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Glossary

Adaptive plasticity: plasticity maintained by natural selection.

Allee effect: when the per-capita birth rate increases with density but the per-

capita death rate does not [59]. Low population sizes are therefore vulnerable to
Phenotypic plasticity is widespread in nature, and often

involves ecologically relevant behavioral, physiological,

morphological and life-historical traits. As a result,

plasticity alters numerous interactions between organ-

isms and their abiotic and biotic environments.

Although much work on plasticity has focused on its

patterns of expression and evolution, researchers are

increasingly interested in understanding how plasticity

can affect ecological patterns and processes at various

levels. Here, we highlight an expanding body of work

that examines how plasticity can affect all levels of

ecological organization through effects on demographic

parameters, direct and indirect species interactions,

such as competition, predation, and coexistence, and

ultimately carbon and nutrient cycles.

extinction because the birth rate is less than the death rate.

Density-mediated indirect interaction (DMII): when one species affects the

density of another species by altering the density of an intermediate species

(e.g. keystone predator effects, exploitative competition or trophic cascades).

Ecological trap: a specific type of evolutionary trap in which cues for habitat

choice are altered and become less reliable [45].

Genotype-by-environment interaction (GxE): in population genetic experi-

ments, phenotypic variance can be partitioned by apparent causal agents:

the component of phenotypic variation owing to differences in genotype (G),

the component of variation attributable solely to environmental factors (E),

and the component of variation that is due to differences among genotypes

in their response to environmental factors (GxE). GxE demonstrates genetic

variability for phenotypic plasticity within a population. However, there need

not be significant genetic variation within a population for individuals to be

phenotypically plastic.

Inducible defense: phenotypically plastic traits that reduce the risk of

consumption [4].

Inducible offense: phenotypically plastic traits that enhance consumptive or

competitive ability.

Lag time: time between when an individual experiences a particular environ-

ment and when it responds to that environment [40]. In the case of plasticity

that is reversible, lag time can refer to the response after which an individual

experiences an inducing agent, or the response after the inducing agent is no

longer present, or both.

Non-independent multiple predator effects: when the effects of different types

of predator in combination cannot be predicted from the isolated effects of each

predator [21]. Typically, investigators test for multiple predator effects of prey

survivorship.

Paradox of enrichment: population models predict that adding nutrients

to a system will cause large fluctuations in population size and will lead to

stochastic species extinctions [60].

Reaction norm: the relationship between the environment and the phenotype

of an individual or a group of individuals [7].

Trait-mediated indirect interaction (TMII): when one species affects the

density of another species by altering the traits of an intermediate species

(e.g. predator-induced reduction in herbivore foraging results in greater plant
Introduction

Phenotypic plasticity can be inclusively defined as the
production of multiple phenotypes from a single genotype,
depending on environmental conditions [1,2]. It is now
clear that a wide diversity of organisms express pheno-
typic plasticity in response to biotic and abiotic aspects of
their environments (reviewed in [3–7]). These plastic
responses include changes in behavior, physiology, mor-
phology, growth, life history and demography, and can be
expressed either within the lifespan of a single individual
[8] or across generations [9]. A fascinating literature has
emerged documenting patterns of expression of plasticity
and genotype x environment interactions (see Glossary),
testing whether responses are adaptive, and modeling
how evolution affects plasticity [6]. Here, we focus on an
equally important but less well understood aspect of
phenotypic plasticity: its ecological impact [10]. We review
recent research showing how plasticity alters interactions
between individuals and their environments in ways that
influence the stability and local biodiversity of populations
and communities. We argue that, because plasticity can
alter a variety of direct and indirect interactions among
individuals and their environments, it should ultimately
affect many ecological processes, such as population and
Corresponding author: Miner, B.G. (bgminer@ucdavis.edu).
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community dynamics, and aspects of community and
ecosystem functioning.

Some of the general ideas from this body of work are
relatively new, whereas others were proposed decades ago
but not widely appreciated by researchers working in
other disciplines or systems. For instance, there is a long
tradition of work on behavioral plasticity in animals and
its population- and community-level effects, which has
flourished as the distinct area of ‘behavioral ecology’. The
Review TRENDS in Ecology and Evolution Vol.20 No.12 December 2005
biomass) [61]. Behaviorally mediated indirect interactions are a TMII that

involves a behavioral response.

