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Abstract

Essays in Environmental Economics
by

Jaecheol Lee

Doctor of Philosophy in Agricultural and Resource Economics
University of California, Berkeley

Associate Professor Marco Gonzalez-Navarro, Chair

How can we effectively mitigate the public health damages associated with air pollu-
tion, particularly particulate matter (PM)? While the government can initiate efforts
by reducing PM emissions, a critical question emerges: do the public health responses
to PM vary depending on its originating locations? If that is the case, the most effec-
tive approach would involve prioritizing the abatement of emissions from the origin
with the most significant impacts on deteriorating public health outcomes due to PM
exposure. This dissertation addresses this question head-on in its first chapter, in-
vestigating whether PM impacts exhibit heterogeneity across origins, encompassing
transboundary anthropogenic emissions from different countries, non-anthropogenic
emissions from desert dust and wildfires, and domestic anthropogenic sources. The
second chapter delves into the implications of these findings, exploring the dispar-
ities in estimated PM impacts when utilizing different types of transboundary PM
contributions as instrumental variables, which have been traditionally considered
valid exogenous variations for identifying the impacts of PM. Returning to the core
objective of alleviating public health burdens, the third chapter of this dissertation
delves into the role of information disclosure. By inducing public awareness of air
pollution levels and promoting avoidance behavior through advisories or warnings,
governments seek to reduce the health burdens. This chapter examines the efficacy
of air quality alert systems in achieving this goal, weighing the potential reduction
of healthcare costs against the operating expenses of warnings.

More detailed abstracts of the three chapters are as follows. The first chapter starts
by recognizing that a large portion of emitted PM crosses borders, damaging health
outside of its originating jurisdiction. As a result, there is substantial interest in
determining the origins of imported PM and measuring its impact(ApSimon and
Warren 1996; Jazil and Brown 2012; Crawford et al. 2021; Du, Guo, et al. 2020;
Du, Jin, et al. 2020a; Jordan et al. 2020; National Research Council 2010). Current
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approaches to estimating health damages from PM assume that pollution originating
in different jurisdictions causes the same per-unit harm(Dedoussi et al. 2020; Lim
et al. 2020; Chen, Li, et al. 2021; Sergi et al. 2020; Chen, Lin, et al. 2022; Diao et
al. 2021; Heo, Ito, and Kotamarthi 2023; S.-B. Han et al. 2021; Liu et al. 2020; Gu and
Yim 2016). However, because the chemical and physical features of PM originating
from different locations vary dramatically,(Harrison and Yin 2000; Kelly and Fussell
2012; Strak et al. 2012; Schmid and Stoeger 2016) it is widely hypothesized that
PM from distinct origins may generate differing health effects.(Gilmour et al. 2007;
Li et al. 2019; Seagrave et al. 2006; Chen, Hoek, et al. 2022; Strak et al. 2011; Wu
et al. 2021; Achilleos et al. 2017; Thurston, Chen, and Campen 2022). It has re-
mained challenging to test this theory because only total PM (i.e., transboundary
PM + domestic PM) is measured by the observational network, preventing analyses
from disentangling harms that originate from different jurisdictions but impact a
single population concurrently. Thus, PM originating domestically has confounded
the measurement of harm from transboundary PM, and vice versa. Here, we provide
the first direct and unconfounded evidence that the health impacts of PM depend on
its origin. We simultaneously measure harm over time from both transboundary and
domestic PM within a single population located at the nexus of the world’s most con-
tentious transboundary air pollution disputes(Jia and Ku 2019; Shapiro and Yarime
2021; Lim et al. 2020; Jung, Choi, and Yoon 2022). We use an atmospheric model
to decompose the origins of PM individuals are exposed to at each location in South
Korea every day during 2005–2016. We then link these data to universal healthcare
records in an econometric analysis that simultaneously measures and accounts for
harms from seven types of PM, each from a distinct origin. We discover that the
toxicities of transboundary PM from North Korea and China are approximately 5×
and 2.6× greater, respectively, than PM originating domestically in South Korea,
and that the health response to natural dust differs from anthropogenic sources. Be-
cause toxicity differs by origin, we compute that transboundary sources contribute
only 43% of South Korea’s anthropogenic PM load but generate over 70% of its
associated respiratory health costs. Our results directly validate the longstanding
hypothesis(Gilmour et al. 2007; Li et al. 2019; Seagrave et al. 2006; Strak et al. 2011;
Wu et al. 2021; Thurston, Chen, and Campen 2022) that PM should not be treated
as if it is a single pollutant, but instead should be considered a mixture of pollutants
of distinct origin, each with a unique measurable impact on human health.

The second chapter investigates the implications of the results of the first chapter
from the perspective of the applied econometrics. When using instrumental variables
(IV), many studies in applied econometrics have focused on the conventional require-
ments for the use of IVs–the first-stage condition and the exclusion restriction–to get
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estimates of the causal impacts and extrapolate those coefficients to counterfactual
policy settings. An issue is that the results of IV regressions could differ considerably
depending on which sets of IVs are in use, even if these IVs are deemed appropriate
in terms of those two conventional requirements. Identifying variations induced by a
particular set of IVs can be associated with certain groups of people or channels that
determine the influence of the endogenous variable on the dependent variable. These
groups and channels may have different characteristics compared to those associated
with other IV sets, thus leading to heterogeneous responses. (Angrist and Krueger
2001; Mogstad and Torgovitsky 2018; Mogstad, Santos, and Torgovitsky 2018; Dun-
ning 2008) As a result, it is possible that the IV or two-stage least-square (2SLS)
estimates may diverge, even though these estimates are assumed to represent one
‘causal impact,’ and only depict a part of the impacts associated with target varia-
tions (or policy-relevant variations (PRV)) one aims to analyze in a counterfactual
analysis. However, it is still unknown to what extent the different sets of identifying
variations can result in 2SLS estimates which are not qualitatively similar to those
produced when other sets of IVs are used, in real-world empirical settings.

The last chapter investigates the welfare impacts of disclosing information on extreme
levels of air pollution. Though air-quality alert systems (AQAS) cover more than 1.7
billion people worldwide, there has been little welfare analysis of these systems.
This chapter presents a theoretical framework for deriving lower bounds on the net
benefits of an AQAS and applies it to a South Korean system currently covering over
51 million people. Estimating a regression discontinuity design, we find that an alert
issuance reduced youth respiratory expenditures by 30% and adult cardiovascular
expenditures by 23%. The overall system reduced externalized health expenditures
by 28.6 million dollars during 2016−2017, with a minimum benefit-cost ratio of 7.1:1.
Including dynamic impacts of alerts increases the minimum benefits (benefit-cost
ratio) to 36.7 million dollars (9.2:1). Our findings imply that the AQAS generates
significant net benefits and suggests that manipulation of air quality data, which has
been observed in other contexts, may negatively impact social welfare.
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Chapter 1

Simultaneous Measurement of
Health Damage from
Transboundary and Domestic Air
Pollution in Mixture

1.1 Introduction

Particulate matter (PM) pollution has significant negative effects on health and
well-being, altering risks of many outcomes, including cardiovascular and respiratory
illnesses, dementia, suicide, and even crime.(Organization 2021; Peters et al. 2019;
Shehab and Pope 2019; Braithwaite et al. 2019; Burkhardt et al. 2019) Thus, to
inform the public, support research, and provide a basis for regulation, PM is now
widely measured worldwide. These measurements typically classify PM by particle
diameter and are reported as a size-specific mass density for all particulates in a
sample of air. However, this aggregation obscures differences in PM constituents,
which include disparate species like oxidized volatile organic compounds from in-
dustrial complexes and mineral dust from desert erosion. Prior research has shown
that differences in physical and chemical characteristics can affect the toxicity of
PM in a laboratory setting.(Harrison and Yin 2000; Kelly and Fussell 2012; Strak
et al. 2012; Schmid and Stoeger 2016; Li et al. 2019; M. Park et al. 2018) Further,
observational studies have shown that health outcomes are correlated with the av-
erage physical and chemical attributes of PM that groups are exposed to,(Achilleos
et al. 2017; Chen, Hoek, et al. 2022; Seagrave et al. 2006; Strak et al. 2011; Wu
et al. 2021; Thurston, Chen, and Campen 2022) although it is unknown if those
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associations are causal. Other papers have assessed the causal effects of pulses of
PM from significant natural sources, including wildfire(Aguilera et al. 2021; Xue et
al. 2021) and dust storms,(Heft-Neal et al. 2018; Heft-Neal et al. 2020) but have
not conclusively distinguished these effects from those of background PM.1 Nonethe-
less, taken together, this collection of facts has led researchers to hypothesize that
the same measured quantities of PM from different jurisdictions may have distinct
population-level health consequences.(Gilmour et al. 2007; Li et al. 2019; Seagrave
et al. 2006; Strak et al. 2011; Wu et al. 2021; Thurston, Chen, and Campen 2022)
We provide the first direct and unconfounded test of this hypothesis.

Distinguishing origin-specific health impacts can dramatically influence air qual-
ity management, since pollution is managed at its origin but reflects the scale of
impacts in downstream locations. Currently, state-of-the-art studies link emitters to
recipient locations using atmospheric models(Dedoussi et al. 2020; Lim et al. 2020;
Chen, Li, et al. 2021; Sergi et al. 2020; Chen, Lin, et al. 2022; Diao et al. 2021; Heo,
Ito, and Kotamarthi 2023; S.-B. Han et al. 2021; Liu et al. 2020; Gu and Yim 2016)
and then assume PM has uniform toxicity, leading to an allocation of responsibility
for damage that reflects only the quantity of exposure to PM from each origin. How-
ever, if toxicity varies by jurisdiction, this approach will misallocate responsibility
for health damages, possibly to a large degree. In an impossible and unethical “ideal
experiment,” a researcher would distinguish the health effects of PM from different
emitters by experimentally exposing a fixed set of subjects to different, known mix-
tures of PM from multiple origins and observing the resulting health outcomes. Our
quasi-experimental analysis approximates this approach using observational data.

Specifically, we simultaneously measure the health impacts of PM from multiple
origins on the population of South Korea, which is at the nexus of the world’s largest
and most contentious transboundary air pollution disputes.(Jia and Ku 2019; Jung,
Choi, and Yoon 2022; Lim et al. 2020; Crawford et al. 2021; Jordan et al. 2020; Choi
et al. 2019) We decompose the daily mixture of total PM10 (particulates less than

1We note that Aguilera et al. (2021) (“Wildfire smoke impacts respiratory health more than
fine particles from other sources”) asserts that they have shown the impact of wildfire-specific PM
is higher than that of background PM. However, their empirical results are not consistent with this
claim. In their reported results (Table 1 of Aguilera et al. (2021)), increases in wildfire and non-
wildfire PM are associated with relative risks of hospitalization of 1.00061 [0.10−1.0015] and 1.00068
[1.00049−1.00087], respectively. These effects are not statistically nor meaningfully different (i.e.,
differences in these estimates are indistinguishable from statistical noise), and the central estimate
for the impact of wildfire PM is actually reported to be lower than that for background PM, in
contrast to the stated results of the analysis. The inconsistencies between these results and the
stated conclusions of that analysis were not resolved in Aguilera et al. (2021), and thus we are
submitting a technical comment to the publisher for clarification.
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10 micrometers in diameter, which includes PM2.5; henceforth “PM”) observed at
a location into contributions from prominent emitters and measure how changes in
PM from each origin independently influence daily health costs. Crucially, by mea-
suring the impact of each type of PM simultaneously, health costs are not “double
counted” (i.e., a new hospital visit cannot be attributed to domestic pollution and
then again to transboundary pollution), and each estimate of origin-specific toxicity
accounts for the impacts related to doses of incident PM from all other origins. To
do this, we first use an atmospheric transport model to decompose the provenance
of local PM every 3 hours into seven sources: nonanthropogenic sources (including
sea salt, nonanthropogenic aeolian dust [which we refer to as “dust”], and forest
wildfire), anthropogenic activity (which we group by originating jurisdiction: South
Korea, China, and North Korea), and “other sources.” Collectively, we call this set of
nonanthropogenic sources and anthropogenic jurisdictions “origins.” We then com-
bine these probabilistic estimates with high-resolution data on medical spending
from South Korea’s universal healthcare system, which tracks the public and private
medical spending of 97% of South Korea’s 52 million residents. The data allow us
to deconvolve daily fluctuations of respiratory health costs within each locality into
contributions from random variation in origin-specific PM doses over time. To the
best of our knowledge, this study is the first to directly and separately measure the
simultaneous health effects of both domestic and transboundary PM.

1.2 Empirical Analysis

Partitioning observed PM by origin We create a mapping that assigns PM
monitor readings on individual days and locations (i.e., one of South Korea’s 147
districts with PM monitoring; see Extended Data Figure A1) to a probability distri-
bution over seven origins—China, South Korea, North Korea, wildfire, mineral dust,
sea salt, and “other sources.” To do this, we first isolate the influence of dust and
sea salt on PM levels using the Copernicus Atmosphere Monitoring Service Global
Reanalysis 4 (see Methods).(Inness et al. 2019) To apportion the remaining PM, we
then generate a 240-hour backward trajectory starting every three hours at eight al-
titudes from each PM monitor (N = 264) on each day during 2005–2016 (4383 days)
using an atmospheric transport model.(Draxler and Hess 1998; Stunder 2004) This
results in 67.9 million air parcel trajectories, each defined by 241 points (10 days of
hourly observations; see Figure 1.1A for an example month at a single PM monitor).
These trajectories enable us to estimate the contribution of various locations to the
air arriving at a South Korean district on a given day. We combine these trajectories
with information on the spatiotemporal distribution of emissions from anthropogenic
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sources(European Commission, Joint Research Centre (JRC)/Netherlands Environ-
mental Assessment Agency (PBL) 2019) and fires(Werf et al. 2017; Randerson et
al. 2012; Giglio, Randerson, and Werf 2013) (applying an adjustment for chemical
scavenging and deposition over time) to estimate the probability that a unit of PM
arriving at location “i” originated at location “j.” Figures 1.1B–C depict examples
of the distribution of these probabilities across space (all j’s) for the district of Bu-
san (i) on two days in April 2016. We integrate these probability distributions over
hours, altitudes, and originating jurisdictions to construct district-specific time series
of PM contributions, which are then re-scaled to partition station-measured PM into
contributions from all seven origins (e.g., Figure 1.1D). The resulting origin-specific
PM time series (e.g., Figure 1.1E) thus encapsulate what is known about the emis-
sions, transport, and ground measurement of all PM arriving in South Korea during
this period. See Methods for more details.

Measuring impacts of exposure on health outcomes We jointly resolve the
effects of all seven origins of PM on spending for respiratory illnesses for the entire
population of South Korea. These district-specific data are from a representative
sample of individuals covered by South Korea’s universal healthcare system (N =
4.87 million) and include expenses for outpatient and emergency visits due to respi-
ratory illness at all healthcare facilities in South Korea (e.g., see Figure 1.1F; for more
details on this data, see “Data Collection” in Methods). We empirically estimate the
health effects observed for a given district’s population when it is exposed to differ-
ent mixtures of PM (see Methods). Our approach accounts for complex, nonlinear
time trends in medical expenditures (i.e., seasonal patterns, secular trends, variations
across days of the week, and the impacts of holidays), differences in time-invariant
subnational characteristics that may affect health spending (e.g., levels of wealth, the
quality of local public health provision, or differences in data quality), non-PM pollu-
tants (nitrogen dioxide, carbon monoxide, ozone, and sulfur dioxide), and changes in
weather previously shown to impact human health.(Carleton et al. 2022) We account
for cumulative effects over a period sufficiently long (4 weeks) that we capture delayed
changes in health expenditure associated with PM exposure (see Methods). In this
context, delays can result from many factors: for example, respiratory symptoms may
unfold over several days or weeks after pollution exposure, or South Korea’s medical
appointment referral system may lead to a gap between the initial and final visit for
a given health issue. Finally, our empirical specification allows us to flexibly account
for the possibility of avoidance behavior that individuals undertake autonomously
to limit their total PM exposure (e.g., staying indoors or using masks) while still
preserving our ability to distinguish between the effects of subcomponents of over-
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all PM (see Methods). Finally, we assess the robustness of our results to different
methods for calculating uncertainty, alternative functional forms for how we model
avoidance and health responses, and whether we account for air quality alerts; we
also assess the consistency of our results over space, time, and seasons (for a detailed
explanation of these tests, see Extended Data Figure A4).

1.3 Results

Exposure by PM origin

During the period of our analysis, we estimate that three anthropogenic source
regions—China, South Korea, and North Korea—account for roughly 80.9% of to-
tal population-weighted PM exposure in South Korea; mineral dust accounts for an
additional 11.7%; and wildfire, sea salt, and all other sources together account for
the remaining <8% of total exposure (Figure 1.1G). We also estimate that seasonal
and spatial differences in exposure across South Korea are large. For example, while
sea salt is on average a small component of PM (about 3%), it is a large portion of
total PM in less industrial, coastal districts during summer (we estimate that sea
salt accounts for over 50% of PM on 0.2% of district–day observations). Likewise,
PM from China is highest across all districts in the winter and the spring, when pre-
vailing winds are westerly. During this period, some regions occasionally experience
“Yellow Dust” events; when concentrations of PM in South Korea from soil erosion
in the deserts of China, Mongolia, and Kazakhstan can rise above 1000 µg/m3. These
events account for a large portion of total dust exposure, as contributions of dust are
generally <5 µg/m3. Because most PM (and most of the resulting health damage)
originates from South Korea, China, and North Korea—and because these emissions
can be modified by human activities—we focus our analysis primarily on anthro-
pogenic PM from these three origins, but note that all analyses account for PM from
all seven origins.

Effects of origin on properties of PM mixtures

We analyze the observed chemical and physical properties of PM to validate that
our decomposition of PM origin identifies distinct components of the PM mixture
incident on South Korean locations. We use the Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) atmospheric transport model(Draxler and Hess
1998) because it was designed for backtrajectory calculation, and its computational
efficiency is crucial for handling the large number of trajectories we analyze. This
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Figure 1.1: Decomposition of PM by Origin

Notes: (A) Example set of backtrajectories from a single district in Busan, South Korea, during
April 2016. The full analysis includes all districts shown in Extended Data Figure A1. Trajectories
for April 5 and April 11 are shown in orange and purple, respectively. Anthropogenic PM emis-
sions during this month are shown as changes in the opacity of the background map, with colors
differing by originating jurisdiction. (B) The estimated contribution of each location’s emissions to
anthropogenic PM exposure experienced in Busan on April 5, 2016 and the distribution of estimates
contributions of different origins across the set of backtrajectories (lower left box and whisker plot).
(C) Same as (B), but for April 11, 2016. (D) Time series of total PM (black line) measured in
Busan throughout 2016, with the two dates in (B)–(C) labeled. Stacked color areas indicate the
decomposition of this measured PM by origin based on backtrajectory calculations illustrated in
(A)–(C). (E) Time series for each component of total PM by origin for 2016. (F) Daily (pink) and
seven-day moving average (blue) time series for respiratory health spending per capita in Busan
throughout 2016. (G) Distributions of nationwide population-weighted PM exposure over each of
the seven PM origins we investigate. Distributions include all districts and days in our sample, with
the mean exposure for each PM origin shown with a diamond shape (note nonlinear y-axis).
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Figure 1.2: Estimating the Chemi-
cal and Physical Signature of PM
from Each Origin at Five Loca-
tions in South Korea

Notes: The partial correlations between the

quantity of PM from different origins and con-

centrations of either lead, calcium, fine partic-

ulate matter (PM2.5), or visibility across five

monitors (see inset). Monitor locations are la-

beled in Panel A. In each panel, marker posi-

tions depict partial correlations between ag-

gregate properties (for both x- and y-axes)

measured at a given monitor and PM from

each origin. Correlations for all origins are es-

timated simultaneously for each property at

each sensor, but colored to group measure-

ments across sensors based on PM origin. Col-

ored regions depict the convex hull of these

partial correlations for a single origin across

the set of five monitors, indicating the chemi-

cal and physical “fingerprint” for each origin.

Further explanation of this figure is shown in

Extended Data Figure A2.



CHAPTER 1. HETEROGENEOUS IMPACTS OF PM ACROSS ORIGINS 8

model has been widely validated for many applications,(Du, Jin, et al. 2020b; Cheng
et al. 2013; Sapkota et al. 2005; S. Lee et al. 2021; Escudero et al. 2006; Alam, Qureshi,
and Blaschke 2011) although it is possible, in principle, that the absence of active
chemistry calculations(Binkowski and Roselle 2003; Wagstrom et al. 2008; X. Han
et al. 2021; D. Chen et al. 2007; Liu, Li, and Yao 2022) or other aspects of the model
could impact our estimates. We cannot directly test that hourly backtrajectories are
correctly modeled; however, we validate that PM contributions from a specific origin
appear (i) chemically and physically consistent across South Korea and (ii) chemically
and physically distinct from PM attributed to other origins. We do this by identifying
the chemical and physical “fingerprint” of PM from each origin, comparing it across
sensors, and contrasting it with the “fingerprint” from other origins.

Aggregate chemical characteristics (lead and calcium levels) and physical prop-
erties (visibility and PM2.5 concentration) of PM are monitored daily at five locations
(see Figure 1.2 inset) and for limited periods of time (see Methods). This quantity of
data is insufficient for population-scale epidemiological analysis and does not quan-
tify many important physical and chemical aspects of PM, but it can nonetheless
validate our calculation of origin-specific contributions. If PM from different origins
has distinct chemical and physical characteristics and we have correctly decomposed
PM contributions by origin, then the observed aggregate properties of the PM mix-
ture should be an approximately linear combination of properties for components in
the mixture—with weights that reflect the fractional contribution from each origin
(see Methods). For example, on days when we compute that the PM mixture over
Seoul is 90% from China, based on backtrajectories, then we would expect the chem-
ical properties of PM on those days to be dominated by the properties of emissions
from China. Based on this idea, we estimate how an influx of PM from each origin
alters the observed aggregate chemical and physical properties of the PM mixture,
accounting for the estimated contribution and properties of all other origins simul-
taneously. Specifically, we use multiple regression to decompose how PM from all
origins simultaneously impacts aggregate chemical and physical properties at each
measurement site (see Methods).

We find that our estimates of PM origin are associated with consistent and
distinct changes in lead, calcium, visibility, and the concentration of PM2.5 (Figure
1.2). Three features of this result are notable. First, patterns across monitors are
relatively consistent for each PM origin. For example, the chemical/physical signature
of domestic-origin or Chinese PM is broadly consistent across all sensors in South
Korea (high lead, low visibility, moderate calcium, and high PM2.5). Second, the
four-dimensional chemical/physical signature of each origin is well-separated from
the signatures of other origins (note that overlap in Figure 1.2 primarily results from
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display in only two dimensions at a time), implying that our approach to isolating PM
by origin identifies collections of PM exposures that are physically and chemically
distinct from one another.

Third, the patterns we recover are consistent with what is previously known
about PM source characteristics. For example, we find that PM contributions from
China and South Korea are associated with higher concentrations of lead (partial
correlations of 0.39 to 0.73 for China and 0.25 to 0.69 for South Korea), which
originates from industrial processes,(Harrison 2012; Del Rio-Salas et al. 2012; Bellis
et al. 2001; Roy et al. 2019) and that PM attributed to mineral dust is strongly
associated with the level of airborne calcium, consistent with prior analysis.(Heim et
al. 2020; W.-H. Kim et al. 2012; S. Park et al. 2004) We observe similarly consistent
and distinct patterns for visibility, which both is affected by ambient PM particle
characteristics(Yuan et al. 2006; K. W. Kim et al. 2015; Y. J. Kim et al. 2006)
and affects avoidance behavior.(He, Luo, and Zhang 2022). We also find that PM
attributable to our two main anthropogenic sources, China and South Korea, is
more strongly associated with smaller particle sizes, compared to PM originating
from dust and sea salt, also consistent with prior research.(Kar and Takeuchi 2004;
Perrino et al. 2009; Pérez et al. 2008; Gobbi, Barnaba, and Ammannato 2007) We
hypothesize that North Korean PM may appear different from PM from China and
South Korea because of its distinct industrial structure and energy system.(Koen and
Beom 2020; Kim, Lee, and Kim 2011; Lee, Kim, and Yeo 2021; Kim and Kim 2019;
N. K. Kim et al. 2014) Taken together, these results indicate that our decomposition
of PM by origin consistently identifies distinct sources of pollution that are normally
indistinguishable.

Distinguishing health impacts by PM origin

Dose–response by PM origin We simultaneously estimate the effect of PM from
all seven origins on health outcomes in each district over time, discovering that com-
parably sized exposures to PM of different origins cause significantly different changes
in health. To demonstrate these differences, we first replicate the standard approach
of pooling all PM, estimating an average health response that is undifferentiated by
PM origin (Figure 1.3A). Ignoring origins, we find that a 1 µg/m3 increase in overall
PM is associated with a nearly linear $0.002 (±0.0005) per day increase in respiratory
medical cost per person (noting that the model allows for non-linear relationships; see
Methods). However, this undifferentiated model masks variation in health responses
across origins. Figure 1.3B presents the response of health costs from exposure to PM
from different origins. PM from North Korea (green) is the most harmful per unit
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Figure 1.3: Health-response to PM by Origin

Notes: (A) The cumulative respiratory health cost for the South Korean population from a single day
of exposure to undifferentiated PM, aggregated across all origins. The relationship appears linear but
is estimated allowing for a potentially nonlinear relationship. (B) Estimated effects of PM from four
major origins: South Korea, North Korea, China, and dust (effects from seven sources are estimated
simultaneously following the specification in Methods). Each curve is plotted assuming the levels
of other sources are zero. Panel A is shown only for comparison and is not used in our calculations
for the attribution of respiratory health costs to PM origins. Vertical lines indicate the population-
weighted mean dose for each PM origin across all district–days in the sample; horizontal lines
indicate the predicted change in respiratory health costs per person. Dose–response relationships
are shown only to the 99th percentile dose for each PM origin if that value falls in the plotted range.

at all common doses ($0.0048 per µg/m3 per person per day), with an average effect
per unit at the mean dose around 4× larger than the per-unit effect of the mean dose
of PM from South Korea (“domestic-origin” PM, whose dose–response function is
shown in blue; $0.0009 per µg/m3 per person per day). The average per-unit effects
of PM from China (red-orange) and dust (yellow) are around 2.6× and 2× larger,
respectively, than domestic-origin PM ($0.0024 and $0.0018 per µg/m3 per person
per day).

We note that the high harm per unit of PM originating in North Korea is not
explained by the chemical and physical properties that we were able to analyze above
(recall Figure 1.2). On dimensions we can observe, including particle size and lead
concentrations, PM from North Korea appears less threatening to human health.
This indicates that the qualities of North Korean PM that we do not observe are
likely mediating this relationship, a topic that we believe merits further study.
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Total harm from average PM by origin Health costs (horizontal dashed lines in
Figure 1.3A–B) result from the combination of dose–response relationships and dose
from each origin (solid vertical lines). If the health burden from PM is computed using
the undifferentiated dose-response, then the average dose of total PM (52 µg/m3)
would be estimated to generate average costs of $0.10 (±0.026) per person per day
(roughly $5 million per day for the entire country), resulting from origin-specific
harms that are proportional to the PM load attributed to each origin (Figure 1.3A).
However, the estimated contribution of harm from each origin changes dramatically if
origin-specific health responses are considered (Panel B). For example, we estimate
that the small average dose of transboundary PM from North Korea (4.3 µg/m3)
is so harmful per unit that its impact is comparable to the impact of domestic-
origin PM from South Korea, which has a mean dose almost six times higher (23.6
µg/m3). Similarly, transboundary PM from China exhibits an intermediate mean
dose (14 µg/m3) that we estimate would generate health costs almost twice as large
as domestic-origin PM. We estimate that average doses of PM from dust are small
(6 µg/m3), generating half the cost of domestic-origin PM, although Yellow Dust
events, which lead to doses above 1000 µg/m3, can generate substantial harm.

Temporal structure of health impacts by PM origin We find that cumulative
respiratory medical expenditures emerge similarly across PM origins, rising gradually
until leveling out after roughly three weeks, regardless of whether our model accounts
for PM origin (Extended Data Figure A3). The cumulative health response stabi-
lizes after 21 days. Further, we find no evidence that indicates substantial temporal
displacement of health costs (“harvesting”, see Methods).

