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SUMMARY HIV-1 DNA exists in nonintegrated linear and circular episomal forms and
as integrated proviruses. In patients with plasma viremia, most peripheral blood mononu-
clear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while
in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART),
most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-
resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type
virus populations than they are in plasma, explaining why next-generation sequencing is
particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing
high levels of active virus replication, the DRMs detected in PBMCs and in plasma are
usually highly concordant. However, in patients with lower levels of virus replication, it
may take several months for plasma virus DRMs to reach detectable levels in PBMCs.
This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT)
is less sensitive than historical plasma virus GRT, if previous episodes of virological failure
and emergent DRMs were either not prolonged or not associated with high levels of
plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies
have examined the predictive value of DRMs on the response to a simplified ART regi-
men. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics,
particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-
1 GRT, and the scenarios in which PBMC GRT has been used clinically.
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INTRODUCTION

People with HIV-1 who have attained virological suppression (VS) on antiretroviral
therapy (ART) often require changes to their therapy to avoid drug toxicity, intoler-

ance, drug-drug interactions, and to improve adherence. In these patients, standard
genotypic resistance testing (GRT) of plasma virus is not possible. HIV-1 DNA GRT of pe-
ripheral blood mononuclear cells (PBMCs) has increasingly been studied for the optimi-
zation of ART in patients with VS or low plasma virus levels, and in other scenarios in
which plasma virus GRT might be insensitive for detecting drug-resistance mutations
(DRMs). PBMC GRT results, however, are difficult to interpret because there are fewer
data demonstrating the predictive value of PBMC GRT compared with plasma virus GRT.

Retrospective studies have shown that the presence of HIV-1 DRMs in plasma virus
before the start of a new ART regimen are independent predictors of the virologic
response to that regimen (1–8). Prospective and retrospective studies have shown that
patients whose care providers have access to plasma virus GRT respond better to ther-
apy than those whose providers do not (9–13). The accumulation of such retrospective
and prospective data has led to the routine use of plasma GRT in the management of
people with HIV-1 (14–16). Whereas it is unlikely that prospective clinical trials will be
performed to evaluate the use of PBMC GRT, a critical mass of retrospective data that
provides insight into scenarios in which PBMC GRT may be useful could be applied to
clinical practice.

The topic of PBMC GRT intersects with recent research conducted to understand
the replication-competent HIV-1 reservoir. Therefore, this review will begin with several
sections summarizing recent studies on PBMC HIV-1 dynamics particularly in patients
with suppressed plasma viremia, as understanding this foundational topic is important
for the optimal use of PBMC GRT in clinical decision-making.

HIV DNA POPULATIONS

HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as inte-
grated proviruses. The biological significance of the nonintegrated forms of HIV-1 DNA
is poorly understood. Both nonintegrated linear and episomal forms have short half-
lives ranging from several days to weeks, although episomal forms can persist for lon-
ger periods of time (17–22). Consequently, within several months of VS, PBMC HIV-1
DNA consists primarily of integrated proviral DNA (23–27). Although PBMC HIV-1 GRT
is often referred to as proviral DNA sequencing, PBMC GRT assays rarely distinguish
between integrated and nonintegrated HIV-1 DNA. Additionally, the terms proviral
DNA compartment and latent HIV reservoir have been used interchangeably because
there is no way to determine which parts of the proviral DNA compartment are respon-
sible for virological rebound in patients who discontinue ART.

The vast majority (.90%) of HIV-1-infected CD41 T cells from peripheral blood and
lymph node tissue contain only one integrated HIV-1 DNA molecule (28, 29). In the ab-
sence of therapy, HIV-1 DNA is present at a level ranging between 2.5 to 3.5 log copies/
106 PBMCs (20). Elite controllers and the rare posttreatment controllers who maintain
VS off ART have been shown to average approximately 1.5 log copies/106 PBMCs (20,
30–32). In research studies, GRT can be performed using sorted CD41 lymphocytes.
However, in clinical settings, GRT is performed using the complete PBMC population,
which includes multiple cell types not infected by HIV-1, including monocytes, B lympho-
cytes, CD81 T lymphocytes, and natural killer cells.

Complete proviral DNA genomic sequencing has revealed that approximately 90%
to 95% of integrated HIV-1 genomes have major sequence abnormalities incompatible
with viral replication, including large deletions and apolipoprotein B mRNA editing
enzyme, catalytic polypeptide-like (APOBEC)-mediated G-to-A hypermutation (23, 33,
34). The deletions result from replication errors as the reverse transcriptase (RT)
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enzyme switches between paired RNA template genomes during reverse transcription.
G-to-A hypermutation often results in lethal mutations, such as premature stop codons
and mutations at highly conserved positions.

The frequency of replication-competent viruses that can be cultured in quantitative
virus outgrowth assays (QVOAs) is nearly 100-fold lower than the number of nondefec-
tive proviral genomes (33). However, QVOAs provide only a minimal estimate of the
number of nondefective proviral genomes because the single round of T cell stimula-
tion performed in these assays is insufficient to activate all replication-competent pro-
viruses and because not all activated proviruses are capable of establishing a spreading
infection (33, 35). Thus, only a small proportion of the proviruses that appear geneti-
cally intact contribute to the replication-competent viral reservoir. Many additional
proviruses may be epigenetically silenced as a result of repressive chromatin states
(23) and transcriptional interference (36, 37). Moreover, some proviruses without
obvious genetic defects may contain subtle genetic changes associated with reduced
replication capacity.

PROVIRAL DNA DYNAMICS DURING ACTIVE VIRAL REPLICATION

Although activated CD41 lymphocytes are most vulnerable to HIV-1 infection, they
are also the cells most vulnerable to being eliminated following infection as a result of
virus cytopathic effect, cytotoxic T cell (CTL) killing, or apoptosis. In contrast, memory
CD41 lymphocytes, the main reservoirs of latent virus, are less vulnerable to infection
(38, 39). Based on these observations, it has been hypothesized that the latent virus
reservoir is established when HIV-1 infects activated CD41 T lymphocytes that transi-
tion to memory CD41 lymphocytes before they are destroyed in what has been termed
an “effector-to-memory transition” (23, 39).

In patients with acute infection, proviral DNA levels and sequence diversity increase
during the first few years after infection (40–43). In the absence of ART, proviral viral
DNA levels eventually reach an equilibrium between processes that increase and
decrease their levels. Proviral DNA levels are increased when CD41 lymphocytes are
infected during periods of active virus replication and during clonal proliferation of
latently infected cells. Clonal proliferation (Sidebar) has been reported primarily in
patients with VS because proviral DNA sequence homogeneity is most readily detected
in patients in whom active viral replication is not occurring (44–47). Proviral DNA levels
decrease when viruses reactivate, resulting either in viral cytopathic effects or host cy-
tolytic effects (48, 49). Nonviral causes of cell death, such as senescence, are also likely
to reduce proviral DNA levels (50).

In untreated patients, the proviral DNA reservoir undergoes continuous evolution
(51–54). In several studies, the plasma virus quasispecies in ART-naive patients at multi-
ple time points over periods ranging from 3 to 10 years before ART initiation were
compared with the PBMC virus quasispecies following ART-induced VS. One study spe-
cifically sequenced the replication-competent proviral DNA reservoir (51) while others
examined the nondefective PBMC HIV-1 DNA population (52–54). In two studies, most
proviral DNA sequences were closely related to the pretherapy sequences obtained in
the months prior to ART initiation (51, 52), while in three other studies a significant
proportion of proviral DNA sequences was closely related to earlier pretherapy sequen-
ces (53–55). Together, these studies indicate that in the absence of ART, the proviral
DNA population is constantly evolving. The likelihood of detecting older circulating
variants within this population is not a linear function of time likely because of the sto-
chasticity with which proviral DNA sequences are eliminated by virus activation and
CTL killing as opposed to being amplified by clonal proliferation.