. doi:10.1016/j.tree.2005.08.002
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Box 1. Phenotypic plasticity in frog larvae

Frog tadpoles are an effective system for exploring the ecology of

phenotypic plasticity. Frequently, predators induce tadpoles to

reduce their foraging activity, which reduces detection by predators

[62]. Predators also induce relatively larger tails and smaller bodies

in tadpoles (Figure I) [62], which reduce capture by predators [63]

owing to faster swimming abilities and because a large tail lures

predator strikes away from the vulnerable body [64]. However, both

defenses come at the cost of slower growth [65], because predator-

induced tadpoles have smaller mouthparts [66] and shorter, less
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general framework for plasticity that we propose will
make clear common principles that are relevant to diverse
taxa as well as other types of phenotypic plasticity. For
example, behavioral plasticity in animals and develop-
mental plasticity in plants can have analogous effects on
population stability and trophic interactions. Hence, our
goal is to direct attention to the common ecological issues
and questions that arise from an awareness of phenotypic
plasticity as a general biological phenomenon.
efficient intestines, and spend less time foraging [67].

Predators are only part of the story. Competitors induce the

opposite suite of traits, enabling faster growth but at the cost of

increased vulnerability to predation [66,67]. Tadpoles can fine-tune

their phenotypes to different combinations of predator and

competitor densities and balance these opposing inductive forces

[68]. The existence of two inductive processes (i.e. changes in

predator and competitor densities) means that predators can induce

phenotypes directly as well as indirectly by consuming tadpoles and

reducing competition among tadpoles. The direct effect of predators

scaring tadpoles is primarily responsible for changes in tadpole

morphology, whereas the direct and indirect effects of predators are

equally responsible for changes in tadpole behavior [69].

These responses are induced by chemical cues, and tadpoles can

discriminate among predator species, exhibiting predator-specific

phenotypes. This suggests that different predators emit unique

chemicals [70]. Tadpoles can also discriminate among different diets

for a given predator, suggesting that diet mediates these chemical

signals [71]. Furthermore, the magnitude of defense induced by a

predator consuming different diets is inversely related to the phylo-

genetic distance between tadpoles and the diet of that predator,

which includes other species of tadpoles, insects and snails [72].

Because amphibians live in a heterogeneous landscape of pre-

dation and competition, plastic traits are favored owing to a tradeoff

between predator resistance and growth. This tradeoff affects not

only individuals, but also the community via trait-mediated indirect

effects [16], and is one example of why amphibians are an excellent

model system to use to study the ecology of phenotypic plasticity.
The effect of plasticity on individual–environment

interactions

Direct interactions

The recognition that plasticity can be adaptive has
stimulated a wealth of studies on how plasticity alters
interactions between individual organisms and their
environments [3–6]. Although this research program has
been motivated largely by evolutionary questions, studies
of adaptive plasticity such as inducible defenses and
inducible offenses [4,10,11] (Box 1) also have clear eco-
logical implications. For example, in East Africa, herbiv-
ory by elephants and giraffes induces longer and more
numerous protective spines on Acacia drepanolobium
trees [8], which enhances the survivorship and competi-
tive ability of A. drepanolobium when subsequent
herbivores arrive.

Studies examining how plasticity affects the inter-
actions of organisms with their environments typically
focus on (i) an abiotic or biotic environmental factor
(e.g. temperature or predation); and (ii) an ecologically
relevant aspect of a phenotypic response to that factor.
The altered phenotypes, in turn, affect subsequent inter-
actions. For example, barnacles exposed to greater water
velocities produce shorter feeding appendages [12], which
affect food acquisition. Similarly, plants alter the growth
and structure of roots in response to different concen-
trations of nutrients, which maximizes nutrient foraging
in patchy soils [13]. This response increases the capture
of essential nutrients, such as phosphate and, in turn,
affects competitive interactions among plant species [13].
Many studies have shown that plasticity affects direct
interactions between individuals and their biotic
(e.g. predation, herbivory and competition) and abiotic
(e.g. temperature and light) environments in a variety of
ways and in a wide range of taxa [3–7].
Figure I. Morphological plasticity in tadpoles. Tadpole (a) has been exposed to

predators, resulting in the induction of a colorful and relatively large tail.