Computing damages by PM origin in mixtures

Analyzing the health effects of PM by each origin in isolation provides a clear measure
of relative impacts but is an incomplete picture of total PM impacts because PM
is experienced as a mixture, and the presence of PM from one origin can affect the
health impact of PM from other origins. In particular, prior studies(Anderson, Hyun,
and Lee 2022; Hahm and Yoon 2021) and our results suggest that individuals in South
Korea engage in avoidance behavior (e.g., staying indoors) to protect themselves
from the health effects of the entire PM mixture incident on their community. This
implies that a unit of PM from origin j may have a health impact that depends
on whether PM from origin k is high or low since higher PM from k may induce
greater avoidance, mitigating the effect of PM from j (see Methods). Stated another
way, because individuals engaged in avoidance of PM from all origins, PM from each
origin mediates the health impact of PM from all other origins. Figure 1.3 depicts
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only the partial effect of exposure to PM of each origin, holding PM from all origins
at zero, thereby abstracting away from these interactions. However, computing the
actual health impact of PM from any single origin requires accounting for the entire
mixture of PM when exposure occurs.

We compute the total health impact of different PM mixtures, accounting for
empirically estimated interactions between PM from different origins (see Methods).
Figure 1.4 presents a surface that describes the expected excess nationwide respira-
tory health spending that would result from exposing every person in South Korea
to different mixtures of PM from South Korea, China, and North Korea for a single
day (more complex combinations are possible to compute, but difficult to display).
“Iso-damage” curves trace out mixtures of PM from the pairs of jurisdictions that
generate the same health cost. Here, a slope of −1 would indicate a mixture where a
one-unit increase in PM from either of the two originating jurisdictions would have
the same incremental health impact (i.e., there would be no change in total spending
for a one-to-one exchange of the two pollutants). However, we do not observe this for
any observed mixtures (shading indicates historical frequency). Instead, iso-damage
curves in both panels are steeper than −1, implying that incremental damages of
anthropogenic PM from transboundary sources are always greater than those of do-
mestic PM in our setting.

The mixture-damage surface in Figure 1.4 can be differentiated to compute the
incremental harm caused by a unit of PM from a single origin that is contained
within a mixture. Based on the average PM mixture from China and South Korea
in our sample, assuming zero exposure to PM from other origins, we estimate that
the incremental nationwide health costs of exposure to +1 µg/m3 PM from China
and South Korea—relative to historical levels–are $108,808 (±$10, 896) and $32,131
(±$7, 943), respectively. For North Korea and South Korea, these values are $182,358
(±$45, 842) and $26,665 (±$8, 575), respectively. In terms of health costs, one ad-
ditional µg/m3 of PM from North Korea is equivalent to an increase of 6.84 µg/m3

of PM from South Korea, and one µg/m3 of PM from China is equivalent to 3.39
µg/m3 of South Korean PM.

We also note that the curvature of this surface is concave, such that (i) overall
harm increases with higher PM levels from any origin, but at a declining rate, and
(ii) higher PM levels from each origin reduce the incremental harm from other origins
(see Methods).
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Figure 1.4: Health Costs from Mixtures of Domestic and Transboundary
PM

Notes: Change in single-day total respiratory health spending (2022$) associated with nationwide
exposure to mixtures of PM from combinations of domestic and transboundary PM from China (left)
and North Korea (right). Estimates assume exposure to PM from all other origins are zero. Total
spending is shown by black contour lines. Bivariate densities of exposure during our data period
are shown as colored shading. Relationships are shown to the joint 99th-percentile of population-
weighted historical exposures.

Total damages from domestic and transboundary PM

We compute total nationwide damages traceable to each origin during our study
period and find that accounting for differences in the per-unit harm by PM origin
is critical for estimating the relative harms from domestic and transboundary PM
(Table 1.1). We compute total harm from j by estimating the difference in health
outcomes that would have been expected to occur in two different scenarios: one
where PM emissions reflect actual historical emissions versus a scenario where j
unilaterally reduces its emissions to zero (and the emissions of other countries are
unchanged; see Methods). Accounting for differences in harm per unit of PM, we
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Fraction of
population exposure to
anthropogenic PM in
South Korea, % total

Estimated annual health cost,
million 2022$ ± SE

(% total, anthropogenic)

This study
Assuming undifferentiated

dose–response
South Korea 56.6 305 ± 92 (27.6) 615 ± 70 (58.4)
North Korea 9.9 223 ± 66 (20.1) 97 ± 11 (9.2)

China 33.5 579 ± 66 (52.0) 341 ± 38 (32.3)

Table 1.1: Average Annual Contributions to Anthropogenic PM Exposure and As-
sociated Change in Respiratory Health Spending by Origin

estimate that PM originating in South Korea causes roughly $300 million in health
costs in South Korea per year ($0.07 per person per day), while transboundary PM
from China and North Korea generate roughly $580 and $220 million per year ($0.14
and $0.05 per person per day), respectively. (Note that health costs in South Korea
reflect the low cost of medical care in a national healthcare system where costs for
comparable treatments are roughly 6−10× lower than in the United States.(RIHP
2021))

Prior state-of-the-art practice does not differentiate per-unit harms by origin.
(Dedoussi et al. 2020; Du, Guo, et al. 2020; Lim et al. 2020; Chen, Li, et al. 2021;
Sergi et al. 2020) Had we used the standard undifferentiated approach, we would have
estimated that transboundary PM generated 41% of the costs from anthropogenic
sources, rather than the 72% that we estimate here (Table 1.1). We estimate that
57% of anthropogenic PM that the South Korean population is exposed to origi-
nates domestically, but it generates only 28% of the damage from anthropogenic PM
because it is relatively less harmful than transboundary PM.

Damages by origin over time We estimate that PM exposure and damages
for major PM origins have exhibited different trends during our study period (see
Figures 1.5A–C). We compute that exposure to PM from North Korea declined
by roughly 12.5% per year, an effect that could be attributed to falling emissions,
changes in meteorology, or other factors; over the same time, PM from South Ko-
rea remained essentially unchanged (+0.1% per year) and PM from China declined
modestly (−1.6% per year). We estimate that the trends in estimated costs resulting
from these exposures largely mirror these trends in exposure, although the overall
baseline level of costs is relatively higher for PM from North Korea and China, re-
flecting the higher impact per unit of PM. Respiratory health costs attributable to
PM from North Korea fell to about half of their 2005 level and costs related to PM
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from China declined slightly from 2013, reflecting emissions reductions associated
with China’s “war on pollution.”(Heo, Ito, and Kotamarthi 2023; Greenstone, He,
Li, et al. 2021; Zheng and Kahn 2017) In contrast, we estimate that health costs
traceable to domestic PM emissions have increased steadily by 3.6% per year, an
effect that can be explained by avoidance behavior: throughout our study period,
domestic PM concentrations remained stable while transboundary PM concentra-
tions declined, which on net increases the per-unit harms of domestic PM due to
reductions in avoidance.

Damages by origin across space We find that the source of PM health damages
varies substantially across space, with provinces nearer to emission sources generally
experiencing relatively more damage from those sources (Figures 1.5D–F). In South
Korea’s southern and western provinces, we find that the largest portion of PM
health damage results from emissions originating in China. PM from China accounts
for as much as 80% of the costs in Jeju (the island province in the far southwest)
and roughly 60% of the costs in other nearby provinces. PM from North Korea is
responsible for relatively more damages in the north of South Korea—accounting for
as much as 25% of the costs in the Seoul Metropolitan Area. Domestic emissions are
responsible for around 28% of damages nationwide, but costs are relatively larger
in South Korea’s southeastern areas, rising to 40% of PM damage, where domestic
heavy industry is concentrated.

1.4 Discussion

Our findings show that distinguishing the health impacts of PM by its origin quali-
tatively changes our assessment of where health damage from PM originates. To the
best of our knowledge, this study is the first to empirically demonstrate real-world
differences in the health impacts of origin-specific contributions to a PM mixture
incident on a single population. This is achieved by distinguishing pollutants from
different origins and jointly estimating differences in their associated health impacts.
Although we apply this approach to transboundary PM in Northeast Asia, it can
be generalized to a broader class of pollution problems. For example, different water
pollutants may similarly affect common metrics used to assess contamination, such
as biochemical oxygen demand,(Jouanneau et al. 2014) but may have distinct per-
unit impacts on a population or ecosystem; likewise, summary indices used for soil
pollution(Kowalska et al. 2018) may exhibit similar patterns. In settings like these,
a key challenge for governance is identifying the linkages between multiple polluters
and associated damages over large distances and long time horizons. The techniques
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Figure 1.5: Origin-specific Damages from PM over Time and Across Space

Notes: (A) Trend of nationwide, population-weighted exposure in South Korea to PM from China
(dashed lines, left y-axis) and annual respiratory health costs associated with PM exposures from
China (solid lines, right y-axis, 95% confidence internal shown). (B)-(C) Same as (A), but for PM
originating from (B) North Korea and (C) South Korea. (D) Province-level variation in the portion
of respiratory health costs in South Korea attributable to anthropogenic PM from China. (E)-(F)
same as (D), but for PM originating in (E) North Korea and (F) South Korea.
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we have developed here can support progress in these areas by providing critical
information on the relative harms attributable to particular actors.

We have also demonstrated the quantitative implications of differentiating the
harm caused by PM from different origins. Our findings suggest that when identifying
sources of health damage, major biases can result from assuming equal per-unit harm,
as is standard in the literature. For example, in our context, this assumption causes
estimates of harm from multiple countries to be incorrect by a factor of two. We
believe our results suggest that this assumption should be assessed in other contexts
as well. In Southeast Asia, for example, transboundary haze is considered one of the
region’s more serious health concerns.(Othman et al. 2014; J. S. H. Lee et al. 2016)
In Sub-Saharan Africa, dust carried by winds from the Sahara is a major contributor
to PM levels, though its effects may be distinct from the effects of PM from, for
example, internal combustion engines.(Heft-Neal et al. 2018; Heft-Neal et al. 2020)
Even within a country, the diversity of regional pollutants can lead to divergent
responses to subcomponents of PM. This issue may be especially relevant for larger
countries, such as the U.S., China, Brazil, and India, where internal interstate air
pollution flows are a growing concern.(DeCicca and Malak 2020; Dedoussi et al. 2020;
Du, Guo, et al. 2020; Chen, Li, et al. 2021) In all of these cases, the approach we
have developed here can be used to empirically test whether pollutants from different
origins exhibit similar or distinct per-unit damages.

Two points are worth noting when interpreting our findings. First, data pre-
sented here should not be considered a complete cost-benefit analysis. The outcome of
interest—health costs associated with outpatient visits due to respiratory illnesses—
is an incomplete measure of total changes in social welfare. For example, defensive
investments—such as the purchase of air purifiers and face masks—are often paid pri-
vately and are not accounted for in our analysis.(Deschenes, Greenstone, and Shapiro
2017) We also do not consider mortality costs, other morbidity costs, or any poten-
tial benefits associated with transboundary PM emissions, such as economic benefits
from PM-emitting industrial activity in China.(Zhang et al. 2017) We hope future
work addresses these limitations.

Second, the magnitude of PM-driven health costs we measure will differ in other
contexts. One reason for this is that our results are specific to South Korea: we report
health effects of PM by origin, but those effects are net of any chemical or physical
changes that occur to PM plumes after they are emitted. For example, because
PM emitted in China must travel for many hours in the atmosphere before reaching
South Korea, larger particles may have been preferentially removed or components of
the emitted PM plume may have been oxidized into less harmful substances, both of
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which would affect resulting health costs. In other words, while we find that PM from
China is more harmful per unit to the South Korean population than PM originating
domestically, this does not necessarily imply that PM originating in China is more
harmful in general. We also expect that, overall, monetized damages from PM will
be larger in other high-income countries for two reasons. First, healthcare costs in
South Korea are some of the lowest among developed countries. For instance, prior
analyses have estimated that in 2020, the average fee for an initial primary care visit
was about $13 (₩16,140) in South Korea while it was about $109 in the U.S.(RIHP
2020) Similarly, the medical fees for hospital childbirth and appendectomy are $1,040
and $2,166 in South Korea, respectively, while the corresponding fees in the U.S. are
$11,200 and $13,020.(RIHP 2021) These differences in cost contribute to total annual
health expenditure per capita of only $2,600 in South Korea, compared to $10,945 in
the U.S.(Chow, Bradley, and Gross 2022) Thus, the costs we report here would almost
certainly be higher if our study population were under an alternative healthcare
system.(Anderson, Hyun, and Lee 2022) Second, the South Korean population is
very sensitive to information about PM levels, such as air quality warnings, and
has already invested heavily in defensive adaptations, such as air filters.(Hahm and
Yoon 2021; Anderson, Hyun, and Lee 2022) Populations that are less responsive to
air quality information or that possess fewer defensive assets would likely experience
larger health damages from any given quantity of PM exposure.

Lastly, our results suggest that institutions responsible for the management of
transboundary pollution may need to consider origin-specific health responses to im-
prove their assignment of damages and/or management of emissions. Since the Trail
Smelter transboundary air pollution dispute was settled in 1941,(Henry, Kim, and
Lee 2012) countries have attempted to control transboundary pollution within the
frameworks of international institutions. The settlement served as the foundation
for Principle 2 of the Rio Declaration, unanimously accepted by all 179 countries
present at inaugural 1992 UN Earth Summit, which states “the polluter should, in
principle, bear the cost of pollution.”(Bratspies and Miller 2006; Rio Declaration on
Environment and Development 1992) Furthermore, several commissions or organiza-
tions have been created: examples include the United Nations Economic Commission
for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution, the
Malé Declaration on Control and Prevention of Air Pollution and Its Likely Trans-
boundary Effects for South Asia, and the Association of Southeast Asian Nations’
Agreement on Transboundary Haze Pollution.(WHO 2021) However, no international
institution has yet recommended the consideration of origin-specific health responses
to pollution when assessing the simultaneous impacts of transboundary and domestic
air pollution. For instance, while the World Health Organization acknowledges the
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possibility that PM from different origins may have different health impacts, it cur-
rently does not offer guidelines to account for origin-specific health responses.(WHO
2021) Our findings suggest that updated guidance and policies that account for these
differences can improve public health.
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The preceding chapter has investigated the divergent responses of public health out-
comes to PM based on their originating locations. The subsequent chapter will delve
into the ramifications of the previous chapter’s findings within the context of applied
microeconometrics.
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Chapter 2

Instrumental Variables and
Heterogeneity in Sources of
Identifying Variations

2.1 Introduction

When using instrumental variables (IV), many studies in applied econometrics have
focused on the conventional requirements for the use of IVs–the first-stage condition
and the exclusion restriction–to get estimates of the causal impacts and extrapolate
those coefficients to counterfactual policy settings. An issue is that the results of IV
regressions could differ considerably depending on which sets of IVs are in use, even
if these IVs are deemed appropriate in terms of those two conventional requirements.
Identifying variations induced by a particular set of IVs can be associated with
certain groups of people or channels that determine the influence of the endogenous
variable on the dependent variable. These groups and channels may have different
characteristics compared to those associated with other IV sets, thus leading to
heterogeneous responses. (Angrist and Krueger 2001; Mogstad and Torgovitsky 2018;
Mogstad, Santos, and Torgovitsky 2018; Dunning 2008) As a result, it is possible that
the IV or two-stage least-square (2SLS) estimates may diverge, even though these
estimates are assumed to represent one ‘causal impact,’ and only depict a part of the
impacts associated with target variations (or policy-relevant variations (PRV)) one
aims to analyze in a counterfactual analysis. However, it is still unknown to what
extent the different sets of identifying variations can result in 2SLS estimates which
are not qualitatively similar to those produced when other sets of IVs are used, in
real-world empirical settings.
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In this paper, we demonstrate the degree to which the regression results can vary
depending on sets of IVs in use, drawing on real-world data sets. We pinpoint the IV
sets utilized to establish the relationship between particulate matter (PM) and health
outcomes as a pertinent example of this phenomenon. More specifically, we analyze
the relationship between particulates less than 10 micrometers in diameter (hereafter
“PM10”) and the respiratory health expenditure per person associated with outpa-
tient visits. We test different sets of widely used IVs that satisfy the conventional
IV conditions but may represent different identifying variations – 1) estimates of the
contribution of distant anthropogenic emissions to PM observed in location of inter-
est, 2) non-anthropogenic contributions, and 3) the changes in wind direction. We
calculate IV or 2SLS regression coefficients for each set of IVs, and compare the re-
sults of extrapolating these estimates to counterfactual policy simulations. By doing
so, we aim to underscore that the use of justifiable IVs may not guarantee a unique
estimate of causal impacts and, therefore, the association between identifying vari-
ations and PRV should be carefully examined when discussing policy implications.
Indeed, our findings show a wide range of coefficients, the largest estimate being over
17 times larger than the smallest one in magnitude, and even the sign of coefficients
was estimated to be negative in some cases.

The analysis of air pollutants, including PM, is well-aligned with the goal of this
study at least in two regards. First, there are some standard sets of IVs we can re-
fer to when replicating IV construction processes. Previous studies on air pollutants
have developed and standardized the use of wind-related information. Usually, wind
direction dummy variables were utilized, interacted with the regional fixed effects,
based on the assumption that the position of primary contributors to the level of
pollution observed in a location of interest is fixed (e.g., on the western side of Michi-
gan or the south-eastern side of San Francisco), and the changes in wind patterns
randomly determine the degree of people’s exposure to air pollutants. (Deryugina et
al. 2019; Carneiro, Cole, and Strobl 2021; Eom et al. 2020; Zheng, Zhang, et al. 2019;
Powdthavee and Oswald 2020; Anderson 2020)

Another way of using wind-related identifying variations is to capture the contri-
bution of distant locations to the level of air pollution observed in an area of interest.
This approach assumes that emissions from distant regions might be less correlated
with unobservable confounders, such as the level of economic activity, compared to
emissions from an area of interest. In these cases, changes in emissions from distant
locations, usually proxied with pollution observations from those regions, are com-
bined with information on wind dynamics. (Lai et al. 2021; Chen, Chen, et al. 2021;
Zheng, Wang, et al. 2019; Fu, Viard, and Zhang 2022; Nam et al. 2022; Heyes and Zhu
2019; Rocha and Sant’Anna 2022; Cheung, He, and Pan 2020; Barwick et al. 2018;
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Bayer, Keohane, and Timmins 2009) While most of these papers used wind direction
dummies, others use a more complicated measure to construct IVs, considering the
wind speed and the wind directions between the source and destination cities. (Bar-
wick et al. 2018) Also, Bayer, Keohane, and Timmins (2009) do not directly harness
wind information, but they utilize a source-receptor matrix created by the Environ-
mental Protection Agency (EPA), which is partially based on backward trajectory
models drawing on historical wind dynamics, to capture the contribution of distant
emissions. A number of studies harnessed information on specific sources of pollution
instead of using PM emissions or observations of remote areas. Examples include the
locations of power plants, (Luechinger 2009, 2014; Chen, Li, et al. 2021; Freeman et
al. 2019) agricultural and wildfires, (He, Liu, and Zhou 2020; Pullabhotla and Souza
2022; Agarwal, Sing, and Yang 2020; Agarwal, Wang, and Yang 2021; Tan Soo 2018)
and sand and dust storms. Yang and Zhang (2018) and Heft-Neal et al. (2020)

Following previous studies, we construct sets of IVs that correspond to these
standard groups of IVs. We test the interaction terms of wind direction category
dummies and district-level fixed effects. Additionally, to gauge the estimates of the
contribution of external PM sources, we draw on information on wind dynamics
combined with an atmospheric model to fully utilize wind-related variations, beyond
utilizing the wind direction dummies. We further break down these external contri-
butions into anthropogenic (from a foreign country – from China – to South Korea
in this study), and non-anthropogenic origins (from desert dust and wildfires) as the
per-unit impacts of PM associated with these origins can be different (Lee, Wilson,
and Hsiang 2023).

The possibility of heterogeneous impacts by identifying variation is the second
reason that the analysis of PM can be a pertinent example for this type of study.
Indeed, there are various channels through which the impact of per-unit PM10 can
differ depending on the types of exogenous variations. Among others, four chan-
nels can be considered. The first channel is the physical and chemical composition.
Although PM10 is generally analyzed as one pollutant, it is basically a mixture of
different constituents. Therefore, the physical and chemical characteristics of PM can
be different by the composition and type of PM, which, in turn, can lead to varying
degrees of its adverse health impacts. (Harrison and Yin 2000; Kelly and Fussell
2012; Strak et al. 2012; Schmid and Stoeger 2016; Lee, Wilson, and Hsiang 2023)

The second channel is that the degree of behavioral responses can differ. For
example, PM from specific sources can be more closely related to visible distance
degradation (Y. J. Kim et al. 2006; Yuan et al. 2006; Lee, Wilson, and Hsiang 2023),
and the public can notice the level of PM more easily, thus taking avoidance or
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defensive behaviors (e.g., wearing masks, using air purifiers, or staying at home)
accordingly.

The third channel is that population subgroups exposed to PM would respond
differently. Continuing with the behavioral responses mentioned above, children are
considered to be more vulnerable to the toxicity of PM compared to adults; (Pope III
and Dockery 1992; Anderson, Thundiyil, and Stolbach 2012) hence, they are more
likely to be guided to undertake appropriate avoidance behavior. (Kim 2021; Neidell
2009a; Anderson, Hyun, and Lee 2022) If changes in PM due to exogenous emissions
from a particular source reduce visibility at a larger degree compared to other sources,
thus inducing the behavioral responses of the more vulnerable group, the estimated
per-unit impacts based on these variations can be different other 2SLS estimates.

The fourth channel is the functional form of the impact of PM, which is poten-
tially nonlinear, combined with different distributional characteristics across sources.
For example, the level of PM from desert dust is more highly correlated with the
extreme level of total PM (e.g., PM over 1,000 µg/m3) while other sources better
represent comparatively lower levels of PM. If the local response of health outcomes
associated with extreme levels of PM is different from that related to milder levels
of PM because of the potential nonlinearity of the response, the 2SLS estimates of
the per-unit impacts of PM would not be the same either.

Considering all those channels, we analyze the relationship between respiratory
health expenditure per person by age group and various types of PM that may
have different physical and chemical characteristics, thus demonstrating the extent
to which these channels mentioned above can be translated into varying degrees of
IV/2SLS results.

This paper contributes to at least three strands of paper. First, our analysis
directly contributes to papers that analyze the impacts of air pollutants with IVs
constructed based on wind dynamics, especially in the field of environmental eco-
nomics. Since the pioneering work of Luechinger (2009) demonstrated how to use
changes in wind patterns to construct IVs, wind-related IVs have been widely used
to analyze changes in various outcomes, including health-related variables, such as
mortality rates, morbidity costs, and hospitalization rates. (Deryugina et al. 2019;
Anderson 2020; Luechinger 2014; Chen, Li, et al. 2021; He, Liu, and Zhou 2020;
Heft-Neal et al. 2020; Yang and Zhang 2018; Rocha and Sant’Anna 2022; Ebenstein,
Frank, and Reingewertz 2015; Cheung, He, and Pan 2020) Other examples of health
outcomes include sleeplessness, (Heyes and Zhu 2019) memory power, (Powdthavee
and Oswald 2020), hypertension risks, (Pullabhotla and Souza 2022) and pregnancy
loss. Xue et al. (2021) The use of wind dynamics to obtain identifying variations was
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not limited to the analysis of health outcomes. Previous studies harnessed changes
in wind patterns to estimate the impacts of air pollutants on the level of happiness,
(Luechinger 2009; Zheng, Wang, et al. 2019) crime rate, (Bondy, Roth, and Sager
2020) test scores, (Carneiro, Cole, and Strobl 2021; Jeong 2021) migration choices,
(Zheng, Zhang, et al. 2019; Chen, Chen, et al. 2021; Lai et al. 2021; Tan Soo 2018)
labor productivity, (Fu, Viard, and Zhang 2022) housing values, (Nam et al. 2022;
Freeman et al. 2019) consumer satisfaction, (Agarwal, Wang, and Yang 2021) and
energy consumption. (Eom et al. 2020; Yi et al. 2020; Agarwal, Sing, and Yang 2020)
We aim to highlight the importance of comparing the identifying variations in use
and the target variations when deriving policy implications, which has not been fully
appreciated in previous studies.

Second, we contribute to a growing literature on analyzing the discrepancy be-
tween the identifying variations induced by IVs in use and PRV. Many research pa-
pers in this strand have focused on settings where the endogenous variable of interest
is a binary indicator, identifying the complier group that determines the local average
treatment effect (LATE) and assessing to what extent LATE can be extrapolated to
the impact of another policy setting. If the target groups of a given policy are differ-
ent from compliers that determine LATE, the issue of a discrepancy between LATE
and a policy-relevant treatment effect (PRTE) can arise. In these cases, Mogstad and
Torgovitsky (2018) and Mogstad, Santos, and Torgovitsky (2018) demonstrated that
researchers could draw inferences about lower and upper bounds of PRTE based on
assumptions about how exogenous variations induced by IVs at hand would interact
with target groups of population. While we do not explicitly distinguish which part
of identifying variations can be used as PRV, our results imply the importance of un-
derstanding the potential discrepancy between identifying variations and PRV as the
‘causal estimates’ in the classical sense were shown to vary substantially depending
on the choice of IVs.

Broadly, our study is built upon papers that delve into the validity of IVs and
the interpretations of 2SLS results. Among them, our paper is most closely related
to Dunning (2008). The author raised the issue of assuming that the effect estimated
based on variations induced by IVs at hand is the same as the impact associated with
the variations that are not related to the IVs, since those impacts might be heteroge-
neous in many cases. One of the examples he provides is the case of Doherty, Gerber,
and Green (2006) who analyzed the impact of income on political attitude and used
lottery winnings as an instrument. Dunning (2008) argues that, to interpret the IV
estimates as causal impacts, the impact of lottery winnings should be considered
homogeneous compared to the impact of increasing other types of income. Theoret-
ically, we generalize this argument to the settings of multiple sources of identifying
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variations. We further introduce the concept of PRV, which is equivalent to PRTE –
the core concept in the second strand of papers, thus creating a bridge between the
two branches of papers.

Other papers in this strand harnessed real-world data sets to test the validity
of IVs that are frequently in use. Our paper does not directly question the valid-
ity of IVs as we treat all the identifying variations as legitimate ones. Instead, we
highlight the potential discrepancy between identifying variations in use, thus calling
for more cautious attention when using IVs, which is aligned with the spirit of this
branch of literature. Zabrocki, Alari, and Benmarhnia (2022) directly questioned the
comparability between wind directions. They demonstrated that the meteorological
factors, such as temperature, humidity, and precipitation, are distributed differently
by wind direction, which they argue signals the different characteristics associated
with each wind direction and necessitates a more rigorous matching algorithm when
using wind direction IVs. Another example is Mellon (2022), who demonstrated that
192 variables used in the previous literature were associated with weather variables.
This intertwined relationship between weather factors and many aspects of society
may potentially invalidate exclusion restrictions when utilizing meteorological factors
as IVs.

2.2 Theoretical Framework

This section describes a parsimonious theoretical framework explaining the IV issue
mentioned above. To illustrate the idea, we utilize the simplest example – the lin-
ear specification – as described elsewhere. (Dunning 2008) Researchers are usually
interested in identifying the coefficient of interest β in the following specification:

yit = βpmit + γxit + eit (2.1)

where y is the dependent variable of interest, such as respiratory morbidity
spending. Note that we assume all variables are normalized so that their means are
zero for simplicity. pm is the independent variable of interest, the level of PM10
in this study, which is potentially endogenous. x represents a confounding factor.
An example of x is the level of economic activities that would impact the health
conditions of the public and as well increase the level of anthropogenic emissions,
i.e., pm ⊥ x. In many empirical settings, not all confounding factors are observable,
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as is likely in the case of the level of economic activities. Therefore, the empirical
specification is reduced to the equation as follows:

yit = β′pmit + e′it (2.2)

When an appropriate measure of x is absent, it is believed that using valid IVs
– ones that are correlated with pm but uncorrelated with x – can help identify the β
without biases. A problem occurs when the impact of PM is heterogeneous by origin
so that the true model is as follows:

yit = βapm ait + βnpm nit + δxit + εit (2.3)

pm a and pm n are PM10 from anthropogenic and non-anthropogenic origins,
respectively. Their impacts are heterogeneous here, hence βa 6= βn. We further assume
pm a⊥ pm b, which is also likely in real-world settings as in the case of anthropogenic
and non-anthropogenic emissions. As x represents economic activities, it is reasonably
assumed to be not systematically correlated with pm n. Therefore, pm n ⊥ x and
pm a 6⊥ x. εit is the idiosyncratic error term. The issue is that the different origins of
PM are difficult to capture in many empirical settings. Even when the decomposition
would be possible, the need for differentiating the origins is not well recognized as
discussed in Lee, Wilson, and Hsiang (2023). As a result, many researchers estimate
Equation 2.2, using the total PM level (pm a + pm n) rather than decomposing
PM by origins.1 In this case, what the estimated coefficient implies depends on
the identifying variations associated with IVs at hand. If those IVs are related to
changes in the level of PM from one source, the estimated coefficient would represent
the impact of PM from the same source accordingly. For example, assume that the
following relationships hold:

pm a 6⊥ z, pm nit = ηzit + uit (2.4)

pmit = ηzit + u′it (2.5)

yit = βIV ˆpmit + ε′it (2.6)

1This case can also be found in other empirical settings, such as the analysis of the impact of
income on political attitudes as shown in Dunning (2008).
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Equation 2.4 shows the true relationship between an IV, z, and PM from two
origins. z is associated with the non-anthropogenic PM, while it is orthogonal to the
anthropogenic PM. Equation 2.4 leads to Equation 2.5, the first stage specification
of 2SLS. Note that pm = pma + pmn, and they are normalized, so the coefficient
of z is η, the same as in Equation 2.4. Equation 2.6 is the second stage regression
specification, where ˆpmit = ηzit. u, u′, and ε′ are idiosyncratic errors with mean
zero. Under these assumptions, it can be easily shown that βiV is the same as βn in
Equation 2.3.