PROVIRAL DNA DYNAMICS FOLLOWING ART INITIATION

In most patients initiating highly effective ART regimens, CD41 lymphocytes no lon-
ger become infected (51, 52, 56–60). PBMC DNA levels decline approximately 0.5 to 1.0
log10 copies/106 cells within weeks to months because of a decline in linear and, to
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some extent, episomal DNA but then plateau after one to 2 years (19, 43, 61–63).
Following ART initiation, the turnover of the proviral DNA reservoir also slows. The esti-
mated half-life of approximately 1 year observed for this compartment in untreated
patients (51–54) lengthens to approximately 3 to 4 years in virologically suppressed
patients (64–66). This slower turnover is believed to result from the progressive
increase over time in the proportion of latently infected cells undergoing clonal prolif-
eration (67) and from changes in the immunological environment, as both immune
activation and CD41 lymphocyte killing are reduced following VS (68).

In virologically suppressed patients, clonal proliferation of latently infected cells
helps to stabilize the size of the proviral DNA reservoir, even though CD41 lympho-
cytes are no longer being infected. Clonally expanded cells often eventually dominate
the latent reservoir (67–72). Although clonal expansion of memory CD41 lymphocytes
containing both replication-competent and defective proviruses have been reported
(23, 46, 69, 70, 73), there is likely to be a progressive enrichment of defective viruses
since these are less likely to reactivate and lead to viral or cytotoxic T-cell killing (46,
71, 74, 75).

In patients with active virus replication and those with stable VS, the PBMC HIV-1 DNA
population appears to be in equilibrium with the plasma virus RNA population and with
the lymphoid HIV-1 DNA population (59, 60, 76, 77). Several studies have also shown that
in patients who discontinue therapy, the rebounding plasma viral RNA population is
closely related to the nondefective PBMC HIV-1 DNA population (55, 71, 78).

PBMC GRT METHODS

To perform PBMC GRT, DNA is extracted either from whole blood or, following den-
sity gradient centrifugation, from the fraction of the blood that contains lymphocytes
and monocytes. The extracted DNA is then amplified using nested PCR (PCR). The num-
ber of viral genomes able to be sampled depends on the PBMC virus load, the number
of PBMCs from which DNA is extracted, and the efficiency of DNA extraction and PCR.
The number of sampled genomes may not be linearly related to the number of PBMCs
used in an assay because the efficiency of PCR has been reported to be reduced when
the amount of DNA in the assay is increased (79). Although PBMC HIV DNA levels are
predictors of the response to therapy independent of the CD41 count and plasma VL
(20, 80, 81), these levels are rarely quantified when PBMC HIV GRT is performed.
Additionally, in most publications, the number of PBMCs used for GRT is not reported.

PBMC HIV-1 DNA GRT has been performed using both dideoxy-terminator Sanger
sequencing and next-generation sequencing (NGS) technologies. In a clinical sample,
Sanger sequencing can detect the presence of mutations at levels of approximately
20% in the viral population (82–84). In contrast, the proportion at which variants can
be detected by NGS depends on the selected threshold. Although mutation-detection
thresholds as low as 1% have been used in research studies, most clinical applications
of NGS have used thresholds between 5% and 10% in part to avoid the increased risk
of sequence artifact that occurs at lower thresholds (85–87). Indeed, the widely used
commercial PBMC GRT assay developed by Monogram Biosciences called the
GenoSure Archive assay uses NGS with a mutation-detection threshold of about 10%
(88–91).

There appears to be greater intrasample stochastic variation in the detection of
DRMs in PBMC than in plasma, probably because DRMs are more likely to coexist with
ancestral wild-type virus populations in PBMCs than in plasma (92–94). Indeed, a recent
study in which two to four GenoSure Archive assays were performed on 90 samples
from 70 patients with VS indicated that the mean reproducibility at detecting DRMs
was approximately 80% (93). In another study of 55 patients who underwent three
PBMC GRTs at different times also using the GenoSure Archive assay, the overall rede-
tection rate for 178 DRMs detected at the first time point was also 80% (89). Sampling
bias is likely to affect redetection rates particularly when the copy number of DRMs
is low.
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The interpretation of PBMC GRT results requires an approach that considers the
near universal presence of APOBEC-mediated G-to-A hypermutation at some level
within PBMC HIV-1 DNA (Sidebar). APOBEC3F and 3G are host enzymes that cripple
viral genomes by indiscriminately mutating the dinucleotides GG!AG and GA!AA,
respectively (95). DRMs resulting from G-to-A hypermutation (rather than drug
selection pressure) are likely to be present in nonfunctional viruses that also contain
stop codons and other crippling mutations. Ignoring all DRMs that could have
resulted from a GG!AG or GA!AA change, however, would reduce the sensitivity
for detecting HIV drug resistance (HIVDR), as nearly 20 DRMs arise in one of these
two dual nucleotide contexts: most commonly the nucleoside RT inhibitor (NRTI)-re-
sistance mutation M184I, the protease inhibitor (PI)-resistance mutation M46I, the
nonnucleoside RT inhibitor (NNRTI)-resistance mutations E138K and G190S, and the
integrase strand transfer inhibitor (INSTI)-resistance mutations G118R, G140S, and
R263K. Several of the DRMs that are commonly caused by G-to-A hypermutation,
such as the rilpivirine-associated mutation M230I and the cabotegravir-associated
mutation G140R, are extremely rare even in the presence of selective drug pressure
(96–98). Two approaches to minimize reporting of APOBEC-mediated DRMs can be
applied using NGS: (i) excluding sequence reads that appear to be hypermutated;
and (ii) determining the proportion of sequences that appear to be hypermutated
and then reporting only those APOBEC-context DRMs that occur above this propor-
tion (99).

PBMC DNA GRT DURING ACTIVE REPLICATION

Several studies have compared the results of PBMC and plasma virus GRT in persons
with detectable viremia. Table 1 shows data from six of the largest studies of ART-naive
individuals undergoing simultaneous PBMC and plasma virus GRT. There was complete
concordance between PBMC and plasma for the one study in which all patients were
acutely infected (100). In four studies, DRMs were more likely to be detected only by
PBMC GRT (98, 101–103). However, in one of these four studies, eight of the nine addi-
tional DRMs detected by PBMC GRT occurred in an APOBEC dinucleotide context,
including four instances of the otherwise extremely rare DRM M230I (98). The finding
that PBMC GRT was usually more sensitive than plasma virus GRT at detecting DRMs in
ART-naive persons with transmitted drug resistance (TDR) is consistent with the estab-
lished observation that many transmitted DRMs are out-competed in plasma by more
fit wild-type revertants (104, 105).

