zone300A, MD
- Single Pressure Zone
- Pipe Length: 19.04km
- # of Nodes: 300
- # of Pipes: 316

(b) WSSC-SUBNET

Figure 6.8: Two real-world water networks: (a) a multi-pressure zone of NMWD; (b) a single
pressure zone of WSSC.

will be used to perform the event identification. The number of measurements depends on

the sampling frequency of sensing devices.

In-situ Sensor Configuration - In practice, most water systems are instrumented with a

sparse set of sensors with new measurements every 15min. For example, according to Cali-

fornia Department of Water Resources, in 2004 NET3 had only 9 quality sensors of 107 water

nodes (Fig. 6.8a). The water quality sensor is modeled with contaminant specific detection

thresholds and only provides yes/no indications of contamination. In our experiments, the

maximum number of sensors is set to 10% of the number of nodes in a network and they

provide binary measurements. In this paper, sensors are assumed to perform with 100% ac-

curacy (i.e., no failure) and their locations are generated by TEVA-SPOT. The deployment

of different number of sensors for both networks are shown in Fig. 6.9.

Contamination Events - They are specified by the location at which the contaminant is

introduced into the network and the time of its introduction. Given that it is difficult to

predict a specific contamination incident, a large collection of distinct events are used to

enhance the validity of results. Specifically, we consider the scenario in which a contaminant

is injected over a 24-hour period starting at anytime of the day and every node in the network
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NET3 -  
10 Sensors Config
~ 10% of nodes

WSSC - 
15 Sensors Config
~ 5% of nodes

WSSC - 
30 Sensors Config
~ 10% of nodes

Sensor

Figure 6.9: In-situ sensor configurations on NET3 and WSSC-SUBNET, generated using
TEVA-SPOT.

is considered a potential point of entry. This ensemble of events is generated using WNTR

simulator with EPANET water quality model.

6.5.2 Evaluating the Location Inference Step

Methods to compare - We first validate our HMM formulation and show the effectiveness of

the proposed particle filter based inference. Two existing baselines are compared: Bayesian

probability formulation [83] and contaminant status algorithm (CSA) [111]. The Bayesian

formulation calculates the probability of a node being the true source based on the deviation

between simulated values and measurements, while CSA assigns a status to each node as

either safe, unsafe or unknown by tracking the flows over time. We refer to these methods as

Baseline-BP (Bayesian probability), Baseline-CSA, HMM-FB (forward-backward algorithm)

and our proposed HMM-PF (particle filter based inference).

Performance metrics - Ideally, we want to identify a set of tractable number of sources,

such that field staff can directly inspect the possible locations and confirm the true source.

However, due to the detectability issue of in-situ sensors (Remark 6.2), a large set of sources

(PS = {v : v ∈ V}) is likely to be identified. This estimate, as the input into location

refinement, should include the true source. Otherwise, it may misguide the further processing

towards a wrong decision. Therefore, we evaluate the approach by checking if its resulting
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NET3 WSSC-SUBNET

Figure 6.10: Comparison on distributions of number of identified sources by 2 baselines and
2 HMM based methods on NET3 and WSSC-SUBNET water networks.

set PS includes the true source and the smaller the size |PS|, the more effective approach.

Figure 6.10 shows the distribution of number of possible sources identified by the four meth-

ods for an ensemble of |V| = 107 scenarios on NET3 and |V| = 300 scenarios on WSSC-

SUBNET (one for each node in the network with an arbitrary injection time). The results

show that 2 baseline methods are not able to identify all true sources, where Baseline-CSA

fails to identify 31% scenarios on NET3 and Baseline-BP fails to identify 30% on WSSC-

SUBNET. HMM-FB and HMM-PF have better, similar performance in the sense that their

resulting sets include the true source for 100% scenarios, however they are not small enough

for effective inspection. For example on NET3, around 70% scenarios result in more than

10 possible sources by both approaches. It also shows that the number of identified sources

can vary considerably depending on the true event location. This confirms the necessity of

integrating additional information to refine the estimate. On average, the running time of

HMM-PF is 3 times faster than HMM-FB (Remark 6.1), where we use 10, 000 and 30, 000

particles for NET3 and WSSC-SUBNET separately. Overall, HMM-PF yields a better per-

formance, which will be used in the following experiments.
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(a) |PS| = 4, θ = 1 (b) |PS| = 25, θ = 2

Figure 6.11: Cumulative rewards versus number of episodes on NET3. Comparisons on
average rewards with standard deviation error bars of multiple approaches, given different
sizes of sources |PS| and maximum numbers of samples θ.