βIV =
Cov( ˆpm, y)

V ar( ˆpm)
=

1

η

Cov(z, y)

V ar(z)
=
βn
η

Cov(z, pm a)

V ar(z)
= βn (2.7)

Even though this IV estimate represents a specific type of variation within
changes in the level of total PM, it can have meaningful policy implications when
the identifying variations are well aligned with the target variations. For example, if
a government is interested in a policy of reducing the number of forest fires, then the
use of wild fire-related IVs in this type of regressions can help draw relevant policy
implications. Further, if the PM impacts are homogeneous across sources of varia-
tions, i.e., β = β1 = β2, the interpretation of the IV coefficients can be generalized
to the total PM reduction, regardless of PM sources.

Problems rise when the target variations are not closely related to the identifying
variations in use, and the impacts are heterogeneous (βa 6= βn) across sources of vari-
ations. For instance, a government might be more interested in the impact of abating
anthropogenic emissions rather than reducing non-anthropogenic emissions that are
more difficult to control. Then, the policy implications can be misleading when using
the estimates based on non-anthropogenic identifying variations to gauge the policy
impact of abating anthropogenic air pollution. Therefore, when reducing the total
level of PM in general is of interest, then the IVs at hand should well represent an
appropriate mixture of both anthropogenic and non-anthropogenic emissions.

The above-mentioned problem can be generalized a larger number of sources of
variations when the true data generating process is as follows:

yit =
N∑
j=1

βjpm jit + ζxit + vit (2.8)

where pm =
∑N

j=1 pm j, v is an unsystematic error term, and N is the number
of identifying variations that should be considered given an empirical setting. A
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larger number of N necessitates the efforts in determining which sets of identifying
variations are induced by IVs at hand and to what extent these sets of variations
are related with the variations of interest that would be targeted in a counterfactual
policy simulation.

2.3 Data and Summary Statistics

Estimates of External Contribution to PM

To test the degree to which coefficients vary depending on IVs, we utilize estimates
of the exogenous contribution of different origins to PM10 (particulates less than
10 micrometers in diameter, henceforth “PM”) observed in South Korea[“ROK”].
The unique geographical characteristic of the country, a peninsular surrounded by
waters but frequently affected by various origins of distant PM emissions, allows the
evaluation of sources of upwind influences according to meteorological circumstances.
(Crawford et al. 2021; Jordan et al. 2020; Choi et al. 2019) For example, when the
wind blows from the west or the north, the level of air quality in ROK is affected
by anthropogenic emissions from China flowing over the Yellow Sea or those from
North Korea [“DPRK”] crossing the border, respectively. Another example is the
impact of Asian dust, which originates from deserts in Inner Mongolia and China
and influences countries in their east, such as ROK, DPRK, and Japan. (Kar and
Takeuchi 2004)

In our earlier work, (Lee, Wilson, and Hsiang 2023) we decompose the origin of
PM by anthropogenic sources, which we further break down into country jurisdic-
tions: ROK, China, North Korea[“DPRK”], and non-anthropogenic sources including
the influences of desert dust, forest fires, and sea salt. More specifically, we first used
a global reanalysis data set (Inness et al. 2019) to isolate the impact of dust and sea
salt on the levels of PM observed in ROK. We then create many backward trajec-
tories starting at different times and altitudes for each PM monitor in South Korea
on each day based on the Hybrid Single-Particle Lagrangian Integrated Trajectory
model (HYSPLIT), one of the standard atmospheric transport models (Draxler and
Hess 1998; Stunder 2004) We combine these trajectories with the distribution map
of emissions due to anthropogenic sources (European Commission, Joint Research
Centre (JRC)/Netherlands Environmental Assessment Agency (PBL) 2019) and fires
(Werf et al. 2017; Randerson et al. 2012; Giglio, Randerson, and Werf 2013), apply-
ing chemical decay and deposition rates, which provides us with estimates of the
contribution of distant human emissions and forest fires to the level of PM observed
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on a monitor on a certain day.2

Figure 2.1 demonstrates the decomposition process and the results. Figure 2.1A
shows a set of backward trajectories created by HYSPLIT, which traces back 96
hours of historical wind dynamics from a single district in Busan, the second most
populous city in ROK, for one month, April 2016. The trajectories of two particular
dates – April 5 and 11 – are colored yellow and pink, respectively. For these two re-
spective dates, Figures 2.1B and 2.1C depict the result of combining the trajectories
with emission estimates. The opacity of each cell on each trajectory describes the
degree to which the emissions from each location contribute to the levels of PM in
Busan. The colors of cells are differentiated according to their jurisdiction. The violin
plots located in the left-bottom corner of Figures 2.1B and 2.1C demonstrate the dis-
tribution of the contribution levels by origin. Figure 2.1D shows the daily variations
in total PM during 2016, and Figure 2.1F depicts the distribution of contribution lev-
els by origin, weighted with the number of population, with various origins colored
differently. Emissions from ROK and China constitute a majority of PM in ROK
throughout the year. However, PM from dust becomes the largest contributor when
Yellow Dust flows over the Yellow Sea, recording extremely high levels of PM above
100 µg/m3. PM associated with forest fires contributes to the total PM10 with a
smaller amount, but its contributions are noticeable during July and August. These
distributional and temporal differences imply that the identifying variations induced
by each IV may also not be the same, potentially resulting in qualitatively dissimilar
results.

Wind Direction and Meteorological Factors

Another set of IVs that we test in this paper is the wind direction indicators in-
teracted with regional dummy variables. We collected information on the hourly
wind direction from monitors managed by the Korea Meteorological Administration
(KMA). For each monitor, the wind direction is recorded in one of 16 directions
or as ‘no wind direction,’ which means no specific wind direction can be detected
due to weak wind speed. We use the dominant wind direction category on a certain
day given a district as a daily representative wind direction of the area. We then
interpolated the missing observations using the nearest-neighbor algorithm.

We found that the level of PM10 is associated with the direction of the wind,
while the magnitude of the relative difference between directions varies by geographic
location. As shown in Figure 2.2, in Seoul, the capital of ROK, the level of PM10

2The method section of our previous work describes further details on the decomposition pro-
cedures. (Lee, Wilson, and Hsiang 2023)
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is greater when the wind blows from the west and southwest compared to the other
directions, especially the east wind. In the case of Gwangju, a metropolitan city
located in the southwest of ROK, the easterly wind is again associated with the
lower degree of PM exposure, with the relative difference being larger as the PM
exposure linked to the westerly wind is nearly as twice as that linked to the easterly
wind. In Ulsan, one of the most industrialized areas in the country, the PM levels
associated with the wind from the east and southeast are greater, as residential
areas and air pollution monitors are located further inland to the northwest, while
industrial complexes are developed in the coastal areas. In all of the example cities,
when the wind direction is not recorded due to lower wind speed, the level of exposure
is considerably large compared to the exposure levels related to 16 wind directions,
potentially due to the fact that air pollution cannot be dispersed easier when the
wind speed is slower.

We observe that changes in wind direction are also associated with the compo-
nents of PM. In Figure 2.3, we incorporated the information on wind direction and
the aforementioned estimates of PM origin decomposition. For ease of displaying the
results, we incorporated slightly ordinal directions into ordinal directions (e.g., NNW
and WNW to NW). In all the sample cities, when the wind direction is not detected,
the contribution of ROK itself is the largest. The westerly winds are more associated
with PM due to desert dust and the Chinese anthropogenic emissions flowing over
the Yellow Sea. Our data shows that geographical adjacency plays a role as cities
near foreign countries are under a higher influence of those countries than cities far
from borders. The contribution of DPRK is larger in general in Seoul than the others,
with the northwestern winds being related to the largest DPRK contribution, and
Gwangju is impacted harder by PM from dust with the westerlies and the Chinese
emissions than Ulsan is.

Other meteorological variables, such as precipitation and temperature, were col-
lected from the database managed by the same agency and used as control variables.
We collected hourly observations of those weather variables and interpolated missing
observations using inverse-distance weighting drawing on the readings of the nearest
five monitors. These variables were then aggregated by day of sample and district.

Medical Expenditure

We combine the estimates of origin decomposition and information on wind direc-
tion with changes in health outcomes. Our health variable of interest is the morbidity
expenditure associated with outpatient visits due to respiratory diseases. South Ko-
rea has a universal healthcare system through which more than 97% of the entire
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population is insured. We were granted access to the medical transactions data of
about 10% sample of insured people, which are only accessible through the data
center managed by the National Health Insurance Service (NHIS). We aggregated
individual-level transactions by date and district of residence and calculated outpa-
tient medical expenditure per person. Our outcome of interest covers all types of
outpatient visits – e.g., visits to emergency, doctor’s offices, and general hospitals.
We focus on respiratory diseases – J-category illnesses according to the International
Classification of Diseases, 10th revision, as the impact of PM on health outcomes
would be most pronounced in respiratory symptoms. To determine the heterogeneous
impacts of PM by age group, we also calculated medical expenditure per person by
three age groups – minors (0−19), adults (20-64), and older adults (65 or more). The
period of analysis spans from 2005 to 2016.

Summary Statistics

Summary statistics of variables are described in Table 2.1 and Table B1. The first
sub-panel of Table 2.1 summarizes our health outcome of interest. The average res-
piratory outpatient expenditure per person is the largest among minors, followed
by older adults. The second sub-panel shows the statistics related to PM and its
constituents. As depicted in Figure 2.1F, PM emissions estimated to have originated
in ROK and China are the first and second largest contributors to PM observed
in ROK. In our decomposition data, we observe that PM due to desert dust is the
third contributor to the total level of PM, however, it becomes the main driver of
extremely high levels of PM. The estimated maximum level of PM from desert dust
is over 950 µg/m3, the case of which coincides with the case of the maximum PM10
level over 1,000 µg/m3. The pollution contribution of DPRK anthropogenic emis-
sions was estimated to be less than 8 percent, which is followed by PMs originating
from forest fires, salt, and other countries’ industrial emissions (e.g., Russia, Taiwan,
Japan, etc.). Lastly, Table B1 shows the ratio of wind direction category given a
province. The ratio of each wind direction group significantly varies by geographical
location. For example, the portion of the ’no-wind-direction’ category ranges from
6.2 (Jeju, an island having stronger wind speeds than the other provinces) to 68.2
(Chungcheongbuk-do, an inland province with weaker wind speeds).

In our analysis, we focus on selected PM constituents, considering the meth-
ods of constructing IVs in previous literature. We analyze three categories of IVs –
1) estimates of the anthropogenic contribution of distant regions, 2) those of non-
anthropogenic contribution, and 3) the wind direction dummies interacted with re-
gion indicators. For the first set, we use the estimates of the Chinese PM, as its
contribution is the largest except for ROK itself. For the second category, we use
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our estimates of PM from desert dust and forest fires. For the last group of IVs, we
interact the wind directions with district dummy variables.

2.4 Empirical Analysis

Comparison of Fitted Values

We first compare the fitted values and the residuals obtained from using each set of
IVs based on the following specification:

PMit = IV it · β1 +X1it · γ1 + θ1it + φ1t + δ1i + εit (2.9)

where PMit is the total level of PM, IVit is the set of IVs in use,Xit is the weather
control variables. We include an extensive set of fixed effects following Deryugina et
al. (2019): θit is the interaction of province dummies and month fixed effects, φ1t

represents time fixed effects – year by month fixed effects, the day of the week, and
holidays, and δ1i controls the spatial – district – fixed effects. εit is an error term
assumed to be distributed normal.

Based on Equation 2.9, we first obtain the fitted values of PM, ˆPM . Figure 2.4
compares these fitted values across the total level of PM10 based on a district in
Busan, a metropolitan city located in the southeast of ROK. Compared to the fitted
values associated with distant human emissions (PM from China), forest fires, and
wind direction dummies, identifying variations induced by desert dust are shown
to capture the higher level of PM10 better. On the other hand, PM from China
shows a better performance in capturing very low levels of PM. Forest fires and wind
dummies are showing similar performances, as the patterns of fitted values depicted
in the lower panel of the figure. Figure 2.5 compares them focusing on year 2016 to
present which parts of temporal variations are captured by each set of IVs. Compared
to other sets of IVs, the desert dust was able to capture the huge increase in total
PM10 in the late spring season.

Table 2.2 compares the results of the first-stage regressions. The adjusted R2

associated with desert dust is greater than that of other sets of IVs since it works
better to capture the extreme levels of PM. The regression coefficients are expected
to be around one, but they were estimated to be statistically significantly lower than
one in the case of distant human emissions and forest fires or larger than one in the
case of desert dust. This is partially due to the fact that the various fixed effects are
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also correlated with the identifying variations and the total level of PM10, resulting
in those coefficients being different from one.

2SLS Regression Results

We run the reduced form and the second stage of regressions as follows:

Spendingit = IV it · β2 +X2it · γ2 + θ2it + φ2t + δ2i + εit (2.10)

Spendingit = ˆPM it · β3 +X3it · γ3 + θ3it + φ3t + δ3i + ε′it (2.11)

where Spendingit is the healthcare expenditure due to respiratory illnesses per
person associated with outpatient visits, and ˆPM is the fitted values of PM from
Equation 2.9. While the meanings of other variables are the same, the subscripts 2
and 3 indicate that these equations are different from Equation 2.9.

The first panel of Table 2.3 presents the reduced form results. We found that
the reduced-form estimates show a varying degree of magnitudes, even the signs of
coefficients being sometimes different. The IV estimates based on forest fires show co-
efficients consistently statistically significant except for the older-adult group. Their
magnitudes were the largest compared to the cases of other sets of IVs, and the
coefficient for the minors group is about 40 times larger than the coefficient based
on distant human emissions. On the other hand, the signs of the coefficients asso-
ciated with desert dust were estimated to be negative, and all the results were not
statistically significant at the 10% level. The use of distant human emissions, PM
originating from China, resulted in regression coefficients that are only statistically
significant for the elderly group at 10% level. These reduced-form results align with
the heterogeneous responses by PM origin highlighted in our previous work. (Lee,
Wilson, and Hsiang 2023)

The bottom panel of Table 2.3 shows the coefficients amplified according to the
first-stage results in the three columns in the middle. This panel further demonstrates
the results based on the interaction terms of wind direction dummies and district-level
fixed effects in the last column. The 2SLS coefficients were estimated to be all negative
and statistically insignificant. Stark differences are observed compared to the case
of forest fires, even though the adjusted R-squared value and the fitted value graph
were shown to be similar. The differences are more pronounced when comparing the
columns of forest fires and distant human emissions in the total population group,
as the magnitude of coefficients is over 200 times larger in the fourth column.
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The variability in IV estimates leads to huge differences in a counterfactual
policy simulation. Table 2.4 shows to what extent our health outcome of interest
– the expenditure due to respiratory outpatient visits – would change for the total
population in ROK when the level of PM10 is mitigated by 10 µg/m3 on average,
throughout one year. The mitigation simulation results vary substantially, as possibly
inferred from the previous tables. When a government project the impact of the 10-
unit mitigation of the total PM10 based on the results associated with forest fire IV,
the nearly two-million USD decrease in healthcare expenditure would not be realized
unless the 10-unit decrease only aims at the PM emitted from forest fires.

2.5 Conclusion

In this paper, we demonstrated the degree to which the regression results can vary
depending on sets of IVs in use, drawing on real-world data sets. We test different
sets of widely used IVs that satisfy the conventional IV conditions but may represent
different identifying variations. We calculate IV or 2SLS regression coefficients for
each set of IVs, and compare the results of extrapolating these estimates to counter-
factual policy simulations. Indeed, our findings show a wide range of coefficients, the
largest estimate being 200 times larger than the smallest one in magnitude, and even
the sign of coefficients was estimated to be negative in some cases. These findings
are our greatest contribution to previous literature as there has not yet been studies
showing the variability of 2SLS results depending on the choice of particular IVs,
based on the real-world data sets and the detailed estimates of the various sources
of variations.

The variability itself may not be an obstacle to the applied econometricians who
intend to utilize IVs. If the homogeneous responses across various sources of variations
can be justified, policy implications can be drawn regarding the potential changes
in the total level of an endogenous variable of interest. Also, even if heterogeneous
responses are reasonably assumed, one can determine whether the target variations
of a counterfactual simulation are well connected to the identifying variations at
hand, thus justifying the extrapolation of IV/2SLS estimates to the simulation.



CHAPTER 2. IV DEPENDENCE ON SOURCES OF VARIATIONS 36

Figure 2.1: Source Decomposition Process and Results (Reprinted from Lee, Wilson,
and Hsiang 2023)



CHAPTER 2. IV DEPENDENCE ON SOURCES OF VARIATIONS 37

China

North 
 Korea

South 
 Korea

Japan

Russia

Gwangju

Seoul

Ulsan

A

0
20
40
60

0
20
40
60

N
NNE

NE

ENE

E

ESE

SE

SSE
S

SSW

SW

WSW

W

WNW

NW

NNW

C

SeoulB

0
20
40
60

0
20
40
60

N
NNE

NE

ENE

E

ESE

SE

SSE
S

SSW

SW

WSW

W

WNW

NW

NNW

C

GwangjuC

0
20
40
60

0
20
40
60

N
NNE

NE

ENE

E

ESE

SE

SSE
S

SSW

SW

WSW

W

WNW

NW

NNW

C

UlsanD

Figure 2.2: Population-weighted Exposure to PM10 by Wind Direction in Selected
Cities
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Table 2.1: Summary Statistics

Mean St. Dev. Min Max
Health Outcome

Respiratory
Expenditure
(USD per capita)

0.569 0.203 0.012 2.498

Age Groups

Minors (0−19) 0.760 0.291 0.015 3.935
Adults (20−64) 0.365 0.140 0.005 1.266
Older Adults (≥65) 0.612 0.269 0 3.502

PM Variables

PM10 (µg/m3) 51.251 30.513 2.030 1,022.278

Anthropogenic
PM Sources

42.206 21.252 0.507 195.110

ROK 23.208 17.297 0 164.348
China 13.893 14.507 0 170.951
DPRK 4.023 7.164 0 103.587
Other Countries 1.082 3.183 0 74.843

Non-Anthropogenic
PM Sources

9.034 20.446 0 952.813

Desert Dust 6.285 19.865 0 951.445
Forest Fires 1.663 4.404 0 103.686
Salt 1.086 1.849 0 78.950

Control Variables

Temperature (°C) 13.029 9.970 −19.100 33.200
Precipitation (mm) 3.507 13.331 0 449.500

Notes: The number of observations is 600,119. All the variables are aggregated daily by
district. The number of districts is 137, and the period of analysis is 2005−2016. Some of the
districts have observations fewer than 12 years since air quality monitors were installed more
recently in those districts. We excluded districts with fewer than three-year observations.
For the Korean Won (KRW) and US Dollar (USD) conversion, the exchange rate of 1175
KRW:1 USD was used.
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Table 2.2: First-stage Result Comparison

Instrumental Variables

Distant
Human

Emissions

Desert
Dust

Forest
Fires

Wind
Direction
x Region

First-Stage
Dependent: PM10 (µg/m3)

All Groups(a) 0.893
(0.032)

1.049
(0.020)

0.584
(0.060)

−(b)

Adjusted R2 0.385 0.677 0.271 0.284

No. of Obs. 600,119

Notes: (a) The results for each of the sub-population groups – minors,
adults, and older adults – are in the appendix. (b) 17 wind-related indica-
tors (16 directions and a no-wind dummy) interacted with district dummies
were included. District, year-by-month, and province-by-month fixed effects
are controlled. Linear and quadratic precipitation and temperature terms
are included but not reported. Observations are weighted with district-level
population. Standard errors are noted with parentheses. Errors are clustered
by day of sample and district.
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Table 2.3: Results of Respiratory Health Outcome Analysis

Instrumental Variables

OLS(a)

Benchmark

Distant
Human

Emissions

Desert
Dust

Forest
Fires

Wind
Direction
x Region

Reduced Form

All Groups 0.006
(0.004)

0.0004
(0.009)

−0.006
(0.005)

0.063
(0.020)

−(b)

Minors (0−19) 0.005
(0.006)

−0.002
(0.013)

−0.007
(0.007)

0.091
(0.032)

−(b)

Adults (20−64) 0.004
(0.003)

0.002
(0.006)

−0.004
(0.004)

0.034
(0.012)

−(b)

Older Adults (≥65) 0.009
(0.005)

0.020
(0.011)

−0.003
(0.008)

0.019
(0.021)

−(b)

2SLS

All Groups 0.006
(0.004)

0.0005
(0.001)

−0.006
(0.005)

0.104
(0.035)

−0.017
(0.016)

Minors (0−19) 0.005
(0.006)

−0.002
(0.015)

−0.006
(0.007)

0.150
(0.057)

−0.014
(0.023)

Adults (20−64) 0.004
(0.003)

0.003
(0.007)

−0.004
(0.004)

0.057
(0.019)

−0.014
(0.009)

Older Adults (≥65) 0.009
(0.005)

0.023
(0.013)

−0.003
(0.008)

0.031
(0.034)

−0.020
(0.016)

No. of Obs. 598,392

Notes: The unit of the dependent variable is US Cent (1 USD = 1,175 KRW, therefore
1 US Cent = 11.75 KRW).(a) For the OLS benchmark, the results using the reduced
form and those using 2SLS are the same. (b) 9 wind-related indicators (8 directions
and a no-wind dummy) interacted with province dummies were included. District,
year-by-month, and province-by-month fixed effects are controlled. Linear precipita-
tion and temperature terms are included but not reported. Observations are weighted
with district-level population. Standard errors are noted with parentheses. Errors are
clustered by day of sample and district.
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Table 2.4: Comparison of the Estimated Impacts of 10-unit PM Mitigation Efforts

Instrumental Variables

OLS
Benchmark

Distant
Human

Emissions

Desert
Dust

Forest
Fires

Wind
Direction
x Region

Million USD

All Groups −10.6 −0.9 +10.5(a) −194.0(b) +10

Minors (0−19) −1.8 +0.8 +2.3 −53.8 −0.9

Adults (20−64) −4.8 −3.5 +5.2 −70.5 +8.8

Older Adults (≥65) −2.4 −5.9 0.7 −8 +2.3

Notes: (a) A plus sign implies that the 10-unit abatement of the annual average
PM level would lead to deterioration of health outcomes: the increase of respiratory
illness-related spending. (b) The results that are statistically significant at least at
10% are in bold.
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Returning to the core objective of alleviating public health burdens, the next chapter
delves into the role of information disclosure, specifically focusing on air quality
warnings.
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Chapter 3

Bounds, Benefits, and Bad Air:
Welfare Impacts of Pollution
Alerts

3.1 Introduction

Air quality alert systems, which notify individuals of unhealthy pollution levels, are
widespread throughout the world and cover over 1.7 billion people. For example,
the United States (US) Environmental Protection Agency (EPA) manages the Air
Quality Alert Program in the New England Area, and California air quality districts
each run their own alert systems. In the United Kingdom, the Department for Envi-
ronment, Food, and Rural Affairs issues pollution alerts. In Beijing, environmental
authorities enacted a four-tier warning policy in 2013, expanded nationwide in 2014,
and the South Korean government in 2015 launched a new air quality alert system
(AQAS) as well (see Appendix Table C1 for additional examples). These programs
encourage the public to wear particulate-filtering masks, stay indoors, and reduce
strenuous activities to mitigate health damages from air pollution.

Despite their increasing popularity, there has been little empirical analysis of
the welfare impacts of these programs. In this work, we exploit the structure of
the South Korean AQAS to estimate a regression discontinuity (RD) design using
pollution measurements as the running variable. Combining economic theory with
our estimates, we establish a lower bound on the health-related net benefits of the
AQAS and an upper bound on the operating costs. This yields lower bounds on net
benefits and benefit-cost ratios. Importantly, our estimates are net of the welfare loss
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due to avoidance behavior.

Our analysis contributes directly to two strands of literature. The first strand fo-
cuses on the health impacts of air-quality alerts. In seminal work, Neidell (2009a) ex-
ploited high-frequency time-series variation to demonstrate that minors with asthma
benefited from ozone alerts via a decrease in Los Angeles inpatient hospital admis-
sions due to breathing difficulties. Janke (2014) generalized these results to England
and further established an effect on emergency department (ED) admissions for mi-
nors. H. Chen et al. (2018) found marginally significant reductions in asthma-related
ED visits in Toronto due to alerts.1 Mullins and Bharadwaj (2015) and Aguilar-
Gomez (2020) demonstrated that when combined with driving restrictions, environ-
mental warnings reduced elderly mortality in Chile and ED visits in Mexico City,
respectively.

The second emerging strand examines the effects of air pollution information
on welfare measures. Ito and Zhang (2020) found that the willingness to pay for air
purifiers in China increased following the 2013 disclosure of air-quality information by
the US Embassy in Beijing. Barwick et al. (Conditionally accepted) demonstrated
that avoidance behaviors, such as air purifier sales and the timing of credit-card
purchases, changed in response to the Chinese government providing real-time air
quality monitoring data to the public. Gao, Song, and Timmins (2021) exploited the
disclosure of PM2.5 data in China to estimate the impact of relaxing information
constraints on hedonic valuation.

More generally, our paper contributes to a broad literature exploring the value of
information provision to the public. Previous studies found that public information
provision can affect behavior in many contexts, including restaurant hygiene (Jin and
Leslie 2003), sales taxes (Chetty, Looney, and Kroft 2009), calorie labeling (Bollinger,
Leslie, and Sorensen 2011), restaurant quality (Anderson and Magruder 2012), and
toxic releases (Mastromonaco 2015). Further, targeting of information may affect
choices in a variety of contexts as well, from school choice to health insurance to
electricity consumption (Hastings and Weinstein 2008; Kling et al. 2012; Ito 2014;
Jessoe and Rapson 2014). It also relates to work on establishing bounds for welfare
analysis in situations with limited information (Manski et al. 1997; Finkelstein and
Hendren 2020; Kang and Vasserman 2021).

Finally, our paper is relevant to a series of studies investigating potential efforts
to manipulate pollution information for political or economic gain. Several stud-

1A related body of research explores who responds to air quality alerts but does not estimate
effects on health outcomes (Noonan 2014; Ward and Beatty 2016; Saberian, Heyes, and Rivers
2017).
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ies found evidence that particulate matter (PM) measurements cluster right below
politically-significant thresholds, compliance with which is important for government
officials’ promotions (Andrews 2008; Y. Chen et al. 2012; Ghanem and Zhang 2014;
Zou 2021). Recent work demonstrated that reported PM concentrations increased
following the automation of pollution monitoring (Greenstone, He, Jia, et al. 2021).
Though our analysis does not focus on the manipulation of air pollution observations,
our results demonstrate the potential welfare consequences of such information dis-
tortion.

We make several contributions to the literature. First, our work represents, to
the best of our knowledge, the first welfare analysis of these widespread alert sys-
tems (as opposed to general air-quality monitoring). This contribution is possible
because we analyze health expenditures, rather than raw visit counts or deaths, and
we apply a theoretical framework that, combined with our novel health expenditure
data, allows us to estimate sharp lower bounds on benefits that are net of the costs
of avoidance behavior.2 Second, while previous work on the benefits of alert sys-
tems exploited time-series or panel variation, we implement a RD design to study
health-related outcomes.3 Finally, while most analyses of AQASs have occurred in
developed countries, the pollution levels in our study region are more representative
of developing and middle-income countries.4

3.2 Background and Data

South Korea is an advanced economy that nevertheless suffers from high levels of
particulate pollution. According to the Organization for Economic Cooperation and

2In much of the existing literature on air quality alerts, the avoidance behavior is the object
of interest, but its welfare impact cannot be quantified. Barwick et al. (Conditionally accepted)
addresses avoidance behavior costs by estimating two specific types of avoidance behavior: air
purifier purchases and outdoor shopping trips. These behaviors are less relevant to air quality alerts
since air purifiers are durable goods, and many of the benefits of alerts accrue to minors.