Table 2 shows data from 13 of the largest studies of ART-experienced persons
undergoing simultaneous PBMC and plasma virus GRT. In contrast to the scenario in
ART-naive patients, PBMC GRT can be less sensitive than plasma virus GRT for detect-
ing DRMs in ART-experienced patients because there is often a lag of weeks to
months before circulating DRMs reach sufficiently high levels in PBMCs to become
detectable. This lag is especially prolonged in patients with low plasma HIV-1 RNA
levels. Indeed, three smaller studies (not included in Table 2) that reported the results
of simultaneous PBMC and plasma virus GRT at multiple time points supported this
observation. In one of these studies in which nine patients received nonsuppressive
therapy with a lamivudine-containing regimen, the lamivudine-resistance mutation
M184V required 24 weeks to reach levels in PBMC between 10% and 80% (106). In a
second study of 107 sequential samples from 22 patients with multiple virological
failures (VFs) on a PI-containing regimen, 53 of 58 PI-associated DRMs emerged first
in plasma (107). Furthermore, plasma virus GRT detected these DRMs 425 days earlier
than PBMC GRT when plasma HIV-1 RNA levels were ,4.0 log copies/mL compared
with 225 days when levels were $4.0 log copies/mL (107). In a third study in which
NGS was used to detect INSTI-associated DRMs in four patients with VF on a raltegra-
vir-containing regimen, DRMs were detected by NGS at levels of 0%, 1%, 11%, and
36% in PBMCs versus 78% to 100% in plasma between 6 to 12 months following
VF (108).
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However, in studies of highly treatment-experienced patients, PBMC GRT can be
nearly as sensitive or more sensitive than simultaneous plasma virus GRT for detecting
DRMs, particularly when NGS is used (90, 109, 110). In one of these studies, which
employed a mutation-detection threshold of 5%, many of the PBMC GRT DRMs were
detected on historical plasma virus GRTs but not in simultaneously performed plasma
virus GRT even at the same threshold (110) (Table 2).

In one clinical trial that is not shown in Table 2, 492 ART-naive patients were
randomized to undergo PBMC GRT using an oligonucleotide ligation assay to detect
three NNRTI and two NRTI mutations, and 495 were randomized to undergo standard-
of-care which did not involve GRT (111). Participants randomized to the GRT arm initi-
ated ART with a ritonavir-boosted lopinavir (lopinavir/r)-containing regimen if they
were found to have any of the five tested mutations. The remaining participants in the
GRT arm and all of the participants in the standard-of-care arm were randomized to a
first line NNRTI-containing regimen. PBMC GRT was found to reduce the risk of VF at
12 months in the subset of participants with TDR. Although simultaneous plasma
sequencing was not performed, this trial indicates that there are scenarios in which
clinical investigators have chosen to perform PBMC GRT on ART-naive patients possibly
because of the potential increased sensitivity of detecting DRMs in PBMC in patients
with TDR or because PBMC samples are easier to transport.

ART Discontinuation

In ART-experienced patients who develop VF as a result of HIVDR and discontinue
therapy, plasma viruses containing DRMs are usually rapidly outcompeted by ancestral
wild-type viruses established in viral reservoirs prior to ART initiation because wild-
type viruses replicate better in the absence of ART (112–118). Indeed, by 2 to 3 months
after ART discontinuation of therapy, approximately 60% to 90% of nonpolymorphic
DRMs are no longer detectable in plasma by Sanger sequencing (112, 114, 116, 117).
Limited data suggest DRMs may be detectable for a slightly longer period of time by
PBMC compared with plasma virus GRT using Sanger sequencing (112, 114–117).
Indeed, in one study of 66 patients who had wild-type plasma viremia after discontinu-
ing ART, only 20% had DRMs detectable by PBMC GRT using NGS at a mutation-detec-
tion threshold of 10% (91). In this study, the time since the patients had discontinued
therapy was not reported. One likely reason the sensitivity of PBMC GRT might show
little improvement over that of plasma virus GRT in this scenario is because in the ab-
sence of therapy, there is a rapid accumulation of recently produced wild-type linear
and episomal viral DNA within PBMC to some extent obscuring the proviral DNA popu-
lation. Moreover, if the time since discontinuing therapy was more than several
months, the proviral DNA population may have also undergone significant turnover.

Low-Level Viremia

A confirmed plasma HIV-1 RNA level between 200 and 1,000 copies/mL is associ-
ated with an increased risk of further elevations in virus load and the emergence of
HIVDR (119–128). An increasing number of studies have also reported that patients
with persistent plasma HIV-1 RNA levels between 50 to 200 copies/mL, referred to as
low-level viremia, are also at an increased risk of VF (123, 125, 129–132).

Low-level viremia in patients receiving ART may result from two distinct processes
that have different implications for patient management. In some patients, low-level vi-
remia results from ongoing viral replication and is associated with the risk of emergent
HIVDR and further elevations in virus load (133). In other patients, it results from the
activation of virus in latently infected, clonally proliferated cells (134–136). Although
neither plasma virus nor PBMC GRT can definitively distinguish between these two
processes, the detection of HIVDR by GRT by either method could prompt a change in
therapy to reduce the risk of further elevations in virus load (137–139). The proportion
of patients for whom plasma virus GRT is successful is reduced at plasma virus levels
below 1,000 copies/mL and is usually less than 70% at levels below 200 copies/mL
(137–143).
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Most studies of PBMC GRT in patients with low-level viremia pooled GRT results from
patients who had low-level viremia with those who had complete VS (144–149). Only
small numbers of PBMC GRT results in patients with low-level viremia have been corre-
lated with either historical (145, 146, 148, 149) or simultaneous plasma virus GRT results
(145). In these studies, approximately half of the mutations identified by historical
plasma virus GRT and a slightly higher proportion of the mutations identified by simulta-
neous plasma virus GRT were detected by PBMC GRT (145, 146, 148, 149). In addition, in
one of the smaller studies, PBMC GRT did not detect DRMs associated with patients’
most recent regimens, suggesting that if DRMs had developed, they were not yet detect-
able in PBMCs (147). These findings are consistent with the time lag of weeks to months
before emergent DRMs become detectable by PBMC GRT in patients with low plasma vi-
rus levels (107, 108). Nonetheless, detecting DRMs in unintegrated viral DNA may be pos-
sible as these are more likely to reflect recently circulating viruses (20, 150–152).

PBMC DNA GRT DURING STABLE VIROLOGICAL SUPPRESSION

In patients with stable VS, several studies have assessed the concordance between
PBMC and historical plasma virus GRT. Table 3 shows those studies that compared the fre-
quency with which PBMC and historical plasma virus GRT detected DRMs that were
detected by either approach (94, 97, 146, 149, 153–155). Table 4 shows those studies that
compared the frequency with which PBMC GRT detected M184V/I in patients for whom
this mutation was previously detected by historical plasma virus GRT (156–161). In the
studies shown in Table 3, PBMC GRT was less sensitive than historical plasma virus GRT for
detecting HIV-1 DRMs in five of seven studies (94, 97, 146, 149, 153). The sensitivity of
PBMC GRT was higher in patients with a greater number of past VFs and with VFs of lon-
ger duration (146, 154, 161), as well as in patients with a higher plasma VL at the time of
VF and a higher PBMC VL at the time of PBMC GRT (161). The one study in which PBMC
GRT detected more DRMs than historical plasma virus GRT was a clinical trial involving
patients who had not experienced VF and who therefore had TDR for which PBMC GRT is
more sensitive than plasma virus GRT (155).

In the studies shown in Table 4, PBMC GRT using Sanger sequencing detected M184V/I
in about 25% of those in whom it had been detected by historical plasma virus GRT. In con-
trast, when PBMC GRT was performed using NGS, M184V/I was detected in 40% to 90% of
patients, with higher sensitivities reported at the lower mutation-detection thresholds.

Sequential PBMC GRT in the setting of stable VS has been described in at least four
studies (Table 5). In one study, there was a marked reduction in the detection of DRMs in
PBMCs over a period of 5 years (162). In this study, the number of NRTI-associated DRMs
decreased from 40 to 14 in 10 patients receiving an NRTI-sparing suppressive regimen and
the number of NNRTI-associated DRMs decreased from 10 to 0 in 11 patients receiving an
NNRTI-sparing regimen. The reduced detectability of DRMs in this population may reflect
the fact that in nine of the patients with clearance of PBMC DRMs, there were periods of
residual viremia that may have generated new linear and episomal DNA DRMs that
obscured persistent proviral DNA DRMs. In two of the remaining three studies, there were
modest reductions in the detectability of PBMC DRMs over a period of 24 to 72 months
(163, 164). In a fourth study of 20 heavily treated patients who possessed a mean of 12 RT
and protease DRMs detected by PBMC GRT prior to VS, there was little change in the num-
ber of DRMs after 18 months of VS (165).