Tadpole (b) has not been exposed to predators and has a less colorful and

relatively small tail. Reproduced with permission from Rick Relyea.
Indirect interactions

Recently, investigators have begun to consider how
plasticity affects indirect interactions in multi-species
assemblages. Before a decade ago, ecologists interested in
indirect interactions were primarily concerned with the
indirect effects of consumption [14]. A predator decreases
the density of its prey, which in turn alters the strength of
the interaction between the prey and a third species.
Consequently, the predator, by consuming prey, indirectly
affects the third species, typically referred to as a density-
mediated indirect interaction. For example, predatory
dragonfly larvae, through their consumption of frog tad-
poles, indirectly interact with periphyton communities
[15]. When dragonfly larvae are present, they consume
www.sciencedirect.com
tadpoles, thereby reducing tadpole density, which
decreases the grazing pressure of tadpoles on the algae.

Plasticity can also generate indirect interactions,
typically referred to as trait-mediated indirect inter-
actions. For example, in addition to eating tadpoles,
dragonfly larvae also induce tadpoles to forage less,
which causes an increase in algal densities [15]. Thus,

http://www.sciencedirect.com


Box 2. Multiple predator effects

Studies of predator–prey interactions generally consider only a single

type of predator, yet, prey are commonly threatened by more than one

type of predator in nature. More than half of the empirical studies

reviewed by Sih et al. [21] demonstrated multiple predator effects,

whereby inclusion of additional types or species of predators altered

(i.e. enhanced or reduced) the predation risk for the prey species. For

example, two freshwater predators (sculpin Cottus bairdi and stonefly

larvae Agnetina capitata) consume mayfly Baetis tricaudatus larvae.

When both sculpin and stonefly larvae are present, each consumes

fewer mayflies than when each predator is alone [73] (i.e. the presence

of a predator weakens the strength of the interaction between the

other type of predator and prey). This is because sculpin induce

stonefly larvae to hide beneath rocks and reduce their foraging activity

[74]. Thus, plasticity leads to risk reduction.

Multiple predators can also affect survivorship of prey across life

histories. In an East African rainforest, the frog Hyperolius spinigularis

lays its developing embryos on leaves that overhang ponds, and hatch-

lings drop into the pond and develop as tadpoles until metamorphosis

[23]. While on the leaves, the presence of another frog Afrixalus

fornasini, which preys on the embryos of H. springularis, induces them

to hatch early and at a small size (i.e. life-history plasticity). Once in the

pond, tadpolesare exposed to predatory larvaeof the libelluliddragonfly

Trapezostigma basilaris. Although the two predators do not interact

directly, they interact indirectly through the prey. Thus, the presence of

the arboreal predator reduced the effectiveness of the aquatic predator

by 70% compared with the predicted survivorship from each predator in

isolation (Figure Ia). This reduction in risk is caused equally by plasticity

and density effects (Figure Ib).
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Figure I. Multiple predator effect across life-history stages. (a) The survivorship of frog Hyperolius spinigularis embryos on exposure to four combinations of predators.

Circles represent the absence of the egg predator, and squares represent the presence of the egg predator. (b) The survivorship of prey when the effects of density and
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dragonfly larvae also indirectly interact with algae by
altering the behavior of the tadpoles. This area of research
is rapidly increasing (recently reviewed in [16–19]), and
demonstrates that plasticity, by altering indirect inter-
actions, can influence the strength of competition [20],
facilitation [21] and trophic cascades [22], as well as cause
non-independent multiple predator effects [23] (Box 2). To
date, most research on indirect interactions via plasticity
has examined anti-predator behavior. However, morpho-
logical plasticity can also cause indirect interactions [24],
and it is likely that any type of plasticity can alter the
direction and strength of indirect interactions.

Although most research has focused on plastic
responses to biotic conditions, plastic responses to abiotic
factors can also result in indirect effects. For example,
plants might respond phenotypically to predicted atmos-
pheric change. Plants respond to elevated CO2 through
changes in leaf chemistry, which reduce tissue nutritional
quality for herbivores. This affects herbivore feeding
behavior, development time and predation risk [25],
leading to larger effects on community dynamics [26].
Niche construction

Many organisms have the ability to modify the environ-
ments that they experience, called ‘niche construction’
www.sciencedirect.com
[27]. Recently, work has demonstrated that plasticity can
result in niche construction [28], and it is especially
interesting when environmental modifications lead to
improvements [28]. For example, in response to shading
by neighboring plants, many plants elongate shoot
internodes to overtop these competitors, a developmental
response that brings the photosynthetic organs of that
individual into a more favorable light environment [29]. In
Arabidopsis thaliana, shading by neighbors also induces a
change in phenology by accelerating reproductive onset
[29]. This plastic response enhances the resource environ-
ment of the plant during the crucial period of seed and fruit
maturation, because, in most habitats, light as well as
nutrient availability decline later in the growth season [29].