6.5.3 Evaluating the Location Refinement Step

Methods to compare - To validate the feasibility of RL based design, we compare our pro-

posed NESarsa based approaches with an existing Mixed Integer Programming formulation

[142] (Baseline-MIP) and a pure entropy approach (Entropy). Baseline-MIP selects sampling

locations that maximize the total pair-wise distinguishability of possible sources, while En-

tropy selects a set of locations that has maximum entropy on aforementioned source-to-node

graph with ties broken arbitrarily. To further show the effectiveness of our approach, we im-

plemented 3 other RL methods including Tree-Backup, Q-Learning and Priority-Sweeping

for comparison. Tree-Backup and Q-Learning are off-policy algorithms with different learn-

ing strategies, while NESarsa is an on-policy algorithm. The key difference is that off-policy

methods instead use two separate policies for learning and making decisions to enhance the

agent’s exploratory behavior. Though more powerful and general, they are often of greater

variance and slower to converge [124]. In Priority-Sweeping, rather than directly learning

the state-action values, it learns a model of the environment and uses this model to plan an

action.
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(a) Mean Value (b) Standard Deviation

Figure 6.12: Comparisons on (a) mean value and (b) standard deviation of cumulative
rewards of multiple RL algorithms.

Performance metrics - Given an intractable number of possible sources, it is desirable to

locate the true source in less number of sampling cycles. We use the cumulative reward

defined in (6.8) for evaluation. Because it takes into account both the number of sampling

cycles (measure of cost) and the distance between the resulting set and the truth (measure

of accuracy). The higher the reward, the better the result. Also, the speed of convergence

reflects a measure of time.

Figures 6.11 show the comparison of multiple methods on average cumulative rewards over

10 simulation runs versus 3000 episodes. For the readability of figures, average values of

every 200 episodes are shown. Recall that an episode is a sequence of decisions and their

rewards (Sec.6.4.3). Note that Baseline-MIP and Entropy methods do not depend on and

thus do not change with the number of episodes.

In Fig. 6.11a, 4 possible sources are identified and the maximum number of grab samples at a

time is set to 1. Baseline-MIP achieves an average performance of Entropy that shows a large

variance. As hinted in Sec.6.4.1, multiple (combinations of) nodes can have same maximum

entropy due to the hydraulic behavior by nature, which can introduce the randomness in pure

Entropy method. Two NESarsa (+Entropy) based approaches converge to higher rewards in
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200 episodes, which may not be shown clearly in figures due to the scale of y-axis. Because

they are able to learn the stochastic environment (Remark 6.3) with delayed rewards and

have a global perspective on locations from which grab samples can enhance the “long-term”

benefit. NESarsa+Entropy is a combination of NESarsa and Entropy-ε-greedy policy. In

contrast, Baseline-MIP and Entropy suffer from the issue of sequential decisions due to their

preferences of local optimal locations. They perform a single optimization analysis that may

not contribute to the future decisions. NESarsa+Entropy achieves the best among others

with a higher reward and fast convergence (i.e., better performance on cost-accuracy-time

tradeoffs). It resolves the problem of entropy ambiguity through trial-and-error learning and

overcomes the problem of exponentially large state/action space (Remark 6.4) by targeting

and exploring informative nodes using Entropy-ε-greedy policy.

In Fig. 6.11b, with 25 possible sources and 2 maximum number of samples, Entropy shows

a mean value of −6 with considerable fluctuation, Baseline-MIP yields a stable but lower

reward, while NESarsa (+Entropy) converge to the higher rewards (> −6). Compared with

Fig. 6.11a, their rewards all decrease, because the increasing number of possible sources

results in a larger set of potential contaminated nodes, which requires more sampling cycles to

locate a source. Due to the same reason, NESarsa based approaches need more explorations,

thus more number of episodes, to converge.

To further provide the insight into our proposed mechanism, Figures 6.12 illustrate that

NESarsa converges faster to a higher reward in comparison with the other 3 techniques. This

is possibly because the uncertain environment and large state/action space make it hard for

Tree-Backup and Q-Learning to explore using two policies and for Priority-Sweeping to learn

an explicit model. It is worth noting that the fluctuation tails appearing in all methods are

due to the exploration strategy (ε-greedy policy) and the performance will be stable once

the state-action values are fixed.
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(a) Number of sampling cycles (b) Distance to source

Figure 6.13: NET3 - Cumulative distribution function for (a) number of sampling cycles and
(b) distance to the source.