Genotypic testing has also been performed to determine HIV-1 tropism and the
likely response to the CCR5 inhibitor maraviroc. Such testing involves sequencing the
HIV-1 envelope gp120 V3 loop often in combination with other parts of gp120 (166).
The detection of envelope variants that are associated with CXCR4 tropism is a contra-
indication to prescribing maraviroc, even if these variants represent only a small pro-
portion of a patient’s virus population. Although phenotyping is more sensitive for
detecting minor populations of CXCR4 tropic viruses, NGS GRT is more widely available
and is considered an acceptable substitute for phenotypic testing (166). The determi-
nation of tropism by simultaneous plasma virus and PBMC sequencing have been

Genotypic Resistance Testing of HIV-1 DNA in PBMCs Clinical Microbiology Reviews

December 2022 Volume 35 Issue 4 10.1128/cmr.00052-22 9

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00052-22


TA
B
LE

3
C
om

p
ar
is
on

of
H
IV
-1

PB
M
C
G
RT

w
it
h
hi
st
or
ic
al
p
la
sm

a
G
RT

in
A
RT

-e
xp

er
ie
nc

ed
p
at
ie
nt
s
w
it
h
VS

a

St
ud

y
au

th
or

an
d
ye

ar
N
o.

of
p
at
ie
n
ts

C
h
ar
ac
te
ri
st
ic
s

A
RT

h
is
to
ry

(y
rs
)

V
S

d
ur
at
io
n

(y
rs
)b

G
en

es
Se

q
ue

n
ci
n
g
m
et
h
od

c

Pl
as
m
a

D
RM

sd
PB

M
C

D
RM

se

Ve
rh
of
st
ed

e
20

04
(1
54

)
11

H
is
to
ry

of
H
IV
D
R
on

su
b
op

ti
m
al
A
RT

.
8.
5

5
RT

Sa
ng

er
se
qu

en
ci
ng

of
3
to

8
lim

it
in
g-
di
lu
ti
on

cl
on

es
(in

G
en

Ba
nk

)

47
(9
6%

)
45

(9
2%

)

W
ird

en
20

11
(1
49

)
15

1
H
ea
vi
ly
tr
ea
te
d;
VS

(7
0%

)o
rL

LV
(3
0%

);
m
ed

ia
n
3

hi
st
or
ic
al
G
RT

s.
N
A

N
A

PR
/R
T

Sa
ng

er
se
qu

en
ci
ng

N
A
(9
4%

)
N
A
(6
1%

)

D
el
au

ge
rr
e
20

12
(1
53

)f
12

1
H
ea
vi
ly
tr
ea
te
d
p
at
ie
nt
s
in

th
e
A
N
RS

EA
SI
ER

Tr
ia
l;

m
ed

ia
n
4
hi
st
or
ic
al
G
RT

s.
13

.6
0.
25

PR
/R
T

Sa
ng

er
se
qu

en
ci
ng

14
08

(N
A
)

88
9
(N
A
)

Za
cc
ar
el
li
20

16
(1
46

)
14

9
VS

(;
60

%
)o

rL
LV

(;
40

%
)w

it
h
$

2
hi
st
or
ic
al
G
RT

s.
8

N
A

PR
/R
T/
IN

Sa
ng

er
se
qu

en
ci
ng

67
7
(9
4%

)
30

4
(4
2%

)
La
m
b
er
t-
N
ic
lo
t2

01
6
(9
7 )

g
11

4
H
is
to
ry

of
VF

.
3.
1

$
1

RT
Sa
ng

er
se
qu

en
ci
ng

10
1
(N
A
)

71
(N
A
)

Po
rt
er

20
16

(1
55

)
51

C
lin

ic
al
tr
ia
lp

ar
ti
ci
p
an

ts
w
it
h
tr
an

sm
it
te
d
K1

03
N

w
it
ho

ut
a
hi
st
or
y
of

VF
.

2.
4

$
0.
5

RT
N
G
S
at

a
10

%
m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
d

46
(6
9%

)
62

(9
2%

)

H
of
fm

an
n
20

22
(9
4 )

h
96

Pa
ti
en

ts
w
it
h
hi
st
or
y
of

D
RM

s
as
so
ci
at
ed

w
it
h
$
3

A
RT

cl
as
se
s.

N
A

9
PR

/R
T/
IN

N
G
S
at

a
15

%
m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
d

87
2
(9
3%

)
61

0
(6
5%

)

N
G
S
at

a
1%

m
ut
at
io
n
de

te
ct
io
n

th
re
sh
ol
d

87
2
(8
4%

)
83

1
(8
0%

)

a
N
A
,d
et
ai
ls
no

ta
va
ila
b
le
or

no
tp

ro
vi
de

d
in

th
e
st
ud

y.
b
Fo

ra
ll
st
ud

ie
s,
VS

w
as

de
fi
ne

d
as

a
p
la
sm

a
H
IV
-1

RN
A
le
ve
l,

50
co
p
ie
s/
m
L
ex
ce
p
tf
or

D
el
au

ge
rr
e
20

12
w
hi
ch

in
cl
ud

ed
p
at
ie
nt
s
w
it
h
le
ve
ls
,
40

0
co
p
ie
s/
m
L.

c Il
lu
m
in
a
N
G
S
te
ch

no
lo
gy

w
as

us
ed

fo
rP

or
te
r2

01
6
an

d
H
of
fm

an
n
20

22
.T
he

M
on

og
ra
m

Bi
os
ci
en

ce
s
G
en

oS
ur
e
A
rc
hi
ve

as
sa
y,
w
hi
ch

us
es

a
m
ut
at
io
n-
de

te
ct
io
n
th
re
sh
ol
d
of

10
%
,w

as
us
ed

fo
rP

or
te
r2

01
6.

d
N
um

b
er

of
D
RM

s
de

te
ct
ed

in
p
la
sm

a
w
it
h
th
e
p
er
ce
nt
ag

e
in
di
ca
ti
ng

th
e
nu

m
b
er

D
RM

S
de

te
ct
ed

in
p
la
sm

a/
(n
um

b
er

of
D
RM

s
de

te
ct
ed

in
p
la
sm

a
1

nu
m
b
er

of
D
RM

s
de

te
ct
ed

in
PB

M
C
s)
.

e N
um

b
er

of
D
RM

s
de

te
ct
ed

in
PB

M
C
w
it
h
p
er
ce
nt
ag

e
in
di
ca
ti
ng

th
e
nu

m
b
er

of
D
RM

s
de

te
ct
ed

in
PB

M
C
/(
nu

m
b
er

of
D
RM

s
de

te
ct
ed

in
PB

M
C
1

nu
m
b
er

of
D
RM

s
de

te
ct
ed

in
p
la
sm

a)
.T
he

p
la
sm

a
D
RM

s
p
er
ce
nt
ag

e
w
as

b
el
ow

10
0%

w
he

n
PB

M
C
G
RT

de
te
ct
ed

D
RM

s
th
at

w
er
e
no

tp
re
se
nt

b
y
hi
st
or
ic
al
p
la
sm

a
vi
ru
s
G
RT

.
f S
uc
ce
ss
fu
lg

en
ot
yp

in
g
of

b
ot
h
PR

an
d
RT

in
12

1
p
at
ie
nt
s;
RT

al
on

e
in

12
8
p
at
ie
nt
s;
an

d
PR

al
on

e
in

15
6
p
at
ie
nt
s.
A
to
ta
lo

f3
4
no

np
ol
ym

or
p
hi
c
RT

an
d
PR

m
ut
at
io
ns

w
er
e
ev
al
ua

te
d.

