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Categorical Cuing: Object Categories Structure the Acquisition 
of Statistical Regularities to Guide Visual Search

Brett Bahle1, Ariel M. Kershner2, Andrew Hollingworth2

1Department of Psychology and The Center for Mind and Brain, University of California, Davis

2Department of Psychological and Brain Sciences, The University of Iowa

Abstract

Recent statistical regularities have been demonstrated to influence visual search across a wide 

variety of learning mechanisms and search features. To function in the guidance of real-world 

search, however, such learning must be contingent on the context in which the search occurs 

and the object that is the target of search. The former has been studied extensively under the 

rubric of Contextual Cuing. Here, we examined, for the first time, Categorical Cuing: The role of 

object categories in structuring the acquisition of statistical regularities subsequently used to guide 

visual search. After an exposure session in which participants viewed six exemplars with the same 

general color in each of 40 different real-world categories, they completed a categorical search 

task, in which they searched for any member of a category based on a label cue. Targets that 

matched recent within-category regularities were found faster than targets that did not (Experiment 

1). Such categorical cuing was also found to span multiple recent colors within a category 

(Experiment 2). It was observed to influence both the guidance of search to the target object 

(Experiment 3) and the basic operation of assigning single exemplars to categories (Experiment 

4). Finally, the rapid acquisition of category-specific regularities was also quickly modified, with 

the benefit rapidly decreasing during the search session as participants were exposed equally to 

the two possible colors in each category. The results demonstrate that object categories organize 

the acquisition of perceptual regularities and that this learning exerts strong control over the 

instantiation of the category representation as a template for visual search.
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How is our attention oriented to behaviorally relevant stimuli in the world? Traditional 

theories of visual attention held that attention is guided by two dichotomous mechanisms 

(Egeth & Yantis, 1997). First, attention is attracted to physically salient stimuli and events, 

such as a uniquely colored item against a relatively uniform background (Theeuwes, 1992) 

or an object that creates a unique onset transient (Hollingworth, Simons, & Franconeri, 
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2010; Yantis & Jonides, 1984). Second, attention is guided by observer goals (Desimone 

& Duncan, 1995; Folk, Remington, & Johnston, 1992; Wolfe, 1994). It is possible, for 

example, to strategically limit attention and gaze to those items that match a particular 

feature value (Williams, 1967; Zelinsky, 1996). In the last 20 years, however, it has become 

increasingly evident that there are several additional forms of guidance that do not fit 

conveniently within this structure (Awh, Belopolsky, & Theeuwes, 2012), classified as 

effects of learning and history that influence the guidance of attention in a manner that 

is largely independent of stimulus salience and observer goals. These include inter-trial 
effects, in which recently relevant feature values and locations tend to attract attention and 

gaze (Kristjansson, Wang, & Nakayama, 2002; Li & Theeuwes, 2020; Talcott & Gaspelin, 

2020), reward learning, in which stimuli previously associated with reward continue to 

recruit attention (Anderson, Laurent, & Yantis, 2011; Hickey, Chelazzi, & Theeuwes, 2010), 

learned distractor rejection, in which features and locations consistently associated with 

distraction become less distracting with experience (Gaspelin, Leonard, & Luck, 2015; 

Stilwell, Bahle, & Vecera, 2019; Wang & Theeuwes, 2018), and a group of spatial learning 
phenomena, in which learned associations between spatial contexts and target locations 

reliably guide attention (Chun & Jiang, 1998; Geng & Behrmann, 2005; Jiang, Swallow, 

Rosenbaum, & Herzig, 2013).

These effects of learning and history demonstrate that the human visual system is sensitive 

to recent statistical regularities predicting the properties (appearance, location) that are 

likely to be associated with task-relevant objects. However, to support real-world visual 

search, it is not enough to learn the statistical regularities of search targets in general, 
since the guidance of attention to targets is strongly contingent on (at least) two forms of 

structure. The first is the type and identity of the context in which the search occurs; the 

relevant statistical regularities are those within a particular contextual type (e.g., kitchens) or 

exemplar (Grandma’s kitchen). For example, learning the locations associated with reward 

in a kitchen does not strongly generalize to rewarded locations on a freeway or in a church. 

The second form of structural organization is the type and identity of the object that is the 

target of search; the relevant statistical regularities are those associated with a particular 

object type (e.g., cars) or particular object exemplar (e.g., my car). Learning the recent 

statistics of the appearance of cars does not necessarily predict the appearance of the search 

target when one is looking for a bucket or for a cat (to choose just two examples).

In the literature on attention guidance by learning and history, there has been considerable 

work on the structural effects of search context, with research examining context specificity 

both in the learning of target location (e.g., Brockmole, Castelhano, & Henderson, 2006; 

Chun & Jiang, 1998) and, to a lesser extent, in the learning of target appearance (Anderson, 

2015; Chun & Jiang, 1999). In fact, work on context-specific learning of statistical 

regularities have been broadly collected under the term Contextual Cueing (for a recent 

review, see Sisk, Remington, & Jiang, 2019). Moreover, contextual cuing occurs both when 

the context is defined by consistent spatial information and when the context is defined by 

consistent identity information (Goujon, Didierjean, & Marmeche, 2009; Makovski, 2016; 

but see Makovski, 2018). Thus, it is well established that scene context structures statistical 

learning for the purpose of visual search.
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However, there has been little or no investigation into the structural effects of target object 
category on statistical learning in visual search. Existing work on the statistical learning 

of visual categories has tended to focus, instead, on the learning of transition probabilities 

among categories, such as learning that birds tend to follow apples in sequences of images or 

that forest scenes tend to follow kitchen scenes (Brady & Oliva, 2008; Otsuka, Nishiyama, 

& Kawaguchi, 2014; Otsuka, Nishiyama, Nakahara, & Kawaguchi, 2013). Such work probes 

category-to-category associations, rather than role of categories in structuring the acquisition 

of perceptual regularities, and this existing work does not directly apply to visual search 

processes.

Thus, in the present study, we conducted an initial investigation into Categorical Cuing: the 

role of object categories in organizing the learning of statistical regularities for the purpose 

of guiding visual search. Given that this is a broad topic, we made several decisions to 

focus the scope of investigation. First, we examined how statistical learning is organized by 

existing category structure rather than examining the formation of new object categories. 

For categorical cuing to be functional in real-world search, it would need to operate through 

modification of already well-established category representations, as it is rarely the case that 

we search for unfamiliar object types. To this end, we investigated how the recent statistical 

properties of exemplars from a category influence search for any member of that category. 

Note that the main categorization literature provides little direction in understanding this 

type of learning. Studies that have investigated well-established categories have tended to do 

so independently of new learning (e.g., work in the tradition of Rosch, 1975), and studies 

that have examined category learning have tended to do so for novel categories (e.g., work 

in the tradition of Medin & Schaffer, 1978). Thus, in addition to probing mechanisms of 

search guidance, the present study has the potential to inform understanding of a key type 

of category learning: dynamic modification of existing real-world category representations. 

