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Robots capable of robust, real-time recognition of human intent during manipulation

tasks could be used to enhance human-robot collaboration for innumerable applications. Eye

gaze-based control interfaces offer a non-invasive way to infer intent and reduce the cognitive

burden on operators of complex robots. Eye gaze is traditionally used for “gaze triggering”

(GT) in which staring at an object, or sequence of objects, triggers pre-programmed robotic

movements. Our long-term objective is to leverage eye gaze as an intuitive way to infer

human intent, advance action recognition for shared autonomy control, and enable seamless

human-robot collaboration not yet possible with state-of-the-art gaze-based methods.

In Study #1, we identified features from 3D gaze behavior for use by machine learning

classifiers of action recognition. We investigated gaze behavior and gaze-object interactions

as participants performed the bimanual activity of preparing a powdered drink. We generated

3D gaze saliency maps and used characteristic gaze object sequences to demonstrate an action
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recognition algorithm.

In Study #2, we introduced a classifier for recognizing action primitives, which we defined

as triplets having a verb, “target object,” and “hand object.” Using novel 3D gaze-related

features, a recurrent neural network was trained to recognize a verb and target object. The

gaze object angle and its rate of change enabled accurate recognition and a reduction in the

observational latency of the classifier. Using a non-specific approach to indexing objects, we

demonstrated modest generalizability of the classifier across activities.

In Study #3, we introduced a neural network-based “action prediction” (AP) mode into a

shared autonomy framework capable of 3D gaze reconstruction, real-time intent recognition,

object localization, obstacle avoidance, and dynamic trajectory planning. Upon extracting

gaze-related features, the AP model recognized, and often predicted, the operator’s intended

action primitives. The AP control mode, often preferred over a state-of-the-art GT mode,

enabled more seamless human-robot collaboration.

In summary, we developed machine learning-based action recognition methods using novel

3D gaze-related features to enhance the shared autonomy control of robot manipulators. Our

methods can serve as a foundation for further enhancement with complementary sensory

feedback such as computer vision and tactile sensing.
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CHAPTER 1

Introduction

1.1 Motivation

The eyes are the window to the mind. Eye gaze contains rich information about mental

state, and it can reflect an individual’s thoughts [1, 2]. Eye tracking technology can be used

to quantify natural gaze behaviors and extract information about gaze fixation, for example.

Eye tracking also provides a non-verbal and non-invasive interface for people to communicate

their intent to a computer or robot. Eye tracking has been applied in a broad range of fields

such as marketing, skill training/assessment, cognitive psychology, and robotics.

1.1.1 Applications of eye tracking

In the field of marketing and advertising, gaze fixation distribution on product packages

and webpages has been tracked for customer data analysis. Zamani and Amin have verified

the strong relationships between gaze fixation count, gaze fixation duration, and customers’

purchase decisions [3]. Retailers could leverage the eye tracking technique to optimize prod-

uct packaging and retail shelf design to better capture and direct consumers’ attention to

cues that ultimately lead to purchases [4]. Website design agencies could better under-

stand mainstream users’ browsing habits through eye tracking data and display important

information in positions with higher visual saliency [5].
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Eye tracking has been used for skill training and assessment. For instance, Khan et al.

demonstrated a significant difference in gaze patterns between novice and expert surgeons

as they observed a laparoscopic operation video [6]. Researchers found that expert surgeons’

eyes were more focused on key target areas of the operative field, while novice surgeons’

eyes often wandered from the key areas. Potentially, novice surgeons could expedite their

learning curves by following the gaze patterns of expert surgeons.

The field of cognitive psychology has studied pupil dilation as a reflection of intensity-

related aspects of cognitive processing [1]. Pupil dilation has been monitored in tasks such as

arithmetic operations, reading comprehension [7], digit sorting, and digit span (short-term

memory) [8]. In these tasks, larger pupil dilation has been reported in higher difficulty-level

conditions than lower difficulty-level conditions. For instance, Bradley et al. compared pupil

diameters as subjects were instructed to view pleasant, unpleasant, and neutral pictures [9].

Researchers found that pupil dilation was larger when viewing emotionally arousing pictures

(no matter pleasant or unpleasant) and concluded that pupil dilation can reflect emotional

arousal in addition to cognitive burden.

Considering robotics applications, eye tracking has been used as an interface for teleop-

erating robotic agents such as drones [10, 11, 12], wheelchairs [13], and medical robots [14].

Yu et al. designed a set of “gaze gestures” and assigned each gesture to the direct control

of one degree of freedom of a drone, including speed, rotation, translation, and altitude.

Raymond et al. collected gaze signals as operators used a joystick to control the movement

of a wheelchair [13]. A fitting function was trained to predict joystick signals using gaze

point positions as the input. With the fitting function, an operator could control the lin-

ear and angular velocity of the wheelchair using gaze commands. Li et al. developed an

attention-aware robotic laparoscopic system that could recognize an operator’s visual target
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through eye tracking signals and then automatically steer the laparoscope to focus on the

target [14]. Such a gaze-based targeting system has the potential to make the execution of

surgeries smoother and more efficient.

1.1.2 Gaze-based shared autonomy for human-robot collaboration

Nowadays, with the rapid advancement of robotics, computational power, and machine

learning techniques, the integration of the eye tracking with robot control schemes has at-

tracted widespread attention. As in the literature, we distinguish between direct teleoper-

ation and shared autonomy [15]. With gaze-based teleoperation, an operator’s gaze signals

are mapped directly to robot positions or velocities, putting the cognitive burden on the

operator [15]. In contrast, in a gaze-based shared autonomy system, an operator’s gaze

input is combined with semi-autonomous robot decisions in order to achieve shared goals.

Specifically, a shared autonomy system could model and predict an operator’s intended ac-

tions through natural eye movements and leverage robot autonomy to execute the recognized

actions. Shared autonomy can effectively decrease operators’ cognitive burden and make the

control process more natural, intuitive, and seamless.

A robust, real-time intent recognition or prediction model is the key to an effective gaze-

based shared autonomy system and should, at a minimum, satisfy the following requirements:

(i) Ideally, the model should predict intent prior to the initiation of an action and not rely

solely on the visual consequences of actions. (ii) In the case of assistive robotic manipulators,

the intent prediction model should enable more tasks than pick-and-place alone, as activities

of daily living (ADLs) require a rich set of functional behaviors.

Numerous computer vision-based studies have leveraged egocentric videos taken by head-

mounted cameras or eyetrackers to recognize actions during everyday tasks [16, 17, 18, 19,
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20, 21, 22, 23, 24]. However, in these studies, actions could not be successfully recognized

until key visual features related to hand motions and object states (e.g. whether a lid is on a

cup) were observable and available to the classification algorithm. While such classifiers are

useful, they are incapable of predicting intent due to their reliance on the visual consequences

of actions.

Some gaze-based shared autonomy studies have focused on the pick-and-place tasks [25,

26, 27]. In these studies, the gaze point was the only gaze-related feature utilized to predict

intent. Classification methods based on support vector machines (SVMs) and partially

observable Markov decision processes (POMDPs) were used to estimate a target object for

pick-up or a target position for setting down a grasped object. Pick-and-place capabilities

are immensely useful, but the intent prediction framework in the literature does not lend

itself to expansion for other functional behaviors common to ADLs, such as pouring and

stirring.

While algorithms have been developed to recognize human intent by other research

groups, we were unable to find follow-on publications in which the proposed algorithms

were demonstrated experimentally on real robots [25, 28, 29]. In addition, previous studies

on gaze-based action recognition and shared autonomy relied only on gaze positions from

two-dimensional videos captured by ego-centric cameras or eyetrackers. It is likely that some

intent-relevant information could be encoded by three-dimensional (3D) spatiotemporal re-

lationships between gaze vectors and the environment. Thus, there is a need to extract novel

features from 3D gaze behaviors, develop new gaze-based intent estimation algorithms, and

assess their performance in shared autonomy systems on real robots.
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1.2 Contributions

The work in this dissertation presents methods for extracting novel 3D gaze-related fea-

tures, designing classifiers for action recognition, and a shared autonomy control framework

for collaborative human-robot systems. Moeslund et al. described human behaviors as a

composition of three hierarchical levels: (i) activities, (ii) actions, and (iii) action primitives.

In this dissertation, we rephrase the hierarchical levels as (i) activities, (ii) subtasks, and (iii)

action primitives, and include subtasks and action primitives under the umbrella of actions

to be recognized.

We identified gaze-related features that are extremely useful for action recognition in-

cluding gaze object, gaze object sequence, gaze object angle, and gaze object angular speed.

Through dynamic time warping, we were able to recognize actions at the subtask level, and

through recurrent neural networks, we were able to recognize actions at the action primitive

level. We successfully demonstrated the feasibility and advantages of using gaze-based action

recognition algorithms to enhance the operator experience in shared autonomy systems.

Chapter 2 presents a novel method to construct a gaze vector and gaze saliency maps in

3D space, which enables the analysis of gaze behaviors and gaze-object interactions from a

variety of 3D perspectives. Using dynamic time warping, we created a population-based set

of characteristic gaze object sequences and demonstrated action recognition at the subtask

level.

Chapter 3 presents a gaze-based action primitive recognition algorithm that can be used

in shared autonomy systems that assist with activities of daily living. We define an action

primitive as a triplet comprised of a verb, “target object,” and “hand object.” The algorithm

leverages a long short-term memory recurrent neural network to recognize participants’ in-

5



tended verb and target object. We demonstrated that the use of novel gaze-related features,

such as gaze object angle and gaze object angular speed, are especially useful for accurately

recognizing action primitives and reducing the observational latency of the classifier.

Chapter 4 presents a novel gaze-based shared autonomy framework for human-robot

collaboration to assist with activities of daily living. The shared autonomy framework is

capable of 3D gaze reconstruction, real-time intent recognition, object localization, obstacle

avoidance, and dynamic trajectory planning. We describe the development and implementa-

tion of the gaze-based shared autonomy scheme on a real robot. We implemented the action

primitive recognition algorithm trained in Chapter 3, which enabled the robot to recognize,

and often predict, the operator’s intended actions. We show that the “action prediction”

mode, often preferred over a state-of-the-art “gaze trigger” mode, enabled more seamless

human-robot collaboration

Chapter 5 summarizes this dissertation and presents potential opportunities for en-

hancement as future work.
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CHAPTER 2

Exploiting 3D Gaze Tracking for Action Recognition

During Bimanual Manipulation

to Enhance Human-robot Collaboration

This chapter was based on work published in the journal Frontiers in Robotics and AI [30].

2.1 Abstract

Human-robot collaboration could be advanced by facilitating the intuitive, gaze-based

control of robots, and enabling robots to recognize human actions, infer human intent, and

plan actions that support human goals. Traditionally, gaze tracking approaches to action

recognition have relied upon computer vision-based analyses of 2D egocentric camera videos.

The objective of this study was to identify useful features that can be extracted from 3D gaze

behavior and used as inputs to machine learning algorithms for human action recognition. We

investigated human gaze behavior and gaze-object interactions in 3D during the performance

of a bimanual, instrumental activity of daily living: the preparation of a powdered drink.

A marker-based motion capture system and binocular eye tracker were used to reconstruct

3D gaze vectors and their intersection with 3D point clouds of objects being manipulated.

Statistical analyses of gaze fixation duration and saccade size suggested that some actions
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(pouring, stirring) may require more visual attention than other actions (reach, pick up, set

down, move). Three-dimensional gaze saliency maps, generated with high spatial resolution

for six subtasks, appeared to encode action-relevant information. The ”gaze object sequence”

was used to capture information about the identity of objects in concert with the temporal

sequence in which the objects were visually regarded. Dynamic time warping barycentric

averaging was used to create a population-based set of characteristic gaze object sequences

that accounted for intra- and inter-subject variability. The gaze object sequence was used to

demonstrate the feasibility of a simple action recognition algorithm that utilized a dynamic

time warping Euclidean distance metric. Recognition accuracy results of 91.5%, averaged

over the six subtasks, suggest that the gaze object sequence is a promising feature for action

recognition whose impact could be enhanced through the use of sophisticated machine learn-

ing classifiers and algorithmic improvements for real-time implementation. Robots capable

of robust, real-time recognition of human actions during manipulation tasks could be used

to improve quality of life in the home as well as quality of work in industrial environments.

2.2 Introduction

Recognition of human motion has the potential to greatly impact a number of fields,

including assistive robotics, human-robot interaction, and autonomous monitoring systems.

In the home, recognition of instrumental activities of daily living (iADLs) could enable an

assistive robot to infer human intent and collaborate more seamlessly with humans while

also reducing the cognitive burden on the user. A wheelchair-mounted robot with such ca-

pabilities could enhance the functional independence of wheelchair users with upper limb

impairments [31]. During bimanual iADLs, humans rely heavily on vision to proactively
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gather task-relevant visual information for planning [32]. For example, task-relevant infor-

mation for manipulation could include the three-dimensional (3D) location of an object as

well as its structure-related and substance-related properties, such as shape and weight, re-

spectively [33]. Saccades typically precede body movement [34] and reflect one’s stratey for

successful completion of a task.

The relationships between human vision, planning, and intent have inspired roboticists

to adopt similar vision-based principles for planning robot movements and to use human

gaze tracking for the intuitive control of robot systems. For instance, gaze fixation data

collected during the human navigation of rocky terrain have been used to inspire the control

of bipedal robots, specifically for the identification and selection of foot placement locations

during traversal of rough terrain [35]. Human eye tracking data have also been used in the

closed loop control of robotic arms. Recently, [36] demonstrated how 3D gaze tracking could

be used to enable individuals with impaired mobility to control a robotic arm in an intuitive

manner. Diverging from traditional gaze tracking approaches that leverage two-dimensional

(2D) egocentric camera videos, Li et al. presented methods for estimating object location

and pose from gaze points reconstructed in 3D. A visuomotor grasping model was trained on

gaze locations in 3D along with grasp configurations demonstrated by unimpaired subjects.

The model was then used for robot grasp planning driven by human 3D gaze.

In this work, we consider how human eye movements and gaze behavior may encode intent

and could be used to inform or control a robotic system for the performance of bimanual

tasks. Unlike repetitive, whole-body motions such as walking and running, iADLs can be

challenging for autonomous recognition systems for multiple reasons. For instance, human

motion associated with iADLs is not always repetitive, often occurs in an unstructured

environment, and can be subject to numerous visual occlusions by objects being manipulated
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as well as parts of the human body. Prior studies on recognition of iADLs often applied

computer vision-based approaches to images and videos captured via egocentric cameras

worn by human subjects. Video preprocessing methods typically consist of first subtracting

the foreground and then detecting human hands, regions of visual interest, and objects being

manipulated [17, 19, 37, 38].

A variety of methods have been presented for feature extraction for use in machine learn-

ing classifiers. In some studies, hand-hand, hand-object, and/or object-object relationships

have been leveraged [16, 18, 21]. The state of an object (e.g., open vs. closed) has been

used as a feature of interest [20].Another study leveraged a saliency-based method to esti-

mate gaze position, identify the “gaze object” (the object of visual regard), and recognize

an action [22].Other studies have employed eye trackers in addition to egocentric cameras;

researchers have reported significant improvements in action recognition accuracy as a result

of the additional gaze point information [16, 19].

In the literature, the phrase “saliency map” has been used to reference a topographically

arranged map that represents visual saliency of a corresponding visual scene [39]. In this

work, we will refer to “gaze saliency maps” as heat maps that represent gaze fixation behav-

iors. 2D gaze saliency maps have been effectively employed for the study of gaze behavior

while viewing and mimicking the grasp of objects on a computer screen [40]. Belardinelli

et al. showed that gaze fixations are distributed across objects during action planning and

can be used to anticipate a user’s intent with the object (e.g., opening vs. lifting a teapot).

While images of real world objects were presented, subjects were only instructed to mimic

actions. In addition, since such 2D gaze saliency maps were constructed from a specific cam-

era perspective, they cannot be easily generalized to other views of the same object. One

of the objectives of this work was to construct gaze saliency maps in 3D that could enable
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gaze behavior analyses from a variety of perspectives. Such 3D gaze saliency maps could

be mapped to 3D point clouds trivially obtained using low-cost RGB-D computer vision

hardware, as is common in robotics applications. Furthermore, given that all manipulation

tasks occur in three dimensions, 3D gaze saliency maps could enable additional insights into

action-driven gaze behaviors. Although our experiments were conducted in an artificial lab

setting using an uncluttered object scene, the experiment enabled subjects to perform ac-

tual physical manipulations of the object as opposed to only imagining or mimicking the

manipulations, as in [40].

The primary objective of this study was to extract and rigorously evaluate a variety

of 3D gaze behavior features that could be used for human action recognition to benefit

human–robot collaborations. Despite the increasing use of deep learning techniques for end-

to-end learning and autonomous feature selection, in this work, we have elected to consider

the potential value of independent features that could be used to design action recognition

algorithms in the future. In this way, we can consider the physical meaning, computational

expense, and value added on a feature-by-feature basis. In Section “Materials and Methods,”

we describe the experimental protocol, methods for segmenting actions, analyzing eye tracker

data, and constructing 3D gaze vectors and gaze saliency maps. In Section “Results,” we

report trends in eye movement characteristics and define the “gaze object sequence.” In

Section “Discussion,” we discuss observed gaze behaviors and the potential and practicalities

of using gaze saliency maps and gaze object sequences for action recognition. Finally, in

Section “Conclusion,” we summarize our contributions and suggest future directions.
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2.3 Materials and Methods

2.3.1 Experimental Protocol

This study was carried out in accordance with the recommendations of the UCLA Insti-

tutional Review Board with written informed consent from all subjects. All subjects gave

written informed consent in accordance with the Declaration of Helsinki. The protocol was

approved by the UCLA Institutional Review Board. A total of 11 subjects (nine males, two

females; aged 18–28 years) participated in the study, whose preliminary results were first

reported in [41]. According to a handedness assessment [42], two subjects were “pure right

handers,” seven subjects were “mixed right handers,” and two subjects were “neutral.”

Subjects were instructed to perform a bimanual tasks involving everyday objects and

actions. In this work, we focus on one bimanual task that features numerous objects and

subtasks: the preparation of a powdered drink. To investigate how the findings of this study

may generalize to other iADL tasks, we plan to apply similar analyses to other bimanual

tasks in the future. The objects for the drink preparation task were selected from the

benchmark Yale-CMU-Berkeley (YCB) Object Set [43]: mug, spoon, pitcher, and pitcher

lid. The actions associated with these objects were reach for, pick up, set down, move, stir,

scoop, drop, insert, and pour.

Subjects were instructed to repeat the task four times with a 1 min break between each

trial. The YCB objects were laid out and aligned on a table (adjusted to an ergonomic

height for each subject) as shown in Figure 1. The experimental setup was reset prior to

each new trial. Subjects were instructed to remove a pitcher lid, stir the contents of the

pitcher, which contained water only (the powdered drink was imagined), and transfer the

drink from the pitcher to the mug in two different ways. First, three spoonfuls of the drink
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were to be transferred from the pitcher to the mug using a spoon. Second, the pitcher lid

was to be closed to enable to pouring of the drink from the pitcher to the mug until the mug

was filled to two-third of its capacity. In order to standardize the instructions provided to

subjects, the experimental procedure was demonstrated via a prerecorded video.

Subjects wore an ETL-500 binocular, infrared, head-mounted eye tracker (ISCAN, Inc.,

Woburn, MA, USA) that tracked their visual point of regard, with respect to a head-mounted

egocentric scene camera, at a 60 Hz sampling frequency. Calibration data suggest that the

accuracy and precision of the eye tracker are approximately 1.43° and 0.11°, respectively.

Six T-Series cameras sampled at 100 Hz and a Basler/Vue video camera (Vicon, Culver

City, CA, USA) were used to track the motion of the subjects and YCB objects (Figure 1).

Retroreflective markers were attached to the YCB objects, eye tracker, and subjects’ shoul-

ders, upper arms, forearms, and hands (dorsal aspects). Visual distractions were minimized

through the use of a blackout curtain that surrounded the subject’s field of view.

2.3.2 Action Segmentation: Task, Subtask, and Action Unit Hierarchy

[34] reported on gaze fixation during a tea-making task. In that work, a hierarchy

of four activity levels was considered: “make the tea” (level 1), “prepare the cups” (level

2), “fill the kettle” (level 3), and “remove the lid” (level 4). [44] reported on a brownie-

making task and divided the task into 29 actions, such as “break one egg” and “pour oil

in cup.” Adopting a similar approach as these prior works, we defined an action hierarchy

using a task–subtask–action unit format (Table 1). Subtasks were defined similar to Land et

al.’s “4th level activities” while the action units were defined according to hand and object

kinematics. All subjects performed all six subtasks listed in Table 1, but not all subjects

performed all action units. For example, a couple of subjects did not reach for the pitcher
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Figure 2.1: (A) Each subject was seated in the motion capture area. A blackout curtain

was used to minimize visual distractions. (B) The subject wore a head-mounted eye tracker.

Motion capture markers were attached to the Yale-CMU-Berkeley objects, the eye tracker,

and subjects’ upper limbs. Each trial used the object layout shown. (C) Retroreflective

markers were placed on a mug, spoon, pitcher, pitcher lid, and table. These objects will be

referenced using the indicated color code throughout this manuscript. The subject shown in

panels (A,B) has approved of the publication of these images.
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Figure 2.2: The repetitive nature of the spoon’s kinematics with respect to the pitcher was

used to identify the start and end of the action unit “stir inside pitcher.” Although the spoon

was not manipulated until approximately 6 s had elapsed in the representative trial shown,

the full trial is provided for completeness.

during Subtask 2 (“move spoon into pitcher”).

The start and end time of each action unit were identified according to hand and object

kinematics and were verified by observing the egocentric video recorded from the eye tracker.