3The one exception we are aware of is H. Chen et al. (2018), which implements a RD to study
health outcomes. Their study appears underpowered, however, yielding a single significant t-statistic
of exactly 2.0 across 12 outcomes tested, with no visual evidence of a break for any health outcome.
Ito and Zhang (2020) exploits a spatial pollution discontinuity at the Huai River, but the study’s
effect of information disclosure is identified using a post-2013 indicator. Neidell (2009a), Neidell
(2010), and Liu, He, and Lau (2018) estimate RD designs in the context of avoidance behavior.

4The only AQAS studies in developing and middle-income countries that we are aware of are
Mullins and Bharadwaj (2015), Aguilar-Gomez (2020), and Rivera (2021), all of which establish
impacts of driving restrictions but cannot reject the null hypothesis that alerts in isolation have no
effects.
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Development (OECD), South Korea’s level of PM2.5 (particulates less than 2.5 mi-
crometers in diameter) is the highest among all OECD countries. The average PM2.5
concentration level recorded in 2015 was over 30 µg/m3, while the mean of other
member countries was under 15 µg/m3 (Organization for Economic Cooperation
and Development 2018). In response, the South Korean government launched a new
air quality alert system in 2015. The primary objective of the alert system is to re-
duce negative health effects by providing citizens with the necessary information to
take precautionary measures.

Municipal governments of major cities issue the alerts. When the level of PM2.5
or PM10 exceeds a certain threshold in an alert region within a city, the local govern-
ment announces a PM warning for the region (Figure 3.1). Citizens are encouraged
to curtail outdoor activities, wear face masks, drinking water, and use public trans-
portation (Table 3.1). Authorities disseminate public health warnings through mass
media (e.g., radio, television, and online news articles), public road signs, and wireless
services (text messages and mobile applications).

Given the widespread dissemination, most people are likely informed when air
quality warnings are issued. To determine whether citizens are more cognizant of air
quality when alerts are issued, we analyzed internet search keywords in NAVER, a
search engine accounting for 75% of all web searches in South Korea. The keywords
include three phrases: (i) air pollution alert; (ii) particulate matter; and (iii) air
quality. Figure 3.2 indicates that searches for these keywords increased dramatically
during the days on which alerts were issued.

PM alerts are triggered based on hourly monitor readings of PM2.5 and PM10.
When the new alert system began, both the 24-hour average and the 2-hour minimum
values served as measurement criteria for issuing the alerts. After about a year, the
Ministry of Environment (MOE) settled on the 2-hour minimum value as the sole
standard. Advisories were then issued when the hourly average PM2.5 (PM10) in an
alert region was over 90 µg/m3 (150 µg/m3) for two consecutive hours (Table 3.1).
These advisories remained in effect until the 1-hour level of PM2.5 (PM10) dropped
below 50 µg/m3 (100 µg/m3).5 We retrieved the alert information from the website of
the Korea Environment Corporation (KECO). There were a total of 412 region-days

5When the level of PM is more extreme, governments issue a second-level warning. The PM
thresholds are 180 µg/m3 and 300 µg/m3 for PM2.5 and PM10, respectively. Our identification
strategy utilizes observations around the threshold of the first-level warnings, as second-level warn-
ings are rare. Therefore, we use terms such as advisory, alert, and warning interchangeably to
indicate the first-level warning. Also note that in July 2018, the PM2.5 thresholds for issuance and
cancellation were lowered to 75 µg/m3 and 35 µg/m3, respectively. This date lies outside of our
analytic data set.
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or 2,562 district-days with alerts during 2016–2018, the coverage period of our health
spending data.6 While alerts are relatively infrequent in this context (e.g., occurring
on approximately 5% of potential district-days), the PM levels that trigger alerts are
not uncommon in other Asian countries. For example, PM2.5 levels in Delhi exceeded
the alert threshold on approximately 80% of days during our sample (Sharma and
Mauzerall 2022), and PM2.5 levels in Beijing exceeded the threshold on the majority
of days during our sample.

Our health spending data cover daily per-capita spending by district in 2016
and 2017.7 The dataset comes from the National Health Insurance Service (NHIS)
of South Korea, which covers the country’s entire population (all individuals must
join). Our data represent a 10% random sample of insurance subscribers in seven
major cities: Seoul, Busan, Daegu, Daejeon, Incheon, Gwangju, and Ulsan. Their
combined population is 23 million, or 44% of the population of South Korea. Hence,
our dataset includes about 2.3 million individuals. We requested separate spending
measures by disease type (cardiovascular disease and respiratory disease) and age
group (minors: 0−19; adults: 20−64; and older adults: 65 and older).8 We focused on
respiratory and cardiovascular diseases because air pollution should directly affect
the respiratory system, and previous work has established high-frequency temporal
associations between PM and cardiovascular morbidity and mortality (Pope and
Dockery 1999). The health spending data are summarized in Table 3.2.

Our data cover most healthcare expenditures, including outpatient care (e.g.,
clinics and doctors’ offices), hospitals (inpatient and emergency department visits),
public health centers, and most prescription medications. Three features are note-
worthy. First, while the data include inpatient hospital visits (i.e., overnight stays),
there is often a temporal gap of a week or more between the onset of symptoms
and an inpatient admission, as an inpatient hospitalization requires several rounds
of referrals for all but the most acute cases. As the temporal unit of our data is daily,
we exclude spending on inpatient stays from our analysis to reduce the noise in our
dependent variable.

Second, we further exclude outpatient visits to tertiary hospitals in our primary
analysis. In the South Korean healthcare system, outpatient visits to primary (clin-

6Our dataset includes 73 districts across 14 alert regions.
7Due to privacy concerns, the dataset can be used only in selected data centers in South Korea.

Furthermore, NHIS does not allow the sharing or publication of any type of processed data, except
for summary statistics, figures, and regression results.

8Cardiovascular diseases are those in the “I” category according to the International Classi-
fication of Diseases, 10th revision (ICD-10). Respiratory diseases are those in the “J” category
according to ICD-10.
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ics) and secondary facilities (hospitals and general hospitals) typically do not require
referrals, but visits to tertiary general hospitals do (see Appendix Table C3 for defi-
nitions of these institutions). The referral process leads to a delay between the onset
of symptoms and actual outpatient visits, and our main dependent variables accord-
ingly exclude tertiary visit healthcare costs. Nevertheless, we test the robustness of
our results to this exclusion by running regressions that include tertiary outpatient
visits. The results are qualitatively similar to the main results, with coefficients and
standard errors of generally comparable magnitudes.

Third, our health expenditure data consist of the sum of private copayments and
public coverage. Therefore, our regression coefficients can be interpreted as changes in
total health expenditures in the covered categories. It is worth noting that the out-of-
pocket payment ratio ranges from 10% to 50%, implying substantial coverage by the
social health care system (see Appendix Table C4 for details on insurance coverage
by treatment location). Overall, the South Korean healthcare system subsidized 70%
of the total healthcare spending on outpatient visits. We thus interpret 70% of the
spending to represent external costs from the patient’s perspective.

The final primary data set in our analysis is a credit card spending data set
provided by one of the largest credit card companies in South Korea, whose market
share is approximately 25%. We use these data to look for evidence of avoidance
behavior. The data include daily per capita credit card consumption expenditures
of members at the district of residence level.9 The consumption data sets cover the
same spatial boundaries and seven metropolitan cities as the healthcare expenditure
data, but the coverage dates (2017−2018) differ. We test the RD validity assumptions
— e.g. treatment discontinuity, control continuity, and manipulation of the running
variable — separately for this different coverage period.

Our credit card data set covers a range of spending categories. Examples include
larger retailers (e.g. department stores, large-sized supermarkets, and electrical appli-
ance stores) and smaller retailers (e.g. grocery stores, bakeries, butcher shops, dollar
stores, convenience stores, clothing stores, cosmetics shops, and eyewear shops). En-
tertainment, sports, and leisure activities, such as transactions in movie theaters, art
exhibitions, museums, karaoke, bowling alleys, fitness centers, swimming pools, golf
courses, and indoor golf driving ranges, are also included in our credit card expendi-
ture data set. In addition, our data set includes expenditures in restaurants and bars.

9Due to privacy concerns, our consumption data sets are not accessible on an individual member
basis. Instead, they are aggregated to the district-by-day level, across multiple spending categories,
and then divided by the number of active members in each district, thus providing information on
the card consumption expenditures per person.
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In the data extraction procedure, we requested the exclusion of selected categories
— specifically, cars, furniture, and spending on educational institutions. Spending in
these categories is high variance and seems unlikely to be related to daily variation in
pollution information, potentially increasing noise in the dependent variable. Spend-
ing on medical expenditures was also excluded to avoid duplication between the card
spending data and the medical expenditure data; the national health insurance data
set provides a more complete accounting of health expenditures.

In addition to the credit card expenditure data aggregated across different con-
sumption categories, we obtained information on expenditures per member for four
selected consumption categories: restaurants and bars, fashion outlets, and travel ac-
commodations. The first category, restaurants and bars, represents one of the most
frequently occurring daily consumption activities and accounts for a significant por-
tion of daily card transactions (almost 30%). In contrast, spending on fashion outlets
represents less frequent consumption activities. However, fashion stores in South Ko-
rea are typically situated in outdoor marketplaces, and we thus expect them to be
more susceptible to the impact of air quality information disclosure. Conversely, we
anticipate the impact on the travel and accommodations spending category to be
minimal since most of these expenditures are booked in advance and difficult to
change. The third panel in Table 3.2 presents summary statistics of card expendi-
tures per member for the different categories.

While credit and debit cards are not the only forms of payment, in South Korea
they account for a majority of expenditure-weighted transactions. According to the
Bank of Korea, in 2019 credit cards accounted for 53.8% of expenditures, followed
by cash (17.4%), debit cards (15.3%), bank transfers (8.0%), and mobile payments
(3.8%). Credit and debit cards thus comprise approximately 70% of payments during
our sample period.

3.3 Theoretical Framework

We develop a parsimonious model of an individual’s avoidance behavior to motivate
and interpret our empirical analysis. Consider a representative individual i choosing
an activity level a. The individual gains utility from activities that involve pollution
exposure and loses utility from getting sick. Her utility function is:

Ui(ai, pm) = bi(ai)− spvti ps(ai, pm) (3.1)

where bi(a) represents the benefits of activity level a, spvti represents the private
costs (pecuniary and non-pecuniary) of getting sick, and ps(a, pm) represents the
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probability of getting sick given activity level a and PM level pm. One could imagine
more general utility functions — e.g. pm could affect b as well — but to motivate
our bounding exercise this model suffices.

To interpret our RD estimand, note that it compares days on which the PM
level is just above the alert threshold (pm ↓ c) to those on which it is just below the
alert threshold (pm ↑ c). Thus, pm itself remains approximately constant near the
threshold c (confirmed in Appendix Table C5), but perceived PM, denoted as pmi,
changes.10 Specify individual beliefs as

pmi =

{
pmavg if pm = pm ↑ c
pmhi if pm = pm ↓ c

where pmavg represents average PM conditional on being below the threshold c
and pmhi represents average PM conditional on being above the threshold c. For our
bounding exercise we assume that pmhi ≈ c, or at least that |pmhi−c| << |pmavg−c|.
This representation is a reasonable approximation of our actual PM data.11 More
generally, the approximation only needs to be sufficiently accurate that the alerts
do not cause individuals to behave less optimally than they would absent the alert’s
information.12

Individuals maximize utility by choosing activity levels ai = argmaxa Ui(a, pmi).
Then

Ui =

{
Ui(ai(pm

avg), c) if pm = pm ↑ c
Ui(ai(pm

hi), c) if pm = pm ↓ c

An individual’s private change in utility from PM crossing the alert threshold is

10In our actual data, the hourly PM level is distinct from the running variable, as the latter
depends on the maximum 2-hour minimum PM level. For notational simplicity, we treat PM as
the running variable in the theoretical model, but in Appendix C.1 we show that our conclusions
generalize to a model in which the running variable is a function of PM.

11For example, in our PM2.5 data, pmavg = 22.7, pmhi = 66.7, and c = 57.5. Thus pmhi is much
closer to c than pmavg is. In this context c represents the average PM2.5 level when the running
variable is close to the threshold, which differs from the running variable itself (see previous note).

12Of course, if individuals already have accurate information on PM levels (e.g. via real-time
monitoring), then alerts will have no impact on behavior, and our research design should estimate
null effects. In that case we would correctly conclude that the alerts generate no benefits.
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∆ Ui = Ui(ai(pm
hi), c)− Ui(ai(pmavg), c) = (3.2)

[bi(ai(pm
hi))− bi(ai(pmavg))]− spvti [ps(ai(pm

hi), c)− ps(ai(pmavg), c)].

Naturally ∆ Ui ≥ 0 since pmhi ≈ c and ai = argmaxa Ui(a, pmi) — i.e. more
accurate PM information can only (weakly) increase the individual’s utility — but
accurately quantifying ∆ Ui is challenging even with good data on spvti . This challenge
arises because it is difficult to estimate bi(ai), the benefits of different activities (and
thus the costs of avoidance behaviors). In particular, ai may be high dimensional,
and researchers rarely have data on all, or even most, elements of ai.

To motivate our welfare-bounding exercise, consider the public net benefits of
the individual’s choices:

Wi = Ui(ai, pm) + Ei. (3.3)

Wi, the social welfare accruing from i’s choices, equals private welfare Ui plus
the externalities associated with i’s choices, Ei. Then

∆ Wi = ∆ Ui + ∆ Ei. (3.4)

Since ∆ Ui ≥ 0, ∆ Ei represents a lower bound on the social net benefits of
crossing the alert threshold. By aggregating ∆ Ei across individuals and alert days,
we can estimate a lower bound on the gross social benefits of the alert system.
Combined with data on the costs of the system, we can estimate lower bounds on
benefit-cost ratios. Importantly, as established in Equation (3.2), these bounds are
already net of any individual costs of avoidance behavior, e.g. choosing to avoid
outdoor events or keeping a vulnerable child home from school.

One caveat for this result is that if authorities or event organizers engage in mass
avoidance behavior by canceling outdoor events in response to alerts, then ∆ Ui need
not be weakly positive, as some individuals would then be engaging in involuntary
avoidance behavior. In our specific context, this issue does not arise, as we estimate
effects of “Level 1” alerts that correspond to modestly elevated pollution levels and
do not trigger large-scale cancellations.13 In other contexts, however, researchers

13We conducted extensive searches for any instances of pollution-related events or school cancel-
lations. The small number of examples of event cancellations that we found, such as several baseball
games in 2018 and 2021, were in response to PM levels many times higher than the first-level alert
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applying this framework would need to confirm that involuntary avoidance behavior
is not enforced, or that enforcement of such behavior does not result in negative
private net benefits (i.e., on average ∆ Ui is non-negative).

For the bound to be nontrivial, the researcher must have data on meaningful
externalities associated with individuals’ choices. In our context, health expenditures
— the majority (about 70%) of which are reimbursed by public funds — represent
such an externality.14

3.4 Regression discontinuity design

We employ a RD design to estimate the causal impact of PM alerts on health spend-
ing. The RD focuses on the point where the running variable (RV) exceeds a threshold
at which the probability of treatment changes discontinuously. The identifying as-
sumption is that the only difference between observations right above and below
the threshold is the assignment of the treatment; other factors affecting the out-
come are continuous around the threshold. It then follows that we can attribute the
discontinuous change of the outcome variable to the treatment assignment.

In this paper, the issuance of advisories corresponds to the treatment, with
health spending as the outcome. The running variable is the daily maximum of 2-
hour minimum PM values. For example, in the case of PM2.5, an advisory occurs
when the PM2.5 level is over 90 µg/m3 for two consecutive hours. Hence, when
the 2-hour minimum exceeds 90 µg/m3, the alert triggers. We calculate the daily
maximum of these hourly 2-hour minimum values and code the running variable at
the daily level (for a given region).

As discussed in Section 3.2, there are two pollutants that trigger the issuance
of alerts, PM2.5 and PM10. Following Cattaneo et al. (2020), we calculate the daily
maximum of 2-hour minimum values for PM2.5 and PM10, normalize them by their
respective thresholds (90 µg/m3 and 150 µg/m3), and take the larger one as the
assignment variable for the RD. By doing so, we construct one normalized assignment

threshold that we study (Yoo 2021). Even at the second-level alert threshold, schools may only
receive, at most, non-compulsory recommendations for closure (Ahn and Dabee 2018).

14Our bounds are conservative in that they ignore the marginal cost of public funds (Dahlby
2008). Incorporating a positive marginal cost of public funds would increase the estimated net
benefits.
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variable whose treatment threshold is zero (Table 3.1).15 This running variable is
similar to the minimum distance to the nearest threshold elucidated in Cattaneo
et al. (2020).

The running variable does not perfectly determine alert issuance for (at least)
two reasons. First, municipal governments also consider weather conditions when
determining whether to announce an alert. Thus alerts are not issued on some days
on which the normalized running variable exceeds zero. Second, the thresholds for
issuance and cancellation are different. For example, suppose that an alert was issued
at 2 PM Monday, when the 2-hour minimum PM2.5 exceeded 90 µg/m3. If the hourly
PM2.5 level remains at 60 µg/m3 until the end of Tuesday, the alert remains in effect
through Tuesday, as the PM2.5 cancellation threshold is 50 µg/m3. Nevertheless, the
normalized running variable for Tuesday is −30. For these reasons, we estimate a
fuzzy RD (FRD) design.16

After setting a bandwidth h around the threshold, we retain observations with
running-variable values falling within h units of the threshold. We run the following
first-stage and reduced-form regressions:

Alertit = γ11(P̃M it ≥ 0)+γ2P̃M it+γ3P̃M it1(P̃M it ≥ 0)+X1itθ1+X2tφ1+δ1i+uit
(3.5)

Yit = β11(P̃M it ≥ 0) + β2P̃M it + β3P̃M it1(P̃M it ≥ 0) +X1itθ2 +X2tφ2 + δ2i + εit
(3.6)

Yit represents health expenditures per person or credit card expenditures per
person in district i on day t, P̃M it is the normalized running variable (described
above), and Alertit is an indicator variable for an air-quality alert. X1it includes
temperature and precipitation controls, X2t includes year-month, day-of-week, and
holiday fixed effects, and δi are district fixed effects.17 While these controls are not
strictly necessary for identification, they substantially improve the precision of our

15For additional details on calculating the running variable, see Appendix C.2.
16A concern may arise regarding the discrepancy between the thresholds of issuance and cancel-

lation. To address this concern, we also present FRD results without these cases, and these results
are comparable to our baseline FRD estimates (see Appendix Table C10).

17In the case of credit card expenditure, we added a before-holiday fixed effect that indicates
whether day t is a day before a holiday since consumption increases substantially not only on
holidays but also before the holidays.
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regressions (Cellini, Ferreira, and Rothstein 2010).18 We population weight our re-
gressions to make the estimates more representative and further improve precision,19

and we cluster the standard errors by running variable value or date to account for
spatial correlation in alerts and health spending across districts.20 When discussing
t-statistics, to be conservative we default to whichever of the two standard errors is
larger.

To estimate the FRD and recover the local average treatment effect (LATE), we
divide β̂1 by γ̂1, yielding:

τ̂FRD =
β̂1

γ̂1

(3.7)

In practice we estimate τ̂FRD using two-stage least squares (2SLS). Equations
(3.6) and (3.7) estimate the contemporaneous effect of an alert on health expendi-
tures. The panel nature of our data, however, introduces additional considerations
that are absent from most cross-sectional RDs. First, the asymmetry in the thresh-
olds for issuance and cancellation ensures that many air quality alerts last for two
to three consecutive days.21 One could thus conceptualize the treatment as a single
48- to 72-hour alert. Second, the possibility of dynamic effects represents a potential
violation of the stable unit treatment value assumption (SUTVA) — the treatment
on day t could have spillover effects on the outcome on day t+ 1.

We address this complication in two ways. First, as a robustness check, we trim
the estimation sample to exclude days following a day with an air quality alert. This
estimation sample yields similar results. Second, while the contemporaneous regres-
sions (Equations (3.6) and (3.7)) appear to generate estimates that are internally
valid (based on the results referenced above), they may yield an incomplete picture
of the total effect of an air quality alert. In particular, they do not capture any
dynamic effects of an alert that persist beyond one day. In principle, these effects
could shift the net impact in either direction. For example, if avoidance behavior

18The adjusted R2 in our main outcome regressions is in the range of 0.8 to 0.9 (Tables 3.4 and
3.5), implying that including the controls reduces the standard errors by a factor of 2 to 3.

19For the card expenditure analysis we weight by the number of members.
20Unlike typical panel data sets, serial correlation over time has little impact in our context,

because the independent variable of interest, γ11(P̃M it ≥ 0), exhibits very modest time-series cor-
relation. Clustering by district (to account for time-series correlation) generates much smaller stan-
dard errors, and two-way clustering by district and date generates standard errors that are similar
in size to clustering by date.

21Out of the total 134 region-by-alert episodes, 45 episodes were single-day alerts, and the re-
maining 89 warnings were issued for two days or more in a row.
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yields health benefits beyond 24 hours, the dynamic effects could increase the net
impact. Alternatively, if individuals intertemporally substitute activities, resulting in
higher-than-average activity on the day after an alert, then accounting for dynamic
effects could decrease the net impact.

To capture dynamic effects, we estimate an alternative fuzzy RD that specifies
the dependent variable as a rolling 3-day sum of health expenditures. Specifically,
we estimate the reduced-form regression as:

Y +
it = β11(P̃M it ≥ 0) +β2P̃M it +β3P̃M it1(P̃M it ≥ 0) +X1itθ2 +X2tφ2 + δ2i + εit

(3.8)

Y +
it represents health expenditures or credit card expenditures in district i on

days t, t + 1, and t + 2 (i.e. Y +
it =

∑2
s=0 Yit+s). Other variables remain as defined

before, and we continue to population weight the regression. Since the treatment is
effectively a multi-day alert (given the asymmetry of the activation and cancellation
thresholds), we also estimate a specification in which we omit treated days whose
previous dates were also treated with an air quality alert. For example, if an alert
was issued on January 1 and 2, January 2 is omitted to avoid “double counting” the
alert’s impact when conducting policy simulations in Section 3.6.22

Before presenting the estimates, we note two details about the FRD regressions.
First, FRD estimates may be sensitive to the polynomial degree of the running vari-
able. For robustness, we also check results using a specification with a quadratic
in the running variable.23 Second, the FRD results may be sensitive to the choice
of bandwidth, h. To find a default bandwidth for our analysis, we follow Calonico,
Cattaneo, and Titiunik (2014, 2015) (CCT). The CCT criteria yield optimal bias-
corrected bandwidths ranging from 17 to 22 for our dataset (Appendix Table C6),
so we chose h = 20 as the default bandwidth. To demonstrate robustness, however,
we report results from bandwidth choices of 16, 20, and 24.

22As an alternative strategy, we considered supplementing Equation (3.6) with lagged values of
the treatment, similar to the “one-step” estimator in Cellini, Ferreira, and Rothstein (2010). This
specification, however, would require us to trim the sample on multiple dimensions. For example,
with two lagged values of treatment, we would need to trim the estimation sample based on the
contemporaneous running variable and one- and two-day lags of the running variable. In practice,
this would reduce our estimation sample to an impractical degree. Given that almost all treatment
episodes consist of two consecutive days of alerts, we chose to instead sum the outcome over several
days and regard each episode of two-day treatments as a single treatment. This strategy also avoids
the need to consider different sequences of treatments (Lechner 2009; Anderson 2017).

23Following the arguments in Gelman and Imbens (2019), we do not try higher-order polynomials
in the running variable.
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3.5 Results

Contemporaneous effects

Figure 3.3 plots treatment probability by the running variable using a binned scatter
plot.24 The figure demonstrates a large discontinuity in the probability of treatment
around the RD threshold. Table 3.3 presents corresponding first-stage estimates of
Equation (3.5) for three bandwidth choices (16, 20, and 24). Crossing the RD thresh-
old corresponds to an approximate 60 percentage point increase in the probability of
an alert. This discontinuity is robust to the choice of bandwidth and highly significant
in all cases, with F -statistics between 25 and 50. There is no significant “first-stage”
effect on average PM levels (Appendix Table C5), however, which is consistent with
the lack of any binding alert-associated restrictions on activity or emissions. We thus
interpret our RD health effects as resulting purely from avoidance behavior rather
than from reductions in ambient pollution levels.

Figure 3.4 plots health expenditures, converted to spending per capita in US
cents, by the running variable using a binned scatter plot. The left panels present
respiratory-illness expenditures, while the right panels present cardiovascular-illness
expenditures. From top to bottom, the panels present expenditures for minors (under
age 20), adults (age 20-64), and older adults (over age 64).

The top-left panel reveals a sharp decline in respiratory expenditures for minors
at the RD threshold, and a notable, though less pronounced, decline in these expen-
ditures for adults. In contrast, there is less evidence of a decline for older adults. The
top-right panel reveals no change in cardiovascular expenditures for minors, likely
because cardiovascular diagnoses are rare for this age group. The middle-right and
bottom-right panels, however, reveal drops in cardiovascular-illness expenditures for
adults and older adults at the RD threshold.

Tables 3.4 and 3.5 present corresponding reduced-form and 2SLS estimates of
Equations (3.6) and (3.7) for the preferred bandwidth of h = 20. Table 3.4 reports
results for respiratory disease, while Table 3.5 reports results for cardiovascular dis-
ease. In each table, the top panel presents reduced-form estimates (i.e. estimates
corresponding to Figure 3.4), and the bottom panel presents 2SLS estimates. Each

24For the 2017−2018 data, Figure C3 presents an analogous plot, which shows a clearer discon-
tinuity around the threshold.
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column corresponds to a different age group: minors, adults, older adults, and all
ages.

The tables confirm the patterns observed in Figure 3.4. In Table 3.4, an alert
induces a highly significant decrease in respiratory-illness expenditures for minors
(t = −3.2). The point estimate implies a reduction of 15 cents per capita, or ap-
proximately 30% percent of mean expenditures below the RD threshold.25 For older
age groups the change in respiratory-illness expenditures is insignificant at the RD
threshold. Nevertheless, the overall reduction in respiratory-illness expenditures at
the threshold is statistically significant (t = −2.4).

In Table 3.5, an alert induces significant decreases in cardiovascular-illness ex-
penditures for adults (age 20-64) and older adults (t = −2.9 and t = −2.5 re-
spectively). The point estimates imply reductions of 2.8 and 9.6 cents per capita
respectively, or about 23% and 14% of mean expenditures below the RD threshold.
For minors, there is no significant change in cardiovascular-illness expenditures at
the RD threshold. The overall reduction in cardiovascular-illness expenditures at the
threshold is statistically significant (t = −3.0), however.

Figure 3.5 presents an outcome discontinuity plot for credit card spending data
that is analogous to Figure 3.4. The top-left panel plots expenditures aggregated
across all spending categories. The top-right, bottom-left, and bottom-right panels
represent restaurant and bar, fashion store, and travel accommodation expenditures
respectively. There is some evidence of a drop in total credit card expenditures at
the discontinuity threshold. The change in restaurant and bar expenditures is not as
pronounced at the threshold, but there is a sharp decline in fashion outlet expendi-
tures at the threshold. This drop is consistent with the outdoor and discretionary
nature fashion outlet expenditures. In contrast, the travel accommodations category
does not display any discontinuous decrease at the threshold. This null effect is con-
sistent with the significant cost of canceling these expenditures on short notice and
also suggests that alert days are not unusual in an ex ante sense.

Table 3.8 reports the results of FRD regressions with credit card expenditures
as the outcome. These results confirm the patterns visible in Figure 3.5. We observe
significant negative impacts of air pollution alerts on restaurant and fashion outlet
expenditures. The overall impact of an alert on expenditures is −25.7 US cents per
person (−3.8%); however, the point estimate does not reach statistical significance.26

25When calculating percentage effects, we take the mean of the dependent variable when the
running variable lies between −20 and 0.

26While it does not reach significance, the point estimate is of the same magnitude as the result
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The effect on restaurant expenditures, reported in Column (2), is −12.4 US cents per
person (−6.6%, t = −2.6). An alert decreases fashion store expenditures by −3.0 US
cents per person (−11.3%, t = −3.1). Travel accommodation expenditures increase
by a statistically insignificant 0.9 US cents per person (3.6%, t = 0.8).