Niche constructions can also create feedbacks that
shape subsequent interactions between the individual
and its environment. For example, A. thaliana disperses
seeds at different spatial scales depending on the density
of conspecifics. Thus, the current density of conspecifics
affects the future density of conspecifics through plasticity
in dispersal, and thus alters subsequent dispersal [28].
The research on plasticity influencing niche construction
has primarily focused on plants and the effects of
morphological and life-history plasticity [28,29]. This
research demonstrates that individual–environment

http://www.sciencedirect.com


Box 3. The paradox of enrichment

Population models predict that adding nutrients to a system will

cause large fluctuations in population size and lead to stochastic

species extinctions. This is referred to as the ‘paradox of enrich-

ment’. However, populations are often more stable when nutrients

are added to natural systems than models predict [36,37,75];

a possible explanation for this is plasticity. In theoretical models,

inducible defenses can stabilize population fluctuations, reducing

the probably that populations will go extinct and, thus, eliminating

the paradox of enrichment [36,37,75].

In an empirical test of the predictions of theoretical models,

Verschoor et al. found similar results in experiments with aquatic

organisms [37]. They demonstrated that population fluctuations

were much less in a system with an alga, herbivorous zooplankton,

and carnivorous zooplankton when the species of alga had an

inducible defense than when it did not (Figure I).
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interactions might be more complex than was previously
thought.

Altered interactions have consequences for populations

and communities

Population stability and species co-existence

The idea that behavioral and physiological plasticity can
affect population dynamics was suggested O20 years ago
(reviewed in [3,30]). However, there is an increasing
interest in the effects of plasticity on population dynamics,
and early ideas are being re-discovered or investigated for
different types of plasticity. For example, a variety of
inducible defenses and offenses can affect the amplitude of
population fluctuations, and increase the stability of a
population within a community with two or three trophic
levels [31–38].

Plasticity can stabilize a population because plastic
responses are often density dependent. In a simple
predator–prey system, the size of the prey population
initially increases followed by an increase in the size of the
predator population. The increase in the predator popu-
lation induces prey defenses, which can reduce the
population growth rate of the prey. The increase in prey
defenses also slows the size increase of the predator
population because prey are now better defended, slowing
per-capita consumption rates. The opposite is true when
population sizes decrease. Thus, the phenotypic response
of a prey to predator density results in a negative feedback
that can stabilize the population size of both predator and
prey [35]. In a similar manner, phenotypic responses of a
predator to prey can also stabilize population sizes [39].

The ability of plasticity to stabilize a population is
strongly dependent on the lag between the induction time
of a plastic response and the timing of environmental
changes [32,39,40]. As the lag time increases, the ability of
plasticity to stabilize a population decreases, increasing
the amplitude of population fluctuations [32,39,40]. Inte-
restingly, the ability of inducible defenses to stabilize a
population can explain the absence of the paradox of
enrichment, and might resolve the discrepancy between
theoretical and empirical studies [36,37] (Box 3).

Given that plasticity can affect the stability of popu-
lations, it is not surprising that plasticity can also affect
species coexistence within communities. Recent theo-
retical work suggests that adaptive plasticity, both
inducible offenses and defenses, can increase species
permanence by enlarging the conditions in which species
can coexist [36,37,41–43]. For example, with a mathema-
tical model, Krivan [43] demonstrated that a community
with a top predator, two consumer species, and a resource
species was more likely to persist when the predator had
adaptive behavioral plasticity and could switch its prey
preference to maximize its growth, compared with when
the predator had a fixed behavior.

For the stability and permanence of species, whether
plasticity is adaptive probably has a large effect. This is
because longer lag times of plasticity can destabilize
populations, and increase the likelihood that plasticity
will be non-adaptive [40]. However, if the response is
adaptive, then the type of plasticity (e.g. behavioral,
morphological, or physiological) might have relatively
www.sciencedirect.com
little effect because selection should favor short lag times
for any type of plasticity. Although it is typically assumed
that morphological plasticity has longer lag times
compared with more immediate types of responses, such
as behavioral plasticity, lag times are a product of the time
it takes to induce a particular phenotype and the timing

http://www.sciencedirect.com


Box 4. Ecological realism in plasticity experiments

Controlled experiments are required to document precisely plastic

responses to specific environmental variables. However, the results

of such studies are ecologically meaningful only if experimental

conditions match salient aspects of natural environmental variation.

