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Technological Change in Smallholder Agriculture: Bridging the Adoption Gap by 

Understanding its Source 

 

Abstract 
 

 

This paper examines the informational origin of the low adoption rates of modern 

agricultural technologies frequently observed in smallholder agriculture in Sub-Sahran 

Africa.  The paper argues that a large part of these observed low adoption rates can be 

explained by a simple fact: The lack of awareness of the existence of the technology by a 

large proportion of the smallholder farming population.  The paper analyzes the structure 

of the adoption gap resulting from this lack of awareness and presents a methodology for 

estimating that gap and truly informative adoption rates and their determinants.  This 

methodology is then used to provide estimates of the New Rice for Africa (NERICA) 

population potential adoption rates and gaps as well as estimates of the determinants of 

NERICA exposure and adoption in four West African Countries: Cote d’Ivoire, Guinea, 

Benin and Gambia. 

The implied estimated adoption gaps of 21% in Cote-d’Ivoire, 41% in Guinea, 

28% in Benin and  47% in Gambia suggest that there is potential for increasing  NERICA 

adoption significantly in these four countries.  The results of the analysis of the 

determinants of NERICA adoption highlight the importance of Participatory Varietal 

Selection (PVS) trials and farmer access to extension services in promoting the adoption 

of NERICAs beyond their beneficial effects in making farmers aware of the existence of 

the varieties.  The findings also points to some possible gender biases in the 

dissemination of NERICA varieties in Guinea. 
 
JEL classification codes:  C13, O33, Q12, Q16 

Keywords: Technology diffusion, Adoption, adoption gap, selection bias, Average 

Treatment Effect,  NERICA. 
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Technological Change in Smallholder Agriculture:  Bridging the Adoption Gap by 

Understanding its Source 

 

1. Introduction  

The vast majority of farmers in developing countries are smallholders, with an 

estimated 85 percent of them  farming less than two hectares (World Bank, 2008). Hence, 

as emphasized in the 2008 World Development report, the potential of agriculture to 

contribute to growth and poverty reduction depends on the productivity of small farms. 

And, raising that productivity will require a much higher level of adoption of new 

agricultural practices and technologies than presently observed in the smallholder 

farming population (World Bank, 2008; De Janvry and Sadoulet, 2002).  This paper 

examines the informational origin of the low adoption rates of modern agricultural 

technologies frequently observed in smallholder agriculture in Sub-Saharan Africa.  The 

paper argues that a large part of these observed low adoption rates can be explained by a 

simple fact: The lack of awareness of the existence of the technology by a large 

proportion of the smallholder farming population.  This is especially true when the 

technology is relatively new.   

Before proceeding further, we need to clarify the meaning of the two concepts of 

diffusion and adoption as used in this paper.  In most of the voluminous adoption 

literature, the two concepts of adoption and diffusion are used interchangeably. Often, in 

papers that make the distinction between the two concepts explicitly or implicitly, the 

adoption of a technology is defined at the individual level to mean its use while the 

concept of diffusion is defined at the aggregate population level to mean the propagation 
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of use of the technology in the population (Sunding and Zilberman, 2001; Feder et al. 

1985).  In other words, the extent of adoption in the population.1 Obviously, a technology 

must be known to someone before it can be used. But, no distinction is generally made in 

the common use of the two concepts between the mere knowledge or awareness of the 

existence of a technology (without necessarily using it) and its use. Such distinction is 

made in this paper.  As in Diagne and Demont (2007) and Diagne (2006),  The adoption 

of a technology is defined in this paper to mean its use at the individual level or at the 

aggregate population level.  To be more precise, we will speak of adoption status or 

adoption intensity at the individual level and adoption rate at the aggregate population 

level.  The term diffusion is used strictly in this paper to mean the extent of awareness of 

the technology in the population (which does not necessarily imply its use).2    

 

If awareness of the existence of the technology by the population is not universal, 

the diffusion rate as commonly used must be understood as the rate of population 

awareness and adoption, which combines two different rates information: 1) the rate at 

which the population is being made aware of the technology, which we call the diffusion 

rate in this paper) and 2) the rate at which the part of the population which is aware of the 

technology is using it, which we call the adoption rate among the exposed in this paper.3  

The product of the diffusion rate and the adoption rate among the exposed is the actual 