For example, the angle of the spoon’s long axis with respect to the pitcher’s long axis and

the repetitive pattern of the angle were used to identify the beginning and end of the action

unit “stir inside pitcher” (Figure 2).
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2.3.3 Gaze Fixation and Saccade Labeling

Saccadic movements of the eye were discovered by Edwin Landott in 1890 while studying

eye movements during reading [45]. According to Kandel et al., saccadic eye movements

are characterized by “jerky movements followed by a short pause” or “rapid movements

between fixation points.” In our study, saccades were detected using the angular velocity of

the reconstructed gaze vector (see 3D Gaze Vector and Gaze Saliency Map Construction)

and intervals between saccades that exceeded 200 ms were labeled as gaze fixations, as

in [46]. As described previously, the beginning and end of action units were defined based

on hand and object kinematics. A heuristic approach, as outlined in Figure 3, was used to

associate gaze fixation periods and saccades in the eye tracker data with action units. A

given gaze fixation period was associated with a specific action unit if the gaze fixation period

overlapped with the action unit period ranging from 0.3 to 0.7 T, where T was the duration

of the specific action unit. A given saccade was associated with a specific action unit if the

saccade occurred during the action unit period ranging from -0.2 to 0.8 T. Saccade to action

unit associations were allowed prior to the start of the action unit (defined from hand and

object kinematics) based on reports in the literature that saccades typically precede related

motions of the hand [34, 32]. The results of the approach presented in Figure 3 were verified

through careful comparison with egocentric scene camera videos recorded by the eye tracker.

2.3.4 3D Gaze Vector and Gaze Saliency Map Construction

The eye tracker provided the 2D pixel coordinates of the gaze point with respect to the

image plane of the egocentric scene camera. The MATLAB Camera Calibration Toolbox [47,

48] and a four-step calibration procedure were used to estimate the camera’s intrinsic and

16



Figure 2.3: (A) A given gaze fixation period was associated with a specific action unit if

the gaze fixation period overlapped with the action unit period ranging from 0.3 to 0.7 T

(blue shaded region), where T was the duration of the specific action unit. (B) A given

saccade was associated with a specific action unit if the saccade occurred during the action

unit period ranging from -0.2 to 0.8 T.
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Subtask 1: re-

move pitcher lid

Subtask 2:

move spoon

into pitcher

Subtask 3:

stir inside

pitcher

Subtask 4: transfer liquid

from pitcher to mug using

spoon

Subtask 5: replace pitcher

lid

Subtask 6: pour liquid

into mug

Action

units

Reach for pitcher lid Reach for pitcher Stir Scoop inside pitcher Reach for pitcher lid Reach for mug

Reach for pitcher Reach for spoon Reach for mug Reach for pitcher Pick up mug

Pick up pitcher lid Pick up spoon Move mug to pitcher Pick up pitcher lid Move mug to pitcher

Set down pitcher lid Move spoon Move spoon to mug Move pitcher lid to pitcher Reach for pitcher handle

Drop liquid into mug using spoon Insert pitcher lid into pitcher Pick up pitcher

Set down mug Pour liquid

Set down spoon Set down pitcher

Table 2.1: Six subtasks were defined for the task of making a powdered drink; action units

were defined for each subtask according to hand and object kinematics.

extrinsic parameters. These parameters enabled the calculation of the pose of the 2D image

plane in the 3D global reference frame. The origin of the camera frame was located using

motion capture markers attached to the eye tracker. The 3D gaze vector was reconstructed

by connecting the origin of the camera frame with the gaze point’s perspective projection

onto the image plane.

Using the reconstructed 3D gaze vector, we created 3D gaze saliency maps by assigning

RGB colors to the point clouds obtained from 3D scans of the YCB objects. The point cloud

for the mug was obtained from [43]. The point clouds for the pitcher, pitcher lid, and spoon

were scanned with a structured-light 3D scanner (Structure Sensor, Occipital, Inc., CA,

USA) and custom turntable apparatus. This was necessary because the YCB point cloud

database only provides point clouds for the pitcher lid assembly and because the proximal

end of the spoon was modified for the application of motion capture markers (Figure 1C).

Colors were assigned to points based on the duration of their intersection with the subject’s

3D gaze vector. In order to account for eye tracker uncertainty, colors were assigned to

a 5 mm-radius spherical neighborhood of points, with points at the center of the sphere

(intersected by the 3D gaze vector) being most intense. Color intensity for points within the
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sphere decreased linearly as the distance from the center of the sphere increased. Both gaze

fixation and saccades were included during RGB color assignment. For each subtask, the

RGB color intensity maps were summed across subjects and then normalized to the [0, 1]

range, with 0 as black and 1 as red. The normalization was performed with all task-relevant

objects considered simultaneously and not on an object-specific basis. This enabled the

investigation of the relative visual importance of each object for each subtask.

2.4 Results

2.4.1 Eye Movements: Gaze Fixation Duration and Saccade Size

Gaze fixation duration and saccade size have previously been identified as important

features for gaze behaviors during iADLs. As in [49], we use “saccade size” to refer to the

angle spanned by a single saccade. [34] reported overall trends and statistics for the entire

duration of a tea-making task. However, information about dynamic changes in gaze behavior

is difficult to extract and analyze when eye tracker data are convolved over a large period

of time. In order to address eye movements at a finer level of detail, we investigated trends

in gaze fixation duration and saccade size at the action unit level. Gaze fixation duration

data were normalized by summing the durations of gaze fixation periods that belonged to

the same action unit and then dividing by the total duration of that action unit. This

normalization was performed to minimize the effect of action unit type, such as reaching

vs. stirring, on gaze fixation duration results. Gaze fixation duration and saccade size were

analyzed according to groupings based on six common action unit verbs: “reach,” “pick up,”

“set down,” “move,” “pour,” and “stir” (Figure 4). “Drop” and “insert” were excluded, as

they occurred infrequently and their inclusion would have further reduced the power of the
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Saccade

Fixation
Reach Pick up Set

down

Move Pour Stir

Reach 0.012 0.050 3e-6* 0.030 2e-13*

Pick up 0.707 0.450 5e-10* 0.462 3e-12*

Set down 0.242 0.496 3e-10* 0.938 2e-9*

Move 0.666 0.992 0.432 9e-8* 9e-23*

Pour 1e-10* 6e-9* 2e-8* 4e-10* 3e-8*

Stir 3e-9* 1e-7* 4e-7* 1e-8* 0.512

Asterisks indicate the t-tests that were statistically significant for a Bonferroni-corrected α = 0.003.

Table 2.2: The lower left triangle of the table (shaded in gray) summarizes p-values for

t-tests of average normalized gaze fixation duration for different pairs of action unit verbs

while the upper right triangle represents p-values for t-tests with regards to saccade size.

statistical tests.

We conducted two ANOVA tests with a significance level of α = 0.05. One test compared

the distributions of gaze fixation duration across the six action unit verb groups while the

other test compared the distributions of saccade size. In both cases, the ANOVA resulted

in p ¡ 0.001. Thus, post hoc pairwise t-tests were conducted to identify which verb groups

were significantly different (Table 2). A Bonferroni correction was additionally applied (α

= 0.05/k, where k = 15, the total number of pairwise comparisons) to avoid type I errors

when performing the post hoc pairwise comparisons. It was found that the average gaze

fixation durations for “pour” and “stir” were significantly greater than those of other verbs

(Figure 4A). Saccade sizes for “move” and “stir” were significantly different from those of

other verbs (Figure 4B). Saccade sizes for “move” were significantly larger than those of
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Figure 2.4: Box and whisker plots are shown for each of the six action unit verb groups for

(A) normalized gaze fixation duration and (B) saccade size. The tapered neck of each box

marks the median while the top and bottom edges mark the first and third quantiles. The

whiskers extend to the most extreme data points that are not considered outliers (black dots).

For normalized gaze fixation duration, both “pour” and “stir” were statistically significantly

different from the other action unit verb groups, as indicated by underlines. For saccade

size, both “move” and “stir” were statistically significantly different from the other action

unit verb groups.
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other verbs while those for “stir” were significantly smaller (Figure 5).

2.4.2 3D Gaze Saliency Maps and Gaze Object Percentages

The 3D gaze saliency map for each object is shown for each of the six subtasks in Figure

5. We use “gaze object” to refer to the object that is intersected by the reconstructed 3D

gaze vector. This 3D approach is analogous to the use of 2D egocentric camera videos to

identify the gaze object defined as the “object being fixated by eyes” or the “visually attended

object” [17]. In the case that multiple objects were intersected by the same gaze vector, we

selected the closest object to the subject as the gaze object. We defined the gaze object

percentage as the amount of time, expressed as a percent of a subtask, that an object was

intersected by a gaze vector. Gaze object percentages, averaged across all 11 subjects, are

presented for each of the six subtasks in pie chart form (Figure 5). Although the table in the

experiment setup was never manipulated, during some subtasks, the gaze object percentage

for the table exceeded 20% for subtasks that included action units related to “set down.”

2.4.3 Recognition of Subtasks Based on Gaze Object Sequences

2.4.3.1 The Gaze Object Sequence

In order to leverage information about the identity of gaze objects in concert with the

sequence in which gaze objects were visually regarded, we quantified the gaze object sequence

for use in the automated recognition of subtasks. The concept of a gaze object sequence

has been implemented previously for human action recognition, but in a different way. [17]

performed action recognition with a dynamic Bayesian network having four hidden nodes

and four observation nodes. One of the hidden nodes was the true gaze object and one of
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Figure 2.5: Three-dimensional gaze saliency maps of the task-related objects (mug, spoon,

pitcher, and pitcher lid) are shown for each of the six subtasks (A–F). The RGB color maps

were summed across subjects and then normalized to the [0, 1] range for each subtask. The

RGB color scale for all gaze saliency maps is shown in panel (A). Gaze object percentages are

reported via pie charts. The colors in the pie charts correspond to the color-coded objects

in Figure 1C.
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the observation nodes was the estimated gaze object extracted from 2D egocentric camera

videos. In this work, we define the gaze object sequence as being comprised of an (M × N)

matrix, where M is the number of objects involved in the manipulation task and N is the

total number of instances (frames sampled at 60 Hz) that at least one of the M objects was

visually regarded, whether through gaze fixation or saccade (Figure 6C). Each of the M = 5

rows corresponds to a specific object. Each of the N columns indicates the number of times

each object was visually regarded within a sliding window consisting of 10 frames (Figures

6A,B).

A sliding window was used to filter the raw gaze object sequence to alleviate abrupt

changes of values in the matrix. The size of the sliding window was heuristically selected to

be large enough to smooth abrupt changes in the object sequence that could be considered

as noise, but also small enough so as not to disregard major events within its duration. In

preliminary analyses, this sliding window filtration step was observed to improve recognition

accuracy.

2.4.3.2 Creating a Library of Characteristic Gaze Object Sequences

Intra- and inter-subject variability necessitate analyses of human subject data that ac-

count for variations in movement speed and style. In particular, for pairs of gaze object

sequences having different lengths, the data must be optimally time-shifted and stretched

prior to comparative analyses. For this task, we used dynamic time warping (DTW), a

technique that has been widely used for pattern recognition of human motion, such as gait

recognition [50] and gesture recognition [51].

Dynamic time warping compares two time-dependent sequences X and Y, where X ∈

RS×U and Y ∈ RS×V . A warping path Wi = [pi1, pi2, ..., pij, ..., piKi
] defines an alignment

24



Figure 2.6: (A) Each raw gaze object sequence was represented by a (1 × N) set of frames.

In this example, the gaze object transitioned from the pitcher lid to the pitcher. The colors

in the figure correspond to the color-coded objects in Figure 1C. (B) The raw sequence of

gaze objects was filtered using a rolling window of 10 frames. (C) The gaze object sequence

was represented by an (M × N) matrix for M task-relevant objects.
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between pairs of elements in X and Y by matching element(s) of X to element(s) of Y.

For example, pij = (u, v) represents the matched pair of xu and yv. If the warping path is

optimized to yield the lowest sum of Euclidean distances between the two sequences, the

DTW distance between the two sequences X and Y can be defined as the following:

DTW (X, Y ) = min
Wi

{d(Wi) |Wi ∈ 〈W1,W2, ...,WL〉}, (2.1)

where d(Wi) =
∑Ki

j=1〈pij〉 and 〈pij〉 = ‖xu − yv‖2.

In order to identify a characteristic gaze object sequence for each subtask, we employed

a global averaging method called dynamic time warping barycenter averaging (DBA), which

performs the DTW and averaging processes simultaneously. This method uses optimization

to iteratively refine a DBA (average) sequence until it yields the smallest DTW Euclidean

distance (see Recognition of Subtasks Using DTW Euclidean Distances) with respect to each

of the input sequences being averaged ([52]). The gaze object sequences were averaged across

all trials for all subjects for each subtask using an open source MATLAB function provided

by the creators of the DBA process ([52]). A total of 43 trials (4 repetitions per each of

11 subjects, less 1 incomplete trial) were available for each subtask. Figure 7 shows visual

representations of the DBA gaze object sequence for each of the six subtasks.

2.4.3.3 Recognition of Subtasks Using DTW Euclidean Distances

Traditionally, the Euclidean distance is used as a metric for similarity between two vec-

tors. However, the Euclidean distance alone is not an accurate measure of similarity for time

series data ([52]). Here, we use the “DTW Euclidean distance,” which is calculated as the

sum of the Euclidean distances between corresponding points of two sequences. The DTW
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Figure 2.7: Characteristic gaze object sequences were produced using dynamic time warping

barycenter averaging over data from 11 subjects for each of six subtasks (A–F). The colors in

the figure correspond to the color-coded objects in Figure 1C. The lengths of the sequences

were normalized for visualization.
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process minimizes the sum of the Euclidean distances, which enables a fair comparison of

two sequences. The smaller the DTW Euclidean distance, the greater the similarity between

the two sequences. A simple way to associate a novel gaze object sequence with a specific

subtask is to first calculate the DTW Euclidean distance between the novel sequence and

a characteristic sequence (generated using the DBA process) for each of the six candidate

subtasks and to then select the subtask label that results in the smallest DTW Euclidean

distance.

Figure 8 shows a novel gaze object sequence and its DTW Euclidean distance with

respect to each of the candidate DBA sequences (one for each of six subtasks). The DTW

Euclidean distance is reported as a function of the (equal) elapsed times for the novel and

DBA gaze object sequences. This enables us to relate recognition accuracy to the percent of

a subtask that has elapsed and to comment on the feasibility of real-time action recognition.

For instance, for Subtask 4 (“transfer water from pitcher to mug using spoon”), the DTW

Euclidean distance between the novel gaze object sequence and the correct candidate DBA

sequence does not clearly separate itself from the other five DTW distances until 30% of

the novel gaze object sequence has elapsed for the specific case shown (Figure 8). Subtask

recognition accuracy generally increases as the elapsed sequence time increases. Figure 8

illustrates how a primitive action recognition approach could be used to label a subtask

based on a gaze object sequence alone. However, only one representative novel gaze object

sequence was shown as an example.

In order to address the accuracy of the approach as applied to all 43 gaze object se-

quences, we used a leave-one-out approach. First, one gaze object sequence was treated as

an unlabeled, novel sequence. Dynamic time warping barycenter averaging was applied to

the remaining sequences. The DTW Euclidean distance was calculated between the novel
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Figure 2.8: (A) A representative novel gaze object sequence is shown. The colors in the

figure correspond to the color-coded objects in Figure 1C. (B) A DBA gaze object sequence

is shown for Subtask 4, which is the correct subtask label for the novel gaze object sequence

shown in panel (A). (C) The DTW Euclidean distance is shown for the comparisons of a

novel gaze object sequence and the DBA sequence for each of the six subtasks. The DTW

distance was calculated using equal elapsed times for the novel and DBA sequences. The

lowest DTW distance would be used to apply a subtask label. Subtask recognition accuracy

generally increases as the elapsed sequence time increases.

29



and candidate DBA sequences, and the pair with the smallest DTW distance was used to la-

bel the novel sequence. This process was repeated for each of the gaze object sequences. The

DTW distance was calculated using equal elapsed times for the novel and DBA sequences.

The resulting recognition accuracy, precision, and recall for each subtask are reported in

Figure 9 as a function of the percent of the subtask that has elapsed. Accuracy represents the

fraction of sequences that are correctly labeled. Precision represents the fraction of identified

sequences that are relevant to Subtask i. Recall represents the fraction of relevant sequences

that are identified ([53])

accuracyi =
TPi + TNi

TPi+ TNi+ FPi+ FNi
, (2.2)

precisioni =
TPi

TPi+ FPi
, (2.3)

recalli =
TPi

TPi+ FNi
. (2.4)

TPi, TNi, FPi, and FNi represent the number of true positive, true negative, false posi-

tive, and false negative sequences when attempting to identify all sequences associated with

Subtask i. For example, consider the task of identifying the 43 sequences relevant to Subtask

1 out of the total of (43*6) unlabeled sequences. Using all sequence data, at 100% elapsed

time of a novel gaze object sequence, the classifier correctly labeled 36 of the 43 relevant

sequences as Subtask 1, but also labeled 10 of the (43*5) irrelevant sequences as Subtask 1.

In this case, TP1 = 36, TN1 = 205, FP1 = 10, and FN1 = 7. Using Eqs 2–4, this results

in an accuracy of 93.4%, precision of 78.2%, and recall of 83.7% for Subtask 1, as shown in

Figure 9A.
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Figure 2.9: Using a leave-one-out approach, the performance of the action recognition algo-

rithm is reported as a function of the elapsed time of a novel gaze object sequence for each

subtask. Accuracy (black solid line), precision (red dashed line), and recall (blue dotted

line) are shown for each of the six subtasks (A–F). The characteristic gaze object sequence

is shown above each subplot. The colors in the sequence correspond to the objects shown in

Figure 1C.

31



Figure 2.10: The confusion matrix is shown for 100% of the elapsed time of a novel gaze

object sequence for each subtask. Predicted subtask labels (columns) are compared to the

true subtask labels (rows). Each subtask has a total of 43 relevant sequences and (43*5)

irrelevant sequences. Each shaded box lists the number of label instances and parenthetically

lists the percentage of those instances out of 43 relevant subtasks.

Figure 10 shows a confusion matrix that summarizes the subtask labeling performance

of our simple action recognition algorithm at 100% of the elapsed time for the novel and

DBA gaze object sequences. Predictions of subtask labels (columns) are compared to the

true subtask labels (rows). Consider again the task of identifying the 43 sequences relevant

to Subtask 1. TP1 is shown as the first diagonal element in the confusion matrix (row 1,

column 1). FP1 and FN1 are the sum of off-diagonal elements in the first column and first

row, respectively.
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2.4.4 Discussion

2.4.4.1 Gaze Fixation Duration and Saccade Size May Reflect Differences in

Visual Attention

Eye movements were investigated at the action unit level through gaze fixation duration

and saccade size. For gaze fixation duration, both “pour” and “stir” were statistically signif-

icantly different from the other action unit verb groups (Figure 4A). The median normalized

gaze fixation duration values for “pour” and “stir” were, respectively, 41 and 33% greater

than the largest median duration value of the “reach,” “pick up,” “set down,” and “move”

verb groups (36% for “move”). The lengthier gaze fixation durations could be due to the fact

that pouring and stirring simply took longer than the other movements. The trends could

also indicate that more visual attention is required for successful performance of pouring

and stirring. For instance, pouring without spilling and stirring without splashing might

require greater manipulation accuracy than reaching, picking up, setting down, or moving

an object. However, based on the data collected, it is unknown whether subjects were ac-

tively processing visual information during these fixation periods. Gaze fixation durations

could also be affected by object properties, such as size, geometry, color, novelty, etc. For

instance, fixation durations might be longer for objects that are fragile, expensive, or sharp

as compared to those for objects that are durable, cheap, or blunt. The effects of object

properties on gaze fixation duration and saccade size require further investigation.

For saccade size, both “move” and “stir” were statistically significantly different from

the other action unit verb groups (Figure 4B). The relatively large saccade size for “move”

was likely a function of the distance by which the manipulated objects were moved during

the experimental task. The relatively small saccade size for “stir” (4.7° ± 2.7°) could be
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due to the small region associated with the act of stirring within a pitcher and the fact that

subjects did not follow the cyclic movements of the spoon with their gaze during stirring.

The concept of “quiet eye,” originally introduced in the literature with regards to the

cognitive behaviors of elite athletes, has been used to differentiate between expert and novice

surgeons [54]. Quiet eye has been defined as “the final fixation or tracking gaze that is located

on a specific location or object in the visuomotor workspace within 3° of the visual angle for

>100 ms” [54]. It has been hypothesized that quiet eye is a reflection of a “slowing down”

in cognitive planning (not body movement speed) that occurs when additional attention is

paid to a challenging task [55]. Based on the gaze fixation duration trends (Figure 4A), one

might hypothesize that pouring and stirring require additional attention. Yet, “stir” was

the only verb group that exhibited a small saccade size in the range reported for quiet eye.

We are not suggesting that stirring is a special skill that can only be performed by experts;

we would not expect a wide range of skill sets to be exhibited in our subject pool for iADL.

Nonetheless, it could be reasoned that certain action units may require more visual attention

than others and that gaze fixation and saccade size could assist in recognition of such action

units employed during everyday tasks.

2.4.4.2 Gaze Saliency Maps Encode Action-Relevant Information at the Sub-

task and Action Unit Levels

Gaze saliency maps at the subtask level can be used to represent gaze fixation distribution

across multiple objects. The gaze saliency maps for the six subtasks (Figure 5) supported

Hayhoe and Ballard’s finding that gaze fixation during task completion is rarely directed

outside of the objects required for the task [56]. Considering Subtask 4, (“transfer water

from pitcher to mug using spoon”), the objects comprising the majority of the gaze object
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percentage pie chart (Figure 5D) were grasped and manipulated (spoon) or were directly

affected by an action being performed by a manipulated object (pitcher and mug). While

the table was not manipulated, it was often affected by action units that required the picking

up or setting down of an object, as for the pitcher lid, spoon, and pitcher in Subtasks 1, 2,

and 6 (Figures 5A,B,F), respectively. The gaze fixation percentage for the table was dwarfed

by the importance of other objects in Subtasks 4 and 5 (Figures 5D,E).

In some cases, a gaze saliency map could be easily associated with a subtask. For instance,

gaze saliency was uniquely, simultaneously intense on the spoon bowl and tip, inner wall of

the mug, and inner wall of the pitcher for Subtask 4 (“transfer water from pitcher to mug

using spoon”) (Figure 5D). In other cases, differences between gaze saliency maps were

subtle. For example, the gaze saliency maps were quite similar for the inverse subtasks

“remove pitcher lid” and “replace pitcher lid” (Figures 5A,E). In both cases, gaze saliency

was focused near the handle of the pitcher lid and the upper rim of the pitcher. However,

gaze fixation was slightly more intense near the pitcher spout for Subtask 5 (“replace pitcher

lid”) because subjects spent time to carefully align the slots in the pitcher lid with the spout

for the “pour liquid into mug” Subtask 6 that was to immediately follow.