g
O
nl
y
D
RM

s
as
so
ci
at
ed

w
it
h
te
no

fo
vi
r,
em

tr
ic
it
ab

in
e,
an

d
ril
p
iv
iri
ne

w
er
e
re
p
or
te
d.

h
PB

M
C
N
G
S
w
as

p
er
fo
rm

ed
at

tw
o
ti
m
e
p
oi
nt
s
(2
01

7,
20

20
)a
nd

co
m
p
ar
ed

to
hi
st
or
ic
al
p
la
sm

a
G
RT

;p
er
ce
nt
ag

e
is
b
as
ed

on
to
ta
ln

um
b
er

of
D
RM

s
id
en

tifi
ed

at
al
lt
im

e
p
oi
nt
s
as
se
ss
ed

.I
n
an

ad
di
ti
on

al
st
ud

y,
PB

M
C
G
RT

an
d

hi
st
or
ic
al
p
la
sm

a
vi
ru
s
G
RT

w
er
e
co
m
p
ar
ed

fo
rt
he

ir
ab

ili
ty

to
de

te
ct
re
si
st
an

ce
to

se
ve
n
A
RV

s
b
ut

da
ta

on
D
RM

s
w
er
e
no

tp
ro
vi
de

d
(1
48

).

Genotypic Resistance Testing of HIV-1 DNA in PBMCs Clinical Microbiology Reviews

December 2022 Volume 35 Issue 4 10.1128/cmr.00052-22 10

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00052-22


TA
B
LE

4
H
IV
-1

PB
M
C
G
RT

in
A
RT

-e
xp

er
ie
nc

ed
p
at
ie
nt
s
w
it
h
VS

an
d
M
18

4V
/I
b
y
hi
st
or
ic
al
p
la
sm

a
vi
ru
s
G
RT

a

St
ud

y
au

th
or

an
d
ye

ar

N
o.

of
p
at
ie
n
ts

w
it
h
p
as
t

M
18

4V
/I
b

Pa
ti
en

t
ch

ar
ac
te
ri
st
ic
s

A
RT

h
is
to
ry

(y
rs
)

V
S

d
ur
at
io
n

(y
rs
)c

Se
q
ue

n
ci
n
g
m
et
h
od

d

D
et
ec
ti
on

of
M
18

4V
/I
b
y

PB
M
C
G
RT

C
ha

rp
en

ti
er

20
17

(1
56

)
8
of

18
te
st
ed

H
ea
vi
ly
tr
ea
te
d;
D
O
LU

LA
M

co
ho

rt
;1
8
of

27
ha

d
un

de
rg
on

e
hi
st
or
ic
al
p
la
sm

a
vi
ru
s
G
RT

.
18

4.
3

N
G
S
at

m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
d
of

1%
38

%

D
eM

ig
ue

l2
02

0
(1
57

)
21

of
41

A
RT

-P
RO

si
ng

le
-a
rm

tr
ia
l.

18
6

N
G
S
at

20
%
,1
0%

,5
%
,1
%

m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
ds

33
%
,5
2%

,6
7%

,a
nd

95
%

at
20

%
,1
0%

,5
%
,a
nd

1%
m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
ds
,r
es
p
ec
ti
ve
ly
.

M
ar
go

t2
02

0
(1
58

)
84

G
S-
U
S-
28

2-
18

24
EV

G
/c
/F
/T
A
F
tr
ia
lp

ar
ti
ci
p
an

ts
w
it
h
hi
st
or
y
of

M
18

4V
/I
.

17
7

N
G
S
at

10
%

m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
d

48
%

M
on

te
ja
no

20
21

(1
59

)
52

A
RT

-e
xp

er
ie
nc

ed
G
EN

-P
RO

co
ho

rt
w
it
h
hi
st
or
y

of
M
18

4V
/I
.

19
8.
7

Sa
ng

er
se
qu

en
ci
ng

27
%

N
G
S
at

20
%
,1
0%

,5
%
,1
%

m
ut
at
io
n-
de

te
ct
io
n
th
re
sh
ol
ds

48
%
,6
5%

,7
5%

,a
nd

88
%

at
20

%
,1
0%

,5
%
,a
nd

1%
m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
ds
,r
es
p
ec
ti
ve
ly
.

Ji
m
en

ez
de

O
ry

20
21

(1
60

)
12

Pe
rin

at
al
ly
in
fe
ct
ed

yo
ut
h
w
it
h
hi
st
or
y
of

M
18

4V
.

13
.5

4
Sa
ng

er
se
qu

en
ci
ng

25
%

D
el
au

ge
rr
e
20

21
(1
61

,2
34

)
24

2
of

25
2

M
O
BI
D
IP
p
ar
ti
ci
p
an

ts
w
it
h
hi
st
or
y
N
RT

I/
N
N
RT

I
re
si
st
an

ce
on

W
H
O
1s

t -l
in
e
A
RT

w
it
h
VS

on
2n

d
-li
ne

PI
-b
as
ed

A
RT

.

7.
5

3
N
G
S
at

5%
an

d
1%

m
ut
at
io
n-

de
te
ct
io
n
th
re
sh
ol
ds

72
%

an
d
81

%
at

5%
an

d
1%

m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
ds
,r
es
p
ec
ti
ve
ly
.

a
H
is
to
ric

al
p
la
sm

a
vi
ru
s
G
RT

w
as

p
er
fo
rm

ed
us
in
g
Sa
ng

er
se
qu

en
ci
ng

in
al
lc
as
es
.

b
Ji
m
en

ez
D
e
O
ry

20
21

di
d
no

ti
nc

lu
de

M
18

4I
.

c P
la
sm

a
H
IV
-1

RN
A
le
ve
l,

50
co
p
ie
s/
m
L
an

d
fo
r$

6
m
on

th
s.

d
Ill
um

in
a
te
ch

no
lo
gy

w
as

us
ed

fo
ra

ll
N
G
S
st
ud

ie
s.
M
ar
go

t2
02

0
us
ed

th
e
M
on

og
ra
m

Bi
os
ci
en

ce
s
G
en

oS
ur
e
A
rc
hi
ve

as
sa
y.

Genotypic Resistance Testing of HIV-1 DNA in PBMCs Clinical Microbiology Reviews

December 2022 Volume 35 Issue 4 10.1128/cmr.00052-22 11

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00052-22


TA
B
LE

5
St
ud

ie
s
Tr
ac
ki
ng

D
RM

s
at

m
ul
ti
p
le
ti
m
e
p
oi
nt
s
b
y
PB

M
C
G
RT

in
p
at
ie
nt
s
w
it
h
VS

St
ud

y
au

th
or

an
d
ye

ar
N
o.

of
p
at
ie
n
ts

Pa
ti
en

t
ch

ar
ac
te
ri
st
ic
s

V
S

(y
rs
)

G
en

es
Se

q
ue

n
ci
n
g
m
et
h
od

a

N
o.

of
b
as
el
in
e

D
RM

sb

N
o.

of
fo
llo

w
-u
p

D
RM

sb
N
ot
es

Fa
la
sc
a
20

13
(1
65

)
20

VS
af
te
rs
al
va
ge

A
RT

w
it
h
a
D
RV

/r
-

b
as
ed

re
gi
m
en

.
1.
5

PR
/R
T

Sa
ng

er
se
qu

en
ci
ng

;
24

0
;
24

0
In

6
p
at
ie
nt
s,
th
e
no

.o
fD

RM
s

in
cr
ea
se
d.
In

3
p
at
ie
nt
s,
th
e
no

.o
f

D
RM

s
de

cr
ea
se
d.
Th

e
sp
ec
ifi
c

D
RM

s
w
er
e
no

tr
ep

or
te
d.