                                                 
1 There is often a time or space dimension embodied in the common use of the diffusion concept. 
2 The implicit assumption in the common definition and use of the concept of diffusion rate is that the 
population exposure to the technology is universal and only the number of individuals adopting (or 
disadopting) it changes through time. Hence, the significance of “diffusion rate” in this case is really the 
adoption rate conditional on universal exposure. This is what we call the population adoption rate (or 
potential adoption rate) in this paper. 
3 We will use the two terms of awareness and exposure interchangeably throughout the paper.  However, 
our use of the term exposure in this paper is synonymous to awareness of the existence of the technology 
and does not necessarily imply any knowledge of the characteristics of the technology.  



 5

adoption rate that is consistently estimated by the proportion of adopters from a random 

sample of the population.  As argued below, among all these quantities, only the 

population adoption rate is in general informative about the intrinsic merit of a 

technology in terms of the extent of its desirability by the target population. The 

difference between the population adoption rate and the actual adoption rate is what we 

call the population   “non-exposure” bias, which exists solely because of the incomplete 

diffusion of the technology in the population. It measures in some sense the unmet 

population demand for the technology and will be, therefore, called simply the adoption 

gap. Thus, the title of the paper. 

 

Despite, the fact that pioneers of adoption studies like Rogers (1983) and Beale 

and Bolen (1955, cited in DuberKow and McBride), have emphasized the critical 

importance of awareness in the adoption process,  most empirical studies of adoption 

have either ignored the issue or have dealt with it inappropriately. In fact, except for few 

exceptions empirical adoption studies have so far neglected to collect information on the 

awareness status of farmers with respect to the technology being studied. The vast 

majority of agricultural technology adoption studies do emphasize the critical role that 

access to information plays in the adoption process (see Sunding and Zilberman, 2001 

and Feder et al. 1985; for reviews of the literature) and empirical models of adoption 

usually includes some information related variables (notably access to extension services) 

to account for that fact (see, for example, Adesina and Baidu-Forson, 1995; Adesina and 

Zinnah 1993).  However, most of the focus on the role of information in the adoption 

process has been on the type of information related to the characteristics and performance 
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of the technology and the farmer’s learning process leading to the acquisition of that 

information (Cameron 1999; Batz et al. 1999; Wozniak, 1993; Feder and Slade, 1984).  

But, having information about the characteristics and performance of a technology is 

conceptually and empirically different from merely being aware of the existence of the 

technology.  Furthermore, awareness of the existence of a technology is sine qua non to 

its adoption (i.e. use) while, in principle, one can start using a new technology while 

knowing nothing about its characteristics or performance.  It is this fact (i.e. the fact that 

awareness is prerequisite for adoption) that makes accounting for it fundamental in 

adoption studies, especially when the technology studied is relatively new.  In particular, 

the usually computed sample adoption rate is uninformative with respect to the expected 

population adoption rate when only few farmers are aware of the existence of the new 

technology and one is interested in knowing to what extent the new technology satisfies 

the population’s demand for new technologies. In fact, as shown in Diagne and Demont 

(2007) and Diagne (2006), the observed sample adoption rate is a consistent estimator of 

the combined rate of awareness and adoption. The confounding of the awareness and 

adoption information in the same rate makes it impossible to infer from the observed 

sample adoption rate the potential population adoption rate, which from a policy 

perspective, is the quantity that informs on the intrinsic value of the technology to society 

and the desired policy action.  In particular, one cannot know whether a low observed 

sample adoption rate is caused by a very low population potential adoption rate or by just 

low awareness of the existence of the technology in the population.  As pointed out by 

Diagne (2006), these two possible causes lead to contrasting policy implications: A high 

potential population adoption rate that is masked by a low level of awareness points to 



 7

the need for more effort on extension to make the variety known and available to the 

larger population. On the other hand, if the potential population adoption rate is low, 

further extension effort to disseminate the variety may not be worth its cost.    

 

  Similarly, without accounting for the awareness status of farmers, empirical 

models of the determinants of adoption are not informative on the factors favoring or 

constraining adoption, except when awareness of the technology in the population is 

universal.  In other words, one cannot consistently estimate the effects of the factors 

influencing adoption in such models.  Indeed, such models are fundamentally 

unidentified, meaning essentially that the significations of the quantities they estimate 

(coefficient estimates and marginal effects) are different from what most think they are.  