6.5.4 Evaluation of the end-to-end AquaEIS Approach

Methods to compare - Viewed together, we now evaluate the performance of our AquaEIS

approach for a complete ensemble of contamination events. We compare it with an exist-

ing workflow (a combination of Baseline-BP and Baseline-MIP (Baseline-BP+MIP)) imple-

mented in Water Security Toolkit [44] and a combination of HMM-PF and pure Entropy

(HMM-PF+Entropy) to further validate our design.

Performance metrics - An efficient event identification system needs to locate the source in

a timely manner. We use the number of sampling cycles as a measure of cost and time, and

the distance to the true source (shortest path in terms of number of links) as a measure of

accuracy. Less number of cycles with a shorter distance indicates a better performance.

In Fig. 6.13/6.14, each cumulative distribution function (CDF) is computed for a large

ensemble of contamination scenarios. The scenario includes a single source at a random

node in the network starting at an arbitrary time. Particularly, an ensemble of 300 and 1000

distinct scenarios with different configurations is analyzed on NET3 and WSSC-SUBNET

separately. The plots in Fig. 6.13 illustrate the statistical effect of varying the scenario on the
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(a) Number of sampling cycles (b) Distance to source

Figure 6.14: WSSC-SUBNET - Cumulative distribution function for (a) number of sampling
cycles and (b) distance to the source with 15 (5% of nodes) and 30 (10% of nodes) sensors.

(a) Zoom in of Fig. 6.13b (b) Zoom in of Fig. 6.14b

Figure 6.15: For readability, zoomed-in figures of results of (a) NET3 and (b) WSSC.
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performance of approaches in identifying the source, where the maximum number of samples

in each round is set to 2. In Fig. 6.13a, AquaEIS is able to identify 100% scenarios in less

than 5 sampling cycles, while the other 2 methods can only identify 38% on average. HMM-

PF+Entropy shows a large variance on those scenarios where more rounds of samplings are

needed. With regard to the distance to the true source (Fig. 6.15a), Baseline-BP+MIP

locates the true source (distance = 0) for 60% scenarios, however, cannot identify a source

(distance > 20) for 5%. AquaEIS can identify a node with distance < 10 for 100% and < 5

for 90%.

Fig. 6.14/6.15b shows similar results on WSSC-SUBNET, where AquaEIS performs better

with regard to the number of sampling cycles and distance to the source. Here the maximum

number of samples in each round is set to 1 because of the relatively smaller service area.

Additionally, it shows the influence of the number of sensors. In particular, the CDFs are

compared for the cases of 15 (5% of nodes) and 30 (10% of nodes) sensors. AquaEIS with

less sensors (i.e., AquaEIS(15)) needs more rounds of samplings but can generate same

performance on distance-to-source. The increasing number of human-driven grab samples

causes the rise of the cost involved, while on the other hand preserves the accuracy as

a complementary data source. AquaEIS(15) can exactly locate the true source for 95%

scenarios with less than 5 sampling cycles. Furthermore, among all the validated scenarios,

solutions using AquaEIS are obtained within a few seconds or minutes, making it a viable

approach for real-time event identification.

6.6 Chapter Summary and Discussion

In this chapter, we presented the design and evaluation of AquaEIS, a middleware support for

an efficient event identification in a complex distributed setting (i.e., water infrastructures),

which can optimize cost-accuracy-latency tradeoffs. AquaEIS integrates and coordinates
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Figure 6.16: This chapter leverages the AquaSCALE system architecture for fault source
identification using human-in-the-loop based sensing.

multiple sensing modalities (devices, human-as-a-sensor) and domain knowledge; algorithms

for computation and messaging are implemented using custom modules (Remarks 6.1-6.4);

recommendations for grab-sampling are generated in real-time. The validation studies pre-

sented are performed on an actual implementation with realistic data - our results indicate

that we can narrow down sources of failures rapidly enough to allow for utility intervention.