G
an

tn
er

20
16

(1
63

)
10

VS
af
te
rs
al
va
ge

A
RT

(IN
N
O
VE

an
d

A
N
RS

12
3
ET
O
IL
E
st
ud

ie
s)
.

2–
6

PR
/R
T

N
G
S
at

a
m
ut
at
io
n-
de

te
ct
io
n

th
re
sh
ol
d
of

1%
69

44
In

3
p
at
ie
nt
s,
al
l2
3
b
as
el
in
e
D
RM

s
w
er
e
no

lo
ng

er
de

te
ct
ed

af
te
r

48
–7

2
m
o.
In

1
p
at
ie
nt
,6

ne
w

D
RM

s
w
er
e
de

te
ct
ed

.N
o

m
ea
ni
ng

fu
lc
ha

ng
e
ob

se
rv
ed

in
6
p
at
ie
nt
s.

M
ic
he

lin
i2
01

6
(1
64

)
12

VS
af
te
rs
al
va
ge

A
RT

.
2

PR
/R
T

Sa
ng

er
se
qu

en
ci
ng

11
8

10
0

In
6
p
at
ie
nt
s,
22

b
as
el
in
e
D
RM

s
w
er
e
no

lo
ng

er
de

te
ct
ed

.I
n
3

p
at
ie
nt
s,
4
ne

w
D
RM

s
w
er
e

de
te
ct
ed

.
N
ou

ch
i2
01

8
(1
62

)c
21

VS
on

an
N
RT

I-
(n

=
10

)o
rN

N
RT

I-
sp
ar
in
g
(n

=
11

)r
eg

im
en

.
5

RT
Sa
ng

er
se
qu

en
ci
ng

an
d
N
G
S

at
a
1%

m
ut
at
io
n-

de
te
ct
io
n
th
re
sh
ol
d

57
21

In
10

p
at
ie
nt
s
re
ce
iv
in
g
an

N
RT

I-
sp
ar
in
g
re
gi
m
en

,t
he

no
.o
f

de
te
ct
ab

le
N
RT

ID
RM

s
w
it
h
a

p
ro
p
or
ti
on

.
10

%
de

cr
ea
se
d

fr
om

40
to

14
.I
n
11

p
at
ie
nt
s

re
ce
iv
in
g
an

N
N
RT

I-s
p
ar
in
g

re
gi
m
en

,t
he

no
.o
fd

et
ec
ta
b
le

no
np

ol
ym

or
p
hi
c
N
N
RT

ID
RM

s
w
it
h
a
p
ro
p
or
ti
on

.
10

%
de

cr
ea
se
d
fr
om

10
to

0.
a
45

4
te
ch

no
lo
gy

w
as

us
ed

fo
rG

an
tn
er

20
16

an
d
Ill
um

in
a
N
G
S
te
ch

no
lo
gy

w
as

us
ed

fo
rN

ou
ch

i2
01

8.
b
In

st
ud

ie
s
fo
rw

hi
ch

m
ut
at
io
ns

w
er
e
p
re
se
nt

in
ta
b
le
s,
th
e
D
RM

to
ta
ls
w
er
e
b
as
ed

on
th
os
e
D
RM

s
us
ed

b
y
th
e
St
an

fo
rd

H
IV

D
ru
g
Re

si
st
an

ce
D
at
ab

as
e
in
te
rp
re
ta
ti
on

p
ro
gr
am

.
c In

N
ou

ch
i2
01

8,
re
si
du

al
vi
re
m
ia
w
as

fo
un

d
at

le
as
to

nc
e
du

rin
g
th
e
5
ye
ar
s
in

13
p
at
ie
nt
s
of

w
ho

m
9
sh
ow

ed
p
ro
gr
es
si
ve

cl
ea
ra
nc

e
of

ar
ch

iv
ed

D
RM

s.
D
RV

/r
,r
it
on

av
ir-
b
oo

st
ed

da
ru
na

vi
r.

Genotypic Resistance Testing of HIV-1 DNA in PBMCs Clinical Microbiology Reviews

December 2022 Volume 35 Issue 4 10.1128/cmr.00052-22 12

https://journals.asm.org/journal/cmr
https://doi.org/10.1128/cmr.00052-22


about 85% concordant (167–169). Furthermore, the determination of tropism by PBMC
sequencing has been used as an inclusion criterion for clinical trials that have involved
switching patients with VS to a maraviroc-containing regimen (170).

CLINICAL SIGNIFICANCE OF PBMC DNA GRT DURING STABLE VIROLOGICAL
SUPPRESSION

The first clinical trial which involved changing therapy in patients with VS randomized
patients with plasma HIV-1 RNA levels below 200 copies/mL for 16 to 24 weeks who were
receiving zidovudine/lamivudine/indinavir to either zidovudine/lamivudine alone, indinavir
alone, or continued three-drug therapy (171). Patients who were randomized to zidovu-
dine/lamivudine or indinavir were more likely to experience VF than those who continued
three drug-therapy (23% versus 4%; P , 0.001). Although PBMC GRT was not performed
in this trial, one of two other subsequent studies that involved switching patients with VS
on a PI-containing regimen to a triple NRTI-containing regimen containing abacavir/lami-
vudine/zidovudine reported that the detection of NRTI-associated mutations by PBMC
GRT increased the risk of VF (172, 173) (Table 6).

In 2010, the SWITCHMRK I and II trials reported that patients with VS (defined as
having a plasma HIV-1 RNA level ,50 or ,75 copies/mL for three or more months) on
a lopinavir/r-containing regimen who substituted raltegravir for lopinavir/r had a 6.2%
increased risk of VF at week 24 (95% CI: 1.3%–11.2%) compared to those who contin-
ued lopinavir/r (174). Although baseline PBMC GRT was not performed in this trial, the
finding that the increased risk of VF was confined to patients who had a history of VF
led to the hypothesis that pretherapy NRTI-resistance was likely responsible for the
increased risk of VF in the raltegravir arms.

During the past 10 years, there have been many clinical trials in patients with stable
VS that involved changing therapy from a PI-containing regimen to an NNRTI- or INSTI-
containing regimen. The inclusion criteria of most of these trials were designed to min-
imize the risk of VF and emergent HIVDR. Indeed, tenofovir/emtricitabine/rilpivirine
(155), dolutegravir/lamivudine (175–180), dolutegravir/rilpivirine (181), and long-acting
cabotegravir/rilpivirine (182, 183) were usually studied in patients without a history of
VF or DRMs associated with lamivudine, rilpivirine, or INSTI resistance. Although VFs
were rare with these regimens, the few patients with VF and emergent HIVDR
appeared to be more likely to have had preexisting DRMs detectable by PBMC GRT
than those without VF (155, 184, 185) (Table 6). In contrast, several three-drug regi-
mens, including tenofovir/emtricitabine/bictegravir (186), tenofovir/emtricitabine/elvi-
tegravir/cobicistat (187), and abacavir/lamivudine/dolutegravir (188) were shown to be
efficacious at maintaining VS even in patients with a history of lamivudine resistance.