Dynamic effects

Air pollution alerts may have lagged effects — either because an alert lasts more
than one day or because avoidance behavior yields dividends over multiple days —
further decreasing healthcare costs beyond the dates of alert issuance. It is also pos-
sible that the healthcare costs rebound, attenuating the magnitude of the decreases
demonstrated in Tables 3.4 and 3.5. To incorporate lagged effects into our analy-
sis of social net benefits, we estimate FRD regressions with a rolling sum of 3-day
healthcare expenditures as the dependent variable (Equation (3.8)).

Table 3.6 reports results from estimating Equation (3.8). The coefficient magni-
tudes are larger than the corresponding coefficients presented in Tables 3.4 and 3.5,
by factors ranging from 2.5 to 2.8 when focusing on all age groups and the first row
of each sub-panel. The larger magnitudes can be partially explained by the nature
of the South Korean AQAS, where many alerts last for at least one day beyond the
initial date of issuance. Indeed, 80 of 134 unique alerts were issued for more than
one day, and the average number of days per alert is approximately 1.87. Never-
theless, this figure cannot fully explain the differences in the magnitudes mentioned
above, which hints at potential lagged decreases in healthcare costs even after an
alert expires.

To avoid double counting benefits when we conduct policy simulations, the es-
timation sample for the second row in each panel of Table 3.6 omits alert days on
which the previous day was covered by an alert.27 In general, the coefficients decrease
in size; nevertheless, they are still approximately comparable in overall magnitude.
Compared to the results in the first rows, the overall effects decrease by 8% to 19%.
Compared to estimates of contemporaneous effects, the coefficients are 2.2 or 2.5
times larger — figures above 1.87, or the average number of days per alert.

in Barwick et al. (Conditionally accepted), which finds that, following monitoring programs, a
doubling of air pollution reduces credit card transactions by three percentage points.

27Consider an alert that lasts for two consecutive days. If both days from the alert are within
the analysis bandwidth (defined by PM levels), the 3-day impacts of both alert days would be
counted separately even though there is a two-day overlap between the two 3-day sums of healthcare
spending. By dropping alert days that immediately follow an alert day, we filter out any secondary
sets of overlapping 3-day sums for that particular alert.
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Lagged effects are also possible with credit card expenditures, since consumers
may intertemporally substitute their consumption activities. Table 3.9 presents re-
sults from estimating Equation (3.8) using credit card spending. The first row reports
coefficients larger than those in Table 3.8, but no coefficient reaches statistical signif-
icance. In contrast to the health expenditure analysis, estimating coefficients while
eliminating alert days that immediately follow another alert day yields different point
estimates — the coefficient magnitudes decrease to near zero for restaurant and fash-
ion outlet expenditures. Overall these results suggest that consumers may engage in
some intertemporal substitution, which would reduce the net impact of air pollution
alerts on consumption activities.28

Robustness

We first test the robustness of our results by incorporating health expenditures from
outpatient visits to tertiary hospitals. The medical referral process, which is required
when visiting a tertiary hospital, generates a gap between the onset of symptoms
and actual outpatient visits. We excluded those visits in our main analysis to clearly
identify the immediate impacts of the AQAS, and we do not expect their inclusion to
qualitatively change our main results since these expenditures comprise less than 15%
of the total outpatient expenditures. Tables C7 and C8 confirm that our estimates
are robust to the inclusion of tertiary outpatient visits. The coefficients and standard
errors are of similar magnitudes to the analogous estimates in Tables 3.4 and 3.5.

Table 3.7 estimates a variety of alternative specifications to demonstrate the ro-
bustness of our results to specification choices. The most important modeling choice
in most RD studies is the bandwidth for the local linear regressions. The first three
rows in each table present reduced-form estimates utilizing bandwidths of 16, 20 (our
baseline specification), and 24.29 In the top panel of Table 3.7, the magnitude and
significance of respiratory-illness effects for minors and all age groups remain stable
across all bandwidths. In the bottom panel, cardiovascular-illness effects for both
adult groups and all ages are statistically significant for the smaller bandwidth, in
line with the main results, but they become insignificant for the larger bandwidth.

28In the context of our model, intertemporal substitution in consumption activities reduces the
sensitivity of b(a) to a, if a represents activity for a single day. Alternatively, if consumption activities
feature perfect intertemporal substitution over a several day period, then a could represent activity
summed over several days.

292SLS estimates are identical to the reduced-form estimates after rescaling coefficients and
standard errors by 1.6, as the first-stage estimates are insensitive to bandwidth choice.
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We note, however, that the motivation for choosing a larger bandwidth is to trade
off increased bias for a smaller standard error; in this context the standard error
actually rises with the bandwidth, likely due to the increased mean-squared error
associated with higher pollution levels (see Figure 3.4), suggesting little gain from
using a larger bandwidth. Appendix Table C9 reports analogous results for the dy-
namic effects specification; for both disease categories, the pooled age-group results
remain statistically significant at all three bandwidths (16, 20, and 24).

Another concern in our context is the timing of advisories. In some instances,
alerts may be triggered early in the morning but cancelled by 9 am; in others they
may not be triggered until the evening. In either case, we would not expect the alerts
to have meaningful effects on behavior. The last row in both panels of Table 3.7 filters
out days with alerts cancelled before 9 am or triggered after 7 pm. As expected, the
coefficients become slightly larger in magnitude and remain statistically significant.

In Appendix C.3, we report a wide range of alternative specifications and robust-
ness checks for the main results. Briefly, we find no visual evidence of manipulation
of the running variable near the RD threshold (Appendix Figures C1 and C2) or a
discontinuity in the control variables (Appendix Figure C6).30 Removing alert days
on which the air quality warning was issued too late or too early yields similar results,
as does accounting for the asymmetry in thresholds for alert issuance and cancella-
tion (Appendix Table C10). We demonstrate that controlling for a quadratic of the
running variable, a quadratic of the temperature variable, or the air quality variables
(PM10, PM2.5, PM10 and PM2.5, and the Air Quality Index (AQI)) does not change
our main conclusions (Appendix Tables C11 and C12). Our findings are also robust
to using alternative sets of time fixed effects (Appendix Table C11) or clustering at
different levels (Appendix Table C13). To test for spatial spillovers of alerts, we esti-
mate the FRD regressions with the largest running variable observed in an adjacent
alert region; Appendix Table C14 finds no effect of an adjacent region’s alert on the
focal region’s health expenditures. Finally, we perform falsification tests by changing
the RD threshold by 20, 30, or 50 units from the true threshold; Appendix Table
C14 demonstrates no statistically significant results at these placebo thresholds.

We conduct similar robustness checks for the credit card expenditure results.
The first three rows of Table 3.10 present coefficients and standard errors with dif-

30We also conducted the statistical manipulation test based on a local polynomial density esti-
mation technique proposed by (Cattaneo, Jansson, and Ma 2018) and does not reject the hypothesis
that the density of the score does not change discontinuously at the cutoff point. For 2016−2017, the
p-values are 0.509, 0.554, and 0.690 for the bandwidths 16, 20, and 24, respectively. For 2017−2018,
the corresponding p-values are 0.248, 0.257, and 0.206, respectively.
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ferent bandwidths. The restaurant and fashion outlet results remain significant for
all bandwidths, though they decrease in magnitude for wider bandwidths. The fourth
row shows the results estimated with data that filter out days with advisories issued
too late or canceled too early. The estimates are similar to Table 3.8. The fifth row
uses only data from before the change in the threshold for PM2.5 advisories at the
end of June 2018. Again the estimates are similar to Table 3.8.

3.6 Discussion

We highlight several of our empirical findings. First, our results provide new insights
on responses across broader disease categories. Previous studies on air pollution alerts
have primarily analyzed respiratory symptoms — Neidell (2009a) found effects on
asthma-related hospitalizations, and Janke (2014) found effects on respiratory emer-
gency admissions.31 Our findings suggest that effects are not limited to respiratory
diagnoses, as cardiovascular disease spending of adults also decreased significantly.
At the same time, our credit-card spending results corroborate previous findings
that alerts can induce avoidance behavior for certain activities (Neidell 2009a; Janke
2014).

Second, our results yield novel findings of alerts’ effects for adults. Neidell 2009a
and Janke 2014 found statistically significant impacts of air quality warnings for
the youngest ages.32 In contrast, our results reveal that the benefits of air quality
warnings may not be restricted to minors. While minors’ health spending was re-
duced by 12.6 million USD, prime-age and older adults also demonstrated significant
health expenditure decreases due to alerts, amounting to 20.4 million and 8 million
USD, respectively. Our results imply that alerts can motivate all age groups to take
appropriate avoidance measures, reducing the negative impacts of air pollution.

Our results represent effects of avoidance behavior, but there are two mechanisms
that could underlie these effects. First, avoidance behavior could improve health, re-
ducing expenditures. Second, avoidance behavior could directly reduce healthcare
visits if individuals avoid leaving their residences. In theory both mechanisms gen-
erate positive benefits via reductions in expenditures, but rescheduling of visits or

31H. Chen et al. (2018) also find weak evidence of an effect on asthma-related visits.
32Mullins and Bharadwaj (2015) and Aguilar-Gomez (2020) both find effects of pollution warn-

ings on elderly health outcomes. In their contexts, however, the warnings also reduce pollution
levels, suggesting a direct effect of pollution on health. Our study estimates the pure effect of alerts
on health expenditures, as measured PM does not change at the RD threshold. Furthermore, our
welfare analysis framework would not apply to policies which reduce emissions, as these policies
entail additional implicit net costs.
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longer-term health complications could attenuate the benefits if the second mecha-
nism drives the results.

In practice, the evidence suggests that the first mechanism seems likely to be the
primary one. First, we do find evidence of general avoidance behavior in the credit-
card spending data — individuals appear to avoid outdoor shopping experiences
and, to a lesser extent, dining away from home. This implies that they are not solely
avoiding healthcare visits. Second, the multi-day dynamic effects on health expendi-
tures are considerably larger than the contemporaneous effects. For example, if we
study only alert episodes with a single alert day, we find 3-day dynamic effects that
are 2.8 times larger than contemporaneous effects for youth respiratory expenditures
and 6.0 times larger for elderly cardiovascular expenditures. If postponed healthcare
visits were the primary mechanism, we would expect the 3-day dynamic effects to
be weakly smaller than the contemporaneous effects, as both visit rescheduling and
complications from avoided visits would attenuate the first-day effects.

To calculate total benefits from decreased healthcare expenditures, we first tab-
ulate the number of people exposed to the alerts in the seven major South Korean
cities. As the FRD estimates measure the reduction in health spending per capita,
we multiply the FRD estimates by the population affected by the alerts. Based on
the coefficients of spending in the both disease categories across all ages, which sum
to 9.1 cents per capita, the total reduction in health expenditures during 2016−2017
in seven major cities was approximately 41 million USD. This estimate considers
only the alerts’ contemporaneous effects. Incorporating dynamic effects into the cal-
culation increases the reduction by about one third, for a total reduction in health
expenditures of approximately 52 million USD.33

Combined with our theoretical framework, the empirical findings presented above
can provide a lower bound on the gross benefits from the AQAS. Specifically, our
framework implies that the reduction in public healthcare expenditures represents a
lower bound on the gross benefits of the AQAS. Our health expenditure data contain
the sum of private copayments and public coverage, with an approximate ratio of
7:3. Thus, approximately 70% of the FRD coefficients represents a reduction in pub-
lic expenditures. Applying this share to the total expenditure reductions computed
above yields lower bounds on gross benefits that amount to 18.4 million USD (respi-
ratory) and 10.2 million USD (cardiovascular) respectively. Figure 3.6 presents lower

33For this calculation we must assume that the benefits of alerts do not decrease as the pollu-
tion level rises above the RD threshold, as our RD estimates are local to the RD threshold. This
assumption seems plausible, however, as health damages must weakly increase with pollution, so
the benefits of avoidance behavior likely increase as well.
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bounds on gross benefits by age group, with non-elderly adults realizing the largest
gross benefits. Benefits using estimates from the dynamic specification (Table 3.6)
are somewhat larger than those using estimates from the contemporaneous specifica-
tion (Tables 3.4 and 3.5) (24.5 million USD for respiratory and 12.2 million USD for
cardiovascular), as the former captures a larger change in health expenditures than
the latter.

To quantify AQAS net benefits and benefit-cost ratios, we collected reports on
environmental expenditures from the websites of the seven major cities’ municipal
governments. The cost of managing the alert system in 2017 was estimated at 2
million USD. To be conservative we include a wide range of expenditures in this es-
timate, from the price of sending alerts via text messages to the maintenance cost of
the air pollution monitors.34 As we could not obtain complete expenditure informa-
tion for 2016, we assume that costs would be similar to 2017, yielding a total cost of
4 million USD in 2016−2017.35 The cost is considerably lower than the total health
benefit calculated above, 28.6 million USD, yielding an approximate benefit:cost ra-
tio of 7.1:1 and a net benefit of 24.6 million USD for 2016−2017. Incorporating the
dynamic effects further increases the net benefits and the benefit:cost ratio to 32.7
million USD and 9.2:1, respectively. 36

We also explore the potential welfare gains from expanding the alert system’s
covered range. For this analysis we consider two scenarios. In the first scenario, we
assume that advisories are issued on all days on which the running variable exceeds
zero (i.e. the fuzzy RD becomes a sharp RD). In the second scenario, we assume
that the government tightens the advisory criterion for PM2.5 from 90 µg/m3 to 75
µg/m3 during our analysis period (2016−2017). This corresponds to an actual policy
the government enacted starting July 2018. In both scenarios we assume that the
magnitudes of the alerts’ effects remain similar to our FRD estimates.37,38

34Appendix Tables C15 and C16 list the expenditure items and the sum of these expenditures
by metropolitan city, respectively. See Appendix C.2 for additional details.

35Government expenditures may vary year-to-year. We collected similar information for 2018
and found that total 2018 expenditures were approximately 2.8 million USD.

36Utilizing the 2018 expenditures as the reference cost leads to the total costs of 5.6 million USD.
The corresponding net benefit is about 23 million USD, with a benefit:cost ratio of approximately
5.1:1. When considering dynamic effects, the total net benefit is 31.1 million USD, and the associated
benefit:cost ratio is 6.6:1.

37Concerns may arise regarding “alert fatigue” in these simulations, as the number of days with
alert issuance necessarily increases. It is worth noting, however, that the number of treated days
remains modest even in those scenarios. The rates of alert district-days are 2.67%, 2.81%, and 4.57%
in the baseline scenario, Scenario A, and Scenario B, respectively. We thus assume that alert fatigue
does not become a serious concern in these simulations.

38A related concern is that non-advisory days on which the running variable exceeds zero (“non-
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We find that expanding the alert system’s coverage could yield significant bene-
fits. Figure 3.7 presents net benefits for the baseline scenario and the two alternative
scenarios. Issuing alerts whenever the RD threshold is exceeded would have reduced
health expenditures by an additional 5.7 million USD (Scenario A) during our sam-
ple period, bringing the total reduction to 42.4 million USD (right panel). Lowering
the threshold for alert issuance from 90 µg/m3 to 75 µg/m3 (for PM2.5) would have
reduced total health expenditures by 76.5 million USD (Scenario B) during our sam-
ple period (right panel), or a 109% increase from the baseline policy. Notably, this
corresponds to the current alert criteria, implemented in July 2018. In all scenarios
the benefits greatly exceed the costs, indicated by the solid or dashed horizontal lines
for comparison.

3.7 Conclusion

Combining our RD estimates with a theoretical framework, we find lower bounds
on the benefits of the South Korean air pollution alert system that greatly exceed
the costs of operating the system. Given the insignificant changes in average PM
levels at the RD threshold, we interpret our results as a “pure” effect of avoidance
behavior, rather than a combined effect of avoidance behavior and reduced ambient
pollution levels. Our results thus stand in contrast to those from some recent work,
which found effects only in contexts in which alerts were combined with policies to
reduce ambient pollution levels (Mullins and Bharadwaj 2015; Aguilar-Gomez 2020).
Our theoretical framework is likely to prove applicable in other settings in which
individuals endogenously respond to information provision but there are substantial
externalities. For example, one might bound the welfare benefits of restaurant hygiene
grade cards using the reduction in insurance-covered hospitalization costs (Jin and
Leslie 2003) or the benefits of electricity usage information using the reduction in
environmental damages (Jessoe and Rapson 2014).

Our study also highlights that manipulation of air pollution information for
economic and political gains may be costly. If pollution alerts are not issued due to

compliant” days) systematically differ from advisory days on which the running variable exceeds
zero (“compliant” days). Indeed, as shown in Table 3.1, weather conditions influence alert issuance.
We thus compared precipitation and temperature across non-compliant and compliant days falling
within the running variable interval of [0, 40]. Average precipitation and temperature on non-
compliant days were 0.65 mm and 3.121 C, respectively, with standard deviations of 5.12 mm
and 2.24 C. Average precipitation and temperature on compliant days were 1.215 mm and 7.618
C, respectively, with standard deviations of 6.12 mm and 3.79 C. We assume that these modest
meteorological differences would not yield large differences in the alerts’ impacts.



CHAPTER 3. AIR QUALITY ALERTS’ BENEFITS 68

manipulation, the public may not engage in welfare-enhancing avoidance behaviors.
Despite the alerts’ benefits, governments may have incentives to distort air pollution
information if they worry about temporary economic declines from decreased outdoor
activities (Min 2019). Furthermore, local government officials may have incentives
to manipulate air pollution levels for more favorable evaluations (Andrews 2008; Y.
Chen et al. 2012; Ghanem and Zhang 2014; Zou 2021). Our findings imply that these
distortions can reduce public health and generate additional healthcare expenditures.

A primary limitation of our study is that the results apply specifically to South
Korean metropolitan areas. While these areas are economically important in them-
selves, with a combined population of over 23 million, our estimates may not general-
ize to other countries. Nevertheless, there are good reasons to believe that our main
qualitative finding — an AQAS can generate meaningful welfare gains — applies
to other contexts. First, previous studies have found significant reductions in some
types of healthcare utilization due to air-quality alerts. For example, Neidell (2009a)
found that alert-induced avoidance behavior decreased Los Angeles asthma hospi-
talizations between 12 and 60 percent, and Janke (2014) found that even alerts for
“moderate” pollution levels reduced asthma admissions by 8 percent in England. Fur-
thermore, South Korean healthcare prices are remarkably low by developed-country
standards. For example, relative to South Korea, 2016 per capita health expenditures
(PPP-adjusted) were 60 percent higher in the United Kingdom, 77 percent higher in
France, 113 percent higher in Sweden, and 270 percent higher in the United States
(Lorenzoni and Koechlin 2017). Thus, even if avoidance behavior or high pollution
levels are less prevalent in other countries than in South Korea, overall impacts on
health expenditures may still be of similar magnitude.
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Figure 3.1: Alert Clusters for Seven Major Cities in South Korea

Notes: Panels A through G depict the alert clusters in Busan, Daejeon, Daegu, Gwangju, Incheon,
Seoul, and Ulsan respectively. Different colors (in a given city) represent different alert clusters.
Border lines separate districts in each major city area.
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Figure 3.2: Alert counts and keyword search results related to air quality information

Notes: The red series represents the daily count of air quality alerts, and the blue series represents
searches for “air pollution alert”, “particulate matter”, or “air quality” on NAVER. The maximum
value of daily keyword search counts is set to 100.
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Notes: Each point represents the population-weighted average of observations in a given
bin, the width of which is five. The y-axis indicates the average probability of a particulate
matter advisory. The x -axis indicates the value of the running variable (a threshold-
normalized function of PM).

Figure 3.3: Treatment Discontinuity
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Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is five. The y-axis indicates the per capita level of residualized health expenditures, in US
cents (11.5 KRW = 0.01 USD). The residualization was performed with respect to day-of-week, year-
by-month, holiday, and district fixed effects. The x -axis indicates the value of the running variable (a
threshold-normalized function of PM). The period of the analysis is 2016−2017.

Figure 3.4: Outcome Discontinuity - Health Spending



CHAPTER 3. AIR QUALITY ALERTS’ BENEFITS 73

Figure 3.5: Outcome Discontinuity - Credit Card Spending

Notes: Each point represents the number-of-membership-weighted average of observations in a given
bin, the width of which is five. The y-axis indicates the per capita level of residualized credit card
expenditure, in US cents (11.5 KRW = 0.01 USD). The residualization was performed with respect
to day-of-week, year-by-month, holiday, one-day-before-holiday, and district fixed effects. The x -axis
indicates the value of the running variable (a threshold-normalized function of PM). The period of
the analysis is 2017−2018.
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Figure 3.6: Potential Health Benefits by Age Group

Notes: The left (right) panel plots lower bounds on gross benefits by age groups using
estimates from Tables 3.4 and 3.5 (Table 3.6). To bound gross benefits we scale the table
coefficients by the average share of health expenditures that are publicly covered (70%).
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Figure 3.7: Cost-Benefit Comparison and Potential Health Benefits

Notes: The left (right) panel plots lower bounds on gross benefits by scenario using es-
timates from Tables 3.4 and 3.5 (Table 3.6). To bound gross benefits we scale the table
coefficients by the average share of health expenditures that are publicly covered (70%).
“Baseline” represents the policy during the sample period, “Scenario A” represents a policy
that triggers an alert whenever the running variable crosses the relevant threshold, and
“Scenario B” represents a policy that lowers the PM2.5 threshold to the value adopted in
July 2018. The solid (dashed) line represents the total system maintenance cost for the
analytic period (2016−2017) using 2018 (2017) as the reference year for costs.
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Table 3.1: Thresholds and Guidelines of South Korean PM Advisories

PM Advisory Thresholds

PM10 PM2.5

Issuance Over 150 µg/m3

for 2 hours
Over 90 (75)† µg/m3

for 2 hours

Cancellation Under 100 µg/m3

for 1 hour
Under 50 (35)† µg/m3

for 1 hour

Target Groups Guidelines

General
Population

· Stay indoors and reduce outdoor activities

· Wear hygiene masks when you go outside

· Reduce emissions (e.g. use public transportation)

· Avoid roadways and construction sites

Children
& Teenagers

· Reduce or forbid outdoor classes.

· Replace outdoor activities with indoor activities.

· Enhance the hygiene management of dining facil-

ities

The Elderly
· Enhance the hygiene management of dining facil-
ities

†The numbers in the parentheses indicate the thresholds that were changed after June
28, 2018.
Source: AirKorea, Korea Environment Cooperation
https://www.airkorea.or.kr/, accessed on Sep 30, 2021
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Table 3.2: Summary Statistics

Full Sample Bandwidth = 40

Mean SD Min Max Mean SD Min MaxRespiratory
Expenditures

Minors (0−19) 46.0 23.2 0 201.8 50.1 24.9 0 171.6
Adults (20−64) 21.3 14.0 0 239.8 23.3 14.8 0 147.2
Older Adults(≥65) 13.8 7.8 0 59.6 15.2 8.3 0 50.6

Cardiovascular
Expenditures

Minors (0−19) 0.1 1.7 0 316.5 0.1 3.1 0 316.5
Adults (20−64) 12.2 7.5 0 107.6 12.0 7.4 0 107.6
Older Adults(≥65) 65.1 42.7 0 268.9 64.3 42.1 0 248.5

Credit Card
Expenditures

Total 675.2 169.6 0 3, 197 676.9 177.6 0 1, 713
Restaurants & Bar 189.3 49.4 0 387.5 189.2 52.8 0 381.2
Fashion Outlets 25.8 9.4 0 314.6 26.3 9.5 0 225.2
Travel 25.9 14.0 0 226.1 25.7 14.4 0 144.5

Treatment
& Covariates

Alert 0.03 0.2 0 1 0.1 0.3 0 1
PM10 (µg/m3) 44.5 22.0 2.8 253.9 68.4 18.8 19.3 170.3
PM25 (µg/m3) 25.1 12.9 1.6 109.5 41.8 13.4 6.6 109.5
Precipitation (mm) 3.1 12.2 0 313.8 1.1 4.5 0 67
Temperature (°C) 13.8 9.9 -16.4 32.5 10.7 8.3 -9.3 32

Notes: The number of district-day observations is 53,363 (73 districts, 761 days, 2016−2017) and
10,547 for the full sample and the sample based on a bandwidth of 40, respectively. The corresponding
numbers for the credit card consumption data are 53,290 (73 districts, 760 days, 2017−2018) and
11,324, respectively. Morbidity and credit card spending variables are presented in US cents per capita
(11.5 KRW = 0.01 USD). The summary statistics of the treatment variable and other covariates for
2017−2018 are presented in Appendix (Table C2)
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Table 3.3: First-stage Regression Results

Bandwidth

16 20 24

1(RV >= 0)
0.636

(0.091)
[0.122]

0.622
(0.091)
[0.114]

0.618
(0.092)
[0.110]

Adjusted R2 0.708 0.720 0.728

F-statistics 46.029 65.351 89.686

N 1,857 2,530 3,380

Notes: This table reports three first-stage estimates of the change in ad-
visory likelihood when the running variable crosses the RD threshold.
These estimates are based on coefficients from three separate local-linear
regressions, one for each reported bandwidth. The dependent variable
in all regressions is an advisory indicator, and the independent variable
of interest is an indicator for the running variable being above the RD
threshold. All regressions control for the running variable, an interaction
between the running variable and the indicator for the running variable
being above the RD threshold, temperature, precipitation, and year-by-
month and day-of-week fixed effects. The level of observation is the district
by day, and observations are population weighted. Parentheses (square
brackets) contain standard errors clustered by the running variable (day
of sample).