Likewise, the gaze saliency maps for Subtask 2 (“move spoon into pitcher”) and Subtask

3 (“stir inside pitcher”) were distinguished only by the subtle difference in gaze fixation

distribution on the spoon (Figures 5B,C). The diffuse and homogeneous distribution across

the entirety of the spoon for Subtask 2 was contrasted by a focused intensity on the bowl of

the spoon for stirring. This was because the “reach for,” “pick up,” and “move” action units

performed with the spoon were summed over time to produce the gaze saliency map at the

subtask level. Given that the details of each action unit’s unique contribution to the saliency

map becomes blurred by temporal summation, it is worth considering gaze saliency maps
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Figure 2.11: Three-dimensional gaze saliency maps of the task-related objects [mug (A),

spoon (B), pitcher (C), and pitcher lid (D)] are shown for a subset of action units. The RGB

color scale for all gaze saliency maps is shown in panel (A).

at a finer temporal resolution, at the action unit level. Due to the short duration of action

units (approximately 1 s long), the gaze saliency maps at the action unit level only involve

one object at a time. A few representative gaze saliency maps for different action units are

shown in Figure 11. The RGB color intensity maps were summed across subjects and then

normalized to the [0, 1] range, with 0 as black and 1 as red, according to the duration of the

action unit.

Some gaze saliency maps could also be easily associated with specific action units. For
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instance, gaze saliency intensity was greatest at the top of the pitcher for the action unit

“reach for pitcher,” but greatest at the bottom for “set down pitcher” (Figure 11C). By

contrast, the gaze saliency maps for the pitcher lid were similar for action units “pick up

pitcher lid” and “insert pitcher lid into pitcher.” Subtle differences were observed, such as

more focused gaze intensity near the slots in the lid, in preparation for the “pour liquid into

mug” Subtask 6 that was to immediately follow. Gaze saliency maps for different action

units were also similar for the mug (Figure 11A), possibly due to its aspect ratio. Not only

is the mug a relatively small object but also its aspect ratio from the subject’s viewpoint

is nearly one. During both “reach for mug” and “set down mug,” gaze fixation was spread

around the mug’s centroid. This was surprising, as we had expected increased intensity

near the mug’s handle or base for the “reach” and “set down” action units, respectively,

based on the findings of [40]. There are a couple of possible explanations for this. First,

the Belardinelli et al. study was conducted with a 2D computer display and subjects were

instructed to mimic manipulative actions. In this work, subjects physically interacted with

and manipulated 3D objects. It is also possible that subjects grasped the mug with varying

levels of precision based on task requirements (or lack thereof). For instance, a mug can be

held by grasping its handle or its cylindrical body. Had the task involved a hot liquid, for

example, perhaps subjects would have grasped and fixated their gaze on the handle of the

mug for a longer period.

Although 3D gaze saliency maps are not necessarily unique for all subtasks and action

units, it is likely that a combination of the gaze saliency maps for a subtask and its constituent

action units could provide additional temporal information that would enable recognition of

a subtask. While beyond the scope of this work, we propose that a sequence of gaze saliency

maps over time could be used for action recognition. The time series approaches presented
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for the analysis of gaze object sequences could similarly be applied to gaze saliency map

sequences.

2.4.4.3 Practical Considerations and Limitations of Gaze Saliency Maps

If the dynamic tracking of 3D gaze saliency maps is to be practically implemented,

one must address the high computational expense associated with tracking, accessing, and

analyzing dense 3D point clouds. In this work, the 3D point clouds for the spoon and

pitcher were comprised of approximately 3,000 and 20,000 points, respectively. At least

two practical modifications could be made to the gaze saliency map representation. First,

parametric geometric shapes could be substituted for highly detailed point clouds of rigid

objects, especially if fine spatial resolution is not critical for action recognition. The use of

a geometric shapes could also enable one to analytically solve for the intersection point(s)

between the object and gaze vector. Second, gaze fixation can be tracked for a select subset

of regions or segments, such as those associated with “object affordances,” which describe

actions that can be taken with an object [57], or ”grasp affordances,” which are defined as

“object-gripper relative configurations that lead to successful grasps” [58]. Computational

effort could then be focused on regions that are most likely to be task-relevant, such as the

spout, rim, handle, and base of a pitcher. Additionally, techniques can be leveraged from

computer-based 3D geometric modeling. For example, triangle meshes and implicit surfaces

have been used for real-time rendering of animated characters[59]. A similar approach could

be used to simplify the 3D point clouds. In addition to tracking the shape and movement of

an object, one could track the homogeneous properties (e.g., RGB color associated with gaze

fixation duration) of patch elements of surfaces. The spatial resolution of each gaze saliency

map could be tuned according to the task-relevant features of the object and reduced to the
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minimal needs for reliable action recognition.

One limitation of this work is that we cannot comment on the subject’s true focal point

or whether subjects were actively processing visual information. A gaze vector may pass

through multiple objects, or even through materials that are not rigid objects (e.g., a stream

of flowing water). We calculated the intersection points between a gaze vector and objects

in its path and then treated the closest intersection point to the user as a gaze fixation

point. This approach may not work if some of the task-relevant objects are transparent and

subjects look through one object to visually attend to a more distant object. In this work,

objects sometimes passed through the path of a stationary gaze vector, but may not have

been the focus of active visual attention. For example, the gaze saliency map for Subtask 3

(“stir inside pitcher”) displayed regions of greater intensity on both the bowl of the spoon

and the inner wall of the pitcher (Figure 5C). However, the egocentric camera attached to

the eye tracker revealed that the gaze fixation point remained near the water level line in the

pitcher. Since the spoon was moved cyclically near the inner wall of the pitcher, in the same

region as the surface of the water, the gaze fixation point alternated between the spoon and

the pitcher. As a result, both the spoon and pitcher gaze saliency maps were affected. In

one case, a subject’s gaze fixation point was calculated as being located on the outer wall

of the pitcher during stirring. This interesting case highlights the fact that a direct line of

sight (e.g., to the spoon, water, or inner pitcher surface) may not be necessary for subtask

completion, and mental imagery (“seeing with the mind’s eye”) may be sufficient [60].

Future work should address methods for enhancing the robustness of action recognition

algorithms to occlusions. For example, if a gaze object is briefly occluded by a moving

object that passes through the subject’s otherwise fixed field of view, an algorithm could be

designed to automatically disregard the object as noise to be filtered out. In addition, a more
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advanced eye tracker and/or calibration process could be leveraged to estimate focal length.

Focal length could be combined with 3D gaze vector direction to increase the accuracy of

gaze object identification in cases, where the 3D gaze vector intersects multiple objects.

Human gaze behavior “in the wild” will differ to some (as yet unknown) extent as com-

pared to the gaze behavior observed in our laboratory setting. Our use of black curtains and

the provision of only task-relevant objects enabled the standardization of the experimental

setup across subjects. However, this protocol also unrealistically minimized visual clutter,

the presence of novel objects, and distractions to the subject. In a more natural setting, one’s

gaze vector could intersect with task-irrelevant objects in the scene. This would result in the

injection of noise into the gaze object sequence, for example, and could decrease the speed

and/or accuracy of action recognition. Probabilistic modeling of the noise could alleviate

this challenge.

2.4.4.4 The Gaze Object Sequence Can Be Leveraged for Action Recognition

to Advance Human–Robot Collaborations

During everyday activities, eye movements are primarily associated with task-relevant

objects [61]. Thus, identification of gaze objects can help to establish a context for specific

actions. [19] showed that knowledge of gaze location significantly improves action recognition.

However, action recognition accuracy was limited by errors in the extraction of gaze objects

from egocentric camera video data (e.g., failing to detect objects or detecting irrelevant

objects in the background), and gaze objects were not treated explicitly as features for action

recognition. Moreover, model development for gaze-based action recognition is challenging

due to the stochastic nature of gaze behavior [25]. Using objects tagged with fiducial markers

and gaze data from 2D egocentric cameras, Admoni and Srinivasa presented a probabilistic

40



model for the detection of a goal object based on object distance from the center of gaze

fixation. In this work, we propose to leverage 3D gaze tracking information about the identity

of gaze objects in concert with the temporal sequence in which gaze objects were visually

regarded to improve the speed and accuracy of automated action recognition.

In the context of human-robot collaboration, the gaze object sequence could be used

as an intuitive, non-verbal control signal by a human operator. Alternatively, the gaze

object sequence could be provided passively to a robot assistant that continuously monitors

the state of the human operator and intervenes when the human requires assistance. A

robot that could infer human intent could enable more seamless physical interactions and

collaborations with human operators. For example, a robot assistant in a space shuttle

could hand an astronaut a tool during a repair mission, just as a surgical assistant might

provide support during a complicated operation. [62] introduced a probabilistic framework for

collaboration between a semi-autonomous robot and human co-worker. For a box assembly

task, the robot decided whether to hold a box or to hand over a screwdriver based on the

movements of the human worker. As there were multiple objects involved in the task, the

integration of the gaze object sequence into the probabilistic model could potentially improve

action recognition accuracy and speed.

The practical demonstration of the usefulness of gaze object sequence is most likely to

occur first in a relatively structured environment, such as that of a factory setting. Despite

the unpredictability of human behavior, there are consistencies on a manufacturing line that

suggest the feasibility of the gaze object sequence approach. The number of parts and tools

used during manual manufacturing operations are uniform in their size and shape and are

also limited in number. Although the speed with which a task is completed may vary, the task

itself is repetitive. [63] have demonstrated human–robot collaboration for industrial manipu-
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lation tasks for which human reaching motions were predicted to enable robot collaboration

without collision in a small-shared workspace. In that work, the robot had access to real-time

information about the human collaborator’s upper limb kinematics, such as palm and arm

joint center positions. Focusing on the safety of human–robot collaboration, [64] developed

a framework that uses a collision avoidance strategy to assist human workers performing an

assembly task in close proximity with a robot arm. Numerous RGB-D cameras were used

to track the location and configuration of humans within the collaborative workspace. The

common theme of such approaches is to track human kinematics and infer intent from kine-

matic data alone. The additional use of the gaze object sequence could infer human intent at

an earlier stage and further advance safety and efficiency for similar types of human–robot

collaboration tasks.

The gaze object sequence could also be demonstrated in the familiar environment of

someone’s home if a recognition system were properly trained on commonly used objects,

where the objects are typically located (e.g., kitchen vs. bathroom), and how they are

used. The performance of household robots will largely depend on their ability to recognize

and localize objects, especially in complex scenes [65]. Recognition robustness and latency

will be hampered by large quantities of objects, the degree of clutter, and the inclusion of

novel objects in the scene. The gaze object sequence could be used to address challenges

posed by the presence of numerous objects in the scene. While the combinatorial set of

objects and actions could be large, characteristic gaze object sequences for frequently used

subject-specific iADLs could be utilized to quickly prune the combinatorial set.

Up to now, we have focused primarily on the task-based aspects of gaze tracking for

human–robot collaboration. However, gaze tracking could also provide much needed insight

into intangible aspects such as human trust in robot collaborators [66]. Our proposed meth-
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ods could be used to quantify differences in human gaze behavior with and without robot

intervention and could enhance studies on the effects of user familiarity with the robot, hu-

man vs. non-human movements, perceived risk of robot failure, etc. Consider, for example,

a robot arm that is being used to feed oneself [31]. Such a complicated task requires the safe

control of a robot near sensitive areas such as the face and mouth and may also be associated

with a sense of urgency on the part of the user. A gaze object sequence could reveal high-

frequency transitions between task-relevant objects and the robot arm itself, which could

indicate a user’s impatience with the robot’s movements or possibly a lack of trust in the

robot and concerns about safety. As the human–robot collaboration becomes more seamless

and safe, the frequency with which the user visually checks the robot arm may decrease.

Thus, action recognition algorithms may need to be tuned to inter-subject variability and

adapted to intra-subject variability as the beliefs and capabilities of the human operator

change over time.

Other potential applications of the gaze object sequence include training and skill as-

sessment. For instance, [67] developed a framework that combines Augmented Reality with

an Intelligent Tutoring System to train novices on computer motherboard assembly. Via a

head-mounted display, trainees were provided real-time feedback on their performance based

on the relative position and orientation of tools and parts during the assembly process. Such

a system could be further enhanced by, for example, using an expert’s gaze object sequence

to cue trainees via augmented reality and draw attention to critical steps in the assembly

process or critical regions of interest during an inspection process. Gaze object sequences

could also be used to establish a continuum of expertise with which skill level can be quan-

tified and certified. [54] described the concepts of “quiet eye” and “slowing down” observed

with surgeons performing thyroid lobectomy surgeries. Interestingly, expert surgeons fixated
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their gaze on the patient’s delicate laryngeal nerve for longer periods than novices when

performing “effortful” surgical tasks that required increased attention and cognition. Gaze

behavior has also been linked with sight reading expertise in pianists [68]. Gaze fixation

duration on single-line melodies was shorter for more skilled sight-readers than less skilled

sight-readers.

In short, the gaze object sequence generated from 3D gaze tracking data has been demon-

strated as a potentially powerful feature for action recognition. By itself, the gaze object

sequence captures high-level spatial and temporal gaze behavior information. Moreover, ad-

ditional features can be generated from the gaze object sequence. For instance, gaze object

percentage can be extracted by counting instances of objects in the gaze object sequence.

Gaze fixation duration and saccades from one object to another can be extracted from the

gaze object sequence. Even saccades to different regions of the same object could potentially

be identified if the resolution of the gaze object sequence were made finer through the use of

segmented regions of interest for each object (e.g., spout, handle, top, and base of a pitcher).

2.4.4.5 Practical Considerations and Limitations of Gaze Object Sequences

In this work, we have presented a simple proof-of-concept methods for action recogni-

tion using a DTW Euclidean distance metric drawn from comparisons between novel and

characteristic gaze object sequences. In the current instantiation, novel and characteristic

sequences were compared using the same elapsed time (percentage of the entire sequence)

(Figure 8). This approach was convenient for a post hoc study of recognition accuracy as a

function of time elapsed. However, in practice, the novel gaze object sequence will roll out

in real-time and we will not know a priori what percent of the subtask has elapsed. To ad-

dress this, we propose the use of parallel threads that calculate the DTW Euclidean distance
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metric for comparisons of the novel sequence with different portions of each characteristic

sequence. For instance, one thread runs a comparison with the first 10% of one character-

istic gaze object sequence; another thread runs a comparison for the first 20% of the same

characteristic gaze object sequence, etc. Such an approach would also address scenarios in

which an individual happens to be performing a subtask faster than the population, whose

collective behavior is reflected in each characteristic gaze object sequence. For example, it

can be seen that the novel gaze object sequence in Figure 8A has a similar pattern as the

characteristic gaze object sequence in Figure 8B. However, the individual subject is initially

performing the subtask at a faster rate than the population average. The (yellow, blue,

black, red, etc.) pattern occurs within the first 10% of the novel sequence, but does not

occur until 30% of the characteristic sequence has elapsed. The delayed recognition of the

subtask could be addressed using the multi-thread approach described above Figure 8. To

further address the computational expense commonly associated with DTW algorithms, one

could implement an “unbounded” version of DTW that improves the method for finding

matching sequences, which occur arbitrarily within other sequences [69].

For human-robot collaborations, the earlier that a robot can recognize the intent of

the human, the more time the robot will have to plan and correct its actions for safety

and efficacy. Thus, practical limitations associated with the computational expense of real-

time gaze object sequence recognition must be addressed. At the least, comparisons of a

novel sequence unfolding in real-time could be made with a library of characteristic subtask

sequences using GPUs and parallel computational threads (one thread for each distinct

comparison). The early recognition of a novel subtask is not just advantageous for robot

planning and control. The computational expense of DTW increases for longer sequences.

Thus, the sooner a novel sequence can be recognized, the less time is spent on calculating the
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proposed DTW Euclidean metric. Since DTW uses dynamic programming to find the best

warping paths, a quadratic computational complexity results. While not implemented in this

work, the computational expense of the DTW process could be further reduced by leveraging

a generalized time warping technique that temporally aligns multimodal sequences of human

motion data while maintaining linear complexity [44].

2.4.4.6 Potential Advancements for a Gaze Object Sequence-Based Action Recog-

nition System

As expected, recognition accuracy increased as more of the novel gaze object sequence

was compared with each characteristic gaze object sequence (Figure 9). However, the simple

recognition approach presented here is not perfect. Even when an entire novel gaze ob-

ject sequence is compared with each characteristic gaze object sequence, the approach only

achieves an accuracy of 96.4%, precision of 89.5%, and recall of 89.2% averaged across the

six subtasks. The confusion matrix (Figure 10) shows which subtasks were confused with

one another even after 100% elapsed time. Although the percentage of incorrect subtask

label predictions is low, the subtasks that share the same gaze objects have been confused

the most. For instance, the Subtask 1 (“remove pitcher lid”) and Subtask 5 (“replace pitcher

lid”) were occasionally confused with one another. It is hypothesized that the training of a

sophisticated machine learning classifier could improve the overall accuracy of the recognition

results, especially if additional features were provided to the classifier. Potential additional

features include quantities extracted from upper limb kinematics and other eye tracker data,

such as 3D gaze saliency maps.

As with the processing of any sensor data, there are trade-offs with speed and accuracy

in both the spatial and temporal domains. In its current instantiation, the gaze object
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sequence contains rich temporal information, but at the loss of spatial resolution; entire

objects are considered rather than particular regions of objects. By contrast, the 3D gaze

saliency map and gaze object percentage contain rich spatial information, but at the loss

of temporal resolution due to the convolution of eye tracker data over a lengthy period

of time. For practical purposes, we are not suggesting that spatial and temporal resolution

should be maximized. In practice, an action recognition system need not be computationally

burdened with the processing of individual points in a 3D point cloud or unnecessarily

high sampling frequencies. However, one could increase spatial resolution by segmenting

objects into affordance-based regions [70], or increase temporal resolution by considering the

temporal dynamics of action units rather than subtasks.

While object recognition from 2D egocentric cameras is an important problem, solving

this problem was not the focus of the present study. As such, we bypassed challenges of 2D

image analysis such as scene segmentation and object recognition, and used a marker-based

motion capture system to track each known object in 3D. Data collection was performed in

a laboratory setting with expensive eye tracker and motion capture equipment. Nonethe-

less, the core concepts presented in this work could be applied in non-laboratory settings

using low-cost equipment such as consumer-grade eye trackers, Kinect RGB-D cameras, and

fiducial markers (e.g., AprilTags and RFID tags).

2.4.5 Conclusion

The long-term objective of the work is to advance human-robot collaboration by (i)

facilitating the intuitive, gaze-based control of robots and (ii) enabling robots to recognize

human actions, infer human intent, and plan actions that support human goals. To this end,

the objective of this study was to identify useful features that can be extracted from 3D gaze
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behavior and used as inputs to machine learning algorithms for human action recognition. We

investigated human gaze behavior and gaze-object interactions in 3D during the performance

of a bimanual, iADL: the preparation of a powdered drink. Gaze fixation duration was

statistically significantly larger for some action verbs, suggesting that some actions such as

pouring and stirring may require increased visual attention for task completion. 3D gaze

saliency maps, generated with high spatial resolution for six subtasks, appeared to encode

action-relevant information at the subtask and action unit levels. Dynamic time warping

barycentric averaging was used to create a population-based set of characteristic gaze object

sequences that accounted for intra- and inter-subject variability. The gaze object sequence

was then used to demonstrate the feasibility of a simple action recognition algorithm that

utilized a DTW Euclidean distance metric. Action recognition results (96.4% accuracy,

89.5% precision, and 89.2% recall averaged over the six subtasks), suggest that the gaze

object sequence is a promising feature for action recognition whose impact could be enhanced

through the use of sophisticated machine learning classifiers and algorithmic improvements

for real-time implementation. Future work includes the development of a comprehensive

action recognition algorithm that simultaneously leverages features from 3D gaze–object

interactions, upper limb kinematics, and hand–object spatial relationships. Robots capable

of robust, real-time recognition of human actions during manipulation tasks could be used

to improve quality of life in the home as well as quality of work in industrial environments.
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CHAPTER 3

Toward Shared Autonomy Control Schemes for

Human-Robot Systems: Action Primitive Recognition

Using Eye Gaze Features

This chapter was based on work published in the journal Frontiers in Neurorobotics [71].

3.1 Abstract

The functional independence of individuals with upper limb impairment could be en-

hanced by teleoperated robots that can assist with activities of daily living. However, robot

control is not always intuitive for the operator. In this work, eye gaze was leveraged as

a natural way to infer human intent and advance action recognition for shared autonomy

control schemes. We introduced a classifier structure for recognizing low-level action primi-

tives that incorporates novel three-dimensional gaze-related features. We defined an action

primitive as a triplet comprised of a verb, target object, and hand object. A recurrent neural

network was trained to recognize a verb and target object, and was tested on three different

activities. For a representative activity (making a powdered drink), the average recogni-

tion accuracy was 77% for the verb and 83% for the target object. Using a non-specific

approach to classifying and indexing objects in the workspace, we observed a modest level of
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generalizability of the action primitive classifier across activities, including those for which

the classifier was not trained. The novel input features of gaze object angle and its rate of

change were especially useful for accurately recognizing action primitives and reducing the

observational latency of the classifier.

3.2 Introduction

Activities of daily living (ADLs) can be challenging for individuals with upper limb im-

pairment. The use of assistive robotic arms is an active area of research, with the aim of

increasing an individual’s functional independence [72]. However, current assistive robotic

arms, such as the Kinova arm and Manus arm, are controlled by joysticks that require oper-

ators to frequently switch between several modes for the gripper, including a position mode,

an orientation mode, and an open/close mode [73, 74].Users need to operate the arm from

the gripper’s perspective, in an unintuitive Cartesian coordinate space. Operators would

greatly benefit from a control interface with a lower cognitive burden that can accurately

and robustly inference human intent.