Second, we probed the effects of categorical regularities acquired initially in a task that did 

not involve visual search (rather than through repeated visual search, as is typical in the 

visual search literature), since our real-world exposure to object statistics does not always 

come in the course of visual search. Finally, we focused on the learning of one specific 

surface feature property, color, rather than other possible object features, such as shape or 

location, since color is a strong cue controlling the guidance of attention during visual search 

(Alexander, Nahvi, & Zelinsky, 2019; Beck, Hollingworth, & Luck, 2012; Williams, 1967; 

Zelinsky, 1996).

The structure of the general approach is illustrated in Figure 1. Each experiment began 

with an exposure session in which participants completed a simple categorization task. They 

were shown six exemplars from each of 40 categories (20 artifact, 20 natural) for 2 s and 

categorized each object as “artifact” or “natural”. The exemplars from a given category 

always appeared in the same general color (e.g., each backpack was a novel black exemplar, 

and each bunch of grapes was a novel red exemplar). After completing the exposure session, 

participants performed a categorical visual search task (Yang & Zelinsky, 2009) for new 

exemplars from the same categories. Because their search target on each trial was cued with 

a category label, such as “backpack”, participants were required to retrieve from memory 

a representation of category appearance (Solomon & Barsalou, 2004) to guide attention. 

Such retrieval of category information to guide search is known to be sensitive to category 
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structure (Maxfield, Stadler, & Zelinsky, 2014). We leveraged this property of categorical 

search to probe whether the guidance of attention is sensitive to the category-specific 

statistics of recently exposed exemplars. The target object from the cued category either 

matched the color of recent exemplars from that category (e.g., black backpack, red grapes) 

or mismatched (e.g., brown backpack, green grapes), and search time provided a measure of 

the extent to which recent, category-specific statistics biased the instantiation of the search 

template. Participants performed four blocks of search, searching for each category twice in 

each block (once in the Match and once in the Mismatch condition). This allowed us to then 

examine the potential reduction of the category bias as participants were exposed equally to 

the two possible colors over the course of multiple searches.

In Experiment 1, we implemented the basic method as illustrated in Figure 1. The primary 

dependent measure of search efficiency was manual reaction time (RT) as a function of 

within-category color match. In Experiment 2, we tested participants’ ability to learn a more 

complex distribution of statistical regularities by including multiple colors per category in 

the exposure phase. In Experiment 3, to ensure that the effect of color match was influencing 

the guidance of attention to the target object (instead of post-selection operations), gaze 

position was monitored, and the primary dependent measure was elapsed time until fixation 

of the target object. In Experiment 4, we tested whether a match effect would still arise in a 

simple categorization task that eliminated the need for visual search. In the second session, 

participants first saw the category label, followed by a single exemplar that was or was not a 

category member. Categorization RT for color-matching and mismatching category members 

was the primary dependent measure.

Experiment 1

Method

Participants.—Participants in all four experiments were recruited from the University of 

Iowa community, were between 18 and 30 years of age, and received course credit for 

their participation. All participants reported normal or corrected-to-normal vision. Each 

participant completed only one of the experiments. All human subjects’ procedures were 

approved by the University of Iowa Institutional Review Board.

The present experiments were not based on an existing effect that could support an a priori 

power analysis. Thus, we used a relatively large sample of 40 in Experiment 1 to ensure 

sufficient power to detect a medium sized effect. For the type of within-subjects contrast of 

interest here, a sample of 40 has 80% power to detect an effect of ηp2 = .18. Five participants 

were replaced because accuracy in the search task fell below an a priori criterion of 85% 

correct. Of the final 40 participants, 27 were female.

Apparatus.—Stimuli were presented on an LED monitor (resolution: 1280 × 960 pixels) 

with a refresh rate of 100 Hz. View distance was 77 cm, maintained by a forehead rest. 

Manual responses were collected with a USB button box. The experiment was controlled by 

E-prime software (Schneider, Eschmann, & Zuccolotto, 2002).
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Stimuli.—There were 40 common categories in the experiment: 20 artifact and 20 natural 

(see the Appendix for a complete list of categories). Most categories were defined at the 

basic level (e.g., “bear”); a few were defined at the subordinate level (e.g., “running shoe”). 

Within each category, there were 20 exemplar photographs. These were gathered from a 

variety of sources, including existing object databases and internet searches. Ten of the 

exemplars appeared in one general color, and 10 appeared in a different general color. For 

example, in the “car” category, 10 cars were blue, and 10 were red (see the Appendix 

for a complete list of the two colors for each category). The colors for each category 

were chosen so that there was always a high degree of variability in the particular colors 

a participant viewed in the exposure session, ensuring that any observed color effects on 

search were driven by color consistency within a category rather than color consistency 

across all exposed items.

For each participant, one of the two colors in each of the forty categories was randomly 

chosen for the exposure session. Six of the exemplars in the chosen color appeared in the 

six blocks of the exposure session (e.g., a participant would see six different blue cars in the 

exposure session). The remaining four exemplars in the chosen color appeared in the Match 

condition of the search session, one in each of the four blocks of search. Thus, participants 

always searched for a novel exemplar; they never searched for an exemplar that they had 

viewed in the exposure session. Four exemplars from the other color in each category were 

selected randomly to appear in the Mismatch condition in the four blocks of visual search. 

The sequence of presented exemplars in each category was determined randomly for each 

participant.

For both phases of the experiment, object stimuli subtended 3.08° by 3.08°, presented 

against a white background with a central, black fixation disk. In the exposure session, 

each trial contained one object image presented centrally. In the search session, the eight 

objects were presented on a virtual circle around central fixation with a radius of 7.40° 

visual angle. The location of the first object was selected randomly within a range of 1° to 

45°. The remaining objects were each offset by 45° around the virtual circle. Every search 

display contained one member of the cued category (i.e., all trials were target-present trials). 

The distractor objects on each trial were chosen from a set of 150 distractor images. Each 

distractor image came from a different category (75 artifact, 75 natural) that did not overlap 

with the 40 experimental categories. Each array had four artifacts and four natural objects. 

For example, if the target was an artifact, there were three artifact distractors (chosen 

randomly without replacement) and four natural object distractors (also chosen randomly 

without replacement). The assignment of objects to locations was determined randomly, and 

thus target location was chosen randomly. A small, black letter “F” on a white background 

(Arial font, subtending 0.25° X 0.41°) was superimposed centrally on each array object, 

with the orientation of the “F” (facing left or facing right) selected randomly. The cue 

that appeared before each search array was a word presented in Arial font describing the 

category of the target object (e.g., “backpack”).

Procedure.—After arriving for the experiment session, participants were informed that 

they would participate in two separate experiments. They were given instructions for the 

first experiment, which was the exposure phase. The trial began with a centrally presented 
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“Press Button” screen that remained visible until the participant pressed a pacing button. 