CHAPTER 3. AIR QUALITY ALERTS’ BENEFITS 79

Table 3.4: RD Results for Respiratory Diseases

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0)
−9.412
(2.326)
[2.930]

−2.346
(1.391)
[1.379]

−2.661
(1.674)
[1.860]

−3.624
(1.437)
[1.528]

RV
−0.074
(0.143)
[0.140]

−0.041
(0.043)
[0.045]

0.002
(0.062)
[0.069]

−0.038
(0.056)
[0.057]

RV ·1(RV >= 0)
0.645

(0.167)
[0.225]

0.214
(0.113)
[0.078]

0.167
(0.129)
[0.108]

0.270
(0.110)
[0.088]

2SLS

1(RV >= 0)
−15.03
(4.709)
[5.674]

−3.777
(2.195)
[2.127]

−4.303
(2.753)
[2.804]

−5.829
(2.397)
[2.495]

RV
0.039
(0.204)
[0.170]

−0.013
(0.062)
[0.055]

0.035
(0.084)
[0.083]

−0.006
(0.084)
[0.071]

RV ·1(RV >= 0)
0.596

(0.243)
[0.305]

0.204
(0.112)
[0.078]

0.156
(0.127)
[0.106]

0.254
(0.120)
[0.105]

Adjusted R2 0.836 0.866 0.797 0.893
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top
panel) and four 2SLS local-linear regressions (bottom panel). The dependent variable
in all regressions is respiratory disease expenditures for the relevant age group, mea-
sured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable of
interest in the reduced-form (2SLS) regressions is an indicator for the running vari-
able being above the RD threshold (advisory indicator). All regressions control for the
running variable, an interaction between the running variable and the indicator for
the running variable being above the RD threshold, temperature, precipitation, and
year-by-month and day-of-week fixed effects. The level of observation is the district by
day, and observations are population weighted. Parentheses (square brackets) contain
standard errors clustered by the running variable (day of sample). The bandwidth is
set to 20 in all regressions.
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Table 3.5: RD Results for Cardiovascular Diseases

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0)
−0.025
(0.021)
[0.022]

−1.757
(0.513)
[0.481]

−5.962
(2.070)
[2.250]

−2.026
(0.573)
[0.622]

RV
0.003

(0.001)
[0.001]

0.056
(0.023)
[0.020]

0.234
(0.102)
[0.113]

0.066
(0.024)
[0.026]

RV ·1(RV >= 0)
−0.003
(0.002)
[0.002]

0.012
(0.035)
[0.037]

−0.083
(0.158)
[0.213]

0.006
(0.038)
[0.049]

2SLS

1(RV >= 0)
−0.040
(0.032)
[0.035]

−2.828
(0.976)
[0.767]

−9.641
(3.849)
[3.677]

−3.259
(1.086)
[1.008]

RV
0.003

(0.001)
[0.001]

0.077
(0.029)
[0.023]

0.308
(0.104)
[0.124]

0.090
(0.030)
[0.029]

RV ·1(RV >= 0)
−0.003
(0.002)
[0.002]

0.005
(0.042)
[0.045]

−0.109
(0.152)
[0.228]

−0.003
(0.039)
[0.055]

Adjusted R2 0.029 0.794 0.847 0.869
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top
panel) and four 2SLS local-linear regressions (bottom panel). The dependent variable
in all regressions is cardiovascular disease expenditures for the relevant age group,
measured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable
of interest in the reduced-form (2SLS) regressions is an indicator for the running
variable being above the RD threshold (advisory indicator). All regressions control for
the running variable, an interaction between the running variable and the indicator for
the running variable being above the RD threshold, temperature, precipitation, and
year-by-month and day-of-week fixed effects. The level of observation is the district by
day, and observations are population weighted. Parentheses (square brackets) contain
standard errors clustered by the running variable (day of sample). The bandwidth is
set to 20 in all regressions.
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Table 3.6: Dynamic Impacts

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Dependent Variable

3-day Spending
−38.220
(11.551)
[13.769]

−10.703
(3.952)
[4.661]

−12.977
(4.951)
[6.624]

−16.125
(4.777)
[5.935]

3-day Spending
without Later

Alert Days

−38.616
(12.422)
[16.370]

−7.122
(3.258)
[3.262]

−8.202
(4.427)
[4.651]

−13.005
(4.473)
[5.381]

Cardiovascular Illness

Dependent Variable

3-day Spending
−0.064
(0.086)
[0.075]

−5.279
(1.907)
[1.993]

−30.388
(12.229)
[12.987]

−8.042
(2.657)
[3.057]

3-day Spending
without Later

Alert Days

0.023
(0.100)
[0.094]

−4.486
(1.706)
[2.040]

−36.044
(11.875)
[13.975]

−7.414
(2.515)
[3.303]

Notes: This table reports results from 16 2SLS local-linear regressions. The
dependent variable in all regressions is three-day respiratory or cardiovascu-
lar disease expenditures (from day t to day t + 2) for the relevant age group,
measured in cents per capita (11.5 KRW = 0.01 USD), and the independent
variable of interest is an advisory indicator. All regressions control for the run-
ning variable, an interaction between the running variable and the indicator for
the running variable being above the RD threshold, temperature, precipitation,
and year-by-month and day-of-week fixed effects. The level of observation is the
district by day, and observations are population weighted. Parentheses (square
brackets) contain standard errors clustered by the running variable (day of
sample). The bandwidth is set to 20 in all regressions. N = 2,530 in the first
row of each panel. The last row of each panel drops from the sample advisory
district-days on which the previous district-day experienced an advisory, which
results in N = 2,228.
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Table 3.7: Robustness Checks - Health Spending

Age Group

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Bandwidth: 16
−12.504
(4.256)
[4.779]

−4.357
(2.293)
[2.071]

−4.468
(2.626)
[2.752]

−5.851
(2.492)
[2.391]

Bandwidth: 20
−15.033
(4.709)
[5.674]

−3.777
(2.195)
[2.127]

−4.303
(2.753)
[2.804]

−5.829
(2.397)
[2.495]

Bandwidth: 24
−14.049
(4.521)
[5.666]

−2.876
(2.008)
[2.009]

−2.393
(2.918)
[2.857]

−4.867
(2.254)
[2.387]

Without
Late/Early Advisories

−16.274
(5.243)
[6.248]

−4.093
(2.316)
[2.268]

−4.687
(2.944)
[2.996]

−6.320
(2.550)
[2.675]

Cardiovascular Illness

Sample Modification

Bandwidth: 16
−0.042
(0.039)
[0.035]

−2.781
(0.889)
[0.675]

−7.426
(2.897)
[3.327]

−2.994
(0.900)
[0.864]

Bandwidth: 20
−0.153
(0.095)
[0.113]

−3.022
(1.024)
[0.789]

−9.691
(3.930)
[3.786]

−3.431
(1.168)
[1.073]

Bandwidth: 24
−0.019
(0.030)
[0.035]

−1.654
(1.016)
[0.838]

−4.469
(4.320)
[3.850]

−1.870
(1.219)
[1.087]

Without
Late/Early Advisories

−0.043
(0.034)
[0.038]

−3.064
(1.050)
[0.834]

−10.502
(4.217)
[4.012]

−3.533
(1.160)
[1.091]

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable
in all regressions is respiratory or cardiovascular disease expenditures for the relevant age group,
measured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable of interest
is an advisory indicator. All regressions control for the running variable, an interaction between
the running variable and the indicator for the running variable being above the RD threshold,
temperature, precipitation, and year-by-month and day-of-week fixed effects. The level of ob-
servation is the district by day, and observations are population weighted. Parentheses (square
brackets) contain standard errors clustered by the running variable (day of sample). The band-
width is set to 20 unless otherwise noted. For bandwidths of 16, 20, and 24, N = 1,857, 2,530,
and 3,380 respectively. The last row in each panel drops from the sample advisory district-days
on which the advisory was cancelled before 9 am or triggered after 7 pm, which results in N =
2,443.
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Table 3.8: RD Results for Credit Card Spending

Spending Category

All Restaurant Fashion Travel

Reduced form

1(RV >= 0)
−18.977
(13.820)
[12.537]

−9.177
(3.096)
[2.895]

−2.191
(0.608)
[0.645]

0.676
(0.799)
[0.851]

RV
0.247
(1.018)
[0.861]

0.470
(0.144)
[0.166]

0.095
(0.028)
[0.035]

−0.034
(0.044)
[0.050]

RV ·1(RV >= 0)
−1.778
(1.273)
[1.423]

−0.536
(0.353)
[0.354]

−0.103
(0.061)
[0.067]

−0.079
(0.079)
[0.085]

2SLS

1(RV >= 0)
−25.713
(20.331)
[17.333]

−12.434
(4.837)
[4.430]

−2.969
(0.963)
[0.874]

0.916
(1.044)
[1.123]

RV
1.224
(0.538)
[0.455]

0.535
(0.212)
[0.186]

0.111
(0.041)
[0.034]

−0.038
(0.045)
[0.054]

RV ·1(RV >= 0)
−2.306
(0.841)
[0.778]

−0.629
(0.373)
[0.338]

−0.125
(0.068)
[0.065]

−0.073
(0.076)
[0.085]

Adjusted R2 0.915 0.923 0.784 0.820
N 2,905

Notes: This table reports results from five reduced-form local-linear regressions (top panel)
and fiver 2SLS local-linear regressions (bottom panel). The dependent variable in all regres-
sions is credit card expenditures for the relevant item group, measured in cents per capita
(11.5 KRW = 0.01 USD), and the independent variable of interest in the reduced-form
(2SLS) regressions is an indicator for the running variable being above the RD threshold
(advisory indicator). All regressions control for the running variable, an interaction between
the running variable and the indicator for the running variable being above the RD threshold,
temperature, precipitation, and year-by-month, day-of-week, and 1-day-before holiday fixed
effects. The level of observation is the district by day, and observations are credit-card-user
weighted. Parentheses (square brackets) contain standard errors clustered by the running
variable (day of sample). The bandwidth is set to 20 in all regressions.



CHAPTER 3. AIR QUALITY ALERTS’ BENEFITS 84

Table 3.9: Dynamic Impacts (Credit Card Spending)

Spending Category

All Restaurant Fashion Travel

Credit Card Spending

Dependent Variable

3-day Spending
−96.534
(56.747)
[66.468]

−25.672
(17.382)
[17.621]

−3.817
(2.477)
[2.655]

−0.604
(2.678)
[2.802]

3-day Spending
without Later

Alert Days

−34.709
(39.292)
[40.405]

−1.424
(8.717)
[9.315]

−1.408
(1.427)
[1.567]

1.849
(1.985)
[2.259]

Notes: This table reports results from 10 2SLS local-linear regressions. The dependent
variable in all regressions is three-day credit card expenditures (from day t to day
t + 2) for the relevant age group, measured in cents per capita (11.5 KRW = 0.01
USD), and the independent variable of interest is an advisory indicator. All regressions
control for the running variable, an interaction between the running variable and
the indicator for the running variable being above the RD threshold, temperature,
precipitation, and year-by-month, day-of-week, and 1-day-before holiday fixed effects.
The level of observation is district by day, and observations are weighted by the
population. Parentheses (square brackets) contain standard errors clustered by the
running variable (day of the sample). The bandwidth is set to 20 in all regressions.
N = 2,905 in the first row of each panel. The last row of each panel drops from
the sample advisory district-days on which the previous district-day experienced an
advisory, which results in N = 2,701.
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Table 3.10: Robustness Checks (Credit Card Spending)

Spending Category

All Restaurant Fashion Travel

Credit Card Spending

Sample Modification

Bandwidth: 16
−20.235
(21.801)
[22.422]

−16.284
(6.078)
[5.839]

−3.226
(1.145)
[1.070]

0.122
(1.347)
[1.477]

Bandwidth: 20
−25.713
(20.331)
[17.333]

−12.434
(4.837)
[4.430]

−2.969
(0.963)
[0.874]

0.916
(1.044)
[1.123]

Bandwidth: 24
−32.576
(23.868)
[16.887]

−9.888
(4.717)
[4.320]

−2.032
(0.929)
[0.906]

0.367
(1.180)
[1.116]

Without
Late/Early Advisories

−22.308
(19.843)
[18.761]

−11.066
(4.995)
[4.454]

−2.979
(0.956)
[0.913]

1.219
(1.204)
[1.269]

Before
Threshold Changes

−27.420
(20.427)
[20.607]

−14.566
(5.094)
[5.421]

−3.723
(0.943)
[0.973]

1.378
(1.174)
[1.332]

Notes: This table reports results from 25 2SLS local-linear regressions. The dependent
variable in all regressions is credit card expenditures for the relevant item group, mea-
sured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable of
interest is an advisory indicator. All regressions control for the running variable, an in-
teraction between the running variable and the indicator for the running variable being
above the RD threshold, temperature, precipitation, and year-by-month, day-of-week,
and 1-day-before holiday fixed effects. The level of observation is the district by day, and
observations are credit-card-user weighted. Parentheses (square brackets) contain stan-
dard errors clustered by the running variable (day of sample). The bandwidth is set to
20 unless otherwise noted. For bandwidths of 16, 20, and 24, N = 2,277, 2,905, and 3,997
respectively. The last row in each panel drops from the sample advisory district-days on
which the advisory was cancelled before 9 am or triggered after 7 pm, which results in
N = 2,701.
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Appendix A

Supplementary Information for
Chapter 1

A.1 Methods

Data Collection

Air pollutants

We obtained hourly data on ambient levels of PM10, PM2.5 (this is available only
starting in 2015), ozone, sulfur dioxide, nitrogen dioxide, and carbon monoxide from
the Air Korea portal (https://airkorea.or.kr/) administered by the Korea Environ-
ment Corporation (KECO), a South Korean government agency that manages air
quality monitors (for a map of monitor locations and districts included in our sample
see Extended Data Figure A1). Holding the set of monitors constant, we estimated
exposure for all missing monitor–hours over our sample period by calculating the
empirical CDF for the monitor with missing data and then selecting the quantile of
this CDF equal to the inverse squared distance-weighted quantile of observations for
the five nearest non-missing monitors. Daily values for each monitor are the mean of
hourly values.

Observations of airborne heavy metals

KECO also manages the observations of airborne heavy metals used in our analysis
of PM chemistry. We requested daily observations of these measures using the of-
ficial information disclosure process through the South Korean information request
portal (https://open.go.kr/); use of the data was granted on the condition that it

https://airkorea.or.kr/
https://open.go.kr/
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not be shared. KECO measures airborne heavy metals (lead and calcium) recorded
by monitors of Air Pollution Monitoring Supersites every two hours. We aggregated
those observations to daily average levels. We omitted readings from the Incheon
supersite, located on Baekryeong Island, as it is far from any urban PM monitor.

Weather and atmospheric visibility

We collected hourly monitor-level readings for temperature, humidity, and precipi-
tation using the Korea Meteorological Administration (KMA) portal. We then per-
formed the same procedure for filling missing observations and assigning exposure to
districts as detailed for pollutants above.

We also obtained measures of visibility (reported as visible distance) for the small
set of reporting monitors in the KMA’s automated synoptic observation system. We
matched these hourly observations to those for the nearest monitors reporting levels
of airborne heavy metals, applying a ceiling to all observations of 10 km to account
for differences across stations in their censoring practices.

Health spending

Our health outcome of interest is the morbidity spending associated with outpa-
tient and emergency visits due to respiratory disease. We were granted access to
this data through a restricted-use agreement with the National Health Insurance
Service (NHIS) data center, which manages the transaction information of South
Korea’s Social Health Care System. Our analysis uses a 10% (N ≈ 5 million) sample
of insured individuals. The sampling was carried out by stratifying individuals by
each pair of district and age group, the latter of which was based on five-year age
groups (0 to 4, 5 to 9, and so on). Individuals who died before the end of our anal-
ysis period were excluded. We then filtered for records associated with respiratory
disease (J-category illnesses according to the International Classification of Diseases,
10th revision [ICD-10]) that occurred during the period 2005 to 2016. We then ag-
gregated this individual expenditure information by date and district. To determine
expenditure per capita, we used denominators reported by NHIS; to calculate total
expenditure across South Korea, we linearly interpolate estimates of the district-level
population between census years.

Some aspects of this data set are of note. First, health expenditures per capita
include outpatient and emergency visits covering all the different levels of facilities in
the South Korean healthcare system (public health centers, doctor’s offices, clinics,
hospitals, general hospitals, and tertiary general hospitals). We exclude costs incurred
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from inpatient visits, as they require several layers of referrals and tend to involve
more complex sequelae.

Second, our data set incorporates private copayments plus costs covered by the
healthcare system, allowing us to gauge the impact of air pollution on total health
costs.

Third, we only include districts with ‘urban’ air pollution monitors during the
analysis period. KECO manages several types of air quality monitors, including “ur-
ban” and “rural” locations. We used urban monitors because they better represent
the degree of air quality experienced by the population. Indeed, due to better rep-
resentation, local government agencies use urban monitors to determine whether
environmental standards are met.(NIER 2018) We also exclude districts where air
quality monitors were installed too recently (2016 or later). This filtering process left
us with 147 districts out of the 229 districts in South Korea, while still covering the
entirety of 17 provinces and over 91% of the population (see Extended Data Figure
A1).

Fourth, our data set excludes individuals who moved into or out of the districts
we analyze during our data period. Moving can lead to discontinuous changes in
district-level health expenditure, complicating interpretation of our results.

Decomposition of PM by source

The PM observations used in this analysis come from a network of monitors located
throughout South Korea. We decompose the PM values reported by these monitors
in two steps. First, we extract the portion of PM associated with dust and sea salt
using a global reanalysis product that estimates surface concentrations. Second, we
combine a probabilistic estimate of pollution transport with high-resolution estimates
of emission rates to apportion the remaining PM among two sources: human activities
(which we further subdivide into four originating jurisdictions: China, South Korea,
North Korea, and “other”) and wildfire. Finally, we assign these exposures to districts
(second-level administrative units) in South Korea.

Dust and sea salt

In the first step in our source decomposition, we partition out dust and sea salt from
total observed PM. We collect 3-hourly rasters of surface-level PM components from
the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric
Composition Reanalysis 4, or EAC4,(Inness et al. 2019) and calculate the inverse
distance weighted mean of the nine nearest raster values of each EAC4 surface-level
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PM component for each monitor–day. Following the weighting scheme used in the
ECMWF Integrated Forecasting System (IFS-AER),(Rémy et al. 2019) we determine
the portion of total PM that is attributable to mineral dust, which we rescale to
match total PM values reported by each station.

In addition, we adjust for “Yellow Dust” days, as EAC4 is known to systemati-
cally underestimate this particular source of PM.(Ryu and Min 2021) Though these
events are infrequent, they can produce daily average PM values in South Korea
above 1000 µg/m3 as large quantities of coarse dust are removed by aeolian erosion
from the soil and rocks of the Mongolian plateau and are carried by strong winds
across the Yellow Sea.1 This adjustment is made only on days and in provinces when
the Korea Meteorological Agency reported a Yellow Dust event, a determination
made by visual inspection by trained meteorologists in conjunction with the output
of a physical model of dust erosion.(Korea Meteorological Administration (KMA))
For these observations, if we estimate that PM that is not EAC4 dust is above its
90th percentile for that monitor’s weekday–month, all such PM above the monitor’s
weekday–month median value is attributed to Yellow Dust. Our main analysis treats
EAC4 dust and this additional Yellow Dust component jointly. In addition, to ac-
count for misreporting, we also apply this adjustment to neighboring provinces or
the same province on an adjacent day if its reported values are above its weekday-
by-month 99th percentile. This adjustment affects 2.3% of province–days. We note
that this procedure follows from a similar approach developed to account for extreme
PM2.5 from wildfires in North America.(Burke et al. 2021)

We perform a similar procedure for sea salt by determining the portion of non-
dust PM that is attributable to sea salt from EAC4 and scale that to match the
non-dust PM value for each station.

PM from human activity and wildfire

The second step of our decomposition determines the contributions of human activ-
ities and wildfire to the portion of observed PM that remains after removing dust
and sea salt. We first generate a large number of air parcel backtrajectories using
a physical model of atmospheric dynamics, the Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model,(Draxler and Hess 1998) and the GDAS1
global atmosphere reanalysis product.(Stunder 2004) These backtrajectories repre-
sent the paths taken by a hypothetical parcel of air traveling backwards in time

1Importantly, the meteorological conditions on these days are unusual and may also carry higher-
or lower-than-usual quantities of PM from other sources, though we have no way of directly testing
this.
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from its observed destination, based on the timing and distribution of observed wind
flows (e.g., Figure 1.1A). Note that wind flow in the atmosphere is well observed and
tightly constrained in this mid-latitude region by its relationship to air temperature
and pressure, both of which are also well observed.

We initialize backtrajectories at eight times of day (every 3 hours beginning at
2 a.m. local time) and eight heights (2, 4, 8, 16, 32, 64, 128, 256, and 512 meters)
at each PM monitor on each day and track each parcel for 240 hours back in time
(16.3 billion locations along 67.9 million paths). We define trajectories that pass
twice the height of the planetary boundary layer as exiting the model and provide
small vertical perturbations to particles that collide with the surface to keep them
aloft. For each hour of each trajectory that arrives at a monitor on a specific day,
this results in 16 parcel locations where emissions are potentially entrained in the air
parcel before it arrives at its destination in South Korea. We rasterize these locations
into a 0.1◦ × 0.1◦ grid by counting the number of parcel instances that occur within
each grid cell and smooth these estimated counts across space using a Gaussian
kernel (σ = 1 pixel) to account for uncertainty in trajectories. Finally, we normalize
the sum of each raster to one, creating a map that we interpret as the probability
(denoted π) that each grid cell contributes material to that specific air parcel in that
hour of its trajectory.

To estimate the quantity of emissions that are entrained in the air parcel from
each location during a specific hour, we multiply these contribution-probability rasters
by sector-specific PM emissions (denoted q) from the Emissions Database for Global
Atmospheric Research (EDGAR) 5.0.(European Commission, Joint Research Cen-
tre (JRC)/Netherlands Environmental Assessment Agency (PBL) 2019) We rescale
EDGAR values to account for hourly, weekly, seasonal, and secular variation in emis-
sions intensity using a set of scalars for high-resolution temporal profiles.(Crippa et
al. 2020) We follow the same procedure for 3-hourly Global Fire Emissions Database
(GFED) 4.1s,(Werf et al. 2017; Randerson et al. 2012; Giglio, Randerson, and Werf
2013) where we use emissions rates based on estimated fuel type for burn fire location.
HYSPLIT does not contain active chemistry, so we apply the simple approximation
that non-methane volatile organic compounds (VOCs), sulfur dioxide, nitrogen ox-
ides, and ammonia emissions estimated in EDGAR 5.0 are converted to an equivalent
mass of PM.2

2Somewhat surprisingly, we find that our results are not sensitive to this assumption; this may
be because the correlations between primary PM and NOx, SO2, NMVOC, and NH3 emissions are
very high. Assuming zero conversion into secondary aerosols changes our results by only a small
margin. That said, seasonal variation in the conversion efficiency or rate may affect our results, but
the direction of this adjustment is not known.
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We model deposition, scavenging, and chemistry in a simplified framework that
assumes net exponential decay. We empirically calibrate a separate decay rate (de-
noted r) for each quarter of the year—to account for seasonal differences in atmo-
spheric moisture, temperature, and cloud physics—that maximizes the correlation
between the observed values of non-dust and non-salt PM (in South Korea) and the
values predicted by our trajectory model (exponential decay rates of 0.004, 0.008,
0.016, and 0.006, respectively, with maximum Pearson correlations for all seasons
around 0.6). We note that the assumption of a constant decay rate/particle lifetime
is a simplification made elsewhere, such as in a trajectory analysis over the west-
ern Pacific,(Smith et al. 2021) and the decay rates we recover (implying a half-life
of particles around 24 hours) are similar to those suggested elsewhere in the litera-
ture, such as in the AMS/EPA Regulatory Model.(Air Quality Modeling Group, U.S.
Environmental Protection Agency 2004) We then apply these rates to each parcel
throughout its trajectory.

We separately track PM for each non-dust, non-salt origin j, scaling the pre-
dicted relative contributions of all origins to match the residual level of PM that
arrives, and is observed, at monitor l at time t. Our estimate for the relative quan-
tity of PM from origin j arriving at monitor l at time t is

p̂ljt =
T∑
τ=0

∑
v∈j

πlvtτ︸ ︷︷ ︸
Probability that

air mass from v at t− τ
arrives at l at t

· qv(t−τ)︸ ︷︷ ︸
Emissions

from v at t− τ

· (1− r)τ︸ ︷︷ ︸
Decay factor

(A.1)

where πlvtτ is the probability, estimated from HYSPLIT, that an air mass has
arrived at location l at time t from pixel v in origin j at time t − τ , qv(t−τ) is
a measure of actual emissions at location v and time t − τ (from EDGAR and
GFED), and (1 − r)τ is the fraction of emissions that remain at arrival following
deposition/decay/scavenging. To compute p̂ljt, we sum what remains of the emissions
qv(t−τ) over all locations v in origin j (e.g., over all grid cells in China) and over all
emission times (i.e., for emissions that have traveled to our exposed population for
0 hours [τ = 0], 1 hour [τ = 1], 2 hours [τ = 2], etc.).

Partitioning observed PM

The estimate p̂ljt represents only the relative contribution of origin j to non-dust
and non-salt PM observed at monitor l at time t. To apportion this PM to an origin,
we begin with p̈lt, the PM observed at l at time t that remains after accounting for
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dust and sea salt using the method described above in “Dust and sea salt” (i.e.,
p̈lt ≡ plt − plt,dust − plt,sea salt). This residual is apportioned proportionately as

pljt = p̈lt ·
p̂ljt∑
j p̂ljt

(A.2)

where pljt is the amount of observed PM at monitor l and time t from ori-
gin j, where j includes South Korea, North Korea, China, wildfires, and “other
sources.” The procedure above, in “Dust and sea salt,” provides a similar value for
j ∈ {dust, sea salt}. Figures 1.1D–E illustrate this partition. We then aggregate
these seven estimates by district: for each district i, we interpolate based on values
of pljt, calculating an inverse squared distance-weighted average to each district i’s
center of population (calculated using Meta’s High Resolution Population Density
Maps??). This procedure yields 600,119 observations, pijt, for all seven origins j.

Econometric analysis

The main text contains two separate econometric analyses. The first analysis vali-
dates our decomposition of PM by origin by evaluating how the contribution of PM
from different origins affects the chemical and physical properties of PM observed
at a small number of South Korean monitors that collect these data. The second
analysis estimates the impact of PM from each origin on health costs in districts
across South Korea.

Decomposing properties of PM mixtures by origin

We estimate the extent to which PM from each origin is associated with differences
in the chemical and physical characteristics of the PM mixture that arrives at each
destination. To do this, we empirically decompose the chemical and physical prop-
erties of PM (concentrations of lead and calcium, PM2.5, and visibility) observed at
a limited number of advanced monitors into contributions from each origin, based
on the amount of PM that we attribute to origin j on each day t in districts con-
taining these advanced monitors. The chemical or physical property cit (e.g., lead
concentration) observed in district i (treating the district’s advanced monitor and
the district as synonymous) on day t is an additive mixture of contributions from
different origins

cit = ci,South Korea,t + ci,China,t + . . . + ci,wildfire,t + εit (A.3)
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where cijt is the contribution from j that arrives at monitor i on day t and εit
is unmodeled error. For these chemical or physical proprieties, the contribution from
location j is the product of the total PM from origin j (pijt) and the change in c
per additional unit of origin j PM (λij; e.g., the change in ambient lead observed at
location i for a given increase in PM from origin j). Specifically:

cit = pi,South Korea,t ·λi,South Korea + pi,China,t ·λi,China+ . . . + pi,wildfire,t ·λi,wildfire + εit
(A.4)

which we solve via multiple linear regression. Here, we allow λ to differ by
location i precisely so we are able to test its consistency over space, but we assume
it is stable over our sample period. To aid comparison, we present in Figure 1.2
the set of λij’s as partial correlation coefficients. The specific construction of this
figure is illustrated in Extended Data Figure A2: (1) Multiple correlation coefficients
for all origins j but only a single destination site i (and a pair of chemical/physical
variables) are plotted (Extended Data Figure A2A). (2) We repeat this process for all
destinations i. Then, coefficients are regrouped based on their origin, pooling across
destinations to define a convex hull for each origin (Extended Data Figure A2B).
This allows us to assess patterns in the chemical/physical features of air that arrives
at a set of destinations from each origin (Extended Data Figure A2C).

Estimating the health response to undifferentiated total PM

Our objective is to develop a statistical framework that can be used to directly
measure the relationship between exposure to PM from a specific origin and changes
in health costs. In prior analyses, researchers have focused on modeling the health
effects of total PM without distinguishing between contributing origins. Thus, we
first analyze the health response to undifferentiated PM as in the previous literature.
Then, we extend this framework to include the impacts of PM from different origins.

Conceptually, our model for respiratory health costs, hit, from undifferentiated
PM occurring in district i on day t is:

hit = D̄(pit, Ā(pit))︸ ︷︷ ︸
damage from PM

+ f̄(Qit, Wit, ζ̄it, θ̄t)︸ ︷︷ ︸
other causes

+ ēit (A.5)

where D̄(·) is the damage from PM (p), accounting for avoidance (Ā). Other patterns
in health costs that can be netted out by covariates are captured in f̄(·), including
the effects of other pollutants (Q), meteorological conditions (W), and a rich set
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of non-parametric fixed effects (ζ̄) and trends (θ̄). We discuss each of these model
elements below. Unmodeled variation in health spending is captured by ē. We use a
bar above estimated model elements to denote that they describe components of the
model for undifferentiated PM, in contrast to an alternative model that differentiates
contributions by origin, in which bars are omitted (presented below). We discuss each
of the arguments of Equation A.5 in turn and then describe how we estimate the
model.

Total particulate matter The term pit describes the levels of total PM daily from
the time t− L to t, where L is the number of daily lags over which impacts accrue.
We set L = 28 days to ensure potential delayed health effects are accounted for. As
discussed in the main text, delays sometimes occur because lower-level referrals are
required to visit a specialty hospital in the South Korean healthcare system. Thus,
pit = (pit, · · · , pi(t−28)).

Accounting for avoidance behavior Ā is a summary measure of avoidance be-
havior. As ambient PM increases, individuals may recognize higher levels of air pol-
lution based on changes in atmospheric visibility or information provided by govern-
ments and take defensive action (e.g., wearing face masks) or avoid certain activities
(e.g., by staying at home). These actions may then in turn reduce the average dam-
ages incurred per additional unit of PM(Neidell 2009b; Deschenes, Greenstone, and
Shapiro 2017; Anderson, Hyun, and Lee 2022; Aguilar-Gomez et al. 2022; Carleton
et al. 2022); thus, it is usually thought that ∂Ā

∂P
> 0 and ∂h̄

∂Ā
< 0. We thus design

a function for the net damages caused by PM (D̄) capable of incorporating this
potential mechanism. Conceptually, we assume health damages are generated by a
process:

D̄(pit, Ā(pit)) =
28∑
k=0

ḡk(pi(t−k))︸ ︷︷ ︸
biological response

· (1− Āt−k(pi(t−k)))︸ ︷︷ ︸
attenuation from avoidance

(A.6)

where we have explicitly expanded the number of terms in the summation to account
for the 28 lagged days of pollution exposure that might contribute to harm on day
t. Here, ḡk is the biological impact of pi(t−k) on the health response in the absence
of avoidance, where k indexes the damage from sequential lags. Āt−k measures the
level of avoidance triggered by the PM level at time t − k, and can take on a value
between zero (no avoidance) and one (total avoidance), inclusive. Thus, the effects of
ḡk can be partially mitigated by avoidance behavior, captured by the multiplicative
term (1− Āt−k) which drives damages to zero as Āt−k → 1. This expression for D̄ de-
scribes, conceptually, how the data are assumed to be generated, however we do not
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observe avoidance behavior directly and thus cannot rely on explicit measurements of
avoidance in our estimation. To overcome this challenge, we draw on techniques de-
veloped in the study of climate change damages(S. Hsiang 2016; Carleton et al. 2022)
and note that estimation can be simplified because avoidance behavior is an explicit
response to the level of pollution; that is, Āt−k can be written as a function of pi(t−k)

(i.e., pollution levels are a “sufficient statistic” for avoidance(Chetty 2009)). Thus,
under the simplifying assumption that both ḡk and Āk are approximately linear in
pi(t−k), the expression for damages in Eq. A.6 reduces to a quadratic function with
two parameters for each lag:

D̄(pit, Ā(pit)) =
28∑
k=0

ᾱk · pi(t−k) + β̄k · p2
i(t−k) (A.7)

which can be directly estimated from data. Consequently, the shape of our re-
sponse function is non-linear in pollution, consistent with prior analyses,(Deryugina
et al. 2019) and this non-linearity embeds information about the degree of unobserved
avoidance undertaken by individuals.