The fundamental difficulty in interpreting the coefficients and marginal effects estimates 

out of classical model of the determinants of adoption has been pointed out by several 

authors including Dimara and Skuras (2003), Saha et. al., (1994), Besley and Case (1993) 

and Feder et. al, (1985).  In fact, we will show in this paper that these coefficients and 

marginal effects estimates out of classical adoption models have indeed different 

meanings and that they can be very different from that arising from estimation of the 

“true” adoption function, which rightly and appropriately isolates the effect a factor has 

on adoption per se from its effect on the awareness status of a farmer.  In particular, for 

the same data and same variables the marginal effects estimates from a classical adoption 

model can be  10 to 100 times smaller in magnitude compared to that from the rightly 

specified adoption model.4  It goes without saying that such large difference in magnitude 

                                                 
4 This empirical finding is understandable as one can show theoretically under some identifying assumption 
that the conditional mean “adoption” function estimated in the classical adoption model is equal to the true 
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and change in statistical significance will in most cases change qualitatively and in a 

significant way the conclusions one reaches from an adoption study.   

 

The fact that awareness is a necessary condition for adoption has also important 

implications in terms of how the farmer awareness status information, when available, is 

accounted for in adoption models. Indeed, adoption model that does not properly handle 

the awareness status variable will quickly run into computational difficulties and will not 

produce results in most cases (i.e. the model estimation will end with an error message in 

most statistical software).5 Or, if results are produced (with the aid of a specific 

functional form that artificially circumvents the problem), chances are that they will be 

grossly at odd with common sense and the basic facts because of the fundamental 

unidentifiability of the model. This is the case for example when the awareness variable 

enters additively in the observed adoption function directly or indirectly through a non-

linear transformation.6 

                                                                                                                                                 
population average conditional adoption function (the “true” population adoption function) multiplied by 
the probability of being aware of the technology.  Hence, for a factor determining adoption alone and not 
awareness, its marginal effect calculated from the classical “adoption” model is equal to its marginal effect 
from the true adoption model multiplied by the conditional probability of awareness, a quantity always 
between 0 and 1 and usually very small when not many farmers are aware of the technology.  For a factor 
that is determinant of both adoption and awareness, the marginal effect calculated from the classical 
“adoption” model will be equal to the same product above plus a second term (made of the marginal effect 
with respect to awareness multiplied by the “true” population adoption function). This second term makes 
the comparison of the two marginal effects theoretically indeterminate.  However, in practice the second 
term will be usually small for most factors in most data.  
5 This computational problem is well known in the Statistical literature. 
6 That is, the relation between awareness and adoption implies that it cannot be specified as 

),|( wWxXAE == = )( XWg βα +  where A is the observed adoption status variable, W is the individual 
awareness status variable (equals to 1 if the individual is aware of the technology and 0 otherwise),α  
and β are parameters and g is a (possibly nonlinear) real valued function). This fact is overlooked by 
Daberkow and McBride (2003) in their empirical analysis of the influence of awareness on adoption. This 
alone can explain the “strange” results of their empirical model which made them conclude that awareness 
of precision agriculture technologies is not a determinant of their actual adoption. Daberkow and McBride 
tried to rationalize their findings but the conclusion reached is clearly in contradiction with the fact that 
awareness is a necessary condition for actual adoption.     
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The paper is organized as follows. Section 2 uses the finite population approach 

and a simple adopter/non-adopter type framework to illustrate and explain the “non-

exposure” bias problem which is the source of the adoption gap when exposure to the 

technology is not universal.  Section 3 uses the counterfactual outcomes and average 

treatment effect estimation framework to show how consistent non-parametric and 

parametric estimators of population adoption rates and their determinants can be obtained 

within this framework.  Section 4 applies the results of section 3 to consistently estimate 

the population adoption rates and determinants of the NERICA (New Rice for Africa) 

rice varieties in Benin, Cote d’Ivoire, Gambia and Guinea along with estimates of the 

population “adoption gap” and selection biases created by the presently limited diffusion 

of the NERICAs.  Section 5 concludes the paper with a summary of the major 

methodological and empirical results of the paper and their policy implications. 