The long-term objective of this work is to advance shared autonomy control schemes so

that individuals with upper limb impairment can more naturally control robots that assist

with activities of daily living. Toward this end, the short-term goal of this study is to advance

the use of eye gaze for action recognition. Our approach is to develop a neural-network based

algorithm that exploits eye gaze-based information to recognize action primitives that could

be used as modular, generalizable building blocks for more complex behaviors. We define

new gaze-based features and show that they increase recognition accuracy and decrease the

observational latency [75] of the classifier.
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This article is organized as follows. Section Related Work outlines related work with

respect to user interfaces for assistive robot arms and action recognition methods. Section

Materials and Methods introduces the experimental protocol and proposed structure of an

action primitive recognition model, whose performance is detailed in section Results. Section

Discussion addresses the effects of input features on classifier performance and considerations

for future real-time implementation. Contributions are summarized in section Conclusion.

3.3 Related Work

3.3.1 User Interfaces for Assistive Robot Arms

Many types of non-verbal user interfaces have been developed for controlling assistive

robot arms that rely on a variety of input signals, such as electrocorticographic (ECoG) [76],

gestures ([77]), electromyography (EMG) ([78]), and electroencephalography (EEG) [79, 80].

Although ECoG has been mapped to continuous, high-DOF hand and arm motion [81, 82], a

disadvantage is that an invasive surgical procedure is required. Gesture-based interfaces often

require that operators memorize mappings from specific hand postures to robot behaviors [77,

83, 84], which is not natural. EMG and EEG-based interfaces, although non-invasive and

intuitive, require users to don and doff EMG electrodes or an EEG cap, which may be

inconvenient and require a daily recalibration.

In this work, we consider eye gaze-based interfaces, which offer a number of advantages.

Eye gaze is relatively easy to measure and can be incorporated into a user interface that

is non-verbal, non-invasive, and intuitive. In addition, with this type of interface, it may

be possible to recognize an operator’s intent in advance, as gaze typically precedes hand

motions [85].
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Numerous studies have reported on the use of eye gaze for robot control. In the early

2000’s, the eyetracker was used as a direct substitute for a handheld mouse such that the

gaze point on a computer display designates the cursor’s position, and blinks function as

button clicks ([86, 87]). Since 2015, eye gaze has been used to communicate a 3D target

position ([14, 88, 89, 28, 90, 91]) for directing the movement of the robotic end effector. No

action recognition was required, as these methods assumed specific actions in advance, such

as reach and grasp ([36]), write and draw ([89]), and pick and place ([90]). Recently, eye

gaze has been used to recognize an action from an a priori list. For instance, Shafti et al.

developed an assistive robotic system that recognized subjects’ intended actions (including

reach to grasp, reach to drop, and reach to pour) using a finite state machine ([92]).

In this work, we advance the use of eye gaze for action recognition. We believe that

eye gaze control of robots is promising due to the non-verbal nature of the interface, the

rich information that can be extracted from eye gaze, and the low cognitive burden on the

operator during tracking of natural eye movements.

3.3.2 Action Representation and Recognition

Moeslund et al. described human behaviors as a composition of three hierarchical levels:

(i) activities, (ii) actions, and (iii) action primitives [93]. At the highest level, activities

involve a number of actions and interactions with objects. In turn, each action is comprised

of a set of action primitives. For example, the activity “making a cup of tea” is comprised of

a series of actions, such as “move the kettle to the stove.” This specific action can be further

divided into three action primitives: “dominant hand reaches for the kettle,” “dominant

hand moves the kettle to the stove,” and “dominant hand sets down the kettle onto the

stove.”
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A great body of computer vision-based studies has already contributed to the recognition

of activities of daily living such as walk, run, wave, eat, and drink [94, 95, 96, 97]. These

studies detected joint locations and joint angles as input features from external RGB-D

cameras and classified ADLs using algorithms such as hidden Markov models (HMMs) and

recurrent neural networks (RNNs).

Other studies leveraged egocentric videos taken by head-mounted cameras or eyetrack-

ers ([16, 17, 18, 19, 21, 20, 22, 98, 23]). Video preprocessing methods necessitated first

subtracting the foreground and then detecting human hands and activity-relevant objects.

Multiple features related to hands, objects, and gaze were then used as inputs for the action

recognition using approaches such as HMMs, neural networks, and support vector machines

(SVMs). Hand-related features included hand pose, hand location, relationship between left

and right hand, and the optical flow field associated with the hand ([18, 23]). Object-related

features included pairwise spatial relationships between objects ([21]), state changes of an

object (open vs. closed) ([20]), and the optical flow field associated with objects ([18]). The

“visually regarded object,” defined by [17] as the object being fixated by the eyes, was widely

used as the gaze-related feature ([16, 17, 22]). Some studies additionally extracted features

such as color and texture near the visually regarded object ([19, 98]).

Due to several limitations, state-of-the-art action recognition methods cannot be directly

applied to the intuitive control of an assistive robot via eye gaze. First, computer vision-

based approaches to the automated recognition of ADLs have focused on the activity and

action levels according to Moeslund’s description of action hierarchy ([93]). Yet, state-of-the-

art robots are not sophisticated enough to autonomously plan and perform these high-level

behaviors. Second, eye movements are traditionally used to estimate gaze point or gaze

object alone ([16, 17, 22]). More work could be done to extract other useful features from
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spatiotemporal eye gaze data, such as time histories of gaze object angle and gaze object

angular speed, which are further described in section Gaze-Related Quantities.

3.4 Materials and Methods

3.4.1 Experimental Set-Up

This study was approved by the UCLA Institutional Review Board. The experimental

setup and protocol were previously reported in our prior paper ([30]). Data from 10 sub-

jects are reported [nine males, one female; aged 18–28 years; two pure right-handers, six

mixed right-handers, two neutral, per a handedness assessment [99] based on the Edinburgh

Handedness Inventory [42].Subjects were instructed to perform three bimanual activities

involving everyday objects and actions: make instant coffee, make a powdered drink, and

prepare a cleaning sponge (Figure 1). The objects involved in these three activities were

selected from the benchmark Yale-CMU-Berkeley (YCB) Object Set [43]. We refer to these

objects as activity-relevant objects since they would be grasped and manipulated as subjects

performed specific activities.

For Activity 1, subjects removed a pitcher lid, stirred the water in the pitcher, and

transferred the water to a mug using two different methods (scooping with a spoon and

pouring). For Activity 2, subjects were instructed to remove a coffee can lid, scoop instant

coffee mix into a mug, and pour water from a pitcher into the mug. For Activity 3, subjects

unscrewed a spray bottle cap, poured water from the bottle into a mug, sprayed the water

onto a sponge, and screwed the cap back onto the bottle. In order to standardize the

instructions provided to subjects, the experimental procedures were demonstrated via a

prerecorded video. Each activity was repeated by the subject four times; the experimental
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setup was reset prior to each new trial.

A head-mounted eyetracker (ETL-500, ISCAN, Inc., Woburn, MA, USA) was used to

track the subject’s gaze point at 60 Hz with respect to a built-in egocentric scene camera.

Per calibration data, the accuracy and precision of the eyetracker were 1.4 deg and 0.1 deg,

respectively. The motion of the YCB objects, eyetracker, and each subject’s upper limb

were tracked at 100 Hz by six motion capture cameras (T-Series, Vicon, Culver City, CA,

USA). A blackout curtain surrounded the subject’s field of view in order to minimize visual

distractions. A representative experimental trial is shown in Supplementary Video 1.

3.4.2 Gaze-Related Quantities

We extract four types of gaze-related quantities from natural eye movements as subjects

performed Activities 1–3. The quantities include the gaze object (GO) ([16, 17, 22]) and gaze

object sequence (GOS) ([30]). This section describes how these quantities are defined and

constructed. As described in section Input Features for the Action Primitive Recognition

Model, these gaze-related quantities are used as inputs to a long-short term memory (LSTM)

recurrent neural network in order to recognize action primitives.

The raw data we obtain from the eyetracker is a set of 2D pixel coordinates. The

coordinates represent the perspective projection of a subject’s gaze point onto the image

plane of the eyetracker’s egocentric scene camera. In order to convert the 2D pixel coordinate

into a 3D gaze vector, we use camera calibration parameters determined using a traditional

chessboard calibration procedure ([100]) and the MATLAB Camera Calibration Toolbox

([47]). The 3D gaze vector is constructed by connecting the origin of the egocentric camera

frame with the gaze point location in the 2D image plane that is now expressed in the 3D

global reference frame.
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Figure 3.1: (A) A subject prepares to perform Activity 2 (make instant coffee) while eye gaze

and kinematics are tracked with a head-mounted eyetracker and motion capture system (not

shown). Activity 2 involves a coffee can, spoon and mug. (B) Activity 1 (make a powdered

drink) involves a coffee can, spoon and mug. (C) Activity 3 (prepare a cleaning sponge)

involves a spray bottle and cap, sponge, and mug. The subject shown in panel (A) has

approved of the publication of this image.
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The gaze object (GO) is defined as the first object to be intersected by the 3D gaze

vector, as the gaze vector emanates from the subject. Thus, if the gaze vector pierces

numerous objects, then the object that is closest to the origin of the 3D gaze vector (within

the head-mounted eyetracker) is labeled as the gaze object.

As defined in our prior paper, the gaze object sequence (GOS) refers to the identity of

the gaze objects in concert with the sequence in which the gaze objects are visually regarded

([30]). Specifically, the gaze object sequence time history GOS(ti) is comprised of a sequence

of gaze objects sampled at 60 Hz within a given window of time W (ti) (Figure 2). The time

window W (ti) contains w time steps from ti−w to ti−1.

In this work, we use a value of w = 75 time steps, equivalent to 1.25 s. This time window

size was determined from a pilot study whose results are presented in section Effect of Time

Window Size on Recognition Accuracy. The pilot study was motivated by the work of Haseeb

et al. in which the accuracy of an LSTM RNN was affected by time window size ([101]).

The gaze object angle (GOA) describes the spatial relationship between the gaze vector

and each gaze object. The GOA is defined as the angle between the gaze vector and the eye-

object vector (Figure 3). The eye-object vector shares the same origin as the gaze vector but

ends at an object’s center of mass. Each object’s center of mass was estimated by averaging

the 3D coordinates of the points in the object’s point cloud. Each object’s point cloud was

scanned with a structured-light 3D scanner (Structure Sensor, Occipital, Inc., CA, USA)

and custom turntable apparatus. Containers, such as the pitcher and mug, are assumed to

be empty for center of mass estimation.

The gaze object angular speed (GOAS) is calculated by taking the time derivative of

the GOA. We use the GOAS to measure how the gaze vector moves with respect to other

activity-relevant objects. Previously, the gaze object and gaze object sequence have been

57



Figure 3.2: (A) The gaze object sequence time history GOS(ti) within a window of time

W (ti) (green bracket) is shown for Activity 1 (make a powdered drink). (B) To predict the

action primitive at time step ti, input feature vectors (shown as 5 × 5 matrices for clarity) are

created for each of the times from ti−w to ti−1. Activity-relevant objects are sorted according

to their frequency of occurrence in the GOS(ti).
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Figure 3.3: Gaze object angle is defined as the angle between the gaze vector and the

eye-object vector (ending at the object’s center of mass).

used to recognize actions ([17, 22]). To our knowledge, this is the first work to leverage the

gaze object angle and gaze object angular speed for action primitive recognition.

3.4.3 Action Primitive Recognition Model

3.4.3.1 Action Primitive Representation

We represent each action primitive as a triplet comprised of a verb, target object (TO),

and hand object (HO). Each action primitive can be performed by either the dominant hand

or non-dominant hand. When both hands are active at the same time, hand-specific action

primitives can occur concurrently.

The verb can be one of four classes: Reach, Move, Set down, or Manipulate. The classes

Reach, Move, and Set down describe hand movements toward an object or support surface,

with or without an object in the hand. Notably, these verbs are not related to or dependent

upon object identity. In contrast, the class Manipulate includes a list of verbs that are highly

related to object-specific affordances ([57]). For instance, in Activity 1, the verb “scoop”
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and “stir” are closely associated with the object “spoon” (Table 1). We refer to these verbs

as manipulate-type verbs.

In addition to a verb, the action primitive triplet includes the identity of two objects.

The target object TO refers to the object that will be directly affected by verbs such as

Reach, Move, Set down, and Manipulate. The hand object HO refers to the object that is

currently grasped. For instance, when the dominant hand grasps a spoon and stirs inside a

mug, the triplet of the action primitive for the dominant hand is: manipulate (verb), mug

(TO), and spoon (HO). A hierarchical description of activities, actions, and action primitives

for Activities 1–3 are presented in Table 1.

In order to develop a supervised machine learning model for action primitive recognition,

we manually label each time step with the action primitive triplet for either the dominant

or non-dominant hand. The label is annotated using video recorded by an egocentric scene

camera mounted on the head-worn eyetracker. We annotate each time step with the triplet

of a subject’s dominant hand as it is more likely the target of the subject’s attention. For

instance, when the dominant hand (holding a spoon) and the non-dominant hand (holding

a mug) move toward each other simultaneously, we label the action primitive as “move the

spoon to the mug,” where the verb is “move” and the target object is “mug.” However, when

the dominant hand is not performing any action primitive, we refer to the non-dominant hand

instead. If neither hand is moving or manipulating an object, we exclude that time step from

the RNN training process.

3.4.3.2 Input Features for the Action Primitive Recognition Model

Given that the identity of gaze objects will vary across activities, we substitute the

specific identities of gaze objects with numerical indices. This is intended to improve the
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Activity 1: make a pow-

dered drink

Activity 2: make instant

coffee

Activity 3: prepare a clean-

ing sponge

A
ct

io
n
s

Remove pitcher lid Remove coffee can lid Remove spray bottle cap

Stir liquid inside pitcher Scoop coffee insider can Transfer cleanser into mug

Scoop liquid into mug Transfer coffee into mug Close spray bottle cap

Pour liquid into mug Stir liquid inside mug Spray cleanser onto sponge

A
ct

io
n

p
ri

m
it

iv
es

V
er

b

Reach, Move, Set down, Reach, Move, Set down, Reach, Move, Set down,

Manipulate (open, close, Manipulate (open, close, Manipulate (screw,

stir, scoop, drop pour) stir, scoop, drop, pour) unscrew, lift, pour, insert,

spray)

T
O

Pitcher, pitcher lid, mug, Coffee can, coffee lid, mug, Spray bottle, spray cap,

spoon, table spoon, table mug, sponge, table

H
O

Pitcher, pitcher lid, Coffee can, coffee lid, Spray bottle, spray cap,

mug, spoon mug, spoon, cap, mug, sponge

Table 3.1: Each of three activities is divided into actions that are further decomposed into

action primitives. Each action primitive is defined as a triplet comprised of a verb, target

object (TO), and hand object (HO).
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generalizability of our action primitive recognition algorithm across different activities. For

each time step ti, the n activity-relevant objects are sorted in descending order according to

their frequency of occurrence in GOS(ti). Once sorted, the objects are indexed as Object 1

to Object n, such that Object 1 is the object that most frequently appears in the gaze object

sequence at ti. If two or more objects appear in the gaze object sequence with the same

frequency, the object with the smaller gaze object angle is assigned the smaller numerical

index, as it is aligned most closely to the gaze vector and will be treated preferentially.

Figure 2 exemplifies how activity-relevant objects in a gaze object sequence would be

assigned indices at a specific time step ti. The activity-relevant objects (n = 4) in Activity 1

were sorted according to their frequency of occurrence in GOS(ti), which is underlined by a

green bracket in Figure 2A. Based on frequency of occurrence, the activity-relevant objects

were indexed as follows: pitcher (Object 1), pitcher lid (Object 2), mug (Object 3), and

spoon (Object 4).

We introduce here the idea of a “support surface,” which could be a table, cupboard

shelf, etc. In this work, we do not consider the support surface (experiment table) as an

activity-relevant object, as it cannot be moved or manipulated and does not directly affect

the performance of the activity. Nonetheless, the support surface still plays a key role in the

action primitive recognition algorithm due to the strong connection with the verb Set down.

In addition, the support surface frequently appears in the GOS.

To predict the action primitive at time step ti, input feature vectors are created for each

of the time steps from time ti−w to ti−1, as shown in Figure 2B. For Activity 1, each input

feature vector consists of five features for each of four activity-relevant objects and a support

surface. For clarity, each resulting 25× 1 feature vector is shown as a five-by-five matrix in

Figure 2B. Gaze object, left-hand object, and right-hand object are encoded in the form of
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one-hot vectors while gaze object angle and angular speed are scalar values.

Gaze object identity was included as an input feature because it supported action recog-

nition in prior studies [16, 17, 22]. We included the hand object as an input feature although

it is a component of the action primitive triplet that we seek to recognize. Considering the

application of controlling a robotic arm through eye gaze, we expect the robotic system to

determine an object’s identity before it plans any movements with respect to the object. As

a result, we assume that the hand object’s identity is always accessible to the classification

algorithm. We included the GOA and GOAS as input features because we hypothesized that

spatiotemporal relationships between eye gaze and objects would be useful for action primi-

tive recognition. The preprocessing pipeline for the input features is shown in Supplementary

Video 1.

3.4.3.3 Action Primitive Recognition Model Architecture

We train a long short-term memory (LSTM) recurrent neural network to recognize the

verb and the target object TO for each time step ti. With this supervised learning method,

we take as inputs the feature vectors described in section Input Features for the Action

Primitive Recognition Model. For the RNN output, we label each time step ti with a pair

of elements from a discrete set of verbs and generic, indexed target objects:

V erb(ti) ∈ V = {Reach,Move, Setdown,Manipulate} (3.1)

TO(ti) ∈ O = {Object1, Object2, Object3, Support surface} (3.2)

The target object class Object 4 was excluded from the model output since its usage
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accounted for ¡1% of the entire dataset. The four verb labels and four TO labels are combined

as 16 distinct verb-TO pairs, which are then taken as output classes when we train the RNN.

(V erb(ti, TO(ti))) ∈ O × V = (Reach,Object1), ..., (Manipulate, Supportsurface) (3.3)

As a result, verb-TO pairs that never occur during the training process, such as (Manip-

ulate, Support surface), can be easily eliminated.

In order to evaluate the RNN’s performance on the verb and target object individually,

we split the verb-TO pairs after recognition. A softmax layer was used as the final layer of

the RNN.

V erb(ti) = argmaxv∈V (
∑
o∈O

softmax(V erb(ti = v, TO(ti = o))) (3.4)

TO(ti) = argmaxo∈O(
∑
v∈V

softmax(V erb(ti = v, TO(ti = o))) (3.5)

The RNN was comprised of one LSTM layer, three dense layers, and one softmax layer.

The LSTM contained 64 neurons and each of the three dense layers contained 30 neurons.

The RNN was trained with an Adaptive Momentum Estimation Optimization (Adam), which

was used to adapt the parameter learning rate [102]. A dropout rate of 0.3 was applied in

order to reduce overfitting and improve model performance. The batch size and epoch

number were set as 128 and 20, respectively. The RNN was built using the Keras API in

Python with a TensorFlow (version 1.14) backend, and in the development environment of

Jupyter Notebook.

Class imbalance is a well-known problem that can result in a classification bias toward

the majority class [103]. Since our dataset was drawn from participants naturally performing
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activities, the training set of samples was not balanced among various verb and TO classes

(see sample sizes in Figure 5). An imbalance in TO classes might also result from sorting

and indexing the objects as described in section Input Features for the Action Primitive

Recognition Model. For instance, Object 1 occurs most frequently in the GOS by definition.

Thus, Object 1 is more likely to be the target object than Objects 2 or 3. In order to

compensate for the class imbalance, each class’ contribution in the cross-entropy loss function

was weighted by its corresponding number of samples [104].

The temporal sequence of the target object and verb recognized by the RNN can contain

abrupt changes, as shown in the top rows of Figures 5A,B. These abrupt changes occur for

limited time instances and make the continuous model prediction unsmooth. Such unstable

classifier results might cause an assistive robot to respond unexpectedly. Thus, we imple-

mented a one-dimensional mode filter with an order of m (in our work, m = 12 time steps,

equivalent to 0.2 s) to smooth out these sequences [105]:

verb(ti) = mode({verb(ti−m), verb(ti−m+1), ..., verb(ti−1)}) (3.6)

TO(ti) = mode({TO(ti−m), TO(ti−m+1), ..., TO(ti−1)}) (3.7)

The sequences after filtering are shown in the middle rows of Figures 5A,B.

Considering that 10 subjects participated in our study, we adopted a leave-one-out cross-

validation method. That is, when one subject’s data were reserved for testing, the other

nine subjects’ data were used for training.
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3.4.3.4 Performance Metrics for Action Recognition

In order to evaluate the performance of the action primitive classification, we assessed

overall accuracy, precision, recall, and the F1-score. Overall accuracy is the number of

correctly classified samples divided by the total size of the dataset. For each class of verb

or target object, precision represents the fraction of correctly recognized time steps that

actually belong to the given class, and recall represents the fraction of the class that are

successfully recognized. We use TP, TN, and FP to represent the number of true positives,

true negatives, and false positives when classifying a verb or target object class.

overall accuracy =

∑
TP

total size of dataset
(3.8)

precision =
TP

TP + FP
(3.9)

recall =
TP

TP + TN
(3.10)

The F1-score is the harmonic mean of precision and recall.

F1 =
2 · precision · recall
precision+ recall

(3.11)

We also used performance metrics that were related to the temporal nature of the data.

In order to evaluate how early an action primitive was successfully recognized, we adopted

the terminology ”observational latency,” as defined in [75]. The term was defined as “the

difference between the time a subject begins the action and the time the classifier classifies

the action,” which translates to the amount of time that a correct prediction lags behind
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the start of an action primitive. It should be noted that the observational latency does not

include the computation time that the recognition algorithm requires to preprocess the input

data and recognize the actions by the model.

We conservatively judged the success of an action primitive’s classification by checking

whether more than 75% of its time period was predicted correctly. Summary statistics for

observational latency are reported for action primitives that were deemed correct according

to this 75% threshold. Observational latency is negative if the action primitive is predicted

before it actually begins.

3.5 Results

Recall our aim of specifying the three components of the action primitive triplet: verb,

target object, and hand object. Given that the hand object is already known, as described in

section Input Features for the Action Primitive Recognition Model, we report on the ability

of the RNN to recognize the verb and target object. A demonstration of the trained RNN

is included in Supplementary Video 1.

3.5.1 Effect of Time Window Size on Recognition Accuracy

In order to set the time window size, we conducted a pilot study inspired by [101]. We

tested how the F1-scores of the verb and TO classes varied as the time window size was

increased from five time steps (equivalent to 83 ms) to 2 s in increments of five time steps

(Figure 4). Considering the average duration of an action primitive was only 1.2 s, we did

not consider time window sizes beyond 2 s.