Plasticity studies explicitly recognize that the researcher’s choice of

environmental manipulations can profoundly influence experimen-

tal results. Hence, the key to designing ecologically informative

plasticity experiments is to recreate the kind of environmental

variation that elicits plastic responses in the natural setting of the

organism; in other words, careful attention to ecological realism.

Identifying environmental factors that cue plasticity
Identifying the precise cue or cues that induce a plastic response can

be challenging. For instance, submerged tadpoles might sense

imminent pond drying through changes in temperature or chemical

concentration, visual effects of surface proximity, or increased swim

contact to induce accelerated metamorphosis [76]. Moreover,

plasticity cues can consist of specific aspects of environmental

variables, such as the spectral quality of shade treatments [77].

Recognizing these specific factors is crucial because their corre-

lations with particular ecological pressures can vary from one

habitat or site to another, shaping the expression and evolution of

plasticity in distinct populations [78]. In some cases, a known

proximal cue can be experimentally separated from its natural

context, enabling a plastic response to be tested in alternative

ecologically relevant environments [79].

Implementing appropriate treatments
Ecologically meaningful data also demand realistically designed

levels of relevant environmental factors, ideally based on naturally

occurring states. Arbitrary treatment levels (e.g. stressful versus

favorable) can produce ecologically misleading results for two

reasons. First, because the relationship between phenotypic

responses and environmental variation is often nonlinear [80],

responses to arbitrary treatments cannot be simply extrapolated to

field conditions. Second, variance among genotypes, populations or

taxa will depend upon the environmental states studied [81]. The

timing and pattern of applying experimental treatments is also

important [82]. In some cases, it is important to alter the variance,

range or frequency of environmental states rather than the mean

[83]. This information requires careful, repeated measurements of

field conditions, but can provide a useful interpretive context for

ecological and evolutionary questions [54,80].

Accounting for real-world complexity

Perhaps the most important (and most difficult) step in creating

ecologically realistic plasticity experiments is to incorporate the real-

world complexity of multiple biotic and abiotic variables. The

ecological impact of any plastic response depends on the functional

and fitness tradeoffs that it creates in the context of these

environmental demands. Although controlled experiments can

incorporate several interacting factors, it is only through field

experiments that the ability of the organism to integrate all of its

environmental demands through plasticity can be tested. Field

studies can also identify interacting environmental factors (e.g. local

consumers or competitors), suggest additional plastic traits that

merit study, and reveal specific life-cycle stages at which various

plastic traits are most ecologically important and therefore should be

measured. In this way, results of field experiments can be invaluable

in shaping the controlled studies needed to characterize precisely

specific aspects of plasticity, as well as in testing their functional and

fitness consequences.
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and rate of environmental change. It is therefore possible
that a quick behavioral response can result in a longer lag
time than can a slow morphological response, and there is
currently no evidence that responses that can occur more
quickly have shorter lag times. Studies of behavioral and
morphological plasticity [36,37,41–43], as well as
www.sciencedirect.com
plasticity that affects of niche construction [44], demon-
strate that plasticity can promote stability, species
coexistence or both. However, any type of plasticity has
the potential to promote stability and species coexistence
as long as there is an appropriate density-dependent
response.

Ecological and evolutionary traps

Plastic responses are often induced by environmental
cues. However, these have the potential to become less
reliable (e.g. as a result of anthropogenic effects) and
negatively affect populations. When this happens, it is
referred to as an evolutionary trap [45]. For example,
mayflies use polarized light, which indicates the presence
of water, as a cue for where to lay their eggs. However,
dry asphalt and black plastic used to cover agricultural
fields also reflect polarized light, and mayflies have been
observed laying their eggs on roads or plastic sheets [46].
Although evolutionary traps can arise whenever an
organism that is plastic uses a cue that becomes less
reliable, negative effects are likely to be larger when cues
for neutral or adaptive plasticity are altered, because what
were beneficial or neutral responses are now detrimental
responses. Given that many species have adaptive
inducible defenses and offenses to other species, invasive
species might be a common and important cause of
evolutionary traps [47].