We leverage the AquaSCALE system architecture (Fig.6.16) to improve the resilience of

water infrastructures through intelligently guiding human participants in identifying con-

taminant sources. To capture the physical nature of spatial-temporal variations of water

quality, we first use domain model and hydraulic simulator to generate the profile/signa-

ture of contamination events that will be used as the apriori knowledge. The proposed

event processing, combined with simulation and modeling engines, is executed in an itera-

tive manner on-the-fly, based on the information collected from Data Acquisition module. If

additional measurements are needed, optimal grab-sampling locations will be selected and

human-driven grab sample will be triggered to collect more information. As time progresses,
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more measurements become available and this observation, analysis and adaptation loop will

be performed iteratively until the fault source is identified. Together, AquaEIS, built upon

AquaSCALE, provides an integrated view of the vulnerability of water CPHI systems to a

wide variety of contamination events, and the ability to reduce this vulnerability through

efficient event processing.
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Chapter 7

Conclusion
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7.1 Summary of Thesis

In this thesis, we propose an integrated approach, AquaSCALE, to enabling resilience in

cyber-physical-human water infrastructures. AquaSCALE can be used by water agency op-

erators with expertise in civil infrastructure to explore problems and solutions in cyberspace

before instantiating them into a physical infrastructure. For example, a smaller section of

water systems (compared with today usually an entire pressure zone) can be shutdown to

prevent cascading failures of pipe burst and to preserve critical water supplies. Such ex-

ploration, proactive planning and their effective instantiation during damage/shutdown is

relevant in global contexts.

Our approach integrates multiple sensing modalities including IoT devices, human-as-a-

sensor and external observations, combined and enhanced with domain-specific models and

simulations and machine learning methods, to quickly and accurately identify failures (i.e.,

pipe breaks and contamination events). The composition of techniques results in cost-

accuracy-latency tradeoffs in fault identification, inherent in CPHIs due to the constraints

imposed by cyber components, physical mechanics and human operators. We explore three

key resilience problems, which are isolation of multiple concurrent faults under a small num-

ber of pipe failures in Chapter 4; state estimation of the water systems under extreme events

(e.g., earthquakes) in Chapter 5, and contaminant source identification in water networks

using human-in-the-loop based sensing in Chapter 6. The effectiveness of our approach is

demonstrated through extensive performance evaluations on real-world water networks. This

is a key step to enable the next generation water systems, which will not be passive water

delivery systems but active highly-distributed event-based control systems [7].
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7.2 Future Challenges

As we consider developing a comprehensive middleware solution to explore resilience of

community-scale infrastructures, which incorporates the techniques proposed in this thesis,

many other challenges remain open. We outline several future directions identified through

the study.

7.2.1 Incorporation of Formal Method

In this thesis, the integration of multiple sensing modalities is combined and enhanced with

domain specific models and simulations, and machine learning (ML) techniques. However,

this has presented two key limitations. Modeling and simulating the operation of community-

scale infrastructures is difficult and time consuming, and safety assurance and verification

methodologies for machine learning are very challenging. In water infrastructures, the com-

plexity of hydraulic behavior is due to the supply-demand variations, operations to conserve

the resources and a wide-range of disruptions. Consequently, domain models require pre-

cise and reliable mathematical models of hydraulics and a significant amount of computer

memory and computational resources to accommodate the large-scale spatial and temporal

data. In addition, we need to provide guarantees that the water CPHI system is behaving

correctly, which is necessary in safety-critical contexts. Unfortunately, ML methods in some

cases cannot support the formal verification. Therefore, we propose to integrate with formal

method strategy to address the aforementioned limitations.

Formal methods are rooted in logic and reasoning using patterns and place-holders rather

than specific values, which thus allows representation and exploration of large, possibly in-

finite state space. We initiate this effort by designing the logic+physics+learning approach

(Fig. 7.1) to capture the hybrid architecture and dynamic behavior of CPHI systems at

143



Logic + Physics + Learning Reasoner
Rule-based Model

State
Cyber Physical

Knowledge 
Based

Logic Simulator 
abstraction

sematic attachment

Figure 7.1: Logic and physics interaction.

multiple levels of abstraction, and will include formalization of requirements and objectives.

Our models for physical elements will include features in the underlying network such as

storages, sensors, communication resources, and environmental effects. Models will be con-

structed as a modular combination of physical and logical aspects using a knowledge-based

representation. This naturally supports integration of logical reasoning tools such as Maude

[31] and physics-based simulators such as EPANET and WNTR for hydraulic and quality

modeling tools. Being knowledge based, models can link to databases and adapt to real-time

information.