As seen in Figure 4A, time window size had a more substantial effect on the recognition
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Figure 3.4: The effect of time window size (ranging from 83ms to 2 s) on recognition per-

formance is shown for Activity 1. The overall recognition accuracy for verb and target

object are shown in (A). F1-scores for the verb and target object classes are shown in (B,C),

respectively.
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of TO than that of verb. This is due to the fact that time window size can greatly affect

the data sample distributions among target object classes as a result of sorting and indexing

the activity-relevant objects. Figure 4C shows that the TO class Object 3 was especially

sensitive to the window size. The corresponding F1-score continuously increased from 30%

to 80% until the window size reached 1.8 s. Recognition performance of the other three

TO classes Object 1, Object 2, and Support surface were also improved as the time-window

size was increased from 80 ms to 1.25 s. The increased F1-scores of the TO classes can be

partly attributed to alleviated class imbalance problem as the time window was lengthened,

especially for the class Object 3. The number of data samples of Object 3 greatly increased

due to the nature of sorting and indexing objects according to their frequency of occurrence

in gaze object sequence.

As seen in Figure 4B, the F1-scores of the verb classes Reach, Move, and Manipulate

increased as the time-window size increased from 80 ms to 0.5 s. Little improvement in the

F1-scores was observed for time window sizes > 0.5 s, except for Set down. This suggested

that a memory buffer of 0.5 s might be sufficient for predicting the verb class based on eye

gaze. Gaze-related information collected long before the start of an action primitive was

very likely to be irrelevant to the verb.

Considering the effect of the time window size on the classification accuracy of both

the verb and target object (Figure 4), we decided to use a time window size of 1.25 s. A

time window longer than 1.25 s might slightly improve recognition performance, but with

additional computational cost.
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Figure 3.5: Intra-activity recognition results for Activity 1 are shown in confusion matrix

form for (A) verb and (B) target object. Inter-activity recognition results for an RNN

trained on Activity 2 and tested on Activity 1 are shown for (C) verb and (D) target object.

Integers in the confusion matrices represent numbers of samples. The confusion matrices are

augmented with precision, recall, and accuracy results (green).
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3.5.2 Intra-Activity Recognition

We report results for intra-activity recognition, in which we trained and tested the re-

current neural network on the same activity. These results describe how well the RNN

recognized novel instances of each activity despite variability inherent to activity repetition.

Intra-activity recognition results for Activity 1 are shown in Figure 5 in the traditional form

of confusion matrices. The rows correspond to the true class and the columns correspond to

the predicted class. For brevity, intra-activity recognition results for Activities 1 and 2 are

also shown in Table 2 in the form of F1-scores. The weighted averages of F1-scores for verb

and target object were each calculated by taking into account the number of data samples for

each class. The RNN was not trained on Activity 3 due to its smaller dataset as compared

to Activities 1 and 2. Thus, no intra-activity recognition results were reported for Activity

3.

We augmented the traditional confusion matrix used to report results according to true

and predicted classes with additional metrics of precision and recall (Figure 5). Precision and

recall were reported as percentages (in green) in the far right column and bottom-most row,

respectively. The cell in the lower-right corner represented the overall recognition accuracy.

The data samples were not balanced among various verb and TO classes since our dataset

was drawn from participants naturally performing activities. The proportion of each verb

and TO class in Activity 1 was the sum of the corresponding row in Figures 5A,B divided

by the total size of the dataset (77,774 time step samples). The proportions for the verb

classes were 15% for Reach, 17% for Move, 13% for Set down, and 55% for Manipulate. The

proportions for the target object classes were 44% for Object 1, 34% for Object 2, 9% for

Object 3, and 13% for Support surface.
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Intra- or Inter-activity recog-

nition

Intra Inter Inter Intra Inter Inter

Activity # (training) 1 1 1 2 2 2

Activity # (testing) 1 2 3 2 1 3

F1-scores for verb recognition (%)

Reach 74.8 52.9 54.8 56.5 40.9 55.6

Move 66.8 36.6 61.1 59.5 48.0 60.5

Set down 72.1 49.3 45.3 59.6 39.5 44.4

Manipulate 82.7 73.7 72.7 81.4 73.9 71.8

Verb Average 77.4 60.3 63.6 68.6 59.9 63.1

F1-scores for target object recognition (%)

Object 1 86.3 72.1 78.0 80.2 81.3 77.4

Object 2 85.8 80.7 83.6 87.2 76.0 80.8

Object 3 70.1 41.7 52.5 55.2 56.6 56.8

Support surface 72.2 56.9 49.8 69.3 48.0 46.6

TO Average 82.8 73.0 74.9 81.1 72.8 73.4

Table 3.2: The RNN performance for intra- and inter-activity recognition is reported via

F1-scores (%). Weighted averages of F1-scores that account for the number of data samples

in each class are reported for both verb and target object (TO).
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The RNN achieved a good performance in recognizing the majority verb class Manipulate

(precision: 90%, recall: 77%) and the TO class Object 1 (precision: 86%, recall: 86%), which

laid a solid foundation for its overall accuracy (verb: 77%, TO: 83%).

3.5.3 Inter-Activity Recognition

We report results for inter-activity recognition, in which we trained and tested the re-

current neural network on different activities. These results describe how well the RNN can

recognize verbs and target objects despite variability across different activities. To evaluate

the algorithm’s cross-activity generalizability, an RNN trained on Activity 2 (make instant

coffee) was tested on Activity 1 (make a powdered drink), and vice versa. RNNs trained on

Activity 1 and Activity 2 were additionally tested on Activity 3 (prepare a cleaning sponge).

The confusion matrices of an RNN trained on Activity 2 and tested on Activity 1 are shown

in Figures 5C,D for verb and target object estimation, respectively. For brevity, additional

inter-activity recognition results are presented in Table 2 in the form of F1 scores.

We also compared intra-activity and inter-activity performance of RNN models tested on

the same activity. For this, we subtracted the average F1-scores for inter-activity recognition

from those of the appropriate intra-activity recognition for RNNs tested on Activity 1 and

Activity 2. As expected, when testing with an activity that differed from the activity on

which the RNN was trained, the classification performance decreased. The average F1-scores

of verb and target object each dropped by 8% when the RNN was trained on Activity 1 and

tested on Activity 2. The average F1-scores of verb and target object dropped by 18 and

10%, respectively, when the RNN was trained on Activity 2 and tested on Activity 1. The

average F1-score decreases were no larger than 20%, which suggested that the classification

algorithm was able to generalize across activities to some degree. In addition, despite the
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Figure 3.6: For Activity 1, RNN performance is reported by F1-scores for different combina-

tions of input features (HO, GO, GOA, GOAS) using a radar chart. Axes represent the verb

(bold) and target object classes. F1-score gridlines are offset by 22%. Each of the polygons

corresponds to one combination of input features. The combined use of HO, GO, GOA, and

GOAS features resulted in the best performance; HO alone performed the worst.
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fact that Activity 3 shared only one common activity-relevant object (mug) with the other

two activities, the average F1-scores of verb and TO achieved for Activity 3 were slightly

higher than those of the other inter-activity recognition tests (Table 2).

3.5.4 Effect of Input Features on Recognition Accuracy

In order to evaluate feature importance, we compared the classification performance

achieved in Activity 1 with various combinations of input features using a radar chart (Figure

6). Axes represented the verb and target object classes. Gridlines marked F1-scores in

increments of 22%. Classification using HO alone was poor, with F1-scores for “Set down”

and “Object 3” being ¡10%. Only slightly better, classification using GO alone was still not

effective, with F1-scores of the “Set down,” “Object 3,” and “Support surface” only reaching

values near 22%. In contrast, GOA-based features (GOA, GOAS) alone outperformed both

HO and GO on their own in every verb and target object class. With the exception of

“Reach,” GOA-based features alone also outperformed the use of HO and GO together.

Although the feature HO alone did not provide good recognition result, it could substan-

tially improve the classification performance when used in concert with GOA-based features.

For every class, the F1-scores achieved with the combination of GOA-based feature and HO

were equal to or higher than with the GOA-based feature alone.

3.5.5 Effect of Input Features on Observational Latency

The time histories of the verb and target object recognition for a representative Activity

1 trial are shown in Figures 7A,B. In each of Figures 7A,B, the top colorbar represents a time

history of raw prediction results. The middle colorbar shows the output of the mode filter
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that smooths the raw prediction results. The bottom colorbar represents the ground truth.

White gaps in the ground truth correspond to instances when neither hand was moving or

manipulating an object. The observational latency is obtained by comparing the middle and

bottom colorbars.

While Figure 7 shows the observational latency for a single representative trial, the

observational latencies for all trials and participants are presented in Figure 8. Specifically,

Figures 8A,B, summarize results for the recognition of verb and target object, respectively,

for an RNN trained and tested on Activity 1. Figure 8 illustrates the effect of input features

on observational latency by comparing the results of an RNN that only used GO and HO as

input features to those of an RNN that additionally used GOA, and GOAS as input features.

We hypothesized that the incorporation of GOA-based input features could significantly

decrease observational latency. To test this, we conducted a Wilcoxon signed-rank test

(following a Lilliefors test for normality) with a total of 714 action primitives. The one-

tailed p-values for the verbs and target objects were all less than the α level of 0.05 except

for the target object of pitcher lid. Thus, we concluded that the use of GOA and GOAS as

input features in addition to GO and HO resulted in a reduction in observational latency

(Figure 8).

3.6 Discussion

3.6.1 Features Based on Gaze Object Angle Improve Action Primitive Recog-

nition Accuracy

The long-term objective of this work is to advance shared autonomy control schemes so

that individuals with upper limb impairment can more naturally control robots that assist
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with activities of daily living. One embodiment of such a teleoperated system could include

both a joystick and eyetracker as user input devices. The short-term goal of this study was

to improve action primitive recognition accuracy and observational latency. We pursued this

goal by (i) focusing on the recognition of low-level action primitives, and (ii) defining eye

gaze-based input features that improve action primitive recognition.

Previous studies leveraged egocentric videos to recognize actions when a subject was

naturally performing ADLs. The features reported in these studies can be divided into three

categories: features based on human hands, objects, or human gaze. Examples of hand-

based features include hand location, hand pose, and relative location between left and right

hands [18, 23]. Fathi et al. relied on changes in the state of objects, such as the state of the

“coffee jar” (open vs. closed) [20], to recognize actions. Behera et al. used spatiotemporal

relationships between objects as classifier inputs ([21]). Features related to human gaze

included the gaze-object, which was widely used to classify actions ([17, 22]). The use of

object appearance (histogram of color and texture) in the neighborhood of the gaze point

was also effective in improving recognition accuracy ([19, 98]).

Considering the long-term objective of this work, we elected not to rely solely on features

based on human hands or objects for action primitive recognition. Features based on human

hands are only available when subjects use their own hands to directly grasp and manipulate

objects. For the assistive robot application we envision, features of human hands such as

hand location, hand pose, and relative location between left and right hands ([18, 23]) will

not be available. Features based on objects are consequence of hand motions, such as changes

in the states of objects or spatiotemporal relationships between objects. Such object-based

features would only be available in hindsight and cannot be collected early enough to be

useful for the proposed assistive robot application.
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Figure 3.7: For a representative trial of Activity 1, temporal sequences of recognition results

and ground truth are presented for (A) verb and (B) target object. In both (A,B), the top,

middle, and bottom color bars represent the raw RNN output, RNN output smoothed by a

mode filter, and hand-labeled ground truth, respectively. The total duration of this trial is

36 s.
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Figure 3.8: For Activity 1, the observational latency for recognition of (A) verb and (B)

target object are shown using box and whisker plots. A negative latency value indicates that

a verb or target object is identified before the start of the action primitive. For each boxplot

pair, the observational latency without using GOA and GOAS (thin lines) is compared with

that using GOA and GOAS (thick lines). Each boxplot indicates the 25, 50, and 75th

percentiles. The whiskers extend to the most extreme data points that are not considered

outliers (“+”) having values of more than 1.5 times the interquartile range from the top or

bottom of the box. Asterisks indicate p < α = 0.05.
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We aim to exploit observations that gaze behavior is a critical component of sighted grasp

and manipulation activities, and that eye movements precede hand movements ([32, 106]). As

such, we adopted the gaze-based feature GO from the literature (e.g., [17]) and supplemented

it with two new features that we defined: GOA and GOAS.

As reported in section Effect of Input Features on Recognition Accuracy, models that

included GOA and GOAS as input features outperformed models that relied primarily on GO

or HO for every verb and target object class. The addition of GOA and GOAS substantially

improved the average F1-score from 64% to 77% for verb and from 71 to 83% for target

object (Figure 6).

The advantages of using features based on gaze object angle for action primitive recog-

nition are 2-fold. First, the gaze object angle quantifies the spatiotemporal relationship

between the gaze vector and every object in the workspace, including objects upon which

the subject is not currently gazing. In contrast, the gaze object only captures the identity of

the object upon which the subject is gazing at that particular instant. Considering that daily

activities generally involve a variety of objects, it is vital for the classifier to collect sufficient

information related to gaze-object interactions. The feature GOA could indirectly provide

information similar to that of GO. For example, a GOA value that is close to zero would

result if the gaze vector is essentially pointing at the gaze object. When GOA, GOAS, and

HO have already been included as input features, the addition of GO as an input feature

has little to no impact on classification accuracy (Figure 6). Also, classifier performance

improves when using GOA and GOAS as input features as compared to using GO, HO, or

their combination (Figure 6).

Second, the input feature GOAS contains GOA rate information. To some extent, GOAS

also captures directional information, as positive and negative GOAS values reflect whether
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the gaze vector is approaching or departing from each object in the workspace, respectively.

We believe that approach/departure information can be leveraged to predict the target object

for a given action primitive because gaze is used to gather visual information for planning

before and during manual activities ([106]). An object being approached by the gaze vector

is not necessarily the target object, as the object could simply be in the path of the gaze

vector during its movement. However, objects are less likely to be labeled as the “target

object” when the gaze vector moves away from them.

3.6.2 Features Based on Gaze Object Angle Improve Observational Latency

While recognition accuracy is important, human-robot systems also require low observa-

tional latency ([75]). Even an action primitive that is correctly recognized 100% of the time

will cease to be useful if the delay in recognition prohibits an effective response or adds to

the cognitive burden of the operator. The earlier that a robotic system can infer the intent

of the human operator or collaborator, the more time will be available for computation and

the planning of appropriate robot movements.

Previous studies have focused on classifying actions in videos that have already been

segmented in time (e.g., [19]. However, these methods that were designed to recognize

actions in hindsight would be less effective for real-time use. We desire the intended action

primitive to be predicted in advance of robot movement and with as low an observational

latency as possible.

Hoffman proposed several metrics to evaluate fluency in human-robot collaborative tasks.

For instance, the robot’s functional delay was defined as the amount of time that the human

spent waiting for the robot ([107]). This concept of fluency reflects how promptly a robot can

respond correctly to an operator’s commands. A high observational latency will degrade the
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fluency of a human-robot system and increase the operator’s cognitive burden, effort, and

frustration levels. A user interface that requires operators to intentionally gaze at specific

objects or regions for a fixed period of time may be less natural and have lower fluency than

a user interface that leverages natural eye gaze behaviors ([28, 90]).

In this work, the use of gaze-related features enabled the recognition of action primitives

at an early stage. The average observational latency for verb recognition was 120 ms, 10%

of the average duration of an action primitive (1.2 s). The average observational latency for

target object was -50 ms; the negative latency value indicates that the target object was

sometimes identified before the start of the action primitive. Unfortunately, pooled across

all classes, the observational latency for the target object was not statistically significantly

less than zero (p = 0.075; α = 0.05). Nonetheless, the fact that some of the trials resulted

in negative observational latency values was surprising and encouraging.

Among gaze-related input features, the use of GOA and GOAS decreased the observa-

tional latency as compared with using GO alone (Figure 8). Per a Wilcoxon signed rank

test, observational latency was statistically significantly smaller when GOA and GOAS were

used as input features than when they were excluded (p < α = 0.05). This was true for all

verb classes and all target object classes, with the exception of lid. For the verb and target

object, the observational latency dropped by an average of 108 and 112 ms, respectively.

One reason for this could be that GOA-based features may encode the tendency of the gaze

vector to approach an object once the eyes start to move. In contrast, the GO feature does

not capture the identity of any object until the gaze vector reaches the object.

The sub-second observational latency values that we report likely resulted from the fact

that eye movement generally precedes hand movement for manual activities ([32, 106]). Land

et al. reported that the gaze vector typically reached the next target object before any visible
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signs of hand movement during the activity of making tea ([61]). The small observational

latency values may also result from the fact that our classifier was designed to recognize

action primitives, which are much simpler than actions or activities ([93]). Action primitives

often involve a single object, a single hand, and occur over a shorter period of time than

actions and activities. The recognition of actions and activities for ADLs would require

observations over a longer period of time and would necessarily involve more complex eye

behaviors, more complex body movements, and gaze interactions with multiple objects.

Ryoo predicted activities of daily living and defined the “observation ratio” as the ratio

between the observational latency and the activity duration ([108]). Ryoo reported that

a minimum observation ratio of 45% was needed to classify activities with at least 60%

accuracy. In this work, we found that minimum observation ratios of 18 and 5% were needed

to achieve an accuracy of 60% for each the verb and the target object, respectively. This

suggests that recognition of low-level action primitives can be achieved at lower observation

ratios and within shorter time periods than high-level activities, which require the passage

of more time and collection of more information for similar levels of accuracy.

One limitation of this work is that the action primitive recognition algorithm has not

yet been tested in real-time. This is an area of future work and considerations for real-

time implementation are discussed in section Comparisons to State-of-the-Art Recognition

Algorithms. Based on our experience, we expect that the overall latency will be dominated

by observational latency and less affected by computational latency. This is due to the

relatively simple structure of the proposed RNN architecture and the fact that the RNN

model would be trained offline a priori.
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3.6.3 Segmenting Objects Into Regions According to Affordance Could Improve

Recognition Performance

The distribution of gaze fixations can be concentrated on certain regions of an object,

such as those associated with “object affordances.” An object affordance describes actions

that could be performed on an object ([57]). For example, Belardinelli et al. showed human

subjects a 2D image of a teapot and instructed them to consider lifting, opening, or classifying

the teapot as an object that could or could not hold fluid ([40]). It was observed that subjects’

gaze fixations were focused on the teapot handle, lid, and spout for lifting, opening, and

classifying, respectively. In addition, in a prior study, we reported 3D gaze heat maps for

the activity “make a powdered drink” ([30]). We observed that gaze fixations were focused

on the top and bottom of pitcher during the action unit “reach for pitcher” and “set down

pitcher.”

Inspired by these findings, we hypothesized that information about the action primitive

can, in theory, be encoded by gaze behavior with respect to specific regions of objects. This

would provide a classification algorithm with information at a finer spatial resolution than

when considering each object as a whole. In a post hoc study, we segmented the point

clouds of each of the four activity-relevant objects in Activity 1 (make a powdered drink)

into several regions according to object affordances (Figure 9). For instance, the spoon was

segmented into the upper and bottom faces for the bowl, the handle, and the tip of the

handle. Notably, the inner and outer wall of containers (pitcher and mug) were treated as

different regions since the inner and outer walls were often fixated upon differently depending

on the action primitive.

After the segmentation, we augmented the gaze-related features (GO, GOA, GOAS) by
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treating each region as an independent object while keeping the features left-hand object and

right-hand object unchanged. We then retrained the RNN with the new augmented features.

The recognition accuracy for verb increased slightly from 77 to 79% and accuracy for the

target object increased from 83 to 86%. By increasing the total number of object regions

from 4 to 20, the time taken for the trained RNN to produce one classifier output increased

by 26%. Depending on the consequences of an incorrect classification and the minimum

acceptable accuracy level, one could decide which objects to segment and how finely the

objects should be segmented. For instance, one may still be able to improve recognition

performance if the mug were segmented into inner wall, outer wall, and handle, as opposed

to the five segments that we tested.

3.6.4 Comparison to State-of-the-Art Recognition Algorithms

In the evaluation of our proposed gaze-based action primitive recognition method, we

were unable to identify suitable benchmarks for a direct quantitative comparison. First, our

approach is designed to recognize low-level action primitives that could be used as modular,

generalizable building blocks for more complex levels of the action hierarchy ([93]). The

literature on action recognition provides methods for recognition at the level of actions and

activities, but not at the level of action primitives that are investigated in our work. For

instance, the public dataset “GTEA+” and “EGTEA Gaze+” provided by [19, 109] involve

actions such as “take bread.” This action would need to be split into two separate action

primitives: “reach bread,” and “set down bread onto table.” Likewise, the public dataset

“CMU-MMAC” provided by [44] involves actions such as “stir egg.” This action would need

to be split into three action primitives: “reach fork,” “move fork into bowl,” and “stir

egg in the bowl using fork.” Many state-of-the-art recognition methods for ADLs (whether
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Figure 3.9: Point clouds of the four activity-relevant objects involved in Activity 1 were

segmented into multiple regions for finer spatial resolution: (A) pitcher, (B) pitcher lid, (C)

spoon, and (D) mug.

leveraging gaze behavior or not) are based on these publicly available datasets at the action

level.

Second, action recognition models in the literature rely on computer-vision based ap-

proaches to analyze 2D videos recorded by an egocentric camera, e.g., ([19, 20, 22, 24, 23,

109, 110, 111, 112]). Whether using hand-crafted features ([18, 19, 20, 22, 24, 23, 110]) or

learning end-to-end models ([109, 111, 112]), the computer vision-based approaches to action

recognition must also address the challenges of identifying and tracking activity-relevant ob-

jects. In contrast, we bypassed the challenges inherent in 2D image analysis by combining an

eyetracker with a marker-based motion capture system. This experimental set-up enabled

the direct collection of 3D gaze-based features and object identity and pose information so

that we could focus on the utility of 3D gaze features, which are unattainable from 2D cam-

era images. Our method could be introduced into non-lab environments by combining an

eyetracker with 2D cameras and ArUco markers, for example, in place of a marker-based

motion capture system.
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3.6.5 Considerations for Real-Time Implementation of an Action Primitive

Recognition Algorithm in Human-Robot Systems

As an example of how our action primitive recognition model could be applied in a

human-robot shared autonomy scenario, consider the action “stir contents inside a mug.”