After a 400-ms delay, an object image was displayed for 2 s (equating the exposure duration 

for all stimuli). Participants pressed the left button if the object was from a naturally 

occurring category or the right button if the object was from an artifact category. Speed 

was not stressed in the instructions except that the response should be made within the 2-s 

presentation duration. The participants received “Incorrect!” feedback in red font for 2 s if 

they made an incorrect categorization or did not respond within 2 s. Participants completed 

six blocks of 40 trials. Within each block, they saw one exemplar from each of the 40 

categories, randomly intermixed. They were required to take a short break between blocks.

After completing the exposure phase, participants received instructions for the second 

experiment, which was the search phase. Each trial again began with a centrally presented 

“Press Button” screen. Once the participant pressed a pacing button, there was a 400 ms 

delay, followed by the category cue label presented centrally for 800 ms. After cue offset, 

there was a 1000-ms blank delay before the presentation of the search display, which 

remained visible until response. Participants searched for the object matching the category 

label and reported the orientation of the “F” superimposed upon it, using the right button 

to report a right-facing “F” (i.e., standard) and the left button to report a left-facing “F” 

(i.e., mirror-reversed). Participants were instructed to make this response as quickly and 

as accurately as possible. Incorrect responses were followed by “Incorrect!” feedback in 

red, Arial font for 2 seconds. Participants completed four blocks of 80 trials. Within each 

block, they searched for each category twice, once with a matching color exemplar (i.e., 

an exemplar with the same general color as the exemplars from that category viewed in 

the exposure session) and once with a mismatching color exemplar (i.e., an exemplar with 

the color not viewed in the exposure session for that category). Within a block, trials were 

randomly intermixed. Participants were required to take a short break between blocks.

The entire experiment lasted approximately 40 minutes. There was a gap of approximately 5 

minutes between the end of the exposure session and the first trial of the search session.

Data Processing.—In the exposure session, categorization accuracy did not reliably differ 

as a function of object type (artifact/natural), with mean accuracy of 98.2% for artifacts and 

97.8% for natural objects. Mean search accuracy in the main session was 94.6% correct. 

There was no reliable effect of Match condition, no reliable effect of Block, and no reliable 

interaction. Incorrect search trials were eliminated from the RT analyses. In addition, for 

correct trials, RTs more than 2.5 SD from the participant’s mean in each condition were 

eliminated. The pattern of results was not influenced by RT trimming in any experiment in 

this study. A total of 8.3% of trials was eliminated from the RT analyses.

Results and Discussion

The primary analysis concerned the speed of visual search when the target exemplar either 

matched the color of exemplars in that category from the exposure session (Match condition) 

or did not match that color (Mismatch condition). In addition, we examined how the match 

effect changed over multiple blocks of search, in which participants saw exemplars in 
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both possible colors from a category equally often. Finally, we conducted these analyses 

separately for the artifact category items and for the natural category items.

The mean RT data were entered into a 2 (Match, Mismatch) X 4 (Block) repeated-measures 

ANOVA. The results are reported in Figure 2A. First, there was a main effect of Match. 

Mean search RT was reliably shorter in Match condition (1152 ms) than in the Mismatch 

condition (1241 ms), F(1,39) = 61.3, p < .001, adj ƞp2 = .601.1 Second, the main effect 

of Block was not reliable, F(3,117) = 0.55, p = .649, adj ƞp2 = −.011. Finally, there was a 

reliable interaction between these factors, F(3,117) = 4.81, p = .003, adj ƞp2 = .087, indicating 

a reduction in the match effect as block number increased. Planned contrasts were consistent 

with this pattern. There was a reliable match effect in Block 1, F(1,39) = 45.1, p < .001, 

adj ƞp2 = .525, Block 2, F(1,39) = 24.0, p < .001, adj ƞp2 = .365, and Block 3, F(1,39) = 

15.3, p < .001, adj ƞp2 = .264, but the effect only reached trend level in Block 4, F(1,39) = 

3.96, p = .054, adj ƞp2 = .069. In sum, visual search was strongly influenced by the recent 

color statistics of natural categories, and this effect then diminished with repeated exposure 

to both colors within a category.

One possible concern with the color manipulation is that color differences were sometimes 

correlated with subordinate category differences within the set of natural categories. For 

example, bears with a black color were drawn from the black bear species, and bears with 

a brown color were drawn from the brown bear and grizzly bear species. Thus, participants 

may have instantiated subordinate category representations for some categories rather than 

encoding the statistics of color directly, and they may have been more likely to populate the 

search template with a particular subordinate category representation depending on exposure 

conditions. In addition, subordinate category covariation among features (e.g., additional 

morphological regularities in the category of grizzly bears, such as head shape or posture) 

could plausibly have influenced performance for some natural categories. Such concerns 

do not extend to the artifact categories, however, as we purposefully chose arbitrary color 

differences for artifacts. To assess the effects of category type, we added artifact/natural as 

a factor in the ANOVA. Artifact/Natural did not produce a main effect, nor did it interact 

with the other factors. Moreover, the same pattern of statistical significance as in the main 

analysis was observed when the analysis was limited to artifact categories, with a reliable 

effect of Match, F(1,39) = 36.5, p < .001, adj ƞp2 = .470, no reliable effect of Block, F(3,117) 

= 0.49, p = .687, adj ƞp2 = −.013, and a reliable interaction, F(3,117) = 2.87, p = .039, adj ƞp2

= .045. The same pattern was also observed for natural categories, with a reliable effect of 

Match, F(1,39) = 45.3, p < .001, adj ƞp2 = .525, no reliable effect of Block, F(3,117) = 0.96, p 

= .417, adj ƞp2 = −.001, and a trend-level interaction, F(3,117) = 2.66, p = .052, adj ƞp2 = .040. 

The results are plotted separately for artifact and natural categories in Figure 2B and 2C.

A second possible concern is that the match effect could have been generated by general 

color priming from the overall set of items viewed in the exposure session rather than from 

1We report adjusted ηp2, which removes the positive bias inherent in standard ηp2 (Mordkoff, 2019).
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within-category regularities. This is unlikely, as the exposed colors varied widely and often 

had opposite values in hue or lightness (see Appendix). In addition, the match effect (lower 

RT in the Match than in the Mismatch condition) was numerically observed for 38 (18 

artifact, 20 natural) of the 40 category items. Thus, we can be confident that the match effect 

was caused by the learning of within-category color regularities, observed broadly across the 

set of categories.

To summarize the results, participants were initially much faster to respond to the search 

target when its color matched the color of recently exposed exemplars. Specifically, in 

Block 1 of search, when participants had recently viewed six exemplars in one color from 

each category, they were, on average, 134 ms faster to respond to the search target in the 

Match condition than in the Mismatch condition. These category-specific biases developed 

despite exposure to a wide range of individual colors across a large set of 40 categories. 