In our initial experience, models are formalized in rewriting logic using the Maude rewriting

logic system [31]. Using only the structure of a model and the logical constraints, we can

already do interesting effect analysis in a timely manner - if something happens in one element

where might the effects propagate. For example, the below code snippet is a hydraulic rule

written using Maude - if the pressure head of node 2 is in low category, the status of link 9

will switch from close (0) to open (1) to distribute water from the tank.

c r l [ c o n t r o l ] :

open l ink (9 )

<9 : LINK | s t a t u s : 0> => <9 : LINK | s t a t u s : 1>
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i f p r e s su r e (2 ) i s low

Although this gives over-approximations compared with domain-specific modeling (e.g., low

pressure category instead of the specific value), it generates a practical solution in time, which

can guide detailed modeling, processing and testing. In addition, using logical specification

of physics, one can get a next level of information from the model and carry out (bounded)

model checking to search for conditions where key invariants or constraints fail or policies

are violated. For example, some based invariants include pressure must be within a certain

range, or water quality meets a given standard (depending on concerns).

p r e s su r e ∈ [a, b]

q u a l i t y meets a g iven standard

A formal model that incorporates constraints can be queried to determine if the system suffi-

ciently satisfies multiple requirements/invariants given thresholds and priority mechanisms.

Overall, we are interested in applying formal methods to decision-making support, which

will involve some combination of physics, logic-based reasoning and machine learning com-

ponents. This enables the ability to directly and more efficiently get states and actions that

are weighted highly, and in the meanwhile avoid the property violation.

7.2.2 Community Data Exchange Framework

Community-scale infrastructures can be viewed as networks of systems and processes, which

produce and distribute continuous flow of essential services to end-users as interdependent

and connected. For example in Fig. 7.2, in order to offer sustainable water service to

both utilities and customers, it requires both the power distribution network for pump con-

trol and the communication infrastructure for SCADA system. Individual failure can have

wide-ranging consequences by propagating from one system to the next due to these in-
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Figure 7.2: Interdependent urban infrastructures.

terconnectivities. Unfortunately, today these infrastructures are suffering from the issue of

fragmented management, where they are maintained and operated in a distributed way by

different agencies. These agencies have solid expertise, but limited channels for coordination.

What is required is a structured approach to view the multiple infrastructures in a unified

manner to understand their interactions, quantify the benefits and assess vulnerabilities.

Given the emergence of IoT and big data systems, a data-driven approach to allow to ex-

change historical and live data of relevance to the stakeholders (e.g., agencies, policy makers

and citizens) is feasible. Build on our previous experience, we believe that data about the

infrastructure (historical and live measurements) and its dependencies, a bulk of which re-

sides within community agencies, if combined and enhanced with other geo-distributed data

sources can enable new levels of efficiency and resilience.

7.2.3 Protect Infrastructures from Cyber Attacks

As cyber technologies are increasingly added to existing infrastructures and built into newly

constructed infrastructure, potential cyber attack would be a major concern. In fact, great

concern has been expressed regarding the security of SCADA systems in the light of the

breach that occurred at Maroochy Water Services in Queensland, Australia, in 2000 [116,

106]. The Maroochy Shire Council experienced communication problems in their wastewater
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treatment plant, where their pump stations were not working properly. After three months,

an engineer finally discovered that someone was hacking into the system and deliberately

causing the problems. At that time, one million liters of untreated sewage had been released

into a stormwater drain from where it flowed into local waterways.

SCADA systems are widely used for monitoring and controlling power distribution facilities,

oil and natural gas pipelines, water distribution systems and wastewater treatment plants.

These systems are generally located in the main plant and communication with sensors

and control devices to support the operation of lifeline services. However, even with the

cybersecurity technology, these types of systems have proven to be vulnerable to cyber

attacks [30]. In 2015, the U.S. Department of Homeland Security (DHS) reported 25 cyber

attacks in water systems and 46 incidents in power systems. Comparatively, the reported

number of attacks in water systems increased by 78.6% from 2014 to 2015. In addition,

since the event of September 11, 2001, the U.S. government has been forced to consider the

vulnerability of all of the nation’s critical infrastructure to terrorist attack. Under these

conditions, safeguarding critical infrastructure components is of utmost importance.
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