Covariates We also account for a matrix of potential confounding variables re-
lated to our health outcomes of interest and pollutant levels, which are included as
covariates in our regression analysis. We account for the levels of other air pollu-
tants (nitrogen dioxide, carbon monoxide, ozone, and sulfur dioxide), denoted by
the matrix Qit = (q1it, q2it, q3it, q4it), and meteorological conditions (temperature,
humidity, and precipitation), denoted as Wit = (w1it, w2it, w3it). Similar to our no-
tation describing PM, these matrices include the contemporaneous and lagged values
of each variable, capturing effects within the 28-day window for exposure that we
are studying.

Non-parametric controls and trends To account for a wide variety of time-
dependent and time-invariant unobserved determinants of both pollution levels and
health spending,(Ostro 1987; Schwartz and Dockery 1992; Chay and Greenstone
2003; Ostro et al. 1996) we include district-by-year-by-month-by-weekday (ζ̄it) and
holiday (θ̄t) intercepts (also referred to as “fixed effects”(Greene 2003)), which ab-
sorb these groups’ mean values. Our identification of the effect of PM on health
relies on the ability of this adjustment to account for potentially confounding vari-
ations in both pollution and health outcomes that are correlated with the day of
the week (e.g., weekdays and weekends), season (e.g., flu season from December to
February), year (e.g., the outbreak of swine flu pandemic in 2009), or district (e.g.,
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differences in industrial infrastructure, health system, demographics, and socioeco-
nomic conditions). With this approach, we assess the relationship between PM and
health outcomes by comparing only observations within the same weekday, month,
year, and district group; in other words, our estimates describe how health out-
comes change as a function of pollution by comparing outcomes on the set of, for
example, non-holiday Mondays within March 2012 within a single district of South
Korea.(Angrist and Pischke 2008)

Estimation Combining Eqs. A.5 and A.7 with model components described above,
we empirically estimate how health costs respond to undifferentiated PM by solving
the panel regression:

hit =
28∑
k=0

[
ᾱk · pi(t−k) + β̄k · p2

i(t−k)

]
︸ ︷︷ ︸

D̄(p)

+
4∑

n=1

γ̄n(qnit) +
3∑

m=1

δ̄m(wmit) + ζ̄it + θ̄t︸ ︷︷ ︸
f̄(·)

+ēit

(A.8)
where hit is a health outcome of interest in district i in time t and pi,t−k is the level
of the total undifferentiated PM in district i at time t − k. Other model variables
are as described above. γ̄n and δ̄n are flexible nonlinear functions of pollution and
meteorological covariates, respectively, that account for the potentially nonlinear
impact of these variables on health. For temperature, we use a cross-basis function
that models the dose–response function as a three-knot natural cubic spline with
knots placed at the 10th, 50th, and 90th percentiles of the temperature distribution
and with the lag–response function modeled as a piecewise zero-order spline with
knots at lags 1, 2, 4, 7, and 14. For humidity and all non-PM pollutants, we adopt
the same lag–response specification but choose an equally-spaced two-knot natural
cubic spline for the dose–response function. For precipitation, we also adopt the same
lag–response specification but adopt a zero-order spline dose–response function with
knots spaced in logs throughout the range of historically observed of daily total
precipitation (3.13, 11, 23, 38, 56, 78.5, 101.5, and 129 mm). This structure for the
dose–lag–response specifications we adopt for our covariates are motivated by prior
findings in the literature(Gasparrini et al. 2015; Carleton et al. 2022) and efficient
computation for a high-dimensional model. We also include a rich set of district-
by-year-by-month-by-weekday fixed effects described above and indicated by ζ̄; θ̄
is a holiday fixed effect. The error term, ēit, accounts for variation in the outcome
not explained by PM and the other covariates. We cluster standard errors at the
province level, which accounts for arbitrary forms of temporal auto-correlation in
health outcomes within a province between all days in our sample, as well as arbitrary
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spatial auto-correlation across all districts within a province.(Newey and West 1987;
Conley 1999; S. M. Hsiang 2010)

Computing damages by origin assuming undifferentiated PM To compute
partial damages for PM from specific origins using the undifferentiated PM model,
we estimate Eq. A.8 and isolate the estimated terms in the damage component D̄(·).
We then compute the damages that would be experienced if the entire South Korean
population were exposed to a constant specific PM level ρ̄. We thus compute damages
D̄(p = ρ̄) where the vector ρ̄ is defined such that all 29 elements (representing lags)
are set to the same value—i.e., ρ̄ := (ρ̄, ..., ρ̄). Fig. 1.3A illustrates the function D̄(ρ̄)
evaluated across different values of ρ̄. We then compute the damages that would be
attributed to a specific origin j by evaluating D̄(·) at p = ρ̄j, the average level of
PM originating from j that is incident on the South Korean population.

Estimating the health response to PM from different origins

Simultaneously estimating damages for PM from multiple origins (both transbound-
ary and domestic) is the central contribution of this analysis. To do this, we extend
the framework and approach described in Eqs. A.5-A.8 to differentiate impacts of
PM from different origins, rather than estimating a undifferentiated pooled effect.
Conceptually, when accounting for multiple PM sources, we continue to consider
health impact that originate from PM damage and other factors:

hit = D(Pit, A(Pit)) + f(Qit, Wit, ζit, θt) + eit (A.9)

where terms correspond to analogs in Eq. A.5 but with the bar notation removed
(to indicated that these are no longer from the undifferentiated model) and with one
key substantive difference. In Eq. A.9, PM is represented by the matrix Pit, which
contains PM values from different origins observed in location i and time from t−28
to t, which contrasts with the vector of undifferentiated PM in Eq. A.5. Pit consists
of seven vectors describing PM from each origin: South Korea, China, North Korea,
dust, wildfire, sea salt, and other sources. Each of the seven vectors is composed of
the PM values from their respective origin for the period from t− 28 to t; hence, Pit

is composed of 203 elements.

Accounting for avoidance with multiple PM sources Accounting for avoid-
ance in a model with multiple sources of PM is more complex than in the undiffer-
entiated PM model, since individuals may exhibit a different avoidance response to
each type of PM and each type of avoidance can alter the health response to PM
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from each origin. Individuals likely respond differently to PM from different origins
because they have different chemical and physical properties (e.g., they may smell
different or alter visibility in a distinct way). However, it is likely that the total level
of PM that is incident on a population, from all sources, also affects their avoidance
behavior.

Thus, we adjust the approach in Eq. A.6 to allow for these possible different
avoidance responses, one for PM from each origin and for total PM. Further, each
type of avoidance can alter the health response for PM from each origin. Replacing
the terms that include the undifferentiated PM with those that include the PM levels
from heterogeneous origins and adding avoidance terms yields:

D(Pit, A(Pit)) =
28∑
k=0

(
7∑
j=1

gjk(pij(t−k))

)
︸ ︷︷ ︸

biological response

·

1− A0k(pi(t−k))︸ ︷︷ ︸
total PM avoidance

−
7∑
j=1

Ajk(pij(t−k))︸ ︷︷ ︸
origin-specific avoidance


(A.10)

In this differentiated framework, there are seven gjk for each lag k, corresponding
to the biological responses from the seven origins indexed by j. The second set of
parentheses contains multiple avoidance terms. A0 is similar to Ā in Eq. A.6 in
the sense that it captures the degree of avoidance behavior triggered by the total
level of the undifferentiated PM. This is important because government agencies
provide information on the total level of PM (pi(t−k) =

∑7
j=1 pij(t−k)) and distribute

advisory information based on it. In the case of South Korea, ambient air quality
is classified by PM level into four categories: good (0–30 µg/m3), moderate (31–80
µg/m3), unhealthy (81–150 µg/m3), and very unhealthy (151–600 µg/m3), and air
pollution advisories and alerts are issued based on the hourly PM level in extreme
cases.(Anderson, Hyun, and Lee 2022) Avoidance via this channel is reflected in the
term A0k(pi(t−k)).

Eq. A.10 also accounts for the impact of any form of avoidance specifically asso-
ciated with each origin, since the the extent of induced avoidance likely differs for PM
from each origin. For example, as demonstrated in Fig. 1.2, the physical properites
of PM differ across origins, resulting in different degrees of salience and coresponding
defensive behaviors. For example, sea salt, wildfire smoke, and industrial-origin PM
have different optical qualities and thus likely induce different responses. This poten-
tial heterogeneity is reflected by independent and separate functions Ajk for each PM
origin j. As a result, an increase of pij(t−k) induces the avoidance behavior through
both a component of avoidance that is origin-specific (Ajk) and also a component
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that reflects total PM (A0k).

Expansion of the product in Eq. A.10 yields numerous terms. Some terms are a
function of PM from a single origin (e.g., gjk(pij(t−k)) and gjk(pij(t−k))·Aj(pij(t−k))). In
addition, there are nonlinear cross-terms that describe interactions between PM from
differing origins (e.g., gjk(pij(t−k)) ·A0(pi(t−k)) and gjk(pij(t−k)) ·Aj′(pij′(t−k)), j 6= j′).
Thus, under the parsimonious assumption that gjk and Aj are each approximately
linear (similar to the approach for undifferentiated PM) expansion of Eq. A.10 yields
a model that reduces to containing first and second-order terms for PM from each
origin (similar to Eq. A.7) as well as second-order terms that interact PM from dif-
ferent origins (pij(t−k) ·pij′(t−k)). Both sets of terms appear in the estimating equation
below.

Estimation Combining Eqs. A.9–A.10, expanding and simplifying the expression,
and including the non-parametric trends and controls contained in f(·) from Eq. A.8
yields our complete preferred model specification:

hit =
7∑
j=1

28∑
k=0

(
αjk · pij(t−k) + βjk · p2

ij(t−k)

)
+

7∑
j=1

∑
j′ 6=j

28∑
k=0

γjj′k · pij(t−k) · pij′(t−k)︸ ︷︷ ︸
D(Pit)

+
4∑

n=1

γn(qnit) +
3∑

m=1

δm(wmit) + ζit + θt︸ ︷︷ ︸
f(·)

+eit

(A.11)

where hit is health costs and all terms correspond to their analogs in Eq. A.8. Bar
notation is removed to indicate where estimated values for parameters will differ from
values in the undifferentiated model in Eq. A.8 (since the model is estimated jointly,
many parameters will be affected by allowing the effect of PM to be differentiated
by origin, even if the specification for these terms does not change).

Analogous to the derivation of Eq. A.7 for undifferentiated PM, αjk · pij(t−k)

and βjk · p2
ij(t−k) terms in the first summation correspond to the estimated values

that represent gjk(pij(t−k)) ·
(
1− A0k(pij(t−k))− Ajk(pij(t−k))

)
in Eq. A.10. However,

there are now seven terms per lag, reflecting the seven origins (j) of differentiated
PM. Consistent with the model for undifferentiated PM, there are 28 lags. The
second summation of Eq. A.11 contains many cross-terms that interact PM from
different origins (j and j′ 6= j). Each γjj′k corresponds to values for gjk(pij(t−k)) ·
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(
A0k(pij′(t−k)) + Aj′k(pij′(t−k))

)
terms in Eq. A.10. Here, negative coefficient estimates

would imply that the impact of PM from j on hit is partially mitigated by avoidance
behavior in response from simultaneously incident PM from j′. Other variables are
the same as in Eq. A.8.

Computing partial damages by origin To compute partial damage for PM
from specific origins accounting for different simultaneous health impacts for each,
we estimate parameters in Eq. A.11 and isolate D(Pit), the component describing
heath damages from simultaneous incidence of PM from multiple different origins.
We then estimate what health impacts would be if incident PM from a single origin
were ρ and incidence from all other origins were zero. This approach is analogous to
the calculations presented for the undifferentiated PM model, however in that case
it was not necessary to be explicit about the level of PM from j′ when calculating
impacts from j; that said, the implicit assumption is identical, enabling a comparison
between the two sets of results in Fig. 1.3.

Specifically, to compute partial damages from origin j, we compute D(Pit = %j)
where we define %j := (0, · · · ,0,ρj,0, · · · ,0) and ρj := (ρj, · · · , ρj)′. Thus, we set
all 29 terms describing incidence from j to have the constant value ρj (i.e., pijt = ρj)
and all elements in other vectors describing PM from non-j origins are set at zero
(i.e., pij′t = 0, ∀ j′ 6= j). We then vary the value of ρj for each j independently to
trace out a partial damage function for that origin. Fig. 1.3B presents D(%j) for the
top four origins that contribute the most to the observed total PM in South Korea.

Damages from mixtures of PM To compute damages from mixtures of PM
from different sources we use an approach that is similar to computing partial dam-
ages by origin, but we relax the assumption that PM from all non-j origins is zero.
Instead, we continuously vary the quantity of PM incident from two different ori-
gins at a time and compute the resulting health damages, setting incidence from
other origins to zero. Our calculation of the differentiated PM health damage func-
tion D(Pit) enables us to compute damages from arbitrary mixtures of origin-specific
PM, however we restrict our presentation to two origins at a time for interpretability,
since it is visually complex to present more dimensions simultaneously. Nonetheless,
in our calculations of total health burden (described below), we compute impacts
from observed mixtures of PM from all seven origins simultaneously.

Specifically, we estimate Eq. A.11 and compute damages D(Pit = %jj′) where
we define %jj′ := (0, · · · ,0,ρj,0, · · · ,0,ρj′0, · · · ,0), where the jth vector is ρj =
(ρj, · · · , ρj) (i.e., pijt = ρj) and the j′ th vector is ρj′ = (ρj′ , · · · , ρj′) (i.e., pij′t = ρj′).
All other vectors are set at zero (i.e., pij′′t = 0, ∀j′′ /∈ {j, j′}). We compute the value
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for D(·) while continuously varying values for ρj and ρj′ to generate surfaces that
describe damages from mixtures of PM from these two different origins.

Fig. 1.4 illustrates the surface of health responses that result from different
mixtures of PM from distinct origins. For example, in the left panel of Fig. 1.4, we
demonstrate the healthcare expenditure response to the mixtures of PM from South
Korea and that from China, the first and second largest contributing origins to PM
observed in South Korea, while setting PM from the other origins at zero. Fig. 1.4
visualizes the curvature of the surface D(%jj′) with contours (“iso-damage” curves)
on the ρj × ρj′ plane. Each contour traces the combinations of (ρj, ρj′) that results
in a fixed quantity of health expenditure.

Substitutability of components in a PM mixture We evaluate the behavior
of health damages as a PM mixture is incrementally altered by considering the “sub-
stitutability” of PM constituents in the mixture. The slope of each contour in Fig.
1.4 enables us to evaluate the degree of substitutability for PM from the two origins
in the mixture, given a specific baseline level of PM incidence from each (ρj, ρj′).
Substitutability is the degree to which PM from origin j would need to be reduced
in order to offset the health damage resulting from an incremental increase in PM
from origin j′. Note that due to the of the nonlinear structure of the damage surface
D(·), the substitutability of PM from each origin is a function of the PM load.

Substitutability is equal to the slope of a contour associated with health expen-

diture G in Fig. 1.4 (or a similar surface). The slope
dρj
dρj′

= −
(
∂D(%jj′ )

∂ρj′

)
/
(
∂D(%jj′ )

∂ρj

)
will be −1 if a one-unit increase (decrease) in PM from origin j could be substituted
with a one-unit decrease (increase) in PM from origin j′ with no change in the health
response (holding PM from other origins at zero). A steeper or more negative slope
would imply that the health impact of one unit of PM from the origin on the x-axis
(PM from origin j) is larger than the impact of one unit of PM on the y-axis (PM
from origin j′) since a one-unit increase (decrease) of PM from origin j necessitates a
larger decrease (increase) of PM from origin j′ to achieve the same health response.
For example, in the left panel of Fig. 1.4, across the contour corresponding to one
million USD, the slope is approximately −2.6, implying that exposure to one addi-
tional µg/m3 of PM from China has the same incremental impact on health costs in
South Korea as exposure to an additional 2.6 µg/m3 of PM from South Korea.

Estimation of total PM-specific health damages by origin We use our em-
pirical measurements of PM-specific damages to estimate the total health costs ex-
perienced by the South Korean population due to PM emissions from each origin.
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We do this by computing health costs due to actual incidence of PM by origin (es-
timated by partitioning observed PM, described above) relative to the health costs
that would be expected if emissions from a single origin j were eliminated. This ap-
proach holds the emissions of all non-j at their observed level in both cases, so all
that is changed is the PM from j. For example, we compute health costs in South
Korea with all origins contributing PM and with contributions of PM from China
shut off—with the difference representing the net health impact of PM from China.
Specifying the emissions of all non-j origins in both scenarios is important because
D(·) is nonlinear in PM from all origins. We believe this approach provides the most
accurate estimate for the overall total impact that individual origins have on health
in South Korea.

To estimate total harm by origin, we estimate Eq. A.11 and compute damages
D(·) for our study period in two scenarios: one with PM equal to actual incidence
(Pit) and a counterfactual scenario with emissions from origin j set to zero (P0

ijt).
The difference in damage between these two is the harm traceable to PM from origin
j. Specifically, we compute

̂total damagej =
∑
i∈I

∑
t∈T

φit ·
[
D(Pit)−D(P0

ijt)
]

(A.12)

where Pit is the matrix of PM values that are actually incident on poulations (the
same values used in estimation) and P0

ijt is the same, except that the PM values
corresponding to origin j are set at zero (i.e., pijt = (pijt, · · · , pij(t−28)) = 0). For
example, for the origin with index j = 1, P0

i1t = (0,pi2t, · · · ,pi7t). Therefore, the
difference D(Pit)−D(P0

ijt) is the average per capita damages in district i on day t
attributable to origin j. This value is then scaled by φit, the population in district
i at time t, and aggregated across days t ∈ T and regions i ∈ I. The bounds of
aggregation vary, with values in Fig. 1.5A–C aggregating over specific years (and
all districts) and Fig. 1.5D–F aggregating across districts within a province (and all
years). Table 1.1 aggregates across all districts and all years in the sample.
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Extended Data

In sample

Not in sample

Figure A1: Boundaries of districts and provinces; locations of air pollution
monitors

Notes: Districts in our main model (those meeting minimum data length and monitor coverage
requirements) are shown in green. Borders between districts within a province are shown in white,
and borders between provinces are shown in black. Pollution monitors used in the main analysis
are shown as blue points.
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Figure A2: Extended Explana-
tion of Figure 1.2

Notes: (A) Partial correlations between
PM of each origin and the concentrations
of atmospheric lead (x-axis) and calcium
(y-axis) using only data from the chem-
istry monitor in Ulsan. (B) Partial cor-
relations between PM from a single ori-
gin (China) and atmospheric lead (x-axis)
and calcium (y-axis) using data from all
five chemistry monitors; a convex hull is
drawn around these points to aid pattern
recognition. (C) depicts these convex hulls
for PM of each origin and is the form
shown in Figure 1.2.
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Figure A3: Lag–response relationships.

Notes: (A) The undifferentiated lag–response relationship, calculated with levels of all sources
at their mean values (is shown only for comparison and is not used in our calculations for the
attribution of respiratory health spending to PM origins). For full model specification, see Methods.
(B) The cumulative lag–response relationships for PM by origin.
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Figure A4: Model robustness checks.

Notes: For ease of comparison, the model is estimated using alternate specifications and model
results are combined with estimated exposures to determine differences in average annual attributed
health costs by origin. Line ranges indicate 95% confidence intervals. Results for the main model,
which follows Eq. A.11 with standard errors clustered at the province level, are shown fourth from
the left. The three estimates to the left of the main estimates show sensitivity to changing the
method used for calculating standard errors: for the first set of estimates, standard errors are
clustered at the district level; for the second set of estimates, standard errors are clustered at the
day level; for the third set, standard errors are calculated using a spatial heteroskedasticity and
autocorrelation robust (Conley-HAC) method.(Conley 1999) Estimates 5 through 8 present variants
of Eq. A.11, but with a modified functional form that is progressively less flexible: for the fifth set
of estimates, the model includes linear and quadratic terms for each origin of PM and interactions
between each origin of PM and the total quantity of PM from every other origin (interactions with
other PM are not differentiated); for the sixth set of estimates, the model includes only linear and
quadratic terms for PM of each origin (no cross-origin interactions); for the seventh set, the model
includes only a linear term for each origin of PM and an interaction of that term with the total
level of PM (the curvature of each origin’s dose–response function is dependent only on the total
level of ambient PM); for the eighth set, the model includes only a linear term for each origin of
PM. Estimates 9 through 12 separately estimate Eq. A.11 by four year bins, for the eastern and
western half of South Korea, for each quarter of the calendar year, and for days when air quality
alerts were and were not issued, respectively.
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C.1 Generalization of Theoretical Framework

For ease of exposition we present a model in which average daily PM is the running
variable, but in our application the running variable is the maximum 2-hour minimum
PM level (over one day). Here we show that our model’s conclusions hold if the
running variable is an arbitrary function of daily PM.

Suppose that individuals base their behavior on daily mean PM, pm, while the
running variable is a different function of daily pm, f(pm). The RD estimand then
compares days on which f(pm) is just above the alert threshold (f(pm) ↓ c) to those
on which it is just below the alert threshold (f(pm) ↑ c).

Specify individual beliefs as

pmi =

{
pmavg if f(pm) = f(pm) ↑ c
pmhi if f(pm) = f(pm) ↓ c

where pmavg represents average daily mean PM conditional on f(pm) being
below the threshold c and pmhi represents average daily mean PM conditional on
f(pm) being above the threshold c. Let pmc be average daily mean PM conditional
on f(pm) = c. For our bounding exercise we assume that pmhi ≈ pmc, or at least that
|pmhi − pmc| << |pmavg − pmc|. This representation is a reasonable approximation
of our actual PM data. For example, in our PM2.5 data, pmavg = 22.7, pmhi = 66.7,
and pmc = 57.5. Thus pmhi is much closer to pmc than pmavg is. More generally,
the approximation only needs to be sufficiently accurate that the alerts do not cause
individuals to behave less optimally than they would absent the alert’s information.

Individuals maximize utility by choosing activity levels ai = argmaxa Ui(a, pmi).
Then

Ui =

{
Ui(ai(pm

avg), pmc) if f(pm) = f(pm) ↑ c
Ui(ai(pm

hi), pmc) if f(pm) = f(pm) ↓ c

An individual’s private change in utility from PM crossing the alert threshold is

∆ Ui = Ui(ai(pm
hi), pmc)− Ui(ai(pmavg), pmc) =

[bi(ai(pm
hi))− bi(ai(pmavg))]− spvti [ps(ai(pm

hi), pmc)− ps(ai(pmavg), pmc)].

Naturally ∆ Ui ≥ 0 since pmhi ≈ pmc and ai = argmaxa Ui(a, pmi) — i.e. more
accurate PM information can only (weakly) increase the individual’s utility — but
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accurately quantifying ∆ Ui is challenging even with good data on spvti . This challenge
arises because it is difficult to estimate bi(ai), the benefits of different activities (and
thus the costs of avoidance behaviors); ai may be high dimensional, and researchers
rarely have data on all, or even most, elements of ai.

C.2 Additional Data Notes

Procedure for Calculating Running Variable: To be consistent with the par-
ticulate pollution alert system, we first calculate the 2-hour-minimum of particulate
matter (PM2h min

dh ) in hour h on day d. Next, we obtain a daily maximum of 2-hour-
minimum PM measures in each hour and subtract the alert thresholds (c), where
c = 150 in case of PM10 and c = 90 (or 75 since March 27th of 2018) in case of
PM2.5. These transformations generate the daily running variables (rvd). Last, we
utilize the running variables rounded to the nearest integer. The process may be
summarized as follows:

1. PM2h min
dh = min

h
{PMd(h−1), PMdh} (d : date, h : hour)

2. PM2h min max
d = max

d
{PM2h min

dh }

3. rvd = PM2h min max
d − c

4. Rounding rvd to the nearest integer

As expected, our running variable has a tight correlation with PM10 and PM2.5, re-
spectively. It is thus reasonable to believe the running variable captures the relation-
ship between particulate pollution and health expenditures in the main regression.
Nevertheless, we also control for different combinations of air quality variables as a
robustness check (Appendix Table C12).

Cost Evaluation of Air Pollution Alert System: To determine alert system
costs, we first searched for reports about environmental expenditures from the seven
major cities in our study. We identified a category entitled “Air Pollution Man-
agement System - Public Management Cost.” Among the items listed under this
category, we selected the ones related to the air pollution alert system (Appendix
Table C15). We considered not only directly related items, such as the cost of issuing
alerts via SMS, but also broadly related items, such as the management cost of air
pollution monitors. Appendix Table C16 presents the total costs of the alert system
for each city.
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C.3 Additional Robustness Checks

Manipulation Test: In other contexts researchers have found evidence that pollu-
tion measurements are manipulated to remain below certain thresholds. While the
officials charged with determining alerts in our context face no obvious incentives
to manipulate PM measurements, we nevertheless check to see whether there is any
“missing” density of the running variable above the RD threshold. Appendix Figures
C1 and C2 plot the distribution of the daily and hourly running variables, respec-
tively. In both graphs, we see no unusual decrease in the density of observations
above the threshold. In addition, we test for discontinuities in the density of the run-
ning variable at the RD threshold using the procedure in Cattaneo, Jansson, and Ma
(2018). We fail to reject the null hypothesis of continuity in the density of the running
variable (2016 to 2017) for bandwidths of 16, 20, and 24 units (p = 0.43, 0.49, and 0.6
respectively) and the running variable (2017 to 2018) for bandwidths of 16, 20, and
24 units (p = 0.46, 0.14, and 0.1 respectively).

Control Continuity: Our main control variables are weather variables. We test the
continuity of the two weather variables in our model, temperature and precipitation,
at the RD threshold. Appendix Figure C6 shows the average temperature and pre-
cipitation per district and day-of-the-sample plotted against the running variable,
which lies in the interval [−40, 40]. There is no visual evidence of a discontinuity in
either weather variable at the RD threshold.

Asymmetry in the Thresholds for Alert Issuance and Cancellation: Follow-
ing the issuance of an alert, the running variable generally needs to drop substantially
below the RD threshold before the alert gets canceled. To test the sensitivity of our
results to this asymmetry in the issuance and cancellation of alerts, we consider two
sample restrictions. First, we trim the sample to exclude alert days following the first
day of an air quality alert and report parameter estimates obtained from the main
specification. Alternatively, we drop out alert days on which the running variable is
below zero. The results of these exercises, reported in Appendix Table C10, suggest
that our estimates are not sensitive to the asymmetry in the issuance and cancella-
tion thresholds.

No Treatment During Nighttime Hours: It seems unlikely that most individu-
als modify their behavior in response to an air quality alert issued during nighttime
hours. As a robustness check, we estimate FRD regressions when dropping district-
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days on which alerts were issued between 6 AM and 9 PM or between 8 AM and 8
PM. The results, reported in Appendix Table C10, are of similar magnitude to the
estimates from our base model.

Alternative RD Specifications: Appendix Table C11 reports estimates from al-
ternative RD specifications that control for a quadratic of the running variable. The
health expenditure effects are of similar magnitude and statistical significance as our
main results. We also check robustness to specifications in which we control for a
quadratic in temperature or in which we control for year and month fixed effects
instead of year-by-month fixed effects. Both sets of results are qualitatively similar
to our main estimates.

Addition of Different Air Quality Variables We interpret our results as repre-
senting benefits of avoidance behavior. If the alerts had a direct effect on pollution
levels, however, then our results would represent a combination of the benefits of
avoidance behavior and lower ambient pollution levels. Appendix Table C5 demon-
strates that there is no discontinuous change in ambient PM levels at the RD thresh-
old. As an extra check we estimate specifications, reported in Appendix Table C12
that control for PM10, PM2.5, both PM measures, or the AQI. The addition of these
air-quality controls has virtually no impact on our RD estimates.