Moreover, the biases were rapidly modified by the properties of exemplars in the search 

session, diminishing substantially over the course of four blocks of search in which both 

colors in a category appeared equally often.

Together, the results suggest that category-specific statistics are acquired simultaneously 

across a wide range of real-world categories, and that these statistics exert strong control 

over the specific instantiation of the category representation as a template for visual search. 

More generally, the results indicate that although real-world category representations may 

be relatively stable over longer time scales, the functional expression of the category 

representation at any specific time is likely to be significantly influenced by the statistics of 

recently viewed exemplars.

Experiment 2

In Experiment 1, exposed exemplars from a category shared a single color. However, real-

world statistical regularities will almost always be more complex than the predominance of 

a single feature value, and consistencies among exemplars will likely change as a function 

of context, time of day, and so forth. In Experiment 2, we tested whether category-specific 

learning can span multiple exposed colors in each category, as it would need to in order 

to support real-world guidance of visual search. The method of Experiment 2 was the 

same as in Experiment 1, except participants saw exemplars with two different colors in 

each category during the exposure session (e.g., black backpacks and brown backpacks). In 

the search session, target objects following the category cue either appeared in one of the 

exposed colors (Match condition) or in a third color (e.g., yellow backpacks) that had not 

been presented during the exposure session (Mismatch condition).

Participants.

The observed effect size for the main effect of Match in Experiment 1 was adj ƞp2 = .601, 

indicating that an N of 7 would be necessary to achieve 80% power. Given that we expected 

the match effects to be reduced with multiple exposed colors in each category, we used 

a substantially larger N of 24. One participant was replaced for failing to achieve 85% 

accuracy. Of the final 24 participants, 17 were female.
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Apparatus.

The apparatus was the same as in Experiment 1.

Stimuli and Procedure.

The stimuli and procedure were the same as in Experiment 1 with the following exceptions. 

Some changes to the categories were necessary to ensure that three plausible colors were 

available for each. There were a total of 36 categories: 18 artifact and 18 natural. For each 

category, there were 27 exemplar images, nine in each of the three colors. A full list of 

the categories and the three colors associated with each can be found in the Appendix. For 

each participant, colors were randomly assigned to conditions using the same method as in 

Experiment 1.

In the exposure session, participants completed six blocks of 72 trials. Each block presented 

one exemplar from each of the 36 categories in each of the two colors. In the search 

phase, participants completed three blocks of 108 trials. In each block, they searched 

for each category three times, twice in the Match condition (with each of the exposed 

colors appearing once) and once in the Mismatch condition. The entire experiment lasted 

approximately 50 minutes.

Data Processing.

In the exposure session, mean categorization accuracy (artifiact/natural) was reliably higher 

for artifacts (98.7% correct) than for natural objects (98.0%), t(23) = 2.17, p = .040, adj 

ƞp2 = .134, though accuracy was clearly very high for both object types. Mean search 

accuracy in the main session was 95.9% correct. There was no reliable effect of Match 

condition, no reliable effect of Block, and no reliable interaction. Incorrect search trials 

were eliminated from the RT analyses. In addition, for correct trials, RTs more than 2.5 SD 

from the participant’s mean in each condition were eliminated. A total of 6.7% of trials was 

eliminated from the RT analyses.

Results and Discussion

The mean RT data were entered into a 2 (Match, Mismatch) X 3 (Block) repeated-measures 

ANOVA. The results are reported in Figure 3. First, there was a main effect of Match. Mean 

search RT was reliably shorter in Match condition (1185 ms) than in the Mismatch condition 

(1220 ms), F(1,23) = 10.2, p = .004, adj ƞp2 = .276. The was no main effect of Block, F(2,46) 

= 0.27, p = .767, adj ƞp2 = −.031, nor an interaction between these factors, F(2,46) = 1.16, p = 

.32, adj ƞp2 = .007. The magnitude of the match effect did not reliably differ for artifacts and 

natural objects, F(1,23) = 4.03, p = .057, adj ƞp2 = .112, and there was no interaction between 

artifact/natural and Block, F(2,46) = 0.194, p = .825, adj ƞp2 = −.035. The match effect was 

observed numerically for 28 (13 artifact, 15 natural) of the 36 category items.

In sum, the match effect was observed despite recent exposure to two different colors 

within each category. Unlike Experiment 1, there was no evidence that the magnitude of 

the guidance effect diminished over the course of three blocks of search. This was plausibly 
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caused by the fact that matching-color exemplars appeared twice as often in the search 

blocks as novel color exemplars and that there were only three blocks of search (instead of 

four, as in Experiment 1).

Experiment 3

In Experiments 1 and 2, inferences were drawn from manual RT. It can be difficult from 

end-of-trial measures such as RT to identify when during the search process a manipulation 

is exerting influence. Recent statistical regularities could have influenced the guidance of 

attention to the target; they could also have influenced the time required to confirm the 

identity of the target once it had been attended. To ensure that a substantial proportion of the 

effect on manual RT was due to guidance processes per se, we replicated the main features 

of Experiment 1 but monitored participants’ gaze position throughout each search trial. If 

the effect derives, to a significant degree, from guidance processes, we should observe more 

rapid oculomotor orienting to target objects on Match trials compared with Mismatch trials.

Method

Participants.—As discussed above, the effect size in Experiment 1 indicated that an N of 7 

would be necessary to achieve 80% power. As a conservative approach, we used an N of 16. 

Of the 16 participants, 12 were female.

Apparatus.—The apparatus was identical to Experiment 1, except participants’ right eye 

position was monitored during the search phase using an SR Research EyeLink 1000 eye 

tracker sampling at 1000 Hz.

Stimuli and Procedure.—The stimuli and procedure were identical to Experiment 1 with 

the following exceptions. At the beginning of the search phase, participants were instructed 

that their gaze position would be monitored, and the eye tracker was calibrated. The eye 

tracker was re-calibrated between search blocks and as needed throughout the search session 

if the participant’s gaze position deviated by more than approximately 0.75° from the central 

fixation disk. Each trial of search was initiated by the experimenter, who pushed a silent 

button upon visual confirmation that the participant was maintaining central fixation. The 

target “F” stimuli, which were the same as in Experiment 1, were sufficiently small that we 

expected the target object to be fixated before response on the large majority of trials.

Data Processing.—Saccades were defined by a combined velocity (30°/s) and 

acceleration (8000°/s2) threshold. Fixation position data were analyzed with respect to a 

region of interest defined around the target object. The region was rectangular and extended 

approximately 0.3° beyond the edges of the target objects. An entry into the target region 

was defined as one or more consecutive fixations within that region.