During the past 5 years, there have been four clinical trials in which dolutegravir mono-
therapy has been investigated for ART simplification. In a meta-analysis of these trials, the
risk of VF among patients randomized to dolutegravir monotherapy was 7% (16/227) com-
pared with 0% (0/189; P , 0.001) for patients continuing their previous ART regimen
(189). Among 15 patients who underwent integrase sequencing at the time of VF, seven
(3.1% of the total) had newly developed INSTI-resistance mutations. Four factors were
identified as risk factors for VF, including a PBMC virus level$2.7 copies/mL, a CD41 count
,350 copies/mL, a plasma HIV-1 RNA PCR signal at baseline despite the absence of quan-
tifiable RNA levels and having begun ART more than 3 months after HIV-1 infection (189).
Baseline PBMC GRT was not performed in any of the trials in this meta-analysis.

Although dolutegravir monotherapy is not considered an acceptable option for
maintaining VS in patients with stable VS (14), dolutegravir/lamivudine has been
widely studied to maintain VS even in patients with a history of the lamivudine-resist-
ance mutations M184V/I by historical plasma virus GRT or by preswitch PBMC GRT.
Table 7 summarizes the findings from two clinical trials and eight retrospective cohort
studies of dolutegravir/lamivudine simplification in about 3,700 patients of whom
approximately 480 had M184V/I detected by historical plasma virus GRT and 40 had
M184V/I detected by PBMC GRT just prior to starting dolutegravir/lamivudine (156,
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157, 180, 190–198). In one open-label trial of 100 patients, in which 50 were stratified
based on a history of M184V/I, switching to dolutegravir/lamivudine was shown to be
equally effective in those with and without M184V/I (199). In another clinical trial of
493 patients with VS randomized to receive dolutegravir/lamivudine or to continue
three-drug ART, a post hoc analysis of preswitch PBMC GRT demonstrated the presence
of M184V in 5 of the 192 patients randomized to dolutegravir/lamivudine (180). In the
eight retrospective studies, treatment discontinuation rates over a follow-up period of
one or more years were consistently below 5% to 10%, and protocol-defined VF rates
were even lower, regardless of the patient’s M184V/I history. Although a history of
M184V/I in combination with a shorter time of VS was associated with an increased risk
of VF (193, 195), there were no reports of emergent INSTI resistance in any of these
studies.

It has been hypothesized that in persons with a history of M184V/I or with M184V/I
detectable by PBMC GRT, the combination of dolutegravir/lamivudine is more active
than dolutegravir monotherapy because M184V/I is associated with reduced virus rep-
lication (200–202). Additionally, the success of dolutegravir/lamivudine despite geno-
typic evidence for lamivudine resistance may be because the risk of reactivation of
viruses containing M184V/I is low in patients with prolonged VS and that the number
of reactivating viruses with M184V/I may be insufficient to overcome the high genetic
barrier to dolutegravir resistance.

Another study which highlighted the importance of baseline PBMC virus load prior
to switching to a regimen with a low genetic barrier to resistance was the TRULIGHT
trial (203). It found that in patients with VS with an HIV-1 DNA level ,2.7 log10 copies/
106 PBMC and no history of VF, a regimen containing tenofovir/emtricitabine alone
was noninferior at week 48 to a regimen containing tenofovir/emtricitabine plus a
third antiretroviral agent (203). Nonetheless, VF was more common in the tenofovir/
emtricitabine arm with 6 of 113 patients developing VF compared with 2 of 110 in the
control arm. In the tenofovir/emtricitabine arm, one person developed the DRM K65R
and one developed the DRM M184V. In contrast, no DRMs developed in the control
arm (203). Baseline PBMC GRT was not performed in this trial.

Three additional studies provide anecdotal evidence that PBMC GRT might be useful
in clinical practice. One involved 227 heavily treated clinic patients with VS for a median
of 4 years who underwent PBMC GRT prior to ART simplification (204). In this analysis,
28% of patients with intermediate or full resistance to one of the drugs used at the time
of the switch were likely to experience VF compared with 14% lacking genotypic resist-
ance. In two other clinic-based studies, the use of PBMC GRT was reported to assist clini-
cians in switching therapy in patients with VS, but the predictive value of DRMs detected
by PBMC GRT was not reported (205, 206) (Table 6).

The success of certain regimens, such as dolutegravir or boosted darunavir in com-
bination with lamivudine despite the presence of lamivudine resistance by PBMC GRT,
suggests that regimen-specific interpretations may be necessary as regimens anchored
by a single fully active drug with a high genetic barrier to resistance may be successful
despite the presence of resistance to one or more companion drugs. The success of
such regimens, particularly in patients with prolonged VS or low PBMC HIV-1 DNA lev-
els may be part of a spectrum that includes posttreatment controllers who experience
prolonged periods of VS following the discontinuation of ART (30, 207–209).

CONCLUSIONS

The main scenario for which PBMC GRT is likely to be most useful in patient man-
agement is for modifying therapy in patients with VS on a stable ART regimen.
However, there are three additional scenarios in which PBMC GRT has also been stud-
ied, albeit less often: (i) modifying therapy in patients with persistent low-level viremia;
(ii) detecting DRMs in patients with VF on an ART regimen who recently discontinued
therapy; and (iii) detecting DRMs in patients who may have been infected with a drug-
resistant virus. In each of these scenarios, there are limitations to the sensitivity of
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PBMC GRT that must be appreciated to appropriately use PBMC GRTs and to interpret
their results.

NGS is preferable to Sanger sequencing for PBMC GRT because it has greater sensi-
tivity for detecting DRMs present in a mixed virus population and because it can be
used to reduce the risk of reporting DRMs resulting from G-to-A hypermutation.
However, when a low mutation-detection threshold is used, the specific threshold at
which each mutation is detected should be reported, as mutations detected at low lev-
els are at increased risk of being PCR or sequence artifact. Moreover, viruses containing
mutations present at low levels may be less likely to reactivate than those present at
high levels.

In patients with VS, PBMC GRT will often not detect DRMs that were once detected
by historical plasma virus GRT. This is particularly the case if previous episodes of VF
and emergent drug resistance were either not prolonged or not associated with high
levels of plasma viremia (Fig. 1). In contrast, in patients who have had multiple VFs but
who infrequently underwent genotypic testing during past episodes of VF, PBMC GRT
may be more sensitive than historical plasma virus GRTs. However, in either case, the
results of PBMC GRT should be interpreted in conjunction with the results of historical
plasma virus GRTs and careful consideration of the drug resistance likely to have
emerged during past episodes of VF.

In patients with persistent low-level viremia, PBMC GRT is likely to be insensitive at
detecting emergent drug resistance because it can take several months for newly
emergent DRMs to become detectable (Fig. 2). Moreover, there are few studies of
PBMC GRT in this scenario. If the plasma virus level is high enough, plasma virus GRT

FIG 1 Sensitivity of peripheral blood mononuclear cell (PMBC) genotypic resistance testing (GRT) in patients with plasma virus
suppression while receiving antiretroviral therapy (ART). In the first scenario (A), in which previous episodes of virological failure (VF)
were prolonged and associated with high plasma HIV-1 RNA levels, the likelihood of detecting drug-resistance mutations (DRMs) in
proviral DNA will be high. In the second scenario (B), in which previous episodes of VF were short and associated with low plasma
HIV-1 RNA levels, the likelihood of detecting DRMs in proviral DNA will be low. Rx1, Rx2, and Rx3 followed by an arrow indicate
periods of antiviral therapy. Proviral DNA containing DRMs are indicated by red asterisks in the boxes at the right side of the figure.
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should be initially attempted. PBMC GRT may be useful because unintegrated linear
and episomal DNA are in equilibrium with plasma virus and may be detectable,
although there are no published studies to support this conjecture.

Plasma virus GRT is most valuable when performed while a patient experiencing VF
is still taking antiretroviral drugs or within 4 weeks after discontinuing therapy (14). If a
patient has been off therapy for a longer period and plasma virus GRT does not explain
the cause of VF, PBMC GRT may be considered (Fig. 3). However, the sensitivity of
PBMC GRT in this scenario may not be high if the duration of viremia while receiving
ART was not prolonged. Moreover, within several months following ART discontinua-
tion, there will be an accumulation of recently produced nonintegrated HIV-1 DNA
genomes and a partial turnover of the proviral DNA population.