First, as a subject’s eye gaze vector moves toward the spoon, the probability of the potential

action primitive “reach spoon” increases until it exceeds a custom threshold. The crossing

of the threshold triggers the robotic end effector to move autonomously toward the spoon

handle in order to grasp the spoon. The robot would use its real-time 3D model of the

scene to plan its low-level movements in order to reduce the cognitive burden on the human

operator. Second, as the subject’s eye gaze switches to the mug after a successful grasp of the

spoon, the model would recognize the highest probability action primitive as “move spoon

to mug.” Again the crossing of a probability threshold, or confidence level, would trigger

the autonomous placement of the grasped spoon within the mug for a subsequent, allowable

manipulate-type action primitive, which would be limited to a set of allowable manipulate-

type action primitives based on the gaze object and hand object. Third, as the subject

fixates their gaze on the mug, the model would recognize the highest probability action

primitive as “stir inside mug” and autonomous stirring would begin. The stirring trajectory

could be generated using parametric dynamic motion primitives [113], for example. Lastly,

as the subject’s gaze saccades to a support surface and the action primitive is recognized as

“set down spoon,” the system would proceed to determine a location on the table at which

to place the spoon. This exact location could be extracted from filtered eye gaze signals as

introduced in [14].

As described in the above example, we envision that our model could be used to recognize

subjects’ intended action primitives through their natural eye gaze movements while the
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robot handles the planning and control details necessary for implementation. In contrast to

some state-of-the-art approaches to commanding robot movements [36, 90, 92, 91], subjects

would not be forced to unnaturally, intentionally fixate their gaze at target objects in order

to trigger pre-programmed actions. Of course, much work is necessary to implement the

proposed shared autonomy control scheme and this is the subject of future work.

Concerning the practical implementation of the proposed action primitive recognition

method, several limitations must be addressed.

3.6.6 Specificity of the Action Primitive

The proposed recognition method is intended to assign generalized labels to each time

step as one of the four verb classes (reach, move, set down, and manipulate). The current

method does not distinguish between subclasses of manipulate-type verbs, such as “pour”

and “stir.” Recognition of subclasses of a verb could enable assistive robots to provide even

more specific assistance than that demonstrated in this work.

Recognition specificity could be advanced by incorporating additional steps. One idea is

to create a lookup table based on the affordances of the objects involved in the activities.

For example, the action primitive triplet of (verb = manipulate, TO = mug, HO = pitcher)

is associated with the verb subclass “pour.” However, the triplet (verb = manipulate, TO

= pitcher, HO = spoon) is associated with both verb subclasses “stir” and “scoop.” As

an alternative, we suggest the use of gaze heat maps to facilitate the classification of verb

subclasses since action primitives are activity-driven and the distribution of gaze fixations

can be considerably affected by object affordance ([40, 30]).
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3.6.7 Distracted or Idle Eye Gaze States

The proposed recognition method does not recognize human subjects’ distracted or idle

states. For example, a subject’s visual attention can be distracted by environmental stimuli.

In this study, we minimized visual distractions through the use of black curtains and by

limiting the objects in the workspace to those required for the instructed activity. The

incorporation of distractions (audio, visual, cognitive, etc.) is beyond the scope of this work,

but would need to be addressed before transitioning the proposed recognition method to

natural, unstructured environments.

Idle states are not currently addressed in this work. Hands are not used for every activity

and subjects may also wish to rest. If the gaze vector of a daydreaming or resting subject

happens to intersect with an activity-relevant object, an assistive robot may incorrectly rec-

ognize an unintended action primitive and perform unintended movements. This is similar to

the “Midas touch” problem in the field of human-computer interaction, which faces a similar

challenge of “how to differentiate ‘attentive’ saccades with intended goal of communication

from the lower level eye movements that are just random” ([114]). This problem can be

addressed by incorporating additional human input mechanisms, such as a joystick, which

can be programmed to reflect the operator’s agreement or disagreement with the robot’s

movements. The inclusion of “distracted” and “idle” verb classes would be an interesting

area for future advancement.

3.6.8 Integration With Active Perception Approaches

The proposed recognition method could be combined with active perception approaches

that could benefit a closed-loop human-robot system that leverages the active gaze of both
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humans and robots. In this work, the 3rd person cameras comprising the motion capture

system passively observed the scene. However, by leveraging the concept of “joint atten-

tion” [115], one could use an external and/or robot-mounted camera set-up to actively ex-

plore a scene and track objects of interest, which could be used to improve the control of a

robot in a human-robot system.

As discussed in section Comparisons to State-of-the-Art Recognition Algorithms, for

the purposes of this work, we bypassed the process of identifying and locating activity-

relevant objects by implementing a marker-based motion capture system in our experiment.

Nonetheless, the perception of activity-relevant objects in non-laboratory environments re-

mains a challenge due to object occlusions and limited field of view. Active perception-based

approaches could be leveraged in such situations. In multi-object settings, such as a kitchen

table cluttered with numerous objects, physical camera configurations could be actively con-

trolled to change 3rd person perspectives and more accurately identify objects and estimate

their poses [116]. Once multiple objects’ poses are determined, a camera’s viewpoint could

then be guided by a human subject’s gaze vector to reflect the subject’s localized visual

attention. Since humans tend to align visual targets with the centers of their visual fields

([117]), one could use natural human gaze behaviors to control camera perspectives (external

or robot-mounted) in order to keep a target object, such as one recognized by our proposed

recognition method, in the center of the image plane for more stable computer vision-based

analysis and robotic intervention (Li et al., 2015a). When realized by a visible robot-mounted

camera, the resulting bio-inspired centering of a target object may also serve as an implicit

communication channel that provides feedback to a human collaborator. Going further, the

camera’s perspective could be controlled actively and autonomously to focus on the affor-

dances of a target object after a verb-TO pair is identified using our proposed recognition
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method. Rather than changing the physical configuration of a camera to center an affor-

dance in the image plane, one could instead focus a robot’s attention on an affordance at

the image processing stage ([118]). For instance, the camera’s foveal vision could be moved

to a pitcher’s handle in order to guide a robot’s reach-to-grasp movement. Such focused

robot attention, whether via physical changes in camera configuration or via digital image

processing methods, could be an effective way to maximize limited computational resources.

The resulting enhanced autonomy of the robot could help to reduce the cognitive burden on

the human in a shared autonomy system.

Considering the goal of our work to infer human intent and advance action recognition

for shared autonomy control schemes, one could also integrate our proposed methods with

the concept of “active event recognition,” which uses active camera configurations to simul-

taneously explore a scene and infer human intent [119]. Ognibene and Demiris developed a

simulated humanoid robot that actively controlled its gaze to identify human intent while

observing a human executing a goal-oriented reaching action. Using an optimization-based

camera control policy, the robot adjusted its gaze in order to minimize the expected uncer-

tainty over numerous prospective target objects. It was observed that the resulting robot

gaze gradually transitioned from the human subject’s hand to the true target object before

the subject’s hand reached the object. As future work, it would be interesting to investi-

gate whether and how the integration of 1st person human gaze information, such as that

collected from an ego-centric camera, could enhance the control of robot gaze for action

recognition. For instance, the outputs of our proposed action primitive recognition method

(verb-TO pairs) could be used as additional inputs to an active event recognition scheme in

order to improve recognition accuracy and reduce observational latency.

91



3.6.9 Effects of the Actor on Eye Gaze Behavior

The proposed recognition model was trained using data in which non-disabled subjects

were performing activities with their own hands instead of subjects with upper-limb im-

pairment who were observing a robot that was performing activities. In our envisioned

human-robot system, we seek to identify operator intent via their natural gaze behaviors

before any robotic movements occur. It is known that gaze behaviors precede and guide

hand motions during natural hand-eye coordination ([85]). In contrast, we hypothesize that

the eye gaze behaviors of subjects observing robots may be reactive in nature. Aronsen et

al. have shown that subjects’ gaze behaviors are different in human-only manipulation tasks

and human-robot shared manipulation tasks ([120]). The further investigation of the effect

of a robot on human eye gaze is warranted, but is beyond the scope of this work. We propose

that the eye gaze behaviors reported in this work could be used as a benchmark for future

studies of human-robot systems that seek to recreate the seamlessness of human behaviors.

The direct translation of the model to a human-robot system may not be possible. For

one, the robot itself would need to be considered as an object in the shared workspace, as

it is likely to receive some of the operator’s visual attention. Fortunately, as suggested by

Dragan and Srinivasa in [121], the action primitive prediction does not need to be perfect

since the recognition model can be implemented with a human in the loop. The robotic

system could be designed to wait until a specific confidence level for its prediction of human

intent has been achieved before moving.

Another important consideration is that the recognition of action primitives via human

eye gaze will necessarily be affected by how the robot is programmed to perform activities.

For example, eye gaze behaviors will depend on experimental variables such as manual tele-
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operation vs. preprogrammed movements, lag in the robot control system and processing for

semi-autonomous behaviors (e.g., object recognition), etc. Recognizing that there are innu-

merable ways in which shared autonomy could be implemented in a human-robot system, we

purposely elected to eliminate the confounding factor of robot control from this foundational

work on human eye-hand coordination.

3.6.10 Integration of Low-Level Action Primitive Recognition Models With

Higher Level Recognition Models

This work focused on the recognition of low-level action primitives. However, the envi-

sioned application to assistive robots in a shared autonomy schema would require recognition

at all three hierarchical levels of human behavior (action primitives, actions, activities) [93]

in order to customize the degree of autonomy to the operator [122, 27]. For instance, the

outputs of the low-level action primitive recognition models (such as in this work) could

be used as input features for the mid-level action recognition models (e.g., [30], that would

then feed into the high-level activity recognition models ([17]). Simultaneously, knowledge

of the activity or action can be leveraged to predict lower level actions or action primitives,

respectively.

3.7 Conclusion

The long-term objective of this work is to advance shared autonomy by developing a user-

interface that can recognize operator intent during activities of daily living via natural eye

movements. To this end, we introduced a classifier structure for recognizing low-level action

primitives that incorporates novel gaze-related features. We defined an action primitive as
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a triplet comprised of a verb, target object, and hand object. Using a non-specific approach

to classifying and indexing objects, we observed a modest level of generalizability of the

action primitive classifier across activities, including those for which the classifier was not

trained. We found that the gaze object angle and its rate of change were especially useful

for accurately recognizing action primitives and reducing the observational latency of the

classifier. In summary, we provide a gaze-based approach for recognizing action primitives

that can be used to infer the intent of a human operator for intuitive control of a robotic

system. The method can be further advanced by combining classifiers across multiple levels

of the action hierarchy (action primitives, actions, activities) [93] and finessing the approach

for real-time use. We highlighted the application of assistive robots to motivate and design

this study. However, our methods could be applied to other human-robot applications, such

as collaborative manufacturing.
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CHAPTER 4

Gaze-based Shared Autonomy Framework with

Real-time Action Primitive Recognition for

Robot Manipulators

4.1 Abstract

Robots capable of robust, real-time recognition of human intent during manipulation

tasks could be used to enhance human-robot collaboration for activities of daily living. Eye

gaze-based control interfaces offer a non-invasive way to infer intent and reduce the cognitive

burden on operators of complex robots. Eye gaze is traditionally used for “gaze triggering”

(GT) in which staring at an object, or sequence of objects, triggers pre-programmed robotic

movements. We propose an alternative approach: a neural network-based “action predic-

tion” (AP) mode that extracts gaze-related features to recognize, and often predict, an

operator’s intended action primitives. We integrated the AP mode into a shared autonomy

framework capable of 3D gaze reconstruction, real-time intent inference, object localization,

obstacle avoidance, and dynamic trajectory planning. Using this framework, we conducted

a user study to directly compare the performance of the GT and AP modes using traditional

subjective performance metrics, such as Likert scales, as well as novel objective performance

metrics, such as the delay of recognition. Statistical analyses suggested that the AP mode
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resulted in more seamless robotic movement than the state-of-the-art GT mode, and that

participants generally preferred the AP mode.

4.2 Introduction

Activities of daily living (ADLs) can be challenging for individuals with upper limb

impairment. Assistive robotic arms can significantly increase one’s functional independence

by easing the performance of ADLs [123]. However, the direct control of robotic arms with

numerous degrees-of-freedom (DOFs) via low dimensional input devices, such as a joysticks,

imposes a high cognitive burden on operators. Operators must frequently switch between

several modes for commanding gripper position, orientation, and open/close, and do so using

an unintuitive 3D Cartesian space perspective. To make the control process more intuitive

and seamless, we pursued a “shared autonomy” approach in which operator inputs and

semi-autonomous control are integrated in order to achieve shared goals [15].

A variety of non-verbal human input interfaces have been leveraged to recognize hu-

man intent, such as whole-body interfaces [124], gestures [77, 83, 84], electromyography

(EMG) [78], electroencephalography (EEG) [79, 80], and electrocorticography (ECoG) [76,

82]. In this work, we use an eye tracker due to advantages, such as being non-invasive,

non-verbal, intuitive, and easy to don and doff.

In prior studies, eye gaze was simply used as a “cursor” to select a target object from

several candidate objects [125, 91, 126, 90, 92, 127]. These conventional methods did not

attempt to infer or predict intent and required operators to stare at a target object for fixed

duration in order to trigger a pre-programmed robotic trajectory. We refer to such a control

approach as the “gaze trigger” (GT) method. In addition, prior studies mainly focused on
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Figure 4.1: The gaze-based shared autonomy framework consists of three threads: 3D re-

construction, intent inference, and robotic manipulation. Gaze-related features are used to

recognize action primitives to enable seamless robotic movements during the assistance of

activities of daily living.
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pick-and-place tasks [125, 126, 90, 127].

The objective of this work is to enhance gaze-based shared autonomy systems by intro-

ducing a neural network-based “action prediction” (AP) algorithm that leverages spatiotem-

poral gaze-related features. We propose a number of objective and subjective performance

metrics to evaluate and compare the performance of two control modes: the state-of-the-art

GT mode and our proposed AP mode. There are two main contributions of this study. First,

we developed and implemented an “action prediction” control mode for a gaze-based shared

autonomy framework that can be used to perform everyday tasks comprised of a sequence

of actions. The system features capabilities for intent inference, object localization, obstacle

avoidance, and dynamic trajectory planning. Second, we demonstrated that the AP control

model results in more seamless robotic movements than the state-of-the-art GT mode, and

that participants often preferred the proposed AP control mode over the GT mode.

This article is organized as follows. Section 4.3 outlines related work concerning gaze-

based action recognition and gaze-based shared autonomy. Section 4.4 introduces our pro-

posed gaze-based shared autonomy framework and action prediction control mode, and Sec-

tion 4.5 describes the experimental evaluation of the framework. Section 4.6 presents a

comparison of the performance of the state-of-the-art gaze trigger control mode and the

proposed action prediction control mode. Section 4.7 concludes with a summary of contri-

butions.
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4.3 Related Work

4.3.1 Gaze-based Action Recognition

Numerous computer vision-based studies have leveraged egocentric videos taken by head-

mounted cameras or eye trackers to recognize actions during everyday tasks [16, 17, 18, 19,

20, 21, 22, 23, 24]. These studies first subtracted the foreground and then detected human

hands and activity-relevant objects. Features related to hands, objects, gaze, and their

relative spatial relations were then used as inputs for action recognition using approaches

such as HMMs, neural networks, and support vector machines (SVMs). Actions could not

be successfully recognized until key visual features related to hand motions and object states

(e.g. whether the lid is on a cup) were available to the classification algorithm. In this work,

we aim to predict an operator’s intended actions using gaze-related features. Thus, computer

vision-based action recognition algorithms that rely on the visual consequences of actions

cannot be directly applied for intent inference prior to the initiation of actions.

Li and Zhang proposed a gaze-based intention communication framework for human-

robot interaction that was designed for eventual use with an assistive robot [28]. A simulated

kitchen image was displayed to subjects who were instructed to express their intent by

looking at task-relevant objects in the image. Subjects were required to press a physical

button before and after they expressed their intention using visual attention in order to

identify the sequence of gazed objects to be used for SVM classification of intent. While the

system enabled recognition of intended tasks, such as “prepare a cup of coffee,” a number

of steps were required of the operator, thereby reducing the intuitive nature of control and

seamlessness of the shared autonomy system.

Fuchs and Belardinelli recorded gaze signals as operators used a gaming controller to
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control the 3D position of a virtual robot end-effector in order to perform a pick-and-place

task [29]. The gaze point was fed into a Gaussian Hidden Markov Model to classify a verb

(“pick” or “place”) and target (cylinders to be grasped or locations for setting down grasped

cylinders). Although a recognition accuracy of approximately 80% was achieved, the eye

gaze signal was interpreted as a gaze point rather than a 3D gaze vector, and the action

recognition was not tested with a real robot or for tasks other than pick-and-place.

In a gaze-based intent inference study conducted by Huang et al., a “customer” se-

lected one ingredient at a time for the preparation of a sandwich by a “server” [128]. Using

gaze-based features, an SVM-based method correctly predicted the selected ingredient ap-

proximately 1.8 sec before a verbal request was given. While intent inference was successfully

implemented for a target object (ingredient), the study did not incorporate the prediction

of any verbs, as it was assumed that each ingredient was to be added to the sandwich.

In a prior study, we interpreted human intent as a triplet of a verb, target object, and

hand object [71]. In that study, we recruited subjects to perform several everyday activities,

such as preparing a powdered drink, and trained a recurrent neural network (RNN) to

simultaneously recognize verbs and target objects using gaze-based features. As detailed in

Section 4.4.4, we leverage our prior RNN-based action recognition algorithm in this work.

4.3.2 Shared Autonomy Systems with Gaze-based Robot Control

While the works cited in Section 4.3.1 addressed the challenge of action recognition using

eye gaze, the recognition algorithms were not implemented in shared autonomy systems with

real robots. In this Section 4.3.2, we provide an overview of works that implemented the

gaze-based control of real robots.
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Previous studies on gaze-based shared autonomy have focused on pick-and-place tasks [90,

127]. Gaze was used to select a target object for pick-up or a target position for setting down

a grasped object. A robotic action would be triggered once gaze fixation on a target exceeded

a preset time threshold (e.g. 2 sec in [90]). Zeng, et al. used a hybrid gaze-brain machine

interface in order to trigger robotic actions [125, 91, 126]. Gaze was used to select target

objects while an EEG brain-machine interface triggered an action using “motor imagery”

data. In the aforementioned studies, gaze was used to identify objects for pre-programmed

movements.

Shafti et al. expanded the repertoire of gaze-triggered actions by adding pouring to pick

and place capabilities [92]. A finite state machine was used to select the next action based

on the identities and affordances [57] of the grasped and gazed objects. For instance, when

the grasped object is a mug and the gazed object is a bowl, the next action to be triggered

is “pour.” In this work, we build upon the finite state machine concept, but we incorporate

an action recognition algorithm and create a more generalizable decision-making structure

that is based on object affordances instead of specific object identities.

Admoni and Srinivasa proposed an intent inference method for gaze-based shared au-

tonomy systems [25]. A Partially Observable Markov Decision Process model used joystick

and eye tracker signals in order to update probability distributions for candidate actions.

However, we were unable to find follow-on publications in which the proposed algorithm was

demonstrated experimentally.

Huang and Mutlu demonstrated a gaze-based intent inference method for human-robot

interaction [26]. A “customer” ordered a drink by verbally requesting one ingredient at a time

while a robotic “server” picked up the corresponding ingredient and placed it into a blender.

The robotic system monitored the customer’s gaze, predicted the intended ingredient using
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SVM-based classification, and acted proactively. With the intent inference algorithm and the

proactive control method, the system could respond to a customer’s request and complete

the task 2.5 sec earlier on average. In this work, we aim to predict a verb in addition to a

target object, and to develop a larger repertoire of verbs and robotic actions.

4.4 Gaze-based Shared Autonomy Framework

Our proposed gaze-based shared autonomy framework consists of three threads: 1) 3D

reconstruction, 2) intent inference, and 3) robotic manipulation (Figure 4.1). The 3D re-

construction thread tracks the 3D gaze vector as well as the location and orientation of

task-relevant objects. The intent inference thread extracts input features from 3D gaze-

object spatiotemporal data and feeds the features into a recurrent neural network (RNN)

in order to perform real-time recognition of the intended action primitive. The robotic ma-

nipulation thread executes the intended action primitive while also implementing collision

avoidance. In addition, a high-level control logic integrates the three parallel threads and

enables the sequential execution of one action primitive after another. This section presents

how each thread was designed and integrated into a system.

4.4.1 Intent Representation

Before we introduce the control logic and three parallel threads in the gaze-based shared

autonomy framework, we first define operator intent. Leveraging our prior work [71], we

represent operator intent as an action primitive triplet comprised of a verb, target object

(TO), and hand object (HO).

The verb can be one of four classes: Reach, Set down, Manipulate, or Move. The verb
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class Manipulate includes a list of manipulate-type verbs that are highly related to object-

specific affordances [57]. For instance, the verb “stir” is closely associated with the object

spoon, and the verb “pour” is closely associated with the object mug.

The target object (TO) refers to the object or support surface that will be directly affected

by verbs. The hand object (HO) refers to the object grasped by the robotic gripper. For

instance, in the action primitive “move the spoon to the mug”, the verb, HO, and TO are

“move,” “spoon”, and “mug,” respectively.

4.4.2 Control Logic

A high-level control logic in Procedure 4.1 integrates the three parallel threads of the

shared autonomy framework (3D reconstruction, intent inference, robotic manipulation).

The parallel threads each operate at 100 Hz. First, the 3D reconstruction thread is initiated

so that the robot always has access to the real-time 3D gaze vector as well as the locations and

orientations of the task-relevant objects. The system then enters a while loop to recognize

and execute action primitives until all of the action primitives necessary for the task have

been completed.

To improve the robustness of the robot actions taken based on RNN classification, we used

a finite state diagram that efficiently prunes action primitive candidates based on common

sense. A state is comprised of an “HO flag” and a “manipulate flag.” For instance, when no

object is grasped by the robotic gripper, the HO flag is set to “NA” (“not applicable”), and

only action primitives with the verb “reach” are considered as viable and treated as action

primitive candidates. Immediately after an object, such as a spoon, has been grasped, the

HO flag is updated to “ 6=NA” and the manipulate flag is set to “not ready to manipulate”.