In the exposure session, categorization accuracy did not reliably differ as a function of object 

type (artifact/natural), with mean accuracy of 98.8% for artifacts and 98.0% for natural 

objects. Mean search accuracy in the main session was 97.9% correct. There was no reliable 

effect of Match condition, no reliable effect of Block, and no reliable interaction. Trials were 

removed from the analyses of search efficiency if the participant did not fixate the target 
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before response, if the response was incorrect, or, for the remaining trials, if RT was more 

than 2.5 SD from the participant’s condition mean. A total of 7.3% of trials was eliminated 

from the search efficiency analyses.

Results and Discussion

Each trial was parsed into two periods based on the eye tracking record (Malcolm & 

Henderson, 2009; Zelinsky & Sheinberg, 1997). The first, termed search time, was defined 

as the time from onset of the search array to the beginning of the first fixation on the target 

region for the entry that immediately preceded the response. The second, termed decision 
time, was defined as the time from the end of the search time period to the manual response. 

On 4.7% of trials, the participant’s gaze entered the target region, exited the target region, 

and then re-entered later, followed by the response. These trials were included in the search 

time analysis, and the search time measure for these trials was the time from array onset 

to the beginning of the last entry into the target region. However, these 4.7% of trials were 

removed from the decision times analysis, as it is possible that decision processes spanned 

these multiple entries. The sum of the two periods on a trial is RT. Search time will generally 

(though not necessarily exclusively) reflect processes involved in directing attention to the 

target (Hollingworth & Bahle, 2020). Decision time will generally (though not necessarily 

exclusively) reflect processes involved in confirming that the fixated object matches the 

target category, discriminating “F” orientation, and executing the manual response. If recent 

category-specific statistics influence the formation of the template that guides visual search, 

then we should observe a match effect on the search time measure.

Search Time.—Mean search time results are presented in Figure 4A. The data were 

entered into a 2 (Match, Mismatch) X 4 (Block) repeated-measures ANOVA. First, there 

was a main effect of Match, F(1,15) = 16.8, p = .001, adj ƞp2 = .497, with shorter mean 

search time in the Match condition (614 ms) than in the Mismatch condition (678 ms). 

There was no effect of Block, F(3,45) = 0.51, p = .680, adj ƞp2 = −.032. Finally, there was 

a trend-level interaction between these two factors, F(3,45) = 2.43, p = .078, adj ƞp2 = .082, 

consistent with a reduction in the size of the match effect across blocks. Planned follow-up 

tests indicated that the color-match effect was statistically reliable in both Block 1, F(1,15) 

= 7.69, p = .014, adj ƞp2 = .295, and Block 2, F(1,15) = 26.1, p < .001, adj ƞp2 = .611, but 

not in Block 3, F(1,15) = 3.65, p = .075, adj ƞp2 = .142, or Block 4, F(1,15) = 0.189, p = 

.670, adj ƞp2 = −.053. The magnitude of the match effect did not reliably differ for artifacts 

and natural objects, F(1,15) = 1.64, p = .220, adj ƞp2 = .039, and there was no interaction 

between artifact/natural and Block, F(3,45) = 1.20, p = .320, adj ƞp2 = .012. The match effect 

was observed numerically for 32 (15 artifact, 17 natural) of the 40 category items.

Thus, after being exposed to exemplars with a consistent color within a category, 

participants were faster to orient their attention to the target when it matched that color 

compared with when it did not, and this effect was observed consistently across the 40 

categories.
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Decision Time.—The decision time data are presented in Figure 4B. There no main effect 

of Match, F(1,15) = 2.91, p = .109, adj ƞp2 = .107, although the numerical trend was toward 

shorter mean decision time in the Match condition (591 ms) than in the Mismatch condition 

(604 ms). There was also no effect of Block, F(3,45) = 0.76, p = .524, adj ƞp2 = −.015, and no 

interaction, F(3,45) = 0.19, p = .905, adj ƞp2 = −.053.

Manual RT.—To compare the Experiment 3 results directly with those from Experiment 1, 

we also analyzed mean manual RT (Figure 4C). There was a reliable main effect of Match, 

F(1,15) = 22.0, p < .001, adj ƞp2 = .567, with shorter mean RT in the Match condition (1201 

ms) than in the Mismatch condition (1276 ms); there was no effect of Block, F(3,45) = 0.71, 

p = .549, adj ƞp2 = −.018; and there was a trend level interaction between these two factors, 

F(3,45) = 2.32, p = .088, adj ƞp2 = .076, consistent with a reduction in the size of the match 

effect across blocks. Thus, the RT results from Experiment 3 replicated those of Experiment 

1.

In sum, when RT was decomposed via the eyetracking record into search time and decision 

time measures, the bulk of the match effect was observed on search time, suggesting that the 

primary influence was on the guidance of attention to the target. The results are consistent 

with our conclusion that recent statistical regularities influence the instantiation of the 

category-specific template guiding search.

Experiment 4

In Experiment 3, the search time measure primarily reflected the guidance of attention 

to the target. Such guidance processes were likely to be based both on low-level visual 

similarity between template and target and on partial or full categorization of the target 

object before foveation. To isolate categorization processes, in Experiment 4 we eliminated 

the visual search component. After completing the same exposure phase as in Experiment 1, 

participants performed a simple categorization task. They were first shown a category label, 

then a single object exemplar at the center of the screen. The object was either a member 

of the category (Same condition) or not (Different condition). When the object matched the 

category label, its color either matched or mismatched the general color of the exemplars in 

the exposure phase. Faster and/or more accurate categorization in the Match compared with 

the Mismatch condition would indicate that the basic processes involved in assigning objects 

to categories were influenced by the statistical properties of recently viewed exemplars.

Method

Participants.—As discussed above, the RT data from Experiment 1 suggested that an N 

of 7 would be sufficient for 80% power to observe a match effect. However, given that we 

eliminated the visual search component in Experiment 4 potentially altering the processes 

contributing to the match effect, we used a substantially larger N of 24 participants. Of the 

24 participants, 20 were female.
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Procedure.—The exposure phase was identical to Experiment 1. For the categorization 

phase, participants first saw a category label (e.g., “backpack”) for 800 ms, followed by a 

1000-ms blank period, after which one object was presented at central fixation. On Same 

trials (50% of all trials), the object was a member of the category (always a novel exemplar). 

On Different trials, it was an object drawn randomly from the set of 150 distractors used in 

the search task of Experiment 1. Participants pressed the left response button if the object 

was from the cued category and the right response button if it was from a different category. 

They were instructed to make this response as quickly and as accurately as possible.

There were two categorization blocks of 160 trials each. In each block, participant saw the 

label for each of the 40 categories four times: twice in the Same condition and twice in the 

Different condition. For trials in the Same condition, one trial was in the Match condition 

and one was in the Mismatch condition. Trials from the different conditions were randomly 

intermixed.

Results and Discussion

In the exposure session, accuracy on the artifact/natural task did not reliably differ as a 

function of object type, with mean accuracy of 98.7% for artifacts and 98.2% for natural 

objects. The key results came from categorization accuracy and RT in the main session, as 

follows.