Different Standard Error Clusters: The panel nature of our data is atypical for
a RD design. We thus consider the impacts of different clustering choices for the
standard errors. Appendix Table C13 reports the standard errors clustered at differ-
ent combinations of spatial and time units. All coefficients that were significant in
Tables 3.4 and 3.5 remain significant across all clustering choices.

Spillover Effects: Our RD estimates could be attenuated if alerts affect health
spending in adjacent regions. To address this concern, we estimate the impact of PM
alerts in the nearest alert region to region r on the outcome variables in region r.
Appendix Table C14 demonstrates that the RD estimates are not statistically sig-
nificant across all three age groups, suggesting an absence of spillover effects of the
alerts to other regions.

Falsification Test: As the final robustness check, we estimate effects at alternative
“placebo” RD thresholds. Specifically, we construct alternative running variables by
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subtracting 20, 30, or 50 units from PM10 and PM2.5 concentration. All of the esti-
mates for alternative running variables are statistically insignificant (Appendix Table
C14), as would be expected if our research design is valid.
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Figure C1: Histogram of running variable (2016–2017)

Figure C2: Histogram of Running Variable (2017–2018)
Notes: The red line denotes the RD threshold of zero.
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Figure C3: Treatment Discontinuity (2017−2018)

Notes: Each point represents the population-weighted average of observations in a given
bin, the width of which is five. The y-axis indicates the average probability of a particulate
matter advisory. The x -axis indicates the value of the running variable (a threshold-
normalized function of PM).
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Figure C4: Continuity of Weather Control Variables (2016−2017)

Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is five. The y-axis indicates the average temperature or rainfall. The x -axis indicates the value
of the running variable (a threshold-normalized function of PM).

Figure C5: Continuity of Weather Control Variables (2017−2018)

Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is five. The y-axis indicates the average temperature or rainfall. The x -axis indicates the value
of the running variable (a threshold-normalized function of PM).
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Figure C6: Continuity of PM variables (2016−2017)

Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is five. The y-axis indicates the weighted average level of daily PM10 or PM2.5 The x -axis
indicates the value of the running variable (a threshold-normalized function of PM).

Figure C7: Continuity of PM variables (2017−2018)

Notes: Each point represents the population-weighted average of observations in a given bin, the width
of which is five. The y-axis indicates the weighted average level of daily PM10 or PM2.5. The x -axis
indicates the value of the running variable (a threshold-normalized function of PM).
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Table C1: Examples of Alert Systems in the World

Alert Policies Country
Regions
Covered

Estimated
Popula-

tion
Covered
(mil.)

Related
Links

4-tier Alert
System

China All 1, 387.2 LINK

Particulate
Matter Alerts

South
Korea

All 51.7 LINK

EnviroFlash US Many 193.8 LINK

Public Weather
Alerts

Canada Ontario 14.6 LINK

Air quality
alerts

Australia
New

South
Wales

8.2 LINK

Sistema de
Monitoreo

Atmosférico
Mexico

Mexico
City

8.8 LINK

Haze Alerts Singapore All 5.6 LINK

Pollution Alerts UK All 66.7 LINK

Notes: This list includes examples of prominent air-quality alert systems world-
wide, but it is not comprehensive. The Chinese 4-tier Alert system coverage
was calculated by summing the populations of the second-tier administrative
units in which air pollution monitors are installed. EnviroFlash coverage was
calculated based on the population in counties where the US EPA manages air
pollution monitors. All links were checked on 20 September 2021.

https://link.springer.com/content/pdf/10.1007/s10018-017-0196-3.pdf
https://www.airkorea.or.kr/web
http://www.enviroflash.info/assets/pdf/EnviroFlash_factSheet.pdf
https://www.ontario.ca/document/air-quality-ontario-2017-report/air-quality-health-index-and-air-quality-alerts#section-2
https://www.dpie.nsw.gov.au/air-quality/air-quality-alerts
http://www.aire.cdmx.gob.mx/default.php?opc=%27ZaBhnmI=%27
https://www.haze.gov.sg
https://uk-air.defra.gov.uk/latest/alerts
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Table C2: Summary Statistics

Full Sample Bandwidth = 40

Mean SD Min Max Mean SD Min MaxTreatment
& Covariates

Alert 0.04 0.2 0 1 0.1 0.3 0 1
PM10 (µg/m3) 42.1 22.3 3.0 253.9 65.8 20.2 14.9 160.1
PM2.5 (µg/m3) 23.6 13.9 1.1 123.9 41.0 14.7 6.6 123.9
Temperature (°C) 13.5 10.2 -17.3 34.4 10.5 8.5 -9.6 34.4
Precipitation(mm) 0.1 0.5 0 13.1 0.1 0.2 0 3.8

Notes: The number of district-day observations is 53,290 (73 districts, 760 days, 2017−2018) and
11,324 for the full sample and the sample based on a bandwidth of 40, respectively.

Table C3: Types of Medical Institutions in South Korea

Levels of
Institutions

Types of
Institutions

Description

Tertiary
Tertiary
General

Hospitals

· The Minister of Health and Welfare may designate
a general hospital providing highly specialized
medical services for treating serious diseases
as a tertiary hospital among general hospitals.

Secondary

General
Hospitals

· A general hospital shall have at least 100 beds.

Hospitals
· Hospitals shall have at least 30 beds or beds for

long-term care.

Primary

Public
Health
Centers

· Publicly owned regional healthcare institutions

Clinic
· A medical institution in which a doctor, dentist,

or oriental medical doctor provides
medical services primarily to outpatients

Sources: Korea Law Translation Center, Korea Legislation Research Institute
https://elaw.klri.re.kr/kor service/lawView.do?hseq=53532&lang=ENG, accessed on
Sep 15, 2021
Notes: Source link provides additional details on the definitions of each insti-
tution type.
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Table C4: Out-of-pocket Payments for Outpatient Visits in the South Korean Health-
care System

Type of
Institutions

Cases Out-of-pocket Payments

Tertiary
Hospitals

Normal
Patients

· 100% of consultation fee +
40% of remaining medical expenses

· (Pregnant Women) 40% of total medical expenses

· (Age < 1) 20% of total medical expenses

General
Hospitals

Urban
Areas

· 50% of total medical expenses

· (Pregnant Women) 40% of total medical expenses

· (Age < 1) 20% of total medical expenses

Rural
Areas

· 45% of total medical expenses

· (Pregnant Women) 40% of total medical expenses

· (Age < 1) 20% of total medical expenses

Hospitals

Urban
Areas

· 40% of total medical expenses

· (Pregnant Women) 20% of total medical expenses

· (Age < 1) 10% of total medical expenses

Rural
Areas

· 35% of total medical expenses

· (Pregnant Women) 40% of total medical expenses

· (Age < 1) 20% of total medical expenses

Clinics

Age ≥ 65

· ₩1,500 when total medical expenses ≤ ₩15,000

· 10% when total medical expenses
> ₩15,000 & ≤ ₩20,000

· 20% when total medical expenses
> ₩20,000 & ≤ ₩25,000

· 30% when total medical expenses > ₩25,000

Age < 65

· 30% of total medical expenses

· (Pregnant Women) 10% of total medical expenses

· (Age < 1) 5% of total medical expenses

Public
Health
Centers

Age ≥ 6

· 30% when total medical expenses > ₩12,000

· ₩500−₩2,200 depending on cases
when total medical expenses ≤ ₩12,000

Age < 6
· 21% when total medical expenses > ₩12,000

· ₩500−₩2,200 depending on cases
when total medical expenses ≤ ₩12,000

Sources: Health Insurance Review and Assessment Service (HIRA) of South Korea
https://www.hira.or.kr/dummy.do?pgmid=HIRAA030056020110 (in Korean), accessed on Sep 10,
2021
Notes: ₩ indicates Korean Won (KRW). 10,000 KRW is equivalent to approximately
8.7 USD. While this table shows general out-of-pocket payment ratios, it does not
describe every specific case that could result in different ratios of out-of-pocket pay-
ments. For more details, refer to source link above.
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Table C5: FRD Results using Particulate Matter as Dependent Variables

Bandwidths

Dependent Variable 16 20 24

PM10
0.331

(4.989)
1.685

(4.112)
4.190

(3.362)

PM2.5
-3.613
(4.363)

-4.738
(4.692)

-4.098
(4.590)

Notes: This table reports results from six 2SLS local-linear regressions. The de-
pendent variable in all regressions is PM10 or PM2.5, measured in cents µg/m3,
and the independent variable of interest is an advisory indicator. All regressions
control for the running variable, an interaction between the running variable and
the indicator for the running variable being above the RD threshold, tempera-
ture, precipitation, and year-by-month and day-of-week fixed effects. The level
of observation is the district by day, and observations are population weighted.
Parentheses contain standard errors clustered by the day of sample. The band-
width varies across columns as noted.
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Table C6: Optimal Bandwidth

Dependent Variable Optimal Bandwidth

Resp. (All) 18.321
Resp. (Adults) 19.293
Resp. (Older Adults) 20.526
Resp. (Minors) 17.135
Cardio. (All) 21.084
Cardio. (Adults) 21.354
Cardio. (Older Adults) 20.611
Cardio. (Minors) 17.726
Credit (All) 24.776
Credit (Restaurant) 24.222
Credit (Fashion) 20.906
Credit (Travel) 24.586
Resp. (All, 3-Day Rolling Sum) 17.088
Resp. (Adults, 3-Day Rolling Sum) 18.185
Resp. (Older Adults, 3-Day Rolling Sum) 22.185
Resp. (Minors, 3-Day Rolling Sum) 17.466
Cardio. (All, 3-Day Rolling Sum) 28.363
Cardio. (Adults, 3-Day Rolling Sum) 24.260
Cardio. (Older Adults, 3-Day Rolling Sum) 34.249
Cardio. (Minors, 3-Day Rolling Sum) 18.898
Credit (All, 3-Day Rolling Sum) 23.583
Credit (Restaurant, 3-Day Rolling Sum) 23.752
Credit (Fashion, 3-Day Rolling Sum 19.515
Credit (Travel, 3-Day Rolling Sum) 24.673

Notes: This table reports “optimal” bandwidths for different de-
pendent variables, computed using methods from calonico2014robust,
calonico2015rdrobust.
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Table C7: RD Results for Respiratory Diseases, With Visits to Tertiary General
Hospitals

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0)
−8.804
(2.344)
[2.887]

−2.260
(1.385)
[1.381]

−2.532
(1.655)
[1.866]

−3.446
(1.426)
[1.505]

RV
−0.086
(0.145)
[0.142]

−0.045
(0.044)
[0.045]

0.011
(0.064)
[0.072]

−0.044
(0.057)
[0.058]

RV ·1(RV >= 0)
0.627

(0.166)
[0.227]

0.218
(0.112)
[0.079]

0.173
(0.131)
[0.114]

0.270
(0.109)
[0.088]

2SLS

1(RV >= 0)
−14.062
(4.662)
[5.484]

−3.639
(2.184)
[2.134]

−4.095
(2.696)
[2.829]

−5.543
(2.367)
[2.450]

RV
0.020
(0.204)
[0.170]

−0.018
(0.063)
[0.055]

0.021
(0.084)
[0.086]

−0.003
(0.084)
[0.071]

RV ·1(RV >= 0)
0.581

(0.237)
[0.297]

0.208
(0.110)
[0.079]

0.162
(0.127)
[0.110]

0.254
(0.118)
[0.104]

Adjusted R2 0.839 0.866 0.796 0.897
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top
panel) and four 2SLS local-linear regressions (bottom panel). The dependent vari-
able in all regressions is respiratory disease expenditures for the relevant age group,
including visits to tertiary general hospitals and measured in cents per capita (11.5
KRW = 0.01 USD). The independent variable of interest in the reduced-form (2SLS)
regressions is an indicator for the running variable being above the RD threshold
(advisory indicator). All regressions control for the running variable, an interaction
between the running variable and the indicator for the running variable being above
the RD threshold, temperature, precipitation, and year-by-month and day-of-week
fixed effects. The level of observation is the district by day, and observations are pop-
ulation weighted. Parentheses (square brackets) contain standard errors clustered by
the running variable (day of sample). The bandwidth is set to 20 in all regressions.
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Table C8: RD Results for Cardiovascular Diseases, With Visits to Tertiary General
Hospitals

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Reduced form

1(RV >= 0)
−0.096
(0.054)
[0.062]

−1.877
(0.527)
[0.509]

−5.992
(2.133)
[2.421]

−2.133
(0.618)
[0.681]

RV
0.005

(0.003)
[0.003]

0.059
(0.025)
[0.021]

0.216
(0.100)
[0.118]

0.065
(0.025)
[0.028]

RV ·1(RV >= 0)
−0.003
(0.007)
[0.008]

0.012
(0.038)
[0.039]

−0.032
(0.155)
[0.214]

0.014
(0.042)
[0.052]

2SLS

1(RV >= 0)
−0.153
(0.095)
[0.113]

−3.022
(1.024)
[0.789]

−9.691
(3.930)
[3.786]

−3.431
(1.168)
[1.073]

RV
0.006

(0.006)
[0.004]

0.082
(0.082)
[0.025]

0.291
(0.102)
[0.129]

0.091
(0.033)
[0.033]

RV ·1(RV >= 0)
0.003

(0.007)
[0.007]

0.003
(0.044)
[0.045]

−0.058
(0.147)
[0.227]

0.005
(0.041)
[0.057]

Adjusted R2 0.022 0.799 0.854 0.874
N 2,530

Notes: This table reports results from four reduced-form local-linear regressions (top
panel) and four 2SLS local-linear regressions (bottom panel). The dependent variable
in all regressions is cardiovascular disease expenditures for the relevant age group,
including visits to tertiary general hospitals and measured in cents per capita (11.5
KRW = 0.01 USD). The independent variable of interest in the reduced-form (2SLS)
regressions is an indicator for the running variable being above the RD threshold
(advisory indicator). All regressions control for the running variable, an interaction
between the running variable and the indicator for the running variable being above
the RD threshold, temperature, precipitation, and year-by-month and day-of-week
fixed effects. The level of observation is the district by day, and observations are
population weighted. Parentheses (square brackets) contain standard errors clustered
by the running variable (day of sample). The bandwidth is set to 20 in all regressions.
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Table C9: Analysis of Dynamic Effects with Different Bandwidths

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Bandwidth: 16
−32.087
(10.967)

−10.266
(4.058)

−11.953
(5.892)

−14.688
(5.065)

Bandwidth: 20
−38.220
(13.769)

−10.703
(4.662)

−12.977
(6.624)

−16.125
(5.935)

Bandwidth: 24
−32.998
(13.702)

−7.851
(4.715)

−8.139
(6.878)

−12.693
(5.882)

Cardiovascular Illness

Sample Modification

Bandwidth: 16
−0.146
(0.089)

−4.796
(1.682)

−25.911
(12.085)

−7.034
(2.533)

Bandwidth: 20
−0.064
(0.075)

−5.279
(1.993)

−30.388
(12.987)

−8.042
(3.057)

Bandwidth: 24
0.007

(0.076)
−3.785
(2.059)

−26.687
(12.366)

−6.718
(3.081)

N
Bandwidth 16: 1,857
Bandwidth 20: 2,530
Bandwidth 24: 3,380

Notes: This table reports results from 24 2SLS local-linear regressions with varying
bandwidths (16, 20, or 24). The dependent variable in all regressions is three-day
respiratory or cardiovascular disease expenditures (from day t to day t+2) for the
relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the
independent variable of interest is an advisory indicator. All regressions control for
the running variable, an interaction between the running variable and the indicator
for the running variable being above the RD threshold, temperature, precipitation,
and year-by-month and day-of-week fixed effects. The level of observation is the
district by day, and observations are population weighted. Parentheses contain
standard errors clustered by day of sample.
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Table C10: Robustness Check - Exclusion of Later Alert Days and Removal of
Early/Late Alerts

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Sample Modification

Without Later
Alert Days

−13.622
(6.692)

−1.563
(1.290)

−1.229
(1.396)

−3.579
(2.006)

Without Later
Alert Days of RV < 0

−13.213
(4.678)

−3.412
(1.855)

−3.812
(2.432)

−5.219
(2.174)

Without
9PM−6AM

−16.274
(6.248)

−4.093
(2.268)

−4.687
(2.996)

−6.320
(2.675)

Without
8PM−8AM

−17.759
(6.908)

−4.428
(2.451)

−5.113
(3.281)

−6.856
(2.918)

Cardiovascular Illness

Sample Modification

Without Later
Alert Days

−0.025
(0.045)

−2.056
(0.746)

−8.425
(3.484)

−2.237
(0.896)

Without Later
Alert Days of RV< 0

−0.036
(0.030)

−2.387
(0.619)

−8.204
(2.897)

−2.723
(0.815)

Without
9PM−6AM

−0.043
(0.038)

−3.064
(0.834)

−10.502
(4.012)

−3.533
(1.091)

Without
8PM−8AM

−0.047
(0.041)

−3.315
(0.924)

−11.457
(4.495)

−3.833
(1.218)

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent variable
in all regressions is respiratory or cardiovascular disease expenditures for the relevant age group,
measured in cents per capita (11.5 KRW = 0.01 USD), and the independent variable of interest
is an advisory indicator. All regressions control for the running variable, an interaction between
the running variable and the indicator for the running variable being above the RD threshold,
temperature, precipitation, and year-by-month and day-of-week fixed effects. The level of ob-
servation is the district by day, and observations are population weighted. Parentheses contain
standard errors clustered by day of sample. The bandwidth is set to 20 in all regressions. In each
panel, the first excludes alert days following the first day of an air quality alert, and the second
row excludes alert days on which the running variable falls below zero. The third row excludes
days on which the alert was cancelled before 6 am or triggered after 9 pm, while the fourth row
excludes days on which the alert was cancelled before 8 am or triggered after 8 pm.
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Table C11: FRD Coefficients with Different Specifications

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Specification Modification

Quadratic RV
−18.220
(11.167)

−7.586
(3.221)

−7.718
(4.404)

−9.607
(4.337)

Quadratic Temperature
−15.611
(5.710)

−4.064
(2.105)

−4.569
(2.808)

−6.167
(2.499)

Alternative Time FE
−14.502
(5.698)

−2.982
(2.152)

−3.274
(2.858)

−5.045
(2.495)

1-Day-Before Holiday FE
−13.414
(5.771)

−1.881
(1.410)

−1.765
(1.862)

−3.907
(1.958)

Cardiovascular Illness

Specification Modification

Quadratic RV
−0.028
(0.074)

−4.611
(1.487)

−14.329
(6.994)

−5.138
(1.714)

Quadratic Temperature
−0.039
(0.035)

−2.702
(0.776)

−9.022
(3.607)

−3.126
(1.020)

Alternative Time FE
−0.041
(0.034)

−2.650
(0.760)

−9.286
(3.561)

−3.128
(0.983)

1-Day-Before Holiday FE
−0.040
(0.038)

−2.697
(0.888)

−11.887
(4.558)

−3.342
(1.182)

Notes: This table reports results from 24 2SLS local-linear regressions. The dependent
variable in all regressions is respiratory or cardiovascular disease expenditures for the
relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the
independent variable of interest is an advisory indicator. All regressions control for the
running variable, an interaction between the running variable and the indicator for the
running variable being above the RD threshold, temperature, precipitation, and year-
by-month and day-of-week fixed effects. The first, second, and third rows in each panel
add controls for a quadratic in the running variable, a quadratic in temperature, and
year and month fixed effects (instead of year-by-month fixed effects) respectively. The
level of observation is the district by day, and observations are population weighted.
Parentheses contain standard errors clustered by the day of sample. The bandwidth
is set to 20 in all regressions.
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Table C12: Robustness Check - Addition of Air Pollution Covariates

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Added Covariates

PM10
−14.665
(5.249)

−3.294
(1.912)

−3.860
(2.507)

−5.379
(2.253)

PM2.5
−14.232
(5.117)

−3.558
(1.970)

−4.033
(2.536)

−5.486
(2.274)

PM10 & PM2.5
−14.531
(5.100)

−3.296
(1.902)

−3.849
(2.491)

−5.353
(2.230)

AQI
−14.626
(5.462)

−3.489
(1.933)

−3.863
(2.589)

−5.510
(2.300)

Cardiovascular Illness

Added Covariates

PM10
−0.036
(0.037)

−2.654
(0.733)

−8.957
(3.537)

−3.076
(0.948)

PM2.5
−0.045
(0.035)

−2.790
(0.733)

−9.510
(3.529)

−3.174
(0.945)

PM10 & PM2.5
−0.037
(0.036)

−2.663
(0.731)

−8.995
(3.545)

−3.076
(0.942)

AQI
−0.027
(0.038)

−2.760
(0.755)

−8.890
(3.502)

−3.080
(0.956)

Notes: This table reports results from 32 2SLS local-linear regressions. The
dependent variable in all regressions is respiratory or cardiovascular disease ex-
penditures for the relevant age group, measured in cents per capita (11.5 KRW
= 0.01 USD), and the independent variable of interest is an advisory indica-
tor. All regressions control for the running variable, an interaction between the
running variable and the indicator for the running variable being above the
RD threshold, temperature, precipitation, and year-by-month and day-of-week
fixed effects. The first, second, third, and fourth rows in each panel add controls
for PM10, PM2.5, both PM10 and PM2.5, and the AQI, respectively (averaged
across the day). The level of observation is the district by day, and observations
are population weighted. Parentheses contain standard errors clustered by day
of sample. The bandwidth is set to 20 in all regressions.
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Table C13: Robustness Check - Standard Errors with Different Clusters

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

FRD Coefficient −15.033 −3.777 −4.303 −5.829

Clustering Level

Province by Day of Week (5.345) (1.568) (1.953) (1.938)

Province by Day of Sample (6.114) (2.140) (2.621) (2.524)

Region by Day of Week (5.217) (1.497) (1.929) (1.880)

Region by Day of Sample (6.081) (2.110) (2.592) (2.490)

District by Day of Week (1.828) (0.645) (1.171) (0.751)

District (2.077) (0.886) (1.010) (1.014)

Cardiovascular Illness

FRD Coefficient −0.040 −2.828 −9.641 −3.259

Clustering Level

Province by Day of Week (0.042) (0.954) (4.199) (1.253)

Province by Day of Sample (0.038) (0.834) (3.742) (1.033)

Region by Day of Week (0.042) (0.923) (3.966) (1.209)

Region by Day of Sample (0.038) (0.813) (3.607) (1.001)

District by Day of Week (0.039) (0.462) (2.645) (0.569)

District (0.036) (0.518) (2.336) (0.540)

Notes: This table reports different standard errors for eight 2SLS local-linear regressions. The
dependent variable in all regressions is respiratory or cardiovascular disease expenditures for
the relevant age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the
independent variable of interest is an advisory indicator. All regressions control for the run-
ning variable, an interaction between the running variable and the indicator for the running
variable being above the RD threshold, temperature, precipitation, and year-by-month and
day-of-week fixed effects. The level of observation is the district by day, and observations are
population weighted. In each panel parentheses contain standard errors clustered by province
by day-of-week (second row), province by day-of-sample (third row), region by day-of-week
(fourth row), region by day-of-sample (fifth row), district by day-of-week (sixth row), and
district (seventh row). The bandwidth is set to 20 in all regressions.
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Table C14: Robustness Check - Spillover Effect and Falsification Tests

Age Groups

Minors
(0-19)

Adults
(20-64)

Older
Adults
(65+)

All

Respiratory Illness

Specification Modification

Spillover
−0.029
(4.658)

0.217
(1.180)

0.453
(1.778)

0.147
(1.743)

Falsification (−20)
0.381

(1.528)
0.296

(0.478)
0.832

(0.792)
0.334

(0.634)

Falsification (−30)
1.424

(1.023)
0.036

(0.333)
−0.186
(0.520)

0.286
(0.430)

Falsification (−50)
−0.658
(0.715)

−0.335
(0.232)

−0.391
(0.358)

−0.400
(0.310)

Cardiovascular Illness

Specification Modification

Spillover
0.029

(0.023)
0.295

(0.809)
−1.054
(4.547)

0.074
(1.067)

Falsification (−20)
0.007

(0.025)
−0.062
(0.340)

−0.458
(1.951)

−0.037
(0.461)

Falsification (−30)
−0.046
(0.017)

−0.072
(0.257)

−0.923
(1.656)

−0.206
(0.380)

Falsification (−50)
−0.014
(0.009)

0.102
(0.131)

1.226
(0.821)

0.197
(0.193)

Notes: This table reports results from 32 2SLS local-linear regressions. The dependent vari-
able in all regressions is respiratory or cardiovascular disease expenditures for the relevant
age group, measured in cents per capita (11.5 KRW = 0.01 USD), and the independent vari-
able of interest is an advisory indicator, which is shifted either geographically or generated
by shifting the running variable by a constant. In each panel, the first row shifts the advisory
indicator to correspond to an advisory in the nearest alert region to region i. The second,
third, and fourth rows use an advisory indicator that is generated after shifting the running
variable downwards by 20, 30, or 50 units respectively. All regressions control for the run-
ning variable, an interaction between the running variable and the indicator for the running
variable being above the RD threshold, temperature, precipitation, and year-by-month and
day-of-week fixed effects. The level of observation is the district by day, and observations are
population weighted. Parentheses contain standard errors clustered by day of sample. The
bandwidth is set to 20 in all regressions.
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Table C15: List of Budget Items Related to Alert System

City Item

Gwangju Air Pollution Monitor - Electricity Cost
Gwangju Line Rental for Air Quality Warning System
Gwangju Air Pollution Monitor Management Cost (General)
Gwangju Air Pollution Monitor - Automatic Control System
Gwangju Air Pollution Monitor Alert System
Daejeon Advertisement - Electronic Board Fee
Daejeon Line Rental for Air Pollution Management System
Daejeon Air Pollution Management System - Maintenance Cost
Daejeon Air Pollution Management System - Establishment Cost
Daejeon Air Pollution Monitor - Installation Cost
Daegu Line Rental for Air Quality Warning System
Daegu Air Pollution Alert System - Maintenance Cost
Busan Air Pollution Monitor - Maintenance Cost
Busan Air Pollution Monitor Data Collecting Machine - Maintenance Cost
Busan Air Pollution Monitor - Battery Change
Busan Indoor Air Quality Monitor - Maintenance Cost
Busan Indoor Air Quality Monitor Data Collecting Machine - Maintenance Cost
Busan Air Pollution Alert System - Maintenance Cost
Busan Sampling & Analysis Equipment - Maintenance Cost
Busan Air Pollution Monitor - Maintenance Cost
Busan Indoor Air Quality Monitor - Maintenance Cost
Busan Air Pollution Monitor - Electronic Board Maintenance Cost
Seoul Air Pollution Information System - Office Management Cost
Seoul Air Pollution Information System - Maintenance Cost
Seoul Air Pollution Information System - SMS Service
Seoul Air Quality Modeling System Construction
Seoul Air Quality Evaluation Program Development
Seoul Air Quality Real-Time Information Provision System Construction
Seoul Air Pollution Information System - IT Development
Seoul Ambient Air Quality Situation Room Construction
Seoul Ambient Air Quality Information Service Infrastructure
Seoul Air Quality Information System - Supervision
Seoul Air Pollution Information System - IT Solution & Planning Development
Ulsan Advertisement - Electronic Board Fee
Ulsan Air Pollution Monitor - Electricity Cost
Ulsan Line Rental for Air Pollution Monitor
Ulsan Ambient Air Quality Situation Room - Maintenance Cost
Ulsan Air Pollution Monitor - Outsourcing Maintenance Cost
Ulsan Air Pollution Monitor Equipment - Maintenance Cost
Ulsan Air Pollution Monitor - Maintenance Cost
Ulsan Environmental Measurement Equipment Inspection Cost
Ulsan Air Pollution Monitor - Battery Change

Incheon Air Pollution Monitoring - Public Cost
Incheon Air Pollution Monitoring - Equipment Maintenance Cost
Incheon Environmental Measurement Equipment Inspection Cost
Incheon Air Pollution Monitor - Movement Cost
Incheon Air Pollution Monitor - Outsourcing Maintenance Cost
Incheon Environment Automatic Monitoring System - Outsourcing Maintenance Cost
Incheon Air Pollution Monitor Network Establishment

Notes: Each row reports an item related to the alert system in each city.
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Table C16: Costs of the Air Pollution Alert System Management

City Cost [USD, 2017] Cost [USD, 2018]

Gwangju 190,751 192,317
Daejeon 151,530 190,887
Daegu 293,925 309,012
Busan 375,257 471,538
Seoul 187,879 634,157
Ulsan 329,588 464,695

Incheon 485,627 571,334

Toal 2,014,558 2,833,940

Notes: Each row reports the system management cost of air
quality alerts in the seven major cities in the sample.
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