The robot will not be allowed to execute manipulate-type action primitives, such as “stir,”
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until it becomes logical to do so, such as when the spoon is moved into a mug (“HO6=NA,”

manipulate=“ready to manipulate”).

During a single iteration of the while loop, the system updates the “ready to manipulate”

flag according to the spatial relationship between the target object and hand object, and

then updates the list of action primitive candidates that will be used by the intent inference

thread. The system plans the target pose or trajectory associated with each action primitive

candidate as proposed in Sections 4.4.5.1 and 4.4.5.2, respectively. After the intent inference

and robotic manipulation threads are started, the robotic manipulation thread retains control

until an action primitive is completed (i.e. until an “action-complete” flag switches from

false to true). After an action primitive is completed, the intent inference and robotic

manipulation threads are stopped, and the “action-complete” flag is reset to false such that

the robot is prepared for subsequent actions.

4.4.3 3D Reconstruction of Gaze Vector and Objects

Using a motion capture system and eye tracker described in Section 4.5, the participant’s

3D gaze vector was reconstructed. The 3D gaze vector points from the origin of the egocentric

camera frame to the gaze point location in the image plane. In addition to the gaze vector,

each object’s pose and point cloud were updated in real-time using markers [30].

4.4.4 Intent Inference

4.4.4.1 Action Primitive Recognition

In order to recognize participants’ intended action primitives, we deployed a pre-trained

RNN whose training process was detailed in our prior work [71]. The training dataset in
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Procedure I: Control Logic

1: Start the 3D reconstruction thread

2: while task not completed do for each action primitive in the task

3: Update “ready to manipulate”

4: Update the set of action primitive candidates according to the finite state diagram

5: Plan the target poses/trajectories for each action primitive candidate

6: Start the intent inference and robotic manipulation threads

7: while (“action-complete” is false) do

8: Continue to the intent inference and robotic manipulation threads

9: endwhile

10: Stop the intent inference and robotic manipulation threads

11: Set “action-complete” as false

12: endwhile

[71] was drawn from experiments in which participants performed three everyday tasks:

making a powdered drink, making instant coffee, and preparing a cleaning sponge. The

RNN anonymized the identities of the task-relevant objects via a generic sorting and indexing

method in order to improve cross-task generalizability. As a result, the RNN is not dependent

on object identity or the specific task.

Four types of features were extracted as inputs to the RNN: gaze object, hand object,

gaze object angle, and gaze object angular speed. The gaze object is the first object to be

intersected by the 3D gaze vector. While the hand object was defined in [71] as the object

grasped by a participant’s dominant hand, the hand object in this work is defined as the

object held by the robotic gripper. Gaze object angle is defined as the angle between the
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gaze vector and the eye-object vector. The eye-object vector emanates from the origin of the

gaze vector, but ends at an object’s center of mass. Finally, gaze object angular speed is the

time derivative of the gaze object angle. The output of the RNN is a probability distribution

among action primitive candidates.

4.4.4.2 Implementation of the Intent Inference Thread

The intent inference thread (Procedure 4.2) collects gaze-related features and sends them

as inputs to the RNN. The real-time, action primitive recognition RNN outputs are prob-

ability values whose noise is reduced through the use of a moving average filter window

Wf,recog of length wf,recog. The filter is applied to the probability values Pac(i) for each of

c = 1, · · · , ncand action primitive candidates ac for all time steps i within the filter win-

dow. The filter output is an average, normalized probability P ac for each action primitive

candidate. The normalized probability values for the action primitive candidates sum to

one.

The real-time action primitive recognition output arecog is set as the action primitive

candidate with the highest average, normalized probability.

arecog(i) = argmax
c

(P ac(i ∈ Wf,recog)), c = 1, · · · , ncand (4.1)

Despite the use of a moving average filter on the RNN output, a strict implementation of

the real-time action primitive recognition output can still result in unsmooth robot behavior.

Thus, we implemented a “locking” mechanism to enable the completion of a given action

primitive. In order for an action primitive to be locked, two criteria must be simultane-

ously satisfied: (i) the Euclidean distance between the end-effector and the target location

associated with arecog must be less than a user-defined distance threshold d, and (ii) the
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average, normalized probability of the recognized action primitive P arecog(t ∈ Wlock) must

exceed a user-defined probability threshold plock. A user-defined “locking” window Wlock of

length wlock determines which timesteps to consider when calculating the average, normalized

probability for a recognized action primitive.

When the action primitive arecog is locked, the robot will ignore subsequent action prim-

itive recognition outputs from the RNN until the execution of the action primitive has been

completed or an “unlocking” criterion has been met. The action primitive alock can be un-

locked when its average, normalized probability during the locking window P alock(t ∈ Wlock)

falls below a user-defined probability threshold punlock. Once a locked action primitive is

unlocked, the ongoing robotic manipulation thread is terminated.

4.4.5 Robotic Manipulation

In this section, we detail our methods for the planning and implementation of gaze-based

action primitives on real robots. We address the planning of target poses and movement

trajectories that are efficient and capable of avoiding obstacles.

4.4.5.1 Planning Target Poses

For the verb “reach,” we defined a discrete set of target poses for each object according

to the object’s affordances. For example, a mug is most commonly grasped from the side

by its body or handle. The target poses are fixed relative to the object and translate and

rotate in 3D along with the object. Before initiating any reaching movement, the robot

prunes target pose candidates that would result in collisions and selects the target pose that

is closest to the current end-effector location.
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Procedure II: Intent Inference Thread

1: Collect gaze-related features and send them to the RNN

2: Generate a normalized probability distribution for all action

primitive candidates using the RNN

3: Update arecog using the moving average filter (eq. 4.1)

4: Update recognition history in Wf,recog and Wlock

5: if no action primitive is locked then

6: if locking criterion is satisfied then

7: alock = arecog

8: endif

9: else an action primitive is already locked

10: if (“action-complete” is true) or (unlock. criterion satisfied) then

11: Unlock the locked action

12: Set “action-complete” as true

13: endif

14: endif

For the verb “move,” target poses are planned for each action primitive candidate

that might follow. For example, if a manipulate-type verb is to follow the verb “move,”

then the target pose for “move” is set as the end-effector’s initial pose for the subsequent

manipulate-type verb.

For the verb “set down,” an operator’s intended target position for setting down a

grasped object on a support surface can be hidden within unfocused gaze signals, blinks,

saccades, and involuntary eye movements. Unlike the verbs “reach” and “move,” whose
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associated target positions can be determined by the target objects’ locations and affor-

dances, the intended target position on a support surface for the verb “set down” needs to

be extracted from noisy eye gaze signals.

We adopted Li, et al.’s “fuzzy interpretation” method to filter out noise in eye gaze signals

and extract valid points of visual attention [14]. Consider the point of intersection between

the 3D gaze vector and support surface as a raw, unfiltered gaze point xi. The variables xi

and x̃i represent the ith raw gaze point and the gaze point after being processed by the filter,

respectively, at the time step i. We calculate the distance between the gaze point xi and the

geometric center of the cluster of “influential” gaze points in a moving filter window Wf,gaze

of length wf,gaze. Per [14], if the distance is less than a user-defined threshold dr, then the

“influence coefficient” ei is set equal to 1 and the gaze point xi is added to the cluster of

influential gaze points in Wf,gaze. Otherwise, the “influence coefficient” ei is set equal to

zero, and the gaze point xi is discarded.

ei =


1, if

∥∥∥∥∥∥∥∥∥∥∥
xi −

i−1∑
k=i−wf,gaze

x̃kek

i−1∑
k=i−wf,gaze

ek

∥∥∥∥∥∥∥∥∥∥∥
< dr

0, otherwise

(4.2)

Influential gaze points are used to calculate the average gaze point x̃i within the moving

filter window at the time step i (eq. 4.3). The moving filter window includes all time steps

between the time steps i− wf,gaze and i− 1.
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x̃i =

i−1∑
k=i−wf

(x̃kek) + xiei

i∑
k=i−wf

ek

(4.3)

When at least 80% of the gaze points in Wf,gaze are influential, we consider x̃i as the

participant’s target position for setting down a grasped object.

4.4.5.2 Planning Movement Trajectories

For manipulate-type verbs, such as “pour” and “stir,” we defined smooth trajectories

that mimicked human demonstrations drawn from [71]. First, a time series of end-effector

target poses are designed in Cartesian space such that the spatiotemporal relation between

the target object and hand object remains the same as observed in human demonstrations.

Following the use of inverse kinematics to convert the target poses from Cartesian space

to joint angles, we used an iterative parabolic time parameterization method provided by

MoveIt! to plan the joint velocities for execution on the robot [129].

4.4.5.3 Collision Avoidance via Artificial Potential Fields

For collision avoidance, we adopted a path planning framework based on the artificial

potential field (APF) algorithm. The APF algorithm was introduced in 1985 by Khatib

to quickly generate collision-free paths for robots in cluttered environments [130]. Attrac-

tive potential fields around goal locations would attract robot end-effectors while repulsive

potential fields around obstacles would push end-effectors away.

Considering the irregular geometries of robot arms and end-effectors, grasped objects,
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and obstacles, we cannot simply represent each body as a particle, as is typically done for

mobile robots. Leveraging the work of Khatib [130], we selected a set of “points subjected

to potentials” (“PSPs”) for each body. For the end-effector, we assigned a PSP to the tip of

each digit in order to protect the non-backdrivable gripper from collision damage. Attractive

and repulsive potential fields were generated based on the 3D positions of the PSPs.

One limitation of the original APF algorithm [130] is that interactions between attractive

and repulsive potential fields may make some goals non-reachable. This problem, known as

“goals non-reachable with obstacle nearby” (GNRON), refers to the undesirable situation

when the goal location is not a minimum of the total potential field. An end-effector could

get trapped in a local minimum near the goal, but never reach the goal. Thus, we adopted a

modified repulsive potential function proposed by Zhu, et al. in 2006 that directly addresses

the GNRON problem and enables the end-effector to reach its goal while also avoiding nearby

obstacles [131].

4.4.5.4 Implementation of the Robotic Manipulation Thread

The robotic manipulation thread in Procedure 4.3 is used to execute action primitives on

the robot hardware. When no action primitive is locked, the robotic manipulation thread

sends a Cartesian velocity command to the robot according to the collision-free path planned

using the APF algorithm.

When the locked action primitive verb is “reach,” “move,” or “set down,” the robot

ignores the real-time recognition result arecog and prioritizes movement of the end-effector

toward the target pose corresponding to alock. After the end-effector arrives at the target

pose, depending on the verb of alock, it opens or closes the gripper, or sets the “ready to

manipulate” flag to “true” in order to execute a manipulate-type verb.
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When the locked action primitive verb is of the manipulate-type (“pour” or “stir”), the

robot plans and executes a trajectory patterned after a human demonstration.

Procedure III: Robotic Manipulation Thread

1: if no action primitive is locked then

2: Drive EEF toward the target pose associated with arecog

using artificial potential fields

3: else an action primitive is already locked

4: if verb of alock is not Manipulate-type then

5: if target pose not achieved then

6: Drive EEF toward the target pose associated with alock

using artificial potential fields

7: else target pose achieved

8: case verb of alock of

9: Reach: Send close command to gripper, Update HO

10: Set down: Send open command to gripper, Update HO

11: Move: Set “ready to manipulate” as true

12: endcase

13: endif

14: else verb of alock is Manipulate-type

15: Plan manipulate-type trajectory for alock

16: Execute planned trajectory

17: endif

18: endif

4.4.6 Control Modes

In a conventional gaze-based shared autonomy system, a robotic action is not triggered

until gaze fixation on a target object exceeds a user-defined duration threshold [90, 92, 127].
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We refer to this conventional control mode as the “gaze trigger (GT)” mode and use it as

a benchmark for comparison with our proposed “action prediction (AP)” mode. Our intent

inference model was integrated into the control scheme of the AP mode only.

We implemented the GT and AP modes under the same algorithmic framework having

three parallel threads, as described in Section 4.4.2. However, there were three key differences

in the practical implementation of the GT and AP modes due to the inclusion of the intent

inference model in the AP mode. First, the prediction thread of the GT mode does not

recognize intent using the RNN-based method of the AP mode (steps 1-3 in Procedure 4.2).

Second, when no action primitive is locked, the robotic manipulation thread of the GT

mode does not send any velocity command to the robot while the AP mode does (steps 1-2

in Procedure 4.3).

Third, the locking and unlocking criteria are different. For the AP mode, the locking

and unlocking criteria rely on the average probability of arecog and the Euclidean distance

between the end-effector and the target pose, as described in Section 4.4.4.2. For the GT

mode, since the RNN-based method was not leveraged, the locking and unlocking criteria

depend solely on gaze fixation.

The same locking window size Wlock was used for both the AP and GT modes. An action

primitive is locked if gaze fixation on a target object exceeds 70% of the Wlock duration. An

action primitive is unlocked if gaze fixation on a different target object exceeds 70% of the

Wlock duration.
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4.5 Experimental Evaluation

4.5.1 Experimental Protocol

We hypothesized that the action prediction (AP) mode would result in more seamless

robotic movements than the state-of-the-art gaze trigger (GT) mode, and that participants

would prefer the AP mode. In order to test these hypotheses, we conducted a study approved

by the UCLA Institutional Review Board. All 16 participants (13 male, 3 female; aged 18-35

years) gave written informed consent in conformity with the Declaration of Helsinki. Three

out of the 16 participants reported prior experience in interacting with robots.

We used a retro-reflective marker-based motion capture system (T-Series, Vicon, Culver

City, CA, USA) with a sampling rate of 100 Hz to reconstruct the 3D gaze vector and to

identify and locate task-relevant objects. An eye tracker (ETL-500, ISCAN, Inc., Woburn,

MA, USA) having a sampling rate of 60 Hz provided 2D pixel coordinates that represented

the perspective projection of an operator’s gaze point onto the image plane of the eye tracker’s

egocentric camera. A traditional chessboard calibration procedure [100] and the MATLAB

Camera Calibration Toolbox [47] were used to correct camera distortion and locate the origin

of the egocentric camera frame with respect to markers attached to the eye tracker.

As shown in Figure 4.1, we used a 7 degree-of-freedom (DOF) robot arm (JACO2 7DOF

spherical, Kinova Robotics, Quebec, Canada) with a three-fingered end-effector (Kinova

Robotics). For simplicity, we controlled the grip aperture of the end-effector only, effectively

reducing the end-effector to a 1 DOF gripper. The experiment was conducted with a single

computer having an Intel 9700K processor running at 3.6 GHz and an NVIDIA GeForce

RTX 2070 GPU to accelerate the RNN calculations.

We selected everyday objects and actions common in activities of daily living for the
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assessment of the GT and AP modes within our gaze-based shared autonomy framework.

We used three objects (mug A, mug B, spoon) from the benchmark Yale-CMU-Berkeley

(YCB) Object set [43] and defined one support surface (table).

Each participant was instructed to control the robot to perform 10 actions in the following

sequence: reach mug A, set down mug A, reach spoon, move spoon to mug A, stir within

mug A, set down spoon, reach mug A, move mug A to mug B, pour from mug A into mug

B, and set down mug A. Unlike most studies that focus solely on pick-and-place actions,

we included actions that involve the verbs “move,” “pour,” and “stir.” We indexed the

sequentially performed action primitives as aj, where j ∈ {1, · · · , 10}. Collectively, these 10

actions involved a total of 14 unique action primitive candidates. For brevity and consistency

across experimental sessions, we did not instruct participants to use action primitives in

which mug B was the primary object of interest (e.g. stir within mug B).

For a consistent comparison of the GT and AP modes across subjects and trials, the

sequence of 10 actions was prescribed through verbal instructions and objects were placed

at preset locations before each new trial. However, there is nothing about the system imple-

mentation described in Section 4.4.2 that would prevent participants from improvising and

changing the sequence of actions, or that relies upon prescribed locations for the task-relevant

objects.

Each experimental session consisted of two blocks of trials, with each block consisting

of one type of control mode and three consecutive repetitions/trials of that same control

mode. To account for the possibility that the order of the blocks could bias results, half of

the participants (selected at random) experienced the GT mode first while the remaining

half experienced the AP mode first.

Each participant was instructed on how to control the robot for each mode with a script:
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“You can let the robot know your intent by looking at the target object.” Each participant

was allowed to familiarize themselves with each control mode for up to two practice trials.

Between each block, the participant was informed that the control mode would be switched.

However, each control mode was referred to only as “Control Mode #1” or “Control Mode

#2.” As will be described in the following Section 4.5.2.3, participants were instructed to

complete a brief questionnaire after each trial and were interviewed upon completion of the

entire experimental session.

4.5.2 Performance Metrics

Here, we describe the objective and subjective performance metrics that were used to

compare the performance of our proposed AP mode with the conventional GT mode.

4.5.2.1 Preliminaries

Before we define metrics for the seamlessness of the shared autonomy system, we in-

troduce several key temporal variables. First, we consider an action primitive aj, which is

one of the instructed, sequentially performed action primitives where j ∈ {1, · · · , 10}. The

curves in Figure 4.2 represent the probability of aj being the participant’s intended action

primitive. We define trecog(aj) as the time at which aj is first identified as arecog according

to eq. 4.1. We define tend(aj) as the time at which aj ends.

Importantly, our gaze-based shared autonomy framework allows for recognition of aj

prior to tend(aj−1) at which time the prior action primitive ends. However, any recognition

of aj earlier than a predefined time window Wend that immediately precedes tend(aj−1), i.e.,

the hatched area in Figure 4.2b, is treated as a possible misclassification and is ignored. The
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value of Wend determines the earliest time at which an action primitive may be predicted.

From an implementation perspective, it could be premature to take trecog(aj) as the

moment when the robot has correctly identified an intended action primitive, especially if

the identity of arecog changes from one time step to the next. Rapid changes in the identity

of arecog could occur due to noisy inputs to the RNN and despite the moving average filter

applied to the RNN outputs. Thus, we conservatively define tstable(aj) as the time of “stable”

recognition. Occurring after trecog(aj) for the AP mode, tstable(aj) is the first time at which

the following conditions are simultaneously satisfied: (i) at tstable(aj), aj is identified as arecog

according to eq. 4.1, and (ii) more than 70% of the time steps within a user-defined time

window Wstable (solid grey area in Figure 4.2b) after tstable(aj) are recognized as aj. Note

that for the GT mode, tstable(aj) is the same as trecog(aj) since both times correspond to the

instant at which aj is locked.

4.5.2.2 Objective Measures

We used the following objective measures to evaluate the seamlessness of the shared

autonomy system: delay of recognition, delay of stable recognition, and recognition accuracy.

The delay of recognition is defined as trecog(aj) minus tend(aj−1). A negative value for the

delay of recognition indicates that the recognition of an action primitive has occurred prior

to the completion of a preceding action primitive. In this case, the RNN has successfully

predicted an action primitive. Prediction of action primitives can enhance the seamlessness

of the shared autonomy system.

The delay of stable recognition is defined as the duration between tstable(aj) minus

tend(aj−1). As with the delay of recognition, it is possible for the delay of stable recognition

value to be negative. When considering positive values of the delay of recognition and
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Figure 4.2: Key variables and performance metrics described in Section 4.5.2 are defined for

the (a) GT mode and (b) AP mode. Since the GT mode does not utilize an intent inference

model, the delay of recognition equals the delay of stable recognition. For the AP mode,

the delay of stable recognition depends on the intent inference model and user-defined time

windows such as Wend and Wstable. Prediction of action primitives is only possible with the

AP mode.
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delay of stable recognition, as the delay magnitudes decrease, the seamlessness of the shared

autonomy system increases.

Recognition accuracy is defined as the proportion of time steps from tend(aj−1) to

tend(aj) that are correctly identified as aj. Ground truth for each action primitive was

known since all participants followed instructions to perform 10 specific action primitives

in a given sequence. For the GT mode, recognition is deemed correct when aj matches

alock as determined by the locking mechanism described in section 4.4.6. For the AP mode,

recognition is deemed correct when aj matches arecog as determined by eq. 4.1, which relies

upon the action primitive recognition RNN.

4.5.2.3 Subjective Measures

After each trial, we adopted verbatim the questionnaire reported in [15]. Using a Likert

scale ranging from 1-7, we asked participants to respond to the following statements, where

1 and 7 corresponded to “strongly disagree” and “strongly agree,” respectively:

1. “I felt in control.”

2. “The robot did what I wanted.”

3. “I was able to accomplish the task quickly.”

At the end of the experimental session, we asked participants two open-ended questions:

1. “Which control mode do you prefer and why?”

2. “Do you have any general comments for either the first or the second control mode?”
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4.5.3 Specification of user-defined parameters

The implementation of the gaze-based shared autonomy framework and the performance

assessment involve a number of user-defined variables. The following values were determined

from preliminary studies in order to balance speed with robustness of performance.

In Section 4.4.5.1, to extract an operator’s intended target position for setting down a

grasped object, we set the moving filter window wf,gaze as 0.5 sec and the distance threshold

dr as 5 cm. In Section 4.4.4.2, to filter out noise in the real-time action primitive recognition

RNN outputs, we set the moving average filter window wf,recog as 0.5 sec. For the “locking”

mechanism, the probability thresholds plock and punlock were set as 0.7 and 0.3, respectively.

Considering the 2 sec and 1.5 sec windows used for gaze triggering in [90] and [92], respec-

tively, we set our “locking” window wlock as 1.5 sec to enable a fair comparison of the GT

and AP modes. In Section 4.6.2, to calculate objective measures of performance, we set the

windows wend and wstable as 1 sec and 0.5 sec, respectively.

4.6 Results

4.6.1 Gaze Behavior

We utilized the gaze object sequence described in our prior work [30] to track each

participant’s gaze patterns throughout each experimental trial. The gaze object sequences

were normalized temporally across all 48 trials (3 trials for each of 16 subjects) and pooled.

At a population level, the gaze behaviors with respect to gaze object sequence were not

notably different between the GT and AP modes. The similarity in gaze behaviors for the

GT and AP modes was a surprising finding. We considered the gaze behaviors reported
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in [30] and used to train the RNN in this work as “natural.” We believed the gaze fixation

behaviors required of traditional gaze trigger methods to be less natural.