Categorization Accuracy.—Overall categorization accuracy was 96.3% correct. Mean 

accuracy was reliably higher for the Different condition (96.9%) than for the Same condition 

(95.7%), F(1,23) = 4.59, p = .043, adj ƞp2 = .130. The mean accuracy data from the Same 

condition were entered in a 2 (Match, Mismatch) X 2 (Block) repeated-measures ANOVA. 

There was no main effect of Match, F(1,23) = .038, p = .846, adj ƞp2 = −.042, with 95.5% 

correct in the Match condition and 95.3% correct in the Mismatch condition. There was a 

reliable main effect of Block, F(1,23) = 10.1, p = .004, adj ƞp2 =.274, with mean accuracy 

increasing from Block 1 (94.2%) to Block 2 (96.6%). The two factors did not interact, 

F(1,23) = ,182, p = .674, adj ƞp2 = −.035.

Categorization RT.—The RT analysis was limited to correct trials. In addition, trials with 

RTs more than 2.5 SD from the participant’s mean in each condition were removed from 

analysis (1.5% of correct trials). The results are presented in Figure 5. The Same condition 

data were entered into a 2 (Match, Mismatch) X 2 (Block) repeated-measures ANOVA. 

First, there was a main effect of Match, F(1,23) = 5.66, p = .026, adj ƞp2 = .162. There was 

no effect of Block, F(1,23) = .512, p = .481, adj ƞp2 = −.021, but there was a trend-level 

interaction between these two factors, F(1,23) = 4.03, p = .057, adj ƞp2 = .112. Planned 

contrasts indicated that the match effect was statistically reliable in Block 1, t(23) = 3.65, p 

=.001, adj ƞp2 = .339, but not in Block 2, t(23) = 0.68, p =.498, adj ƞp2 = −.014. The magnitude 

of the match effect did not reliably differ for artifacts and natural objects, F(1,23) = .771, p 

= .389, adj ƞp2 = −.010, and there was no interaction between artifact/natural Block, F(1,23) 
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= .738, p = .399, adj ƞp2 = −.011. The Block 1 match effect was observed numerically for 34 

(16 artifact, 18 natural) of the 40 category items.2

In sum, participants were initially faster to categorize items that matched the color of 

exemplars from that category in the exposure session. Thus, recent category-specific 

statistical regularities influence basic processes involved in assigning exemplars to 

categories. Similar to the effect on visual search in Experiments 1 and 3, color biases were 

substantially reduced across blocks of categorization as participants were equally exposed to 

items of both colors within a category.

General Discussion

The results of the present study demonstrate that the influence of statistical regularities on 

visual search is structured by the category of the target object. Participants were exposed to 

a wide range of exemplars of different colors, with color consistency maintained only at the 

within-category level. When searching for an exemplar of one of those categories based on a 

category label cue, the guidance of visual search was strongly influenced by within-category 

color regularities, with substantially faster search for exemplars that matched the color 

of recently viewed exemplars in that category. This basic categorical cuing effect was 

observed even when within-category color variation was introduced during the exposure 

session (Experiment 2). The bulk of the effect during search was on the process of orienting 

attention and gaze to the target object (Experiment 3). However, even when the task did not 

require visual search (Experiment 4), regularities among recent exemplars from a category 

influenced basic categorization efficiency, illustrating that visual search guidance and visual 

categorization are similarly sensitive to recent statistical regularities.

This work identifies a novel form of structure in the literature on learning and history 

in visual search. Just as statistical learning is structured by scene context, statistical 

learning is structured by target object category. Category-structured statistical learning 

may be a particularly robust form of learning, as demonstrated by the following results. 

First, participants simultaneously learned feature regularities across a very large number 

of structural units (categories). Specifically, they acquired information about the colors 

of exemplars from 40 different real-world object categories, and in Experiment 2, they 

learned two colors in each of 36 object categories. This raises the possibility that, under real-

world conditions, people track perceptual statistics across all encountered object categories. 

This is plausible given evidence of extremely large memory capacity for the perceptual 

details of real-world objects (Brady, Konkle, Alvarez, & Oliva, 2008; Hollingworth, 2004). 

Second, statistical regularities were acquired relatively efficiently. The basic categorical 

cuing effect was established after six exposures. It was then substantially reduced across just 

a few exposures to an even distribution of the two colors during the search blocks. Thus, 

the “acquisition window” over which recent category-specific statistics influence search 

may be quite narrow. Finally, category-specific statistical learning generalized across two 

2Categorization RT for “different” trials were not of theoretical interest, since there was no systematic relationship between the cued 
category and the to-be-categorized object. Mean correct RT was 538 ms following an artifact cue label and 552 ms following a natural 
object cue label.
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substantially different tasks. The exposure task involved superordinate-level categorization 

of single objects; the search task involved visual search through 8-item object arrays and 

report of a superimposed letter. This type of robust generalization across stimulus and 

task differences is quite rare in the literature on learning and visual search (and in the 

literature on statistical learning more generally). For example, contextual cuing and related 

effects tend to be strongly stimulus and viewpoint specific (Brockmole & Henderson, 2006a; 

Chua & Chun, 2003), and generalization tends to be limited to structurally similar visual 

search tasks (Jiang, Swallow, Won, Cistera, & Rosenbaum, 2015). Together, these properties 

suggest that categorical cuing is likely to be a robust and pervasive form of structured 

learning.

The two major structural factors highlighted thus far have been the scene/spatial context in 

which the search occurs and the type of object that is the target of search. However, there 

are likely to be additional dimensions that have yet to be (or have been only minimally) 

studied, such as task and temporal context. In the former case, there is initial evidence that 

the learning of spatial regularities is quite strongly task specific, with poor generalization 

even to other, quite similar search tasks (Jiang et al., 2015). Temporal structure has not 

been studied to our knowledge, but there are likely to be regularities in the properties of real-

world search targets that become relevant at, for example, different times of day. In addition, 

there is a distinction in the type of guidance that can be implemented from observed 

regularities: the learning of target location regularities can support the spatial guidance of 

attention, and the learning of surface-feature regularities can support feature-based guidance 

of attention. The combination of these multiple factors and the type of learning (spatial, 

featural) creates a potentially elaborate structure for the acquisition of target regularities, 

much of which has received little or no attention from researchers.