 

 

2. Anatomy of the source of the adoption gap: A finite population approach  

To assess as simply as possible the magnitude of the adoption gap in commonly 

used sample adoption rate estimates, we use a finite population approach and focus on a 

population of farmers of size N, which can be divided into two groups based on a 

farmer’s adoption attitude toward a given technology: an adopter-type group of farmers 

who will adopt the technology if exposed to it and an non-adopter-type group of farmers 

who will not adopt it if exposed to it (see Figure 1A).  We assume that the type of a 

farmer is revealed only through exposure to the technology (see Figure 1B). In other 

words, one cannot know if a farmer is an adopter type or not, unless he or she is exposed 
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to the technology.  Let aN  be the number of adopter-type farmers and 
N

NR
a

a =  be the 

proportion of adopter types in the total population. Hence, aR  would be the true 

population adoption rate when exposure is complete in the population (i.e. when the 

entire population has been exposed to the technology). 

[Placement of Figure 1 about here] 

Now, suppose that the population is only partially exposed to the technology and 

let eN  be the size of the exposed subpopulation and 
N
N

R e
e = be the corresponding 

exposure rate. Let also a
eN  be the number of adopters within the exposed sub-population 

and aN0  the number of adopter-type farmers in the non-exposed sub-population with 

N
N

R
a
ea =1  and 

N
N

R
a

a 0
0 =  being the corresponding respective proportions in the total 

population and 
e

a
ea

e N
N

R =  the proportion of adopters within the exposed subpopulation.  

Thus, the group of adopter-type farmers is further partitioned by the partial exposure into 

two sub-groups: one sub-group with farmers whose types are revealed and another 

subgroup whose types are still unknown (see Figure 1B). The group of non-adopters is 

also partitioned similarly.  

It is important to note that the observable quantities in the above definitions are 

the total population size N, the size of the exposed subpopulation eN  and the number of 

adopters in the exposed subpopulation a
eN .7 We cannot observe the total number of 

adopter types in the total population and in the non-exposed subpopulation aN  and aN0 , 

                                                 
7 This observability assumes, of course, the feasibility of surveying the whole population. 
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respectively. So, we cannot compute the true population adoption rate aR . We can only 

compute directly the proportion of revealed adopters in the population aR1 , the exposure 

rate eR  and the proportion of adopters within the exposed subpopulation a
eR .  However, 

since aa
e

a NNN 0+= , the knowledge of either aN  or aN0  allow the computation of the 

other.  The same applies for aR  and aR0  because aaa RRR 01 += .  In the example 

illustrated in Figure 1, N=100, eN  =20, and a
eN =12 are observable. But, aN = 40 and 

aN0 =60 are not observable.  Thus, the true population adoption rate aR =40% and the 

proportion of non-exposed adopter-types in the population aR0 =28% cannot be directly 

known. 

With a random sample of farmers, the three observable population parameters 

( aR1 , a
eR  and eR ) are consistently estimated by their respective sample analogues (see 

Figure 1C).8  In particular, the usually computed sample adoption rate (i.e. the proportion 

of sample farmers who have adopted) consistently estimates aR1  but not the true 

population adoption rate aR as commonly believed. 

Given the definitions and notations above, we have: 

( )
( ) a

ee
a
ee

e

a
e

e

a
ee

aa
eaaa

RRRR

NN
N

N
N

N
N

N
N

N
N

N
N

RRR

0

00
01

1

1

−+=

−
×⎟
⎠
⎞

⎜
⎝
⎛ −+×=+=+=

 (1) 

where a
eR  and a

eR0  are the adoption and would-be adoption rates within the exposed and 

non-exposed subpopulations, respectively.  

                                                 
8 The zero-mean sampling error is ignored in the example for clarity.  
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The right hand side of the last equality of equation (1) shows that the true 

population adoption rate is the weighted average of a
eR  and a

eR0 , the within exposed and 

non-exposed subpopulations adoption rates, respectively, with the weights given by the 

respective subpopulation shares.9  But, more importantly, equation (1) shows that taking 

the sample analogue of aR1 , the proportion of revealed adopters in a sample, as estimate 

of adoption rate generally leads to underestimation of the true population adoption 

rate aR . As a measure of population adoption rate aR1 is incomplete in the sense that it 

does not take into account the would-be adopters whose types are not revealed.  In the 

example illustrated in Figure 1, we have aR1 =12%, which understates the true population 

adoption rate (40%) by 28%.  