There are a number of reasons why the GT and AP gaze behaviors might be more similar

than expected. First, the human subject experiments in [30] used to train the RNN did not

involve robot hardware at all. The introduction of a robot in this work could have altered

gaze behaviors [120] to the point that any differences that might have existed between the

GT and AP control modes would be overshadowed. Second, regardless of the control mode,

participants typically fixated on target objects as if to ensure that their intent would be

correctly communicated to the robot. While this gaze fixation was not required for the

AP mode, participants were not told how either control mode worked. Gaze fixation could

have resulted from the brief instructions that were given to all participants regarding the

experimental session as a whole: “You can let the robot know your intent by looking at the

target object.” If participants believed that their gaze behaviors were in direct control of

the robot, they may have focused on carefully controlling their eye movements. Third, the

similarity of the GT and AP gaze behaviors could also reflect, to some extent, a participant’s

lack of trust in the robot’s control algorithms.

For three out of 16 participants, the 3D gaze behaviors differed between the benchmark

GT and proposed AP modes. Figure 4.3 shows the 3D gaze behavior for a representative

trial for the action primitive “move mug A to mug B.” Instead of fixating on the target

object mug B, three participants tracked the hand object mug A via a smooth pursuit eye

movement during the AP control mode (Figure 4.3b). Despite the different gaze behaviors

used by these three participants, the AP mode succeeded in identifying their intended action

primitives. It is possible that the robust performance of the AP control mode resulted from

the exposure of the RNN classifier to a variety of gaze behaviors during training.
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Figure 4.3: For three participants, 3D gaze behaviors differed between the GT and AP modes.

The gaze object sequence for the action primitive “move mug A to mug B” is overlaid in

color on the 3D end-effector path for an individual trial for the (a) GT mode and (b) AP

mode. Circular markers, shown for every 100 ms, are colored according to the gaze object:

mug A (red), mug B (blue), spoon (purple), and table (black).
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4.6.2 Objective Measures of Performance

For each action primitive and control mode, we report the population averages for the

delay of recognition, delay of stable recognition, and recognition accuracy (Table 4.1). Since

all 16 participants operated the robot using both control modes, we conducted a paired t-test

with a significance level of α = 0.05.

In general, the AP mode outperformed the benchmark GT mode for all three objective

measures of performance. First, we will address the delay of recognition. Out of the nine

action primitives that yielded statistically significant results, five action primitives had a

mean delay of recognition that was negative, indicating that prediction of action primitives

had occurred. Prediction occurred for action primitives involving verbs “set down” and

“move.” For these two verbs, eye gaze moves toward the target object of the subsequent

action primitive well in advance, which may enable the predictive capabilities of the AP

mode. For the action primitive “move mug A to mug B,” the prediction of the action

primitive occurred as much as 0.86 sec prior to the completion of the prior action primitive.

All delay of recognition values for the GT mode were positive, indicating that prediction

of action primitives was not possible with the GT mode. Furthermore, all positive delay of

recognition values were smaller for the AP mode than those of the GT mode. Notably, the

AP mode outperformed the GT mode by 1 sec or greater for eight out of 10 action primitives.

For the two manipulate-type action primitives that were the exceptions (“stir” and “pour”),

the target objects were already gazed at during the preceding action primitives involving

the verb “move.” As a result, the delay of recognition was less than 1 sec for both control

modes.

By design, the delay of stable recognition performance metric is more strict and conserva-
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tive than the delay of recognition performance metric. Thus, the delay of stable recognition

values were either equal to or slightly worse than those for the delay of recognition for all

action primitives and control modes. Predictive abilities were degraded by less than 0.2 sec,

as in the “move spoon to mug A” case. The AP mode outperformed the GT mode by the

largest margin (1.96 sec) for the second “reach mug A” action primitive in the instructed

sequence (Table 4.1).

Regarding recognition accuracy, the mean recognition accuracy was statistically signifi-

cantly higher for the AP mode than the GT mode for all 10 action primitives. For the AP

mode, the average recognition accuracy exceeded 95% for five out of the 10 action primitives,

and exceeded 85% for all 10 action primitives. The lowest recognition accuracy value was

71.4% for the GT mode as compared with 86.3% for the AP mode.

Of the three objective metrics of performance, the delay of stable recognition appeared

to be the most reliable metric of seamlessness of the shared autonomy system. We highlight

the delay of stable recognition results for all 10 action primitives in Figure 4.4. The mean

delay of stable recognition was lower for the AP mode than the GT mode for all action

primitives except for “pour,” which had a p-value of 0.11 (Table 4.1).

Predictive capabilities of the AP mode were observed for the five action primitives involv-

ing “set down” or “move” (Figure 4.4). The use of the RNN classifier for action primitive

recognition resulted in earlier recognition and execution of users’ intended action primitives.

By enhancing the responsiveness of the robot to gaze behaviors, without sacrificing recogni-

tion accuracy, the AP mode resulted in a more seamless gaze-based shared autonomy system

than the GT mode.

The AP control mode uses an RNN model that leverages gaze object angle (GOA) and

gaze object angular speed (GOAS), which are not considered by the GT mode at all. As
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Table 4.1: Paired t-tests were conducted for the GT and AP modes for three objective

metrics of performance. Population means are reported, with the best result for each action

primitive shaded in gray and the best overall result for each performance metric indicated

in bold for cases that were statistically significant (α = 0.05).

Action Primitive
Ctrl.

Mode

Objective Metrics of Performance

Delay of recog.

(sec)

Delay of stable

recog. (sec)

Recog. Acc.

(%)

1. Reach mug A

GT 2.12 2.12 78.7

AP 0.32 0.32 95.8

p<0.01 p<0.01 p<0.01

2. Set down mug A

GT 1.01 1.01 71.4

AP -0.61 -0.60 91.3

p<0.01 p<0.01 p<0.01

3. Reach spoon

GT 2.90 2.90 72.2

AP 1.02 1.29 86.3

p<0.01 p<0.01 p<0.01

4. Move spoon to mug A

GT 1.37 1.37 78.3

AP -0.42 -0.26 96.7

p<0.01 p=0.03 p=0.02

5. Stir

GT 0.81 0.81 91.8

AP 0.12 0.12 98.4

p<0.01 p<0.01 p<0.01

6. Set down spoon

GT 1.18 1.18 72.2

AP -0.23 -0.20 94.2

p<0.01 p<0.01 p<0.01

7. Reach mug A

GT 2.94 2.94 72.5

AP 0.72 0.98 89.9

p<0.01 p<0.01 p<0.01

8. Move mug A to mug B

GT 0.95 0.95 84.7

AP -0.86 -0.86 97.1

p<0.01 p<0.01 p<0.01

9. Pour

GT 0.68 0.68 95.3

AP 0.08 0.08 98.9

p=0.11 p=0.11 p=0.04

10. Set down mug A

GT 1.47 1.47 79.5

AP -0.25 -0.25 94.9

p<0.01 p<0.01 p<0.01
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Figure 4.4: The delay of stable recognition is shown for the GT and AP modes. Each

boxplot indicates the 25th, 50th (green), and 75th percentiles. The whiskers extend to the

most extreme data points that are not considered outliers (red “+”), which have values that

exceed 1.5 times the interquartile range from the top or bottom of the box. A negative value

indicates that an action primitive has been predicted before the end of the preceding action

primitive. The AP mode (blue) outperformed the GT mode (black) for all action primitives

(p ≤ α = 0.05) except for “pour.”

reported in our prior study [71], the use of GOA and GOAS as input features to the RNN

can decrease the observational latency for recognizing action primitives. The features GOA

and GOAS may encode the tendency of the gaze vector to approach an object once the

eyes start to move, thereby providing intent-relevant information even before the gaze vector

intersects with the target object.
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4.6.3 Subjective Measures of Performance

4.6.3.1 Post-trial Survey

Figure 4.5 summarizes average participant responses to the post-trial surveys described

in Section 4.5.2 for each of the control modes. A paired t-test (α = 0.05) was conducted in

order to compare participants’ views for the benchmark GT and proposed AP control modes.

For all three survey statements, there was a statistically significant difference between the

Likert scale responses (p < 0.01). In each case, the AP control mode outperformed the

GT mode. For the statement “I felt in control,” the mean (standard deviation) Likert scale

response was 6.2 (0.5) for the AP mode and 5.8 (0.8) for the GT mode. For the statement

“The robot did what I wanted,” the mean (standard deviation) Likert scale response was 6.5

(0.5) for the AP mode and 5.9 (0.8) for the GT mode. The largest difference in mean values

was observed for the statement “I was able to accomplish the task quickly.” In this case, the

mean (standard deviation) Likert scale response was 6.1 (0.6) for the AP mode and 5.1 (1.0)

for the GT mode.

4.6.3.2 Post-experiment Interview

As described in Section 4.5.1, half of the participants experienced the GT mode first

and half of the participants experienced the AP mode. For clarity, we refer to the GT

and AP modes using brackets instead of as “first” and “second” control modes, which each

participant referenced in their interview responses.

In the post-experiment interview, 14 out of 16 participants expressed a preference for the

AP mode (see the Supplemental Video for 1st and 3rd person perspectives of a representative

trial). Representative comments about the AP mode are listed below:
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Figure 4.5: Likert scale survey results are shown, where 1 and 7 indicate “strongly disagree”

and “strongly agree,” respectively. Each boxplot indicates the 25th, 50th (green), and 75th

percentiles. The whiskers extend to the most extreme data points that are not considered

outliers (red “+”), which have values that exceed 1.5 times the interquartile range from the

top or bottom of the box. The AP mode (blue) outperformed the GT mode (black) for all

three statements (p < 0.01).
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• “I don’t have to look at one object or position for a long time like a few seconds, and

the movement [of the AP mode] is smoother.”

• “It just seems there’s smooth tracking. The [AP] process is pretty fast and seamless.

It is pretty obvious that the [GT] control mode is slower to respond than the [AP].”

• “When I was using [AP], it was more responsive, and the action is pretty smooth.

There’s no pause in the middle.”

• “The [AP] control mode was more fluent. In the [GT] control mode, it didn’t feel like

when I looked at it, the robot is following, so I felt less control.”

Two participants preferred the GT mode over the AP mode:

• “Although the [GT] control mode was slower, there was not any confusion. You looked

at the cup, and after a couple of seconds, it picked up the cup. It took some time, but

it would do it, so you don’t have to worry about correcting. The other one [AP] feels a

bit twitchy like it’s very responsive.”

• “For the [AP] control mode, I felt like the control was more on the robot side instead

of the human side. I enjoyed it initially because I felt like I can rely on the robot to

accomplish each of these tasks very accurately in a laboratory environment. Still, if I

use the system in real life, there will be unpredictable variables, and I will appreciate

it if the robot can pause and wait for my confirmation through eyes like what the [GT]

control mode did.”

According to the Likert scale survey and the post-experiment survey, most participants

reported that the AP mode was more seamless than the GT mode. For the GT mode, par-

ticipants perceived pauses between the robot’s execution of their intended action primitives.
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For the AP mode, participants reported that the robot was more responsive to their eye

movements. No subjects commented on any speed-accuracy trade-off with the AP mode.

4.6.4 Limitations and Future Work

Despite a general satisfaction with the AP mode, two participants expressed skepticism

about the ability of the gaze-based shared autonomy system to accurately recognize their

intent in a more visually cluttered environment. Such concerns might be assuaged by enhanc-

ing the transparency of the system and conveying to participants what the robot has inferred

and plans to do next. Alonso and Puente highlighted the critical nature of transparency for

shared autonomy systems in a review paper [132]. They described how transparency could

improve system performance, reduce human errors, and build human trust in human-robot

systems.

Zeng et al. introduced augmented reality (AR) feedback into a gaze-based shared auton-

omy system [125] in which participants controlled a robot by fixating on objects on a screen.

The screen featured a 3rd person video on which color-coded annotations were overlaid to

highlight the gazed object, aperture of the gripper, impending actions, etc. The AR feedback

improved the efficiency of the system and reduced participants’ cognitive load during the

robotic grasping and lifting processes. However, participants looked at a 2D screen rather

than the actual, 3D physical world, as in this work. Our results might be improved further

through the use of an AR headset to increase the system’s transparency. For instance, we

could project verb and target object information and/or the planned robotic trajectory.

Our gaze-based shared autonomy framework could also be improved by developing a

library with a greater variety of action primitive candidates, as would be needed for the

diverse set of activities of daily living required by individuals with upper limb impairment.
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Currently, the action primitive recognition thread labels each time step as one of the four

verbs (reach, move, set down, manipulate). Although these four verb classes are generic

enough to serve as building blocks for complex actions, important verbs such as “feed” [133]

are not included. Modifications to the current action primitive recognition framework would

be required, as a participant’s mouth could not be identified as a “target object” during

self-feeding. Instead, action primitives related to feeding and drinking might require the

triggering of pre-planned trajectories once the utensil or cup were ready to be brought to

one’s mouth. Alternatively, information from a 3rd person camera perspective could be used

to supplement that of the 1st person view of the user [133, 134] to improve the accuracy and

safety of feeding and drinking trajectories.

4.7 Conclusion

We developed a novel gaze-based shared autonomy framework to assist with activities

of daily living. Utilizing a pre-trained recurrent neural network [71], the system can rec-

ognize, and often predict, an operator’s intended action primitives using 3D gaze-related

features. The system can localize objects in real-time, dynamically plan collision-free trajec-

tories to reach, move, manipulate, and set down everyday objects. Through both objective

and subjective metrics of performance, we demonstrated that our AP control mode, which

leverages a gaze-based action primitive recognition model, can outperform the conventional

gaze-triggered control mode. Borne out by statistical analyses and participant surveys and

interviews, the AP mode enabled a more seamless gaze-based shared autonomy system than

the GT mode. The system can serve as a foundation for further enhancements to system

transparency through augmented reality and system adaptability through the expansion of
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the verb library used for action primitive recognition.
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CHAPTER 5

Summary and Conclusion

Eye tracking offers a non-verbal, non-invasive, intuitive method for human operators

to communicate their intent to robots. However, it can be challenging to identify useful

gaze-related features, recognize intent through gaze behaviors, and integrate gaze-based in-

tent recognition algorithms into collaborative human-robot systems. The work presented in

this dissertation has provided new methodologies to create 3D gaze saliency maps for gaze

behavior analysis, recognize human intent at the subtask and action primitive levels, and

incorporate action recognition algorithms into shared autonomy systems with real robots.

5.1 Contributions

3D gaze saliency maps: Using reconstructed 3D gaze vectors, we created high spatial

resolution 3D gaze saliency maps by assigning RGB colors to point clouds obtained from 3D

scans of objects in the benchmark Yale-CMU-Berkeley (YCB) Object Set [135]. The gaze

saliency maps appeared to encode action-relevant information at the subtask and action unit

level. Unlike 2D gaze saliency maps that are constructed from a specific camera perspective,

3D gaze saliency maps enable gaze behavior analyses from a variety of 3D perspectives.

Novel subtask recognition method using gaze object sequences: We used the

gaze object sequence (GOS) to capture information about the identity of objects in concert
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with the temporal sequence in which the objects were visually regarded. We used dynamic

time warping barycentric averaging to create a population-based set of gaze object sequences

that were characteristic of subtasks. We demonstrated recognition of subtasks by comparing

its GOS with a characteristic GOS using a dynamic time warping Euclidean distance metric.

We showed that the GOS can be used to achieve high recognition accuracy values and is a

promising feature for action recognition.

Novel action primitive recognition method using 3D gaze-related features: We

defined an action primitive as a triplet comprised of a verb, target object, and hand object.

We trained a long short-term memory recurrent neural network to recognize a verb and target

object, and then tested the trained network on three different activities. Using a non-specific

approach to indexing objects in the workspace, we observed a modest level of generalizability

of the action primitive classifier across activities, including those for which the classifier was

not trained. We demonstrated that the novel input features of gaze object angle and its rate

of change were especially useful for accurately recognizing action primitives and reducing the

observational latency of the classifier. The classifier and the novel gaze-related features can

be used to recognize intent in shared autonomy control schemes for human-robot systems.

Implementation of a gaze-based shared autonomy system on a real robot

for activities of daily living: We built a shared autonomy framework capable of 3D

gaze reconstruction, real-time intent recognition, object localization, obstacle avoidance,

and dynamic trajectory planning. The assistive system can be used for activities of daily

living that require capabilities such as “reach-to-grasp,” “move,” “set-down,” “pour,” and

“stir.” We developed an “action prediction” (AP) control mode by leveraging our prior pre-

trained RNN-based intent prediction algorithm. Through experiments with real robots and

a set of objective and subjective performance evaluation metrics, we demonstrated that the
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AP control mode results in more seamless human-robot collaboration than a state-of-the-art

“gaze trigger” control mode, and that participants often preferred the AP control mode.
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5.2 Future Work

5.2.1 Enhance robot transparency by enabling bidirectional communication in

human-robot systems

Transparency in human-robot systems is the observability and predictability of the robotic

behavior [132]. In a transparent system, operators can easily understand what the system

is doing, why, and what it will do next. Studies have demonstrated that transparency helps

to improve system performance and build human-robot trust [136].

Although our gaze-based shared autonomy system presented in Chapter 4 is capable

of real-time intent recognition, and even prediction, the current system is not sufficiently

transparent. While the robot can estimate an operator’s intent through their gaze behaviors,

operators are not aware of the robot’s classifier results – neither the action recognized nor the

timing of a stable recognition. To address this, we could enable bidirectional communication

in human-robot interactions by utilizing augmented reality (AR). For example, we could

substitute the eye tracker with AR glasses capable of eye tracking (e.g. Microsoft Hololens

headset). We could overlay a semi-transparent image of the robot’s target pose onto the real

workspace in order to communicate the robot’s planned movement to operators as soon as

a stable action recognition has been achieved through gaze tracking [137, 138, 139].

As reported in Chapter 4 and Figure 4.3, participants’ gaze behaviors were not natural

for either the action prediction mode or the gaze trigger mode. Participants visually fixated

on target objects in order to ensure that their intent would be correctly conveyed to the

robot. We believe that the integration of an AR-based bidirectional communication channel

between the human and robot could enable operators to place more trust in robot autonomy,

and possibly result in more natural gaze behaviors during human-robot collaboration.
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5.2.2 Measure cognitive burden and trust using physiological sensors

While we have demonstrated that our proposed action prediction control mode can make

a human-robot shared autonomy system more seamless, we did not evaluate the operator’s

cognitive burden or trust in the assistive robot. To further advance our proposed shared

autonomy control scheme, it is necessary to quantify how intuitive it is to control the robot

and to what extent participants trust the robot, and preferably to do so in real-time. Both

cognitive burden and trust will affect gaze behaviors and, in turn, the overall performance

and quality of the human-robot collaboration.

Previous studies measured cognitive burden using physiological signals such as galvanic

skin conductance [140], electrocardiogram (ECG) signals [141], and pupil dilation [7], as well

as facial expressions [142]. While not reported in this dissertation, the experiments described

in Chapter 4 were conducted with participants outfitted with galvanic skin conductance and

electrocardiogram sensors. The analysis of those data are intended as future work.

Human trust plays an important role in human-robot systems, especially in our proposed

gaze-based shared autonomy system. A lack of trust could significantly affect participants’

eye gaze behaviors. For instance, when they do not trust a robot, operators might repeat-

edly check the robot’s state for visual cues associated with problematic robot behaviors (e.g.

impending collisions) [143]. Such untrusting gaze behaviors could result in action recog-

nition errors by the classifier if these gaze behavior characteristics were not used during

model training and/or as trust evolves over time. Numerous factors could concurrently af-

fect human-robot trust including the reliability of the robot, participants’ understanding of

the system, participants’ prior experience with robots, the consequences of failure, etc [144].

As future work, one can attempt to quantify an operator’s trust in a robot using physio-
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logical measurements, such as galvanic skin conductance and electrocardiogram signals. By

incorporating additional real-time data on the physiological state of the operator, a robotic

system could adjust its recognition and planning algorithms according to the operator’s level

of trust and further improve the quality of the human-robot collaboration.

5.2.3 Increase the robot’s versatility

A long-term goal of this work is to advance gaze-based shared autonomy control schemes

so that individuals with upper limb impairment can more naturally control robots that assist

with activities of daily living (ADLs). In Chapter 4, we demonstrated the ability of a human-

robot shared autonomy system to reach, move, set down, pour, and stir with objects from

the kitchen. Due to the complexity and variety of ADLs, however, the shared autonomy

system of the future will need to be even more versatile.

With that philosophy in mind, the action primitive method proposed in Chapter 3

was designed to assign generalizable labels using one of four common verb classes (reach,

move, set down, and manipulate). The verb class “manipulate” includes many subclasses of

manipulate-type verbs, such as “pour” and “stir.” A shared autonomy system could provide

more specific assistance by recognizing additional subclasses of verbs. One idea is to create

a look-up table based on object affordances [57]. For example, the action primitive triplet

of (verb=manipulate, TO=mug, HO=pitcher) is associated with the verb subclass “pour.”

However, the triplet (verb=manipulate, TO=pitcher, HO=spoon) is associated with both

verb subclasses “stir” and “scoop.” An alternative approach could be to leverage 3D gaze

saliency maps, as described in Chapter 2, to facilitate the classification of verb subclasses

since action primitives are activity-driven and the distribution of gaze fixations can be con-

siderably affected by object affordance [40, 30].
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While the four verb classes are intended to be easily generalized to different objects

and task contexts, some ADL-related verbs, such as feeding, are missing. One could use

the verb class “move” for a feeding task since a utensil is moved from a container to one’s

mouth. Using the framework described in Chapter 3, this would require the training of a

human mouth as a “target object.” Alternatively, one could also expand the verb class set

to include ADL-specific verbs. Either way, additional data collection, classifier training, and

testing on real robots are needed.

Finally, our current shared autonomy framework is designed for object-oriented tasks

that have easily defined start and end poses and trajectories. However, tasks requiring the

continuous control of the end-effector or handheld tool have not been addressed. Examples

of open-ended ADL-related tasks include cleaning a countertop using a sponge or cleaning

oneself with a napkin. Operators could benefit from a shared autonomy system that can

transition seamlessly between clearly defined object manipulation tasks and less constrained

continuous end-point control of a manipulator. Some studies have already investigated gaze-

driven, continuous robot control on planar surfaces, such as controlling a manipulator to

write [89] and draw [145], and controlling the movement of a wheelchair [13]. We envision an

organic integration of the continuous end-effector control mode and the discrete object ma-

nipulation mode in which the shared autonomy system can identify operators’ intended mode

through natural eye movements and provide corresponding assistance under the recognized

mode.
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