An issue that has arisen in the literature on statistical learning and search guidance is 

whether or not the effects are based on implicit memory (Chun & Jiang, 1998; Vadillo, 

Konstantinidis, & Shanks, 2015). This could be applied in two different ways to the present 

study. First, we can ask whether participants were aware of the color consistencies during 

the exposure session. If so, we can then ask whether they used this knowledge to guide 

search strategically in the search session. On the first of these questions, we do not see 

this as critical for drawing inferences from the present study. In the literature on contextual 

cuing, guidance effects are observed for repeated target locations in real-world scenes when 

participants are aware of the contingencies (e.g., Brockmole & Henderson, 2006b), and 

similar effects are observed for abstract stimulus arrays under conditions where awareness 

is much more limited (e.g., Chun & Jiang, 1998). It may be of interest to test awareness of 

regularities in future studies, but here we are concerned with the guidance effect itself. On 

the second question, we think it is unlikely that participants guided attention strategically 

based on statistical regularities observed in the exposure session, or, at least, it is unlikely 

that they persisted in such a strategy. In Experiments 1 and 3, using the standard method, 

reliable effects of match were observed in both Blocks 2 and 3. Block 2 started after 80 

Block 1 trials, in which the search target was equally likely to match or mismatch the 

exposed color (and Block 3 after 160 trials). Yet, for Experiment 1, 31 of the 40 participants 

showed a match effect in Block 2 and 34 of 40 in Block 3. In Experiment 3, 13 of 16 showed 

a match effect on search time for Block 2 and 12 of 16 for Block 3. If participants were 
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aware of within-category color distributions, it unlikely that they would persist in strategic 

search for exposed colors despite such a large number of trials disconfirming the utility of 

that strategy. This also reduces the possibility that the effects were driven by local priming 

based on color repetition within a category.

The present data also highlight the fact that, to understand visual search processes, 

we must understand how search templates are formed from long-term memory (LTM) 

representations, and particularly from representations of real-world categories. When 

research on visual search began, it was primarily a tool for understanding fundamental 

aspects of vision and attention (e.g., what constitutes a feature in vision and how are 

features integrated?). Visual search is now treated as an important human behavior to be 

studied in its own right: how do people find the objects they need in complex scenes? In 

the earlier tradition, the process of forming a search template was not of central interest. 

Paradigms were designed so that the target of search remained the same across an entire 

experiment or was visually presented immediately before each search trial commenced 

(very frequently both). In contrast, real-world search behavior is characterized by frequently 

changing targets, and there is no helpful experimenter to hold up a picture of, say, a pen, 

immediately before you search for one. Instead, information to form the search template 

must be retrieved from LTM, and this will occur dynamically as task goals change and 

different objects become relevant (Land & Hayhoe, 2001).

The LTM information used to form the template could either concern a specific target 

exemplar (when only a favorite blue pen will do) or the target category (when any pen will 

do). Such template representations formed from LTM will never provide a perfect match 

to the visual properties of the object in the scene (Castelhano, Pollatsek, & Cave, 2008; 

Malcolm & Henderson, 2009; Vickery, King, & Jiang, 2005; Wolfe, Horowitz, Kenner, 

Hyle, & Vasan, 2004), particularly as the template representation is likely to draw from 

multiple encounters with an exemplar (in the case of exemplar-specific search) and from 

multiple different exemplars in a category (in the case of categorical search). This latter 

form of search (Yang & Zelinsky, 2009) is extremely common in real-world behavior and 

also provides a key test bed for examining how long-term knowledge is translated into a 

visual search template, since extensive research on the structure of categorical knowledge 

can inform models of template formation, and evidence from categorical search tasks can, 

in turn, inform our understanding of real-world category representations and categorization 

mechanisms. Foundational work on categorical search has been conducted by Zelinsky 

and colleagues, who demonstrated that, despite the necessary imprecision of categorical 

search templates (relative to the target object as it appears in the scene), attention can 

be efficiently guided to category members (Yang & Zelinsky, 2009), and this guidance is 

graded by target typicality (Maxfield, Stalder, & Zelinsky, 2014), drawing a direct link 

between template guidance and the known properties of category structure (e.g., Rosch, 

Mervis, Gray, Johnson, & Boyesbraem, 1976). Moreover, evidence from categorical search 

has been used to infer the visual differences that are functional in defining real-world 

categories (Yu, Maxfield, & Zelinsky, 2016).

In the present study, we demonstrated that categorical search templates, rather than always 

reflecting typical values within a category established over extensive experience, can be 
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strongly biased to instantiate visual properties of recently viewed exemplars. In addition, the 

effects observed in the cued visual search task generalized to a cued visual categorization 

task (Experiment 4), in which participants saw a category label cue and then responded 

to indicate whether a photograph of a single exemplar was a member of that category or 

not. In both cases, participants had time to generate a representation of the category before 

the appearance of the visual stimuli, creating a template for search guidance, in the search 

task, or for comparison with the test stimulus, in the simple categorization task. This is 

in an inductive use of the category, as participants generated a prediction about the future 

appearance of category members based on a general category cue. Note that this differs 

from the typical use of category information in the literature on categories and concepts, in 

which participants first view a stimulus item and then decide in which of several categories 

it belongs (a stimulus categorization task). In the search task, we can be confident that the 

inductive use of the category was functional in generating the match effect, since match had 

a large effect on the guidance of gaze to the target (requiring a predictive template) and 

a much smaller effect on the confirmation of the target category once the object had been 

fixated. Thus, statistical regularities among recently viewed exemplars in a category appear 

to have a substantial influence on predictions about the appearance of future exemplars.

Exemplar effects have been observed in the standard categorization literature, but under 

substantially different circumstances than implemented here. They are characteristically 

found in learning paradigms (Allen & Brooks, 1991; Medin & Schaffer, 1978; Regehr 

& Brooks, 1993; Thibaut & Gelaes, 2006), in which participants categorize a small set 

of highly controlled, novel stimuli, presented numerous times over the course of the 

experiment, into a relatively small number of categories. More closely related to the 

present method, exemplar effects have been observed in the specialized domain of medical 

diagnosis, in which similarity to previously viewed individual cases exerted a strong effect 

on the categorization of subsequent cases (Brooks, Norman, & Allen, 1991). These studies 

employed standard stimulus categorization tasks. As discussed above, the present exemplar 

effects were observed in the inductive use of the category, suggesting that exemplar effects 

generalize across visual categorization and category-based induction (see discussion in 

Murphy, 2002). In addition, the exemplar effects observed here were for common, everyday 

objects belonging to a relatively large number of categories that should have been highly 

familiar to all participants. Specifically, exemplar effects were found in a domain where they 

might be least expected: overlearned real-world categories. Although our knowledge and 

application of real-world categories seems stable, the functional expression of the category 

may be instead quite variable, depending on the statistics of recently viewed exemplars. In 

sum, the current results indicate that exemplar effects are likely to be pervasive across a 

range of categorization tasks, exposure conditions, and category types.

It is important to note that although we found exemplar effects, we do not necessarily 

interpret these data as mediating between competing exemplar (e.g., Medin & Schaffer, 

1978; Nosofsky, 1987) and prototype (e.g., Minda & Smith, 2001; Rosch, 1975) theories of 

categorization, as they could be plausibly accommodated by either approach. In particular, 

a prototype approach could accommodate the present results by weighting more heavily 

recently observed features in a summary representation or by adding the assumption that 

similarity to a small number of highly accessible exemplars can influence the use of the 
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category in addition to that derived from a more stable summary representation (e.g., Allen 

& Brooks, 1991). What is clear is that to account for the present results, both prototype 

and exemplar theories would need to incorporate strong dependence on recently observed 

properties and/or exemplars.