We can see from equation (1) that the expected adoption gap or “non-exposure” 

bias, defined as GAP≡ =− aa RR1  ( ) a
ee RR 01−− , is strictly negative and diminishing with 

increasing exposure rate.  This shows that the incomplete population adoption rate aR1  

always understates the true population adoption rate aR , unless either the exposure rate 

is equal to 1 or the would-be adoption rate within the non-exposed subpopulation a
eR0  is 

zero. 

We can also obtain from equation (1) the expected bias resulting from using the 

sample analogue of a
eR , the adoption rate within the exposed subpopulation, as estimate 

of the true population adoption rate aR .  This expected bias, which is caused by 

population selection into exposure, is given by PSB ≡ aa
e RR −  = ( )( )a

e
a
ee RRR 01 −− . 

                                                 
9 It should be noted that normally both a

eR  and a
eR0 depend on the exposure rate eR . But we are omitting 

showing this dependence to simplify the notation. 
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Because the population selection bias PSB can be either positive or negative depending 

on the relative magnitude of the two within subpopulation adoption rates a
eR  and a

eR0 , 

a
eR can overestimate or underestimate aR .  Overestimation occurs when the adoption rate 

within the exposed subpopulation is greater than that of the non-exposed one.  Otherwise 

we have underestimation. The population selection bias vanishes only when there is 

complete exposure or when the two within exposed and non-exposed subpopulation 

adoption rates are equal. 

 In the example illustrated in Figure 1, where the true population adoption rate is 

40%, the relatively low population exposure rate of 20% leads to a population adoption 

gap of –28% and a positive population selection bias of +20%. The dependence of the 

population adoption gap and selection biases on the population exposure rate is illustrated 

in Figure 2 under positive (A), negative (B) and zero (C) population selection biases, 

respectively.10   

[Placement of Figure 2 about here] 

We can see from equation (1) and the preceding discussion that the sample 

proportion of revealed adopters is in fact an estimate of the population exposure and 

adoption rate. Indeed, aR1  is exactly the proportion of farmers in the total population who 

are exposed to the technology and who have adopted it. Therefore, such sample adoption 

                                                 
10 In Figure 3 it is assumed that the deviation of the adoption rate within the exposed subpopulation from 
the true population adoption rate as a result of a population selection bias is a linear function of the 

exposure rate. That is, )1(1
ea

aa

a

a
e R

R
RR

R
R

−=
−

≡
∆

α , where α is the constant population selection bias 

parameter, with positive value indicating a positive population selection bias and a negative value the 
opposite. With this linear functional form assumption we have a

e
a
e RRR ))1(1( −+= α  and 

a
ee

a
ee

a RRRRRR ))1(1(1 −+== α  (α=0.5 in Figure 2A and α=-0.5 in Figure 2B). 
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rate estimate embodies two types of information: information about the diffusion of a 

technology and that about its adoption. One would, however, argue that the question we 

are interested in an adoption study is the extent to which farmers like a given technology 

and not the extent to which they know about the technology. Indeed, it is the answer to 

the question of how liked is a technology that provides feedback to researchers regarding 

the suitability of their research product in terms of meeting the needs of the targeted 

population.   The answer to the question of how known is a technology is most useful for 

assessing the performance of extension systems or methods. By confounding the two 

different types of information, the sample proportion of revealed adopters provides little 

information on the population adoption rate when exposure is low. 

 

We will see in the next section that within the treatment effect estimation 

framework the true population adoption rate aR  is consistently estimated by the so-called 

average treatment effect (ATE). As explained above, ATE measures the effect of 

applying a “treatment” to a randomly selected person in the population, whereas ATE1, 

the average treatment effect on the treated, measures the average effect of the treatment 

on the treated population. Hence, in our context, it is ATE1 that consistently estimates 

a
eR , the adoption rate within the exposed subpopulation. 

Before going into the estimation of ATE, however, one may want to have an 

answer to the following question of practical interest: if one cannot obtain the ATE 

estimate of the true population adoption rate aR , which one between a consistent 

estimate of aR1  (