Ecological traps, which are a specific type of evolution-
ary trap, can also lead to allee effects that increase the
probability of a population going extinct [48]. Take the
situation in which a cue for habitat choice is altered so
that individuals now prefer low-quality sites. When popu-
lations are large, individuals can compete for preferred
sites but ones of a low quality, which can lead to indi-
viduals occupying sites that are less preferred but higher
quality [48]. However, when a population is small, indi-
viduals only occupy preferred, low-quality sites; thus,
population growth is reduced because a greater proportion
of the population occupies low-quality sites.

Local biodiversity

Recently, studies have demonstrated that plasticity can
affect local biodiversity by altering indirect interactions
[49–51]. For example, in a New England field, the pre-
sence of spiders increases local biodiversity because
spiders induce several species of herbivores to seek refuge
in and graze on a competitively dominant plant species,
which enables competitively inferior plant species to
increase [49]. Thus, by altering indirect effects, behavioral
plasticity can affect biodiversity. However, it remains to be
seen whether plasticity can alter biodiversity in other
ways [49–51]. In addition, the effects of plasticity might
have important ecological consequences on the health
and persistence of communities, because biodiversity can
influence community and ecosystem functioning [52].

Future directions

We have highlighted several ways in which plasticity
can alter ecological patterns and processes at the level of
individuals, populations and complex communities. How-
ever, it remains to be seen whether these higher-level

http://www.sciencedirect.com
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effects of individual plasticity are widespread in natural
systems. Several aspects of plasticity deserve attention
because they influence the direction and the strength
of individual–environment interactions, and are, conse-
quently, likely to alter the ecological impact of plasticity.
These include: (i) time lags between environmental cues
and plastic responses [4,40]; (ii) reversibility of response
[53]; and (iii) the shape of reaction norms with respect to
environmental gradients [6,7]. An important contribution
will be made by studies of plasticity that focus explicitly on
these factors to consider general principles for under-
standing plasticity in its ecological context. At present,
studies on various types of plasticity (i.e. behavioral,
physiological, morphological or life historical) are gener-
ally considered separately. Yet, it is unclear whether the
ecological consequences of different types of plasticity will
differ. For example, behavioral, physiological and mor-
phological plasticity can all stabilize populations. We need
a better understanding of whether different types of
plasticity have similar ecological effects, which will
require not only further research, but also well designed
experiments (Box 4) and better communication among
researchers.

Most plasticity research focuses on putatively adap-
tive responses to environmental challenges, such as
inducible defenses and offenses. However, it is equally
important to investigate the ecological consequences of
non-adaptive environmental responses [10,54], which are
likely to be common [55,56]. This is especially true for
maladaptive plasticity that should amplify the effects
of environmental change through the negative effects
on individuals. For example, the snail Physella virgata
flees and produces a more rotund shell when in the
presence of certain non-molluscivorous sunfish that pose
no risk. This maladaptive response slows the growth of
individuals and is likely to alter population and com-
munity dynamics [55].

The consequences of plasticity for whole-community
structure and dynamics, and ecosystem processes remain
largely unknown. Nonetheless, plasticity is likely to have
important effects, including the transfer of energy,
numbers of trophic levels, and habitat interactions and
feedbacks. Carbon cycles, nutrient cycles and primary
productivity are likely to be altered by plastic effects on
growth and morphology of ‘ecosystem engineers’ and other
keystone species, as well as more subtle effects on com-
munity composition [57]. For example, induced behavioral
responses in organisms, such as diel vertical migrations
[4], will affect the transport and cycling of carbon and
nutrients in aquatic systems. A more complex case is
posed by feedbacks between nutrient availability and
inducible defenses in terrestrial plants and marine algae:
in these situations, carbon and nutrient availability
affects the expression of inducible defenses, which in
turn alter carbon and nitrogen balance through inter-
specific effects [58]. Exciting new avenues for research
include the effects of plasticity on community diversity,
resilience, zonation and patchiness, as well as rates of
energy transfer throughout ecosystems and ecosystem
functioning [52].
www.sciencedirect.com
Conclusions

Interest in the ecological consequences of plasticity is
increasing. By adopting an inclusive definition for the
term ‘phenotypic plasticity’, we hope that researchers will
recognize the broad implications of their work for a
diversity of taxa and biological disciplines. Studies of
plasticity in its ecological context provide a rich opportu-
nity for interdisciplinary collaborations, to reveal not only
patterns and mechanisms of environmental response, but
also the direct and indirect effects of those responses on
the relationship of organisms to their abiotic and biotic
environments and, consequently on higher-level ecological
processes.
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