Finally, variability in category use based on recently observed properties/exemplars has 

practical implications for understanding high-stakes visual search tasks, such as those found 

in Radiology and baggage screening. These are often categorical search tasks, in that the 

observer is monitoring for the presence of any target that belongs to a class (e.g., cancerous 

lesions, weapons). Biases created by recently viewed exemplars could have a substantial 

influence on search guidance in these domains. In fact, a phenomenon of this type has been 

identified in Radiology: after detecting a first, benign lesion within an image, sensitivity to 

additional, cancerous lesions is substantially reduced, a phenomenon termed satisfaction of 
search (e.g., Berbaum et al., 1991). One cause of this phenomenon is a bias in perceptual 
set: Detection of the first lesion biases the search template toward visual and categorical 

properties of that lesion, causing readers to preferentially attend to similar image regions and 

to miss dissimilar, cancerous lesions. Indeed, both in Radiology (Mello-Thoms, 2006) and 

in traditional search tasks (Cain, Adamo, & Mitroff, 2013), subsequently detected targets 

have higher similarity to the first target than do subsequently missed targets. The present 

results raise the possibility that this type of suboptimal search could be understood within 

the broader context of exemplar effects in the formation of categorical search templates.

Conclusion

Here, we examined how statistical learning of the surface feature properties of real-world 

objects is organized by object category and the effect of this learning on the instantiation 

of a categorical template for visual search. The work identifies a novel and pervasive form 

of structure in the literature on learning and history in visual search. More generally, it 

suggests that common, real-world categories are surprisingly labile, with the functional 

implementation of the category strongly dependent on the properties of recently observed 

exemplars.
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Appendix

Appendix

Appendix A:

Complete stimuli list for Experiments 1, 3, and 4.

Category Type Label Cue Color1 Color2

Artifact Backpack Black Light brown

Artifact Baseball Cap Blue Tan
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Category Type Label Cue Color1 Color2

Artifact Bed Black White

Artifact Camera Blue Purple

Artifact Car Blue Red

Artifact Cooking Pot Black Red

Artifact Dress Blue Yellow

Artifact Hairbrush Blue Red

Artifact Laptop Black Silver

Artifact Leather Chair Black Brown

Artifact Men’s Dress Shirt Purple Yellow

Artifact MP3 Player Black Red

Artifact Mug Black Gray

Artifact Pencil Sharpener Blue Red

Artifact Perfume Bottle Green Purple

Artifact Running Shoe Black Blue

Artifact Stapler Blue Green

Artifact Tricycle Yellow Blue

Artifact T-Shirt Yellow Red

Artifact Wrist Watch Black Gold

Natural Apple Light green Red

Natural Bear Black Brown

Natural Beetle Green Black

Natural Bell Pepper Green Red

Natural Butterfly Blue Orange

Natural Cat Black White

Natural Cherries Dark purple Red

Natural Crab Blue-brown Red

Natural Dog Black Brown

Natural Frog Brown Green

Natural Grapes Light green Red

Natural Horse Black Brown

Natural Leaf Green Yellow

Natural Mushrooms Brown White

Natural Onions Purple-red Yellow-tan

Natural Pear Red Light yellow

Natural Pile of Beans Black Dark red

Natural Potato Light brown Purple-red

Natural Rat Light brown White

Natural Snake Brown Green
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Appendix B:

Complete stimuli list for Experiment 2.

Category Type Label Cue Color1 Color2 Color3

Artifact Backpack Black Light brown Yellow

Artifact Baseball Cap Blue Tan Black

Artifact Bed Black White Light brown

Artifact Camera Blue Purple Black

Artifact Car Blue Red White

Artifact Chair Black Brown White

Artifact Cooking Pot Black Red Silver

Artifact Dress Blue Yellow Green

Artifact Dress Shirt Purple Green Blue

Artifact Hairbrush Blue Red Black

Artifact Laptop Black Silver Red

Artifact Mug Black Gray Yellow-green

Artifact Perfume Bottle Green Purple Pink

Artifact Running Shoe Black Blue Red=pink

Artifact Stapler Blue Green Red

Artifact Tricycle Yellow Blue Red

Artifact T-Shirt Yellow Red Gray

Artifact Wrist Watch Black Gold Silver

Natural Apple Light green Red Yellow

Natural Beans Black Dark red Tan

Natural Bear Black Brown White

Natural Beetle Green Black Red

Natural Bell Pepper Green Red Yellow

Natural Bird Light brown Red Blue

Natural Butterfly Blue Orange White

Natural Cat Black Orange-brown Gray

Natural Dog Black Brown White

Natural Frog Brown Green Red

Natural Grapes Light green Red Dark purple

Natural Horse Black Brown White

Natural Leaf Green Yellow Red

Natural Mushrooms Brown White Red

Natural Onions Purple-red Yellow-tan White

Natural Pear Red Light yellow Light green

Natural Rabbit White Black Light brown

Natural Rat Light brown White Black
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Figure 1. 
Overview of method and design of Experiment 1. Participants first completed an Exposure 
Session, in which they viewed 6 exemplars in each of 40 different categories (20 artifact and 

20 natural) for 2 s. They categorized each object as “man made” or “natural”. Exemplars 

from a category had the same general color. Participants then completed a Visual Search 
Session. On each trial, they first saw a word describing the target category for 800 ms, 

followed by a 1 s delay and a search array of eight objects. They searched for the object 

that matched the category label and reported the orientation of a superimposed letter “F”. 
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The target object in the search array either matched or mismatched the general color of 

exemplars from that category presented during the exposure session. Note that the images in 

this figure are not drawn to scale: objects in the exposure and visual search sessions were 

displayed at the same size.
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Figure 2. 
Experiment 1 results. Panel A displays mean search RT as a function of Match condition 

and Search Block. Panels B and C plot the same data for artifact and natural category 

items separately. Error bars are condition-specific, within-subject 95% confidence intervals 

(Morey, 2008).
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Figure 3. 
Experiment 2 results. Mean search RT as a function of Match condition and Search Block. 

Error bars are condition-specific, within-subject 95% confidence intervals (Morey, 2008).
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Figure 4. 
Experiment 3 results. Panel A displays mean search time (elapsed time until the first 

fixation of the target preceding the response) as a function of Match condition and Search 

Block. Panel B displays mean decision time (time from target fixation until response), and 

Panel C displays mean manual RT. Error bars are condition-specific, within-subject 95% 

confidence intervals (Morey, 2008).
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Figure 5. 
Experiment 4 results. Mean categorization RT for same-category items as a function 

of Match condition and Block. Error bars are condition-specific, within-subject 95% 

confidence intervals (Morey, 2008).
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