PBMC GRT may be more sensitive than plasma virus GRT at detecting transmitted
DRMs, as viruses containing these DRMs are often outcompeted in plasma by viruses
containing wild-type revertants. Nonetheless, such testing has rarely been performed
and the added clinical benefit of such testing is not known.

FIG 2 Sensitivity of PMBC GRT in patients with the recent development of low-level viremia while receiving ART. Rx followed by an arrow
indicates the period of antiviral therapy. The dashed line indicates a threshold of between 200 and 500 copies/mL below which plasma
virus GRT is often not successful. The likelihood of detecting DRMs in proviral DNA is likely to be low. Detecting DRMs in unintegrated
linear and episomal viral DNA may be possible because these are more likely to reflect recently circulating viruses. Proviral and
unintegrated viral DNA containing DRMs are indicated by red asterisks. In the boxed figure on the right, unintegrated linear viral DNA is
shown outside the nucleus. Episomal DNA is not shown; its dynamics are likely to be closer to unintegrated linear DNA than proviral DNA.

FIG 3 Sensitivity of plasma virus and PMBC GRT in patients who discontinue ART following VF and emergent HIV drug
resistance (HIVDR). Rx followed by an arrow indicates the period of antiviral therapy. Most DRMs will no longer be
detectable by plasma virus GRT within 2 to 3 months following ART discontinuation because plasma viruses containing
DRMs are often rapidly outcompeted by ancestral wild-type viruses established in viral reservoirs prior to ART initiation.
Although recently emergent DRMs may have begun to seed the proviral DNA reservoir, their levels in this compartment
will be low unless VF has been prolonged. In addition, the presence of unintegrated linear and episomal viral DNA, which
are in equilibrium with circulating plasma virus, may also reduce the proportion of viral DNA molecules containing DRMs.
In the boxed figure on the right, proviral DNA containing DRMs are indicated by red asterisks. Unintegrated linear viral
DNA is shown outside the nucleus. Episomal DNA is not shown; its dynamics are likely to be closer to unintegrated linear
DNA than proviral DNA.
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Limitations to the sensitivity of PBMC GRT are described above, however, there may
also be limitations to its specificity. Although most laboratories performing PBMC GRT
employ algorithms to minimize the reporting of DRMs resulting from APOBEC-medi-
ated G-to-A hypermutation, these algorithms are imperfect. In addition, mutations
present at low-levels within PBMC may represent PCR or sequence artifact. Finally,
while there are many studies demonstrating the clinical relevance of DRMs detected
by plasma virus GRT, there are few such studies for PBMC GRT at this time.
Nonetheless, ART modifications in patients with sustained VS are being increasingly
studied in clinical trials and performed in clinical practice. As premodification PBMC
GRT will be increasingly performed prospectively or on stored samples in clinical trials,
there will be an increased opportunity to determine the predictive value of PBMC GRT
on the response to a new ART regimen.

Sidebars

Clonal expansion. Around 2005, several groups observed that low-level viremia in
patients receiving ART was often composed of viruses with identical env sequences
(134, 135). The levels of viremia observed suggested that multiple cells from a clonal
lineage were synchronously producing virions because single cells would be incapable
of producing the observed quantities of viruses (210). Although clonal expansion of
proviral DNA-containing cells may also be occurring in patients with ongoing virus rep-
lication, this phenomenon only became noticeable in patients with VS. This is in part
because CD41 lymphocytes are no longer becoming newly infected with diverse viral
variants and in part because clonally proliferating cells appear to account for a higher
proportion of circulating virus the longer a patient maintains VS (67, 210). To prove
that identical viral sequences were due to the proliferation of infected cells expressing
circulating viruses, several groups developed assays to demonstrate these identical vi-
ral sequences were being produced by proviruses integrated in the same human
genomic location (72, 210–212).

APOBEC-mediated G-to-A hypermutation. APOBEC3F and 3G are host cytidine
deaminases that inhibit viral infections by causing extensive cytidine (C) to uridine
(U) editing of negative-strand viral RNA in newly infected cells. This results in guano-
sine (G) to adenosine (A) hypermutations in plus-stranded cDNA (95). APOBEC 3F and
3G act in specific dinucleotide contexts. APOBEC3F causes GA to be mutated to AA
and APOBEC3G causes GG to be mutated to GA. The HIV-1 Vif protein targets host
APOBEC molecules for proteasomal destruction and usually blocks the actions of
APOBEC3F and 3G. Nonetheless, for unknown reasons, APOBEC-mediated viral edit-
ing is frequently successful and results in defective nonviable integrated hypermu-
tated genomes. These genomes often contain stop codons due to APOBEC3G editing
of tryptophan (W): TGG ! TAG or TGG ! TGA or active site mutations in PR (D25N), RT
(D110N, D185N, and D186N), and IN (D64N, D116N, and E152K) resulting from APOBEC3F
editing of aspartic acid GAC/T (D) ! AAC/T (N) or glutamic acid GAA/G (E) ! AAA/G (K).
PBMC sequences can be considered hypermutated if they have a global excess of G to A
changes in the appropriate dinucleotide context (213) or if they contain two to three or
more signature APOBEC mutations in a single sequence (99). In either scenario, any DRM
that can arise in an APOBEC dinucleotide context should be regarded with caution. The
list of such mutations includes D30N, M46I, G48S, and G73S in PR; D67N, E138K, M184I,
G190ES, and M230I in RT; and G118R, E138K, G140RS, G163KR, D232N, and R263K in IN.

Tropism. In addition to attaching to the CD41 receptor, HIV-1 must bind one of two
coreceptors, CCR5 or CXCR4. Most patients are primarily infected by CCR5-tropic HIV-1 var-
iants, with CXCR4-tropic variants emerging during disease progression (128, 214). The
CCR5 inhibitor maraviroc is inactive against CXCR4 variants. In patients receiving CCR5
inhibitors, the most common mechanism of VF is the expansion of preexisting CXCR4
tropic viruses intrinsically resistant to CCR5 inhibitors (215). CXCR4 tropism is most reliably
detected phenotypically using pseudotyped viruses containing the HIV-1 env gene (216). It
can also be detected genotypically as certain positively charged residues at positions 11
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and 25 of the V3 loop of gp120 and several less common combinations of mutations pri-
marily, but not exclusively, within the V3 loop are associated with CXCR4 tropism (217).

Next-generation sequencing and low-abundance variants. Dideoxynucleotide
Sanger sequencing of nonclonal PCR products (direct PCR sequencing) of plasma viral
cDNA has been the standard approach to HIV-1 GRT for more than 25 years. Sanger
sequencing usually detects HIV-1 variants present in proportions above 20% with a
range of 10% to 30% depending on the nucleotide context (82–84). Next-generation
sequencing (NGS) technologies have been used in research studies to detect variants
present in proportions as low as 1% (218). However, mutation-detection thresholds of
$5.0% have been recommended for use in clinical settings to reduce the risk of experi-
mental artifact and increase reproducibility (15, 85, 86, 99). NGS is not necessarily con-
sidered superior to Sanger sequencing for plasma virus GRT. This is because the num-
ber of additional DRMs detected by plasma virus GRT at mutation-detection thresholds
between 5% to 20% is not very high, as most DRMs emerge rapidly in plasma in
patients experiencing VF (15, 87). However, the ability to detect variants below 20% is
more important for PBMC GRT because the emergence of DRMs in PBMCs is slower
than in plasma.
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