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Intensity-based likelihood functions in crystallographic applications have the

potential to enhance the quality of structures derived from marginal diffraction

data. Their usage, however, is complicated by the ability to efficiently compute

these target functions. Here, a numerical quadrature is developed that allows

the rapid evaluation of intensity-based likelihood functions in crystallographic

applications. By using a sequence of change-of-variable transformations,

including a nonlinear domain-compression operation, an accurate, robust and

efficient quadrature is constructed. The approach is flexible and can incorporate

different noise models with relative ease.

1. Introduction

The estimation of model parameters from experimental

observations plays a central role in the natural sciences, and

the use of likelihood-based methods has been shown to yield

robust estimates of ‘best guess’ values and their associated

confidence intervals (Rossi, 2018). Maximum-likelihood esti-

mation goes back to sporadic use in the 1800s by Gauss

(Gauss, 1809, 1816, 1823) and Hagen (1867), and was further

developed by Fisher (1915), Wilks (1938), and Neyman and

Pearson (Neyman & Scott, 1948; Pearson, 1970). In the

crystallographic community, Beu et al. (1962) were the first to

explicitly use maximum-likelihood estimation, applying it to

lattice-parameter refinement in powder diffraction. In a late

reaction to this work, Wilson (1980) states that ‘the use of

maximum likelihood is unnecessary, and open to some

objection’, and subsequently recasts the work of Beu et al.

(1962) into a more familiar least-squares framework. It is

important to note that least-squares estimation methods are

equivalent to a likelihood formalism under the assumption of

normality of the random variables. The use of maximum-

likelihood-based methods using non-normal distributions in

structural sciences took off after making significant impacts in

the analysis of macromolecules. For these types of samples,

structure solution and refinement problems were often

problematic owing to very incomplete or low-quality starting

models, making standard least-squares techniques underper-

form. In the 1980s and 1990s, likelihood-based methods

became mainstream, culminating in the ability to routinely

determine and refine structures that were previously thought

to be problematic (Lunin & Urzhumtsev, 1984; Read, 1986;

Bricogne & Gilmore, 1990; de La Fortelle & Bricogne, 1997;
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Pannu & Read, 1996; Murshudov et al., 1997). A key ingre-

dient to this success was the development of cross-validation

techniques to reduce bias in the estimation of hyper-para-

meters that govern the behavior of the likelihood functions

(Lunin & Skovoroda, 1995; Pannu & Read, 1996). At the

beginning of the 21st century, Read and coworkers extended

the likelihood formalism to molecular-replacement settings as

well, resulting in a significant improvement in the ability to

solve structures from marginal starting models (McCoy et al.,

2005; Storoni et al., 2004; Read, 2001). The first use of

approximate likelihood methods for the detection of heavy

atoms from anomalous or derivative data originates from

Terwilliger & Eisenberg (1983), who used an origin-removed

Patterson correlation function for substructure solution. This

approach was shown by Bricogne (1997) to be equivalent to a

second-order approximation of a Rice-based likelihood

function. A more recent development is the use of a more

elaborate likelihood formalism in the location of substructures

(Bunkóczi et al., 2015), showing a dramatic improvement in

the ability to locate heavy atoms. In density modification, the

use of the likelihood formalism has significantly increased its

radius of convergence (Terwilliger, 2000; Cowtan, 2000;

Skubák et al., 2010).

As the above examples illustrate, impressive progress has

been made by the application of likelihood-based methods to

a wide variety of crystallographic problems. In all of the

described scenarios, key advances were made by deriving

problem-specific likelihood functions and applying them to

challenging structure-determination problems. In the majority

of these cases, a thorough treatment of experimental errors

has only a secondary role, resulting in approximations that

work well in medium- or low-noise settings. The principal

challenge in the handling of random noise in crystallographic

likelihood functions is how to efficiently convolve Rice-like

distribution functions modeling the distribution of a structure

factor from an incomplete model with errors with the appro-

priate distribution that models the experimental noise. In this

manuscript, we develop quadrature approaches to overcome

these difficulties. We accomplish this by using a sequence of

changes of variables that are amenable to straightforward

numerical integration using standard methods. The approach

derived has direct applications in model refinement and

molecular replacement, while the general methodology can

also be extended to other crystallographic scenarios. In the

remainder of this paper, we will provide a general introduction

to likelihood-based methods, provide a relevant background

into numerical integration techniques, develop an adaptive

quadrature approach, apply it to Rice-type likelihood func-

tions and validate its results.

1.1. Maximum-likelihood formalism

The estimation of model parameters h given some data set

X = {x1, . . . , xj, . . . , xN} via the likelihood formalism is

performed in the following manner. Given the probability

density function (PDF) f(xj|h) of a single observation xj given a

model parameter h, the joint probability of the entire data set

is, under the assumption of independence of the observations,

equal to the product of the individual PDFs,

f ðXjhÞ ¼
QN
j¼1

f ðxjjhÞ: ð1Þ

The probability of the data X given the model parameters h is

known as the likelihood of the model parameters given the

data:

LðhjXÞ ¼ f ðXjhÞ: ð2Þ

A natural choice for the best estimate of the model parameters

is obtained by finding the h that maximizes the likelihood

function. This choice is called the maximum-likelihood esti-

mate (MLE). The likelihood function itself LðhjXÞ can be

seen as a probability distribution, allowing one to obtain

confidence-limit estimates on the MLE (Rossi, 2018). The

determination of the MLE is typically performed by opti-

mizing the log-likelihood:

ln LðhjXÞ ¼
PN
j¼1

ln f ðxjjhÞ: ð3Þ

Often, the distribution needed for the likelihood function has

to be obtained via a process known as marginalization. During

this integration, a so-called nuisance parameter is integrated

out,

f ðxjhÞ ¼
R1
�1

f ðx; yjhÞ dy; ð4Þ

where, under the assumption of conditional independence,

f ðx; yjhÞ ¼ f ðxjhÞf ðyjx; hÞ: ð5Þ

Depending on the mathematical form of the distributions

involved, this marginalization can range from a trivial ana-

lytical exercise to a numerically challenging problem. In

likelihood functions in a crystallographic setting, this

marginalization is required to take into account the effects of

experimental noise, and its efficient calculation is the focus of

this communication.

1.2. Motivation

The most common likelihood function used in crystallo-

graphic applications specifies the probability of the true

structure-factor amplitude given the value of a calculated

structure factor originating from a model with errors (Sim,

1959; Srinivasan & Parthasarathy, 1976; Luzzati, 1952;

Woolfson, 1956; Lunin & Urzhumtsev, 1984):

faðFjFC; �; �Þ ¼
2F

"�
exp �

F2 þ �2F2
C

"�

� �
I0

2�FFC

"�

� �
; ð6Þ

fcðFjFC; �; �Þ ¼
2

"��

� �1=2

exp �
F2 þ �2F2

C

2"�

� �
cosh

2�FFC

2"�

� �
:

ð7Þ

fa and fc are the distributions for acentric and centric reflec-

tions (the so-called Rice distribution), " is a symmetry-

enhancement factor, F is the true structure-factor amplitude
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and FC is the current model structure-factor amplitude, while

� and � are likelihood distribution parameters (Lunin &

Urzhumtsev, 1984). For the refinement of atomic models given

experimental data, the likelihood of the model-based

structure-factor amplitudes given the experimental data is

needed and can be obtained from a marginalization over

the unknown, error-free structure-factor amplitude. Following

Pannu & Read (1996) and assuming conditional independence

between the distributions of the experimental intensity Io and

amplitude F, we obtain

LðFCjIoÞ ¼ f ðIojFC; �; �; �
2
I Þ

¼
R1
0

f ðIoj�
2
I ;FÞf ðFjFC; �; �Þ dF; ð8Þ

where f(F |FC, �, �) is given by expressions (6) or (7) and

f(Io|�I
2, F) is equal to a normal distribution with mean F 2 and

variance �I
2. This integral is equivalent to the MLI target

function derived by Pannu & Read (1996). Because there is no

fast-converging series approximation or simple closed-form

analytical expression for this integral, various approaches

have been developed, as excellently summarized by Read &

McCoy (2016), including a method-of-moments-type approach

to find reasonable analytical approximations to the intensity-

based likelihood function.

In this work, we investigate the use of numerical integration

methods to obtain high-quality approximations of integral (8)

while also taking into account uncertainties in the estimated

standard deviation. The approach outlined above, in which

a Rice function is convoluted with a Gaussian distribution,

essentially assumes that the standard deviation of the mean is

known exactly. Given that both the standard deviation and the

mean are derived from the same experimental data, this

assumption is clearly suboptimal, especially when the redun-

dancy of the data is low. In order to take into account possible

errors in the observed standard deviation, we will use a

t-distribution instead of a normal distribution, which arises as

the distribution choice when the true standard deviation is

approximated by an estimate from experimental data

(Student, 1908). The aim of this work is to derive an efficient

means of obtaining target functions that can provide an

additional performance boost when working with very

marginal data, such as those obtained from time-resolved

serial crystallography or free-electron laser data, in which the

experimental errors are typically larger than those obtained

using standard rotation-based methods or have nonstandard

error models (Brewster et al., 2019). Furthermore, high-quality

data sets are rarely resolution-limited by the diffraction

geometry alone, indicating that many more marginal data are

readily available that can potentially increase the quality of

the final models if appropriate target functions are used. In the

remainder of this manuscript, we develop and compare a

number of numerical integration schemes aimed at rapidly

evaluating intensity-based likelihood functions and their

derivatives that take into account the presence of experi-

mental errors, both in the mean intensity and in its associated

standard deviation.

2. Methods

In order to evaluate a variety of numerical integration

schemes and approximation methods, the equations are first

recast into a normalized structure-factor amplitudes E and

normalized intensities Zo framework, with the use of the �A

formulation of the distributions involved, assuming a P1 space

group, such that " = 1 (Read, 1997). The joint probability

distribution of the error-free structure-factor amplitude E and

the experimental intensity Zo, given the calculated normalized

structure factor EC, the model-quality parameter �A, the

estimated standard deviation of the observation �Z and the

effective degrees of freedom �, reads

faðE;ZojEC; �A; �
2
Z; �Þ ¼

2E

1� �2
A

exp �
E2 þ �2

AE2
C

1� �2
A

� �

� I0

2�AEEC

1� �2
A

� �
f ðZojE; �

2
Z; �Þ ð9Þ

for acentric reflections and

fcðE;ZojEC; �A; �
2
Z; �Þ ¼

2

�ð1� �2
AÞ

� �1=2

exp �
E2 þ �2

AE2
C

2� 2�2
A

� �

� cosh
�EEC

1� �2
A

� �
f ðZojE; �

2
Z; �Þ ð10Þ

for centric reflections. When the distribution of the observed

mean intensity Zo is modeled by a t-distribution (Student,

1908) with a location parameter equal to E2, we have

f ðZojE; �
2
Z; �Þ ¼ �

�þ 1

2

� �
1

���2
Z

� �1=2

�
�

2

� �h i�1

� 1þ
Zo � E2ð Þ

2

��2
Z

" #�ð�þ1Þ=2

; ð11Þ

where � is the effective degrees of freedom of the observation,

which is related to the effective sample size Neff,

� ¼ Neff � 1: ð12Þ

The effective sample size can be taken as the redundancy of an

observed intensity, or can be estimated during data processing

using the Welch–Satterthwaite equation (Welch, 1947) to take

into account the weighting protocols implemented in data

processing (Brewster et al., 2019). The t-distribution arises as

the distribution of choice given a sample mean and sample

variance from a set of observations (Student, 1908). The use of

a normal distribution essentially assumes no uncertainty in

the variance �Z
2, but only in the observed mean Zo. The t-

distribution is similar to a normal distribution, but has heavier

tails and therefore will be expected to result in likelihood

functions that are less punitive to larger deviations between

observed and model intensities. When � tends to infinity, the

above distribution converges to a normal distribution,

f ðZojE
2; �2

oÞ ¼
1

2��2
Z

� 	1=2
exp �

ðZo � E2Þ
2

2�2
Z

� �
: ð13Þ

The above joint probability distributions need to be margin-

alized over E in Rþ to obtain the distribution of interest:
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f�ðZojEC; �A; �
2
Z; �Þ ¼

R1
0

f�ðE;ZojEC; �A; �
2
Z; �Þ dE: ð14Þ

2.1. Variance inflation

A common approach to avoid performing the integration

specified above is to inflate the variance of the Rice function

(1 � �A
2 ) by the variance of the ‘observed structure-factor

amplitude’, yielding (1 � �A
2 + �E

2 ) (Green, 1979). This

approach circumvents the need to perform an integration, but

is suboptimal in a number of different ways. Because we do

not observe amplitudes, we are required to estimate the

amplitude and its variance from observed intensity data. A

common way to perform the intensity-to-amplitude conver-

sion is via a Bayesian estimate (French & Wilson, 1978) under

the assumption of a uniform distribution of atoms throughout

the unit cell. Although this so-called Wilson prior is used in

most cases, a slightly different result can be obtained when

using a constant, improper prior on the possible values of the

structure-factor amplitudes on the positive half-line (Sivia &

David, 1994). This results in an intensity-to-amplitude

conversion that does not rely on the accurate estimation of the

mean intensity, possibly complicated by the effects of pseudo-

symmetry, diffraction anisotropy or twinning:

Eo ¼
1

2
Zo þ ðZ

2
o þ 2�2

ZÞ
1=2


 �� 1=2

; ð15Þ

�2
E ¼

�2
Z

4 Z2
o þ 2�2

Z

� 	1=2
: ð16Þ

Further details are given in Appendix E. While this procedure

allows a straightforward intensity-to-amplitude conversion,

even when intensities are negative, and can subsequently be

used to inflate the variance of the Rice function, it is no

substitute for the full integration. Given the simplicity of the

variance-inflation approach and its wide usage in a number of

crystallographic applications, we will use this approach as a

benchmark, using conversion schemes based both on the

Wilson prior (denoted French–Wilson) and on the outlined

uniform, non-informative prior (denoted Sivia).

2.2. Approaches to numerical integration

Several conventional numerical integration approximations

exist for improper integrals such as expression (8). Standard

methods include trapezoidal-based methods with a truncated

integration range, the use of Laplace’s method, Monte

Carlo-based methods or approaches based on orthogonal

polynomials (Davis & Rabinowitz, 1984). Whereas a

straightforward use of a trapezoidal integration scheme is

tempting, the shape of the integrand for certain combinations

of distribution parameters will result in a fair chance of

missing the bulk of the mass of the function unless a very fine

sampling grid is used. When using the Laplace approximation,

in which the integrand is approximated by an appropriately

scaled and translated Gaussian function, the integrand can

deviate significantly from a Gaussian, also resulting in a poor

performance. These challenges are summarized in Fig. 1,

where a number of typical integrand shapes are visualized for

different parameter choices. A number of numerical integra-

tion and approximation methods will be outlined below,

including a discussion of how ground truth is established as a

basis for comparison. Here, we will limit ourself to the Laplace

approximation owing to its simplicity and the trapezoidal rules

because of their excellent convergence properties when

applied to analytic functions on the real line and their close

relation to classical Gauss quadratures (Trefethen &

Weideman, 2014). The use of (quasi) Monte Carlo schemes

will not be considered, since these methods are typically used

as a ‘method of last resort’ for very high dimensional integrals

(Cools, 2002).

2.3. Change of variables and the Laplace approximation

Analytical and numerical integration is often greatly

simplified by a change of variables of the integrand (Davis &

Rabinowitz, 1984). The change-of-variable theorem relates

the integral of some function h(u) under a change of variables

u =  (x),

Rb
a

hðuÞ du ¼
R �1ðbÞ

 �1ðaÞ

h½ ðxÞ�
d ðxÞ

dx
dx: ð17Þ

The modified shape of the integrand by a change of variables

makes the use of the so-called Laplace approximation

appealing. In a Laplace approximation, the integrand is

approximated by a scaled squared exponential function with a

suitably chosen mean and length scale (Peng, 2018). The

Laplace approximation can be derived from truncated Taylor

expansion of the logarithm of the integrand:

Rb
a

f ðxÞ dx ¼
Rb
a

exp½gðxÞ� dx

¼
Rb
a

exp
P1
n¼0

gðnÞðx0Þ

n!
ðx� x0Þ

n

� �
dx

’
R1
�1

exp½gðx0Þ� exp 1
2 g00ðx0Þðx� x0Þ

2

 �

dx; ð18Þ

where g(x) = ln[f(x)] and x0 is the location of the maximum of

f(x), implying that g0 0(x0) = 0. Note that in the last step in

equation (18) the assumption is made that f(x) goes to 0 when

not near x0 quickly enough that integrating over [a, b] yields

the same results as integrating over R. Although this

approximation does not work for all possible choices of g(x), it

has proven to be a successful tool in marginalizing distribu-

tions in Bayesian analysis (Kass & Steffey, 1989) and crystallo-

graphic applications (Murshudov et al., 2011).

The above expression thus yields

Rb
a

f ðxÞ dx ’ f ðx0Þ
2�

�g00ðx0Þ

� �1=2

: ð19Þ

The effectiveness of this approximation hinges on the location

of x0 (it should be contained within the original integration

domain), the magnitude of g00(x0) and how rapidly higher-

order derivatives of g(x) vanish around x0. The change-of-
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variable strategy outlined above can aid in increasing the

performance of approximation to expression (8).

2.4. Quadrature methods

Even though the change-of-variables approach combined

with the Laplace approximation has the potential to yield

accurate integral approximations,

obtaining reasonable estimates of the

derivative of the log-likelihood, as

needed for difference maps or for first

or higher-order optimization methods,

seems less straightforward using the

Laplace approach. The difficulty arises

from the need to obtain the derivative

of the location of the maximum of

integrand, as this value is a function of

the variables for which derivatives are

computed. In addition, the introduction

of t-based noise models introduces

heavy tails in the distribution for which

Gaussian approximations can have a

poor performance. For this reason, the

use of a quadrature approach is of

interest. In a numerical integration with

a quadrature, the integral of interest is

approximated by a weighted sum of

selected function values. The Laplace

approximation outlined above can thus

be seen as a one-point quadrature,

where the location of the function value

is located at the maximum of the inte-

grand, and the associated weight is

derived from a local Gaussian fit to the

integrand. An expanded quadrature

approach provides an easy way to

increase the precision of the integral by

increasing the number of sampling

points, but also circumvents issues with

computing derivatives of the location of

the maximum of the integrand that are

encountered when using the Laplace

approximation. Quadrature approaches

have, however, been assumed to need a

large number of terms to obtain suffi-

cient precision (Read & McCoy, 2016),

possibly making them an unattractive

target for practical crystallographic

applications. In order to circumvent or

at least ameliorate these issues, we

design quadratures that combine the

benefits of a Laplace approximation and

basic numerical quadratures (Appendix

A).

A high-level overview of our inte-

gration approach is depicted in Fig. 2.

By combining a power transform

followed by a hyperbolic transform of the integrand, we

transform the integration domain from [0, 1] onto [0, 1].

While the first power transform (Appendix C) allows the

integrand to have more Gaussian-like character, the second

change-of-variable operation nonlinearly compresses low-

mass regions onto relatively small line segments, while

approximately linearly transforming high-mass areas of the
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Figure 1
Integrand shapes for the acentric and centric distribution for different parameter settings show
the variety of function shapes that occur when computing the marginal likelihood. When the
experimental error is relatively large with respect to the intensity, high-mass areas of the function
span a decent portion of the integration domain for E � 6 (a). When the error on the experimental
data is relatively small, the bulk of the integrand mass is concentrated in smaller areas (b, c). In the
case of a t-distribution-based noise model, the tails of the distribution are lifted compared with the
normal noise model. The variety of these shapes makes the uniform application of a standard
quadrature or Laplace approximation inefficient and suboptimal.
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Figure 2
The numerical integration procedure developed is depicted as a sequence of steps. The general idea is to use a sequence of variable transformations that
result in a smooth function on [0, 1] which can be easily integrated via a trapezoidal integration scheme. Once quadrature points have been established,
the integration can be written as a sum of weighted Rice functions. See the main text for details.



integrand to the middle of the new integration domain

(Appendix A). This double-transformed function can subse-

quently be integrated using an equidistant trapezoidal inte-

gration scheme. The second change-of-variable operation

requires, just like the Laplace approximation, knowledge of

the maximum of the power-transformed integrand, which can

be obtained using standard optimization methods (Appen-

dices B and C). In a final step, the resulting quadrature

expressed on the domain of the doubly transformed variable

can be rewritten in the original variables by applying inverse

transforms. A subsequent further simplification allows us to

recast the whole integration as a sum of weighted Rice func-

tions, where the effects of noisy observations and other errors

are hidden in the sampling of E on Rþ and the associated

weights (Appendix D),

QðECjZo; �A; �
2
Z; �Þ ¼ ln L�ðECjZo; �A; �

2
Z; �Þ

¼ ln
PN
j¼1

wj f�ðEjjEC; �AÞ

" #
; ð20Þ

where Ej are the quadrature sampling points and wj are the

associated weights. The sampling points and weights are

dependent on EC, Zo, �A, �Z and �. The quadrature sampling

used can either be an N-point power-transformed hyperbolic

quadrature or a single-point quadrature on the basis of a

(power-transformed) Laplace approximation. Further details

are given in Appendices A–D.

2.5. Derivatives

The practical use of a likelihood-based target function

requires the calculation of its derivatives so that it can be used

in gradient-based optimization methods. From expression

(20), derivatives with respect to Y 2 {EC, �A, �} can be

obtained as follows:

Q0Y ðECjZo; �A; �
2
Z; �Þ ¼

d

dY
QðECjZo; �A; �

2
Z; �Þ

¼ exp �QðECjZo; �A; �
2
Z; �Þ


 �
�
PN
j¼1

dwj f�ðEjjEC; �AÞ

dY
: ð21Þ

The derivatives of the Rice components f�(Ej|EC, �A) with

respect to EC are listed in Appendix B.

3. Results and discussion

The first step in evaluating the proposed integration methods

is to establish the ground truth of the integral that we wish to

approximate. To this end, an equispaced, non-power-

transformed trapezoidal quadrature was constructed inte-

grating the function from E = 0 to E = 6 using 50 000 sampling

points using all combinations of distribution parameters, as

listed in Table 1, under the assumption of Gaussian errors on

the intensities. Comparing the results of this integration with

those obtained using a hyperbolic quadrature with 1500 points

indicates that these two integration methods give similar

results. We therefore take the ground truth as the results

obtained with a hyperbolic quadrature using 1500 or more

sample points. For both the acentric and the centric distribu-

tions, setting the power-transform variable � to 2 provides

good results, as shown in Tables 2 and 3, where the mean and

standard deviation of the relative error in the log integrand

are reported (as percentages). A number of different

approximation schemes were tested, comparing results using

the mean relative error in the log integrand. Because the

variance-inflation approximation does not actually perform a

marginalization, but performs a more ad hoc correction to

incorporate low-fidelity measurements, its relative error

against the log-likelihood is not a fair measure of its perfor-

mance, nor does it provide insights into its strengths and

drawbacks. Instead, we will compare the gradients of the log-

likelihood target function with respect to EC for all approx-

imations, as this measure is independent of the different

normalizations that arise when computing the full integral as

compared with the variance-inflation approaches. Further-

more, given that the gradients of the log-likelihood function

form are the Fourier coefficients of the 3D difference or

gradient maps used to complete or rebuild structures,

comparing the gradients of various approximations with those

obtained from the full likelihood function can provide valu-

able insights into the strengths of different approximations.

The use of gradients is of course predicated on being able to
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Table 1
Parameter bounds for comparing integration methods.

Parameter Start End Sampling points

EC 0.1 6.0 20
�A 0.0 0.95 10
Zo �5.0 50.0 20
Z/�Z 0.5 10.0 20

Table 2
Integration results: acentric distribution.

The mean error and standard deviation of the relative log-likelihood over the
full parameter range are reported as percentages.

Method � = 1 � = 2 � = 3

Laplace approximation �0.142/0.874 0.294/0.971 0.485/1.135
Quadrature (N = 3) 0.191/0.778 0.152/0.831 0.281/1.058
Quadrature (N = 5) 0.130/0.377 0.126/0.481 0.196/0.627
Quadrature (N = 7) 0.085/0.218 0.074/0.309 0.116/0.428

Table 3
Integration results: centric distribution.

The mean error and standard deviation of the relative log-likelihood over the
full parameter range are reported as percentages. Quadrature results for � = 1
are absent because the function is not guaranteed to be zero at the origin as
required by the hyperbolic quadrature scheme.

Method � = 1 � = 2 � = 3

Laplace approximation �1.766/8.170 0.357/1.729 0.738/1.841
Quadrature (N = 3) — 0.300/1.617 0.725/1.850
Quadrature (N = 5) — 0.391/0.990 0.438/1.183
Quadrature (N = 7) — 0.269/0.750 0.311/0.943



estimate the value of �A, which in this case can be performed

using a simple line search in fixed resolution shells. Details of

these tests and their results can be found below.

3.1. Comparing integration methods
A comparison of the integration results using a number of

different approximations are visualized in Fig. 3 for data sets
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Figure 3
The relative mean error of the likelihood functions using a Laplace approximation and quadrature-based methods for normal and t-based noise models,
for acentric (a) and centric reflections (b). The dotted horizontal line is set at 1% as a visual reference.

Figure 4
The shape of normalized likelihood functions under a number of different approximations for different input parameters indicates that the use of a point
estimate for negative intensities or those with high noise values results in significant deviations from the ideal likelihood function. The difference
between a t-based noise model and a normal noise model is small, but significantly affects the tail behavior of the likelihood function. Amplitude and
standard deviation estimates for both the French–Wilson and Sivia approaches are given in the figure.



generated according to the procedure outlined in Appendix F.

For the results shown the value of �A was set to 0.70, and a

fixed error ratio was chosen such that hZ/�Zi = 1.0. The

redundancy was set to 4, resulting in � = 3. For the Zo, EC pairs,

a likelihood function computed using a 1500-point hyperbolic

quadrature was treated as the ground truth both for a

t-distribution and an error model assuming a normal distri-

bution. These values were compared with the Laplace

approximation (a one-point quadrature) and seven-point and

49-point quadratures for both error models. While the Laplace

approximation behaves relative well for the normal error

model, it fails to deal properly with the elevated tails of the

t-distribution, and better results are obtained using a quad-

rature. Satisfactory results are obtained using quadratures

composed of seven or more sampling points. General heur-

istics can in principle be developed to tailor the specific

accuracy of the quadrature on the basis of the hyperparameter

of the error model. As expected, t-distributions with low �
values require a larger quadrature to get to a comparable

error compared with those originating from a normal distri-

bution owing to the presence of heavier tails.

3.2. Comparing likelihood functions

In order to obtain a better intuition of the behaviors of the

target functions, we directly plot them for a few input para-

meters. Fig. 4 depicts the likelihood function L(EC|Zo) for

acentric reflections using just the French–Wilson protocol to

estimate the amplitude while not inflating the variance and

using the variance-inflation method with both the French–

Wilson and the Sivia approaches, as well as the full likelihood

functions using both a Gaussian error model and a t-distri-

bution variant. All functions shown

have been numerically normalized over

0 � EC � 12. When comparing the

curves for weak and negative intensities,

there is a remarkably large difference

between techniques that use an estimate

of Eo on the basis of a non-informative

prior (French–Wilson & Sivia) versus

those derived by the full integration

(Figs. 4a, 4b and 4c). In the case of an

observation with lower associated stan-

dard deviation, the differences between

the approximations are smaller. The

differences between a normal error

model and a t-distribution manifest

themselves in the tail behavior of the

likelihood-function approximations,

while the locations of the maxima seem

relatively unchanged (Fig. 4d). The

practical effects of the mismatch

between an assumed normal error

model and the t-type error models

become apparent in the estimation of

�A on the basis of the corresponding

likelihood approximation. A synthetic

data set with errors was constructed using the protocol

outlined in Appendix F. The errors were chosen using a fixed

error level such that the expected hZo/�Zi was 0.5 when

�!1 (see Appendix F). The resulting Zo, �Z and EC values

were used to determine �A via a golden section-driven

likelihood-maximization procedure (Kiefer, 1953). The

resulting estimates of �A and their associated estimated

standard deviation for different redundancy values (� + 1) are

shown in Fig. 5. While for large values of � the estimated

values of �A are equivalent for both error models, at lower

redundancy values the normal error model systematically

underestimates �A. When the French–Wilson protocol is used,

the resulting �A estimates are underestimated even more

(Fig. 6).

3.3. Comparing log-likelihood gradients

Additional insights into the behavior of the likelihood-

function approximation can be obtained by directly comparing

its gradients for a selected set of parameter combinations.

Numerical tests indicate that gradients computed using a 1500-

point hyperbolic quadrature of the power-transformed

function (with � set to 2 for both the acentric and centric

distribution) are indistinguishable from finite-difference

gradients computed with a 50 000-point trapezoidal approach.

In order to investigate the quality of the various approxima-

tions under common refinement scenarios, we construct a

synthetic data set using random sampling methods as outlined

in Appendix F. A redundancy of 4 (� = 3) was used in these

tests. Gradients were computed using a 49-point quadrature,

using a value of �A estimated from the corresponding

approximation to the likelihood function. The results of these
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Figure 5
The behavior of a likelihood-based �A-estimation procedure when data with a t-based noise model
are treated with a likelihood-based approach using normal noise: a negative bias is introduced in the
estimate of �A at low redundancies.



research papers

Acta Cryst. (2020). D76, 736–750 Zwart & Perryman � Evaluating likelihood functions using numerical quadratures 745

Figure 6
A comparison of gradients computed using different approximation schemes for t-based noise with � = 3. (a)–(c) and (d)–( f ) depict the behavior of the
gradient approximations with a decreasing noise level. Gradients were computed using a maximum-likelihood estimate of �A using their corresponding
approximations. Both the normal model and the t-based model clearly outperform the French–Wilson and the Sivia approaches, while a marginal
improvement over the normal noise model is obseved when the t-based model is used.



comparisons are shown in Fig. 6 and summarized in Tables 4

and 5. The quality of the gradients is gauged by a correlation

coefficient to the true value. The results indicate that for data

for which hZ0/�Zi is large, all gradient-calculation methods

converge to those obtained using the full intensity-based

likelihood function with experimental errors and a Student’s t

noise model, but that for high and intermediate noise levels

the variance-inflation method significantly underperforms.

While differences between normal and t-style noise models

seem small on the basis of the correlation coefficients, signif-

icant deviations are seen in individual reflections under high-

noise and low-redundancy settings. These aberrant gradients

can potentially negatively influence the quality of gradient

maps for structure completion.

4. Conclusions

Numerical procedures for the efficient determination of

intensity-based likelihood functions and their gradients are

developed and compared. Whereas the Laplace approxima-

tion behaves reasonably well for the estimation of the like-

lihood function itself under a normal noise model, our results

show that the both the likelihood and its associated gradients

can be significantly improved upon by using a numerical

quadrature. Given that the derivative of the log-likelihood

function is the key ingredient in gradient-based refinement

methods and is used to compute difference maps for structure

completion, the proposed approach could improve the

convergence of existing refinement and model-building

methods. Although it is unclear what the optimal quadrature

order or noise model should be in a practical case, our results

suggest that it is likely to be below 15 sampling points for

normal noise and below 49 for t-type errors. Algorithmically,

the most costly operation is the iterative procedure for finding

the maximum of the integrand. The proposed Newton-based

method typically converges well within 50 function evalua-

tions, even in the absence of a predetermined good starting

point for the line search. The construction of the hyperbolic

quadrature does not require any iterative optimization, nor

does the subsequent calculation of the associated gradient and

function values. Given the large additional overhead in

refinement or other maximum-likelihood applications in

crystallography, the use of the presented methodology to

compute target functions is likely to have only have a minimal

impact on the total run time of the workflow, while providing a

rapidly converging approximation to a full intensity-based

likelihood that takes experimental errors in both the estimate

of the mean intensity and its variance into account. Although

only a full integration into a crystallographic software package

can determine the situations under which a practical benefit

can be obtained from using the outlined approach, the tests

here indicate that significant improvements are possible.

Furthermore, the ease with which the proposed quadrature

method can be adapted to a different of choice of error model

is a large benefit over existing approximation methods, making

it for instance possible to use experiment-specific noise models

in refinement and phasing targets (Sharma et al., 2017).

APPENDIX A
A hyperbolic quadrature

Given a function g(x), with x � 0 and g(x) � 0, we seek to

compute its integral over the positive half-line:

G ¼
R1
0

gðxÞ dx: ð22Þ

Set

hðxÞ ¼ ln gðxÞ: ð23Þ

Define the supremum of g(x) by x0 such that h0(x0) = 0. For the

class of functions we are interested in, g(0) is equal to 0, for

instance owing to the power transform outlined in the main

text, and lim
x!1

gðxÞ is 0 as well. Define the following change of

variables on the basis of a shifted and rescaled logistic func-

tion,

t ¼
expðkxÞ � 1

expðkxÞ þ expðkx0Þ
; ð24Þ

where k is a positive contant. Note that t(x = 0) = 0 and

lim
x!1

tðxÞ = 1. The inverse function is

xðtÞ ¼ x0 �
1

k
ln

expðx0kÞð1� tÞ

1þ t expðkx0Þ

� �
ð25Þ

and has a derivative with respect to t equal to

x0ðtÞ ¼
expð�ktÞ½expðkx0Þ þ expðktÞ�2

k½expðkx0Þ þ 1�
: ð26Þ
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Table 4
Comparing likelihood gradients for simulated data by computing
correlations of gradients computed using a 1500-point quadrature with
the correct �A value (0.70) and those obtained using four different
approximation methods, as outlined in the main text, and the maximum-
likelihood estimate of �A given the approximation of the likelihood
function.

The reported entries are estimated values of �A and the gradient correlation.

Method hZ/�Zi = 0.25 hZ/�Zi = 0.5 hZ/�Zi = 1.5

Sivia 0.35/68.8% 0.52/82.1% 0.64/93.5%
French–Wilson 0.44/80.5% 0.53/87.7% 0.64/94.3%
Normal 0.68/96.9% 0.66/97.4% 0.67/97.9%
Student’s t 0.73/100% 0.70/100% 0.71/100%

Table 5
Comparing likelihood gradients for simulated data by computing
correlations of gradients computed using a 1500-point quadrature with
the correct �A value (0.90) and those obtained using four different
approximation methods, as outlined in the main text, and the maximum-
likelihood estimate of �A given the approximation of the likelihood
function.

The reported entries are estimated values of �A and the gradient correlation.

Method hZ/�Zi = 0.25 hZ/�Zi = 0.5 hZ/�Zi = 1.5

Sivia 0.50/63.1% 0.64/73.6% 0.85/93.2%
French–Wilson 0.64/60.3% 0.65/74.9% 0.79/88.4%
Normal 0.91/97.0% 0.88/96.9% 0.87/97.6%
Student’s t 0.94/98.7% 0.91/99.9% 0.89/99.9%



The value x0 determines the approximate ‘inflection’ point of

the hyperbolic compression scheme and the constant k

controls the slope around the midpoint. An N-point quad-

rature can now be constructed by uniformly sampling t

between 0 and 1,

tj ¼
j

N þ 1
; ð27Þ

for 1 � j � N. Given that both g(0) and lim
x!1

gðxÞ are zero, the

integral G can now be computed via a trapezoidal integration

rule,

G ¼
1

N þ 1

PN
j¼1

g½xðtjÞ�x
0ðtjÞ: ð28Þ

If k is chosen to be

k ¼
�2h00ðx0Þ

�

� �1=2

ð29Þ

then the above quadrature for N = 1 yields the Laplace

approximation when x0|h00(x0)|1/2 is large, as |x0 � x(1/2)| goes

to zero. If a hyperbolic quadrature is constructed on a distri-

bution of power-transformed variables, these derived weights

can be multiplied by the Jacobian of that transformation, so

that the final numerical evaluation can be carried out in the

original set of variables.

APPENDIX B
Distributions and derivatives

B1. Rice functions, acentrics

The logarithms of the acentric Rice distribution and its

derivatives with respect to E and EC are given below.

ha;RiceðE;EC; �AÞ ¼ ln faðEjEC; �AÞ

¼ ln 2þ ln E� ln 1� �2
A

� 	
�
ðE� �AECÞ

2

1� �2
A

þ ln eI0

2�AEEC

1� �2
A

� �
; ð30Þ

h0Ea;RiceðE;EC; �AÞ ¼
d

dE
ln faðEjEC; �AÞ

¼
1

E
�

2ðE� �AECÞ

1� �2
A

þ
2EC�A

1� �2
A

I1

2EEC�A

1� �2
A

� �

I0

2EEC�A

1� �2
A

� �� 1

2
664

3
775; ð31Þ

h00Ea;RiceðE;EC; �AÞ ¼
d2

dE2
ln faðEjEC; �AÞ

¼ �
1

E2
�

2

1� �2
A

þ
2EC�A

1� �2
A

� �2

�
2EC�A

Eð1� �2
AÞ

I1

2EEC�A

1� �2
A

� �

I0

2EEC�A

1� �2
A

� �
2
664

3
775

�
2EC�A

1� �2
A

� �2 I1

2EEC�A

1� �2
A

� �

I0

2EEC�A

1� �2
A

� �
2
664

3
775

2

; ð32Þ

h
0EC

a;RiceðE;EC; �AÞ ¼
d

dEC

ln faðEjEC; �AÞ

¼
2�AðE� �AECÞ

1� �2
A

þ
2E�A

1� �2
A

I1

2EEC�A

1� �2
A

� �

I0

2EEC�A

1� �2
A

� �� 1

2
664

3
775: ð33Þ

B2. Rice functions, centrics

The logarithms of the centric Rice distribution and its

derivatives with respect to E and EC are given below.

hc;RiceðE;EC; �AÞ ¼ ln fcðEjEC; �AÞ

¼
1

2
½ln 2� ln�� lnð1� �2

AÞ� �
E2 þ �2

AE2
C

2ð1� �2
AÞ

þ ln cosh
�AEEC

1� �2
A

� �
; ð34Þ

h0Ec;RiceðE;EC; �AÞ ¼
d

dE
ln fcðEjEC; �AÞ

¼
E

�2
A � 1

þ
�AEC

1� �2
A

tanh
�AEEC

1� �2
A

� �
; ð35Þ

h00Ec;RiceðE;EC; �AÞ ¼
d2

dE2
ln fcðEjEC; �AÞ

¼
1

�2
A � 1

þ
�AEC

1� �2
A

� �2

�
�AEC

1� �2
A

� �2

tanh
�AEEC

1� �2
A

� �� �2

; ð36Þ

h
0EC

c;RiceðE;EC; �AÞ ¼
d

dEC

ln fcðEjEC; �AÞ

¼
�2

AEC

�2
A � 1

þ
�AE

1� �2
A

tanh
�AEEC

1� �2
A

� �
: ð37Þ
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B3. Student’s t-distribution

The logarithm of the t-distribution as specified in the main

text and its derivatives with respect to E are given below.

hoðZo;E; �2
Z; �Þ ¼ ln f ðZojE; �

2
o; �Þ

¼ ln �
�þ 1

2

� �
�

1

2
ln ���2

o

� 	
� ln �

�

2

� �

�
�þ 1

2
ln 1þ

Zo � E2ð Þ
2

��2
Z

" #
; ð38Þ

h0Eo ðZo;E; �2
Z; �Þ ¼

d

dE
ln f ðZojE; �

2
o; �Þ

¼
2ð�þ 1ÞEðZo � E2Þ

�2
Z�þ ðZo � E2Þ

2 ; ð39Þ

h00Eo ðZo;E; �2
Z; �Þ ¼

d2

dE2
ln f ðZojE; �

2
o; �Þ

¼ 2ð�2 þ 1Þ

�
½�2

Z�ðZo � 3E2Þ þ ðZo � E2Þ
2
ðE2 þ ZoÞ�

½�2
Z�þ ðZo � E2Þ

2
�
2

:

ð40Þ

When � is large, the t-distribution can be approximated with a

normal distribution:

hoðZo;E; �2
ZÞ ¼ �

1

2
ln 2�þ ln �Z �

Zo � E2ð Þ
2

2�2
Z

; ð41Þ

h0Eo ðZo;E; �2
ZÞ ¼

2E Zo � E2ð Þ

�2
Z

; ð42Þ

h00Eo ðZo;E; �2
ZÞ ¼

6E2

�2
Z

: ð43Þ

APPENDIX C
Finding x0

As outlined in the main text, numerical integration via the

hyperbolic quadrature is greatly assisted by the change of

variables

E ¼ x� ð44Þ

with Jacobian (see expression 17)

dEðxÞ

dx
¼ �x��1: ð45Þ

The location of the maximum value of the integrand, x0, is

found using a straightforward application of the Newton root-

finding algorithm using the first and second derivatives that

are outlined below. Set

ht;aðEÞ ¼ haðE; � � �Þ þ hoðE; � � �Þ ð46Þ

and

ht;cðEÞ ¼ hcðE; � � �Þ þ hoðE; � � �Þ: ð47Þ

Using the shorthand ht(E, � � �) to indicate either of these

functions, we first apply a power transform (expression 44), as

outlined above. Because we need to locate the maximum of

this function, we need the derivatives with respect to x as well.

The resulting function and its first and second derivatives with

respect to x after the change-of-variable operation are given

by

ĥhtðx; �Þ ¼ ln � þ ð� � 1Þ ln xþ htðE ¼ x�; � � �Þ;

ĥh0tðx; �Þ ¼
ð� � 1Þ

x
þ �x��1h0tðE ¼ x�; � � �Þ;

ĥh00t ðx; �Þ ¼
ð1� �Þ

x2
þ �2x2��2h00t ðE ¼ x�; � � �Þ

þ �ð� � 1Þx��2h0tðE ¼ x�; � � �Þ: ð48Þ

The analytic forms for ht(� � �), h0t(� � �) and h00t (� � �) are given in

Appendix B. Decent starting values for the Newton search can

be found by performing a single Newton-based update on a set

of (say) 15 equispaced values of x sampled between 0 and

x = 61/�. The integrand-weighted mean of the resulting

updated sampling points typically refines within ten iterations

to the supremum.

APPENDIX D
Likelihood synthesis

Using the above approaches, the full likelihood function can

be expressed as a sum of weighted Rice functions (expressions

30 and 34), where E is sampled on the basis of a quadrature

derived from a power-transformed variable E = x� using the

hyperbolic sampling scheme outlined above. Taking into

account the combination of the power transform and the

hyperbolic quadrature, the sampling nodes of the quadrature

are equal to

Ej ¼ x
�
j ; ð49Þ

xj ¼ x0 �
1

k
ln

expðx0kÞð1� tjÞ

1þ tj expðkx0Þ

� �
; ð50Þ

where tj, x0 and k are defined and computed as outlined in

Appendices A and C and 1 � j � N. The quadrature weights

can now be set to absorb the hyperbolic sampling, the power

transform and the error model acting on the observed inten-

sity and its associated standard deviation:

wj ¼ �x
��1
j �

expð�ktjÞ½expðkx0Þ þ expðktjÞ�
2

k½expðkx0Þ þ 1�

� f ðZojEj; �
2
Z; �Þ �

1

N þ 1
: ð51Þ

This thus yields a sum of weighted Rice functions that

approximates the full likelihood function,

L�ðECjZo; �A; �
2
ZÞ ¼

PN
j¼1

wj f�ðEjjEC; �AÞ; ð52Þ
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where f�(� � �) is the acentric or centric Rice function.

When the likelihood function is approximated using the

power-transformed Laplace approximation instead of using

the quadrature approach, we obtain a weighted Rice function

L�ðECjZo; �A; �
2
ZÞ ¼ w0 f�ðEjjEC; �AÞ; ð53Þ

with the weight given by

w0 ¼ �x
��1
0 � f ðZojEj; �

2
Z; �Þ �

2�

ĥh00� ðx0Þ

" #1=2

; ð54Þ

where E0 = x0
� and ĥh00t ðx0Þ is defined in expression (48).

APPENDIX E
Structure-factor amplitude estimation

In order to use an inflated variance modification as an

approximation to the full numerical integration, we need to be

able to estimate reflection amplitudes and their standard

deviations from observed intensities and their standard

deviations. While this process is normally performed using a

standard French–Wilson estimation procedure, another route

can be adopted following an approach developed by Sivia &

David (1994). Assume a uniform, improper prior on E, such

that

f ðEÞ ¼
1 E � 0

0 E< 0

n
; ð55Þ

resulting in a conditional distribution

f ðEjZo; �
2
ZÞ / E exp �

ðE2 � ZoÞ
2

2�2
Z

� �
: ð56Þ

A normal approximation to this distribution can be obtained

by the method of moments or, as performed here, by a

maximum a posteriori approximation with a mean equal to the

mode of the above distribution and a standard deviation

estimated on the basis of the second derivative of the log-

likelihood at the location of the mode:

Eo ¼ sup
E

ln f ðEjZo; �
2
ZÞ


 �
; ð57Þ

�2
E ¼ �

d2

dE2
ln f ðEjZo; �

2
ZÞ


 �� �1

E¼Eo

: ð58Þ

An analytic expression is readily obtained, resulting in

Eo ¼
1

2
½Zo þ ðZ

2
o þ 2�2

ZÞ
1=2
�

� 1=2

; ð59Þ

�2
E ¼

�2
Z

4 Z2
o þ 2�2

Z

� 	1=2
: ð60Þ

The quality of this approximation will critically depend on the

values of Zo and �Z
2 . Note that standard error propagation on

Eo = Zo
1/2 yields

�2
E ¼

�2
Z

4Zo

; ð61Þ

which can be seen to be converge to expression (59) for the

case where Zo is significantly larger then �Z.

APPENDIX F
Simulating synthetic data

Data for the numerical tests and benchmarks were obtained

by sampling from the underlying distribution using the

following procedure. For acentric reflections, ‘true’ complex

structure factors and ‘perturbed’ complex structure factors are

generated by successive draws from normal distributions with

zero mean and specified variance:

ETrue ¼ ðX<;X=Þ; f ðX�Þ ¼ Nð0; 1=2Þ;

DC ¼ ðX<;X=Þ; f ðX�Þ ¼ N½0; ð1� �2
AÞ=2�;

EC ¼ �AETrue þ DC; ð62Þ

where N(�, �2) denotes the normal distribution. For centric

reflections, the following procedure is used:

ETrue ¼ ðX<; 0Þ; f ðX<Þ ¼ Nð0; 1Þ;

DC ¼ ðX<; 0Þ; f ðX<Þ ¼ N½0; ð1� �2
AÞ�;

EC ¼ �AETrue þ DC: ð63Þ

Noise is added in the following fashion. Given a target

variance �2
target, we generate � + 1 normal random variates to

compute the sample mean and sample variance:

ZTrue ¼ jETruej
2;

Zj ¼ X; f ðXÞ ¼ N½ZTrue; ð�þ 1Þ�2
target�;

Zo ¼ ½1=ð�þ 1Þ�
P

Zj;

�2
Z ¼ f1=½�ð�þ 1Þ�2g

P
ðZj � ZoÞ

2: ð64Þ

Two error models are adopted in the described tests, namely a

fixed error ratio or a fixed error level. In the fixed error ratio

method, �target is different for every simulated intensity, and is

chosen to be ZTrue/	, where 	 is equal to the desired

EðZTrue=�targetÞ level. For the fixed error level method, �target is

fixed at 1/	 for all intensities. A complete data set is simulated

assuming a 9:1 ratio of acentric to centric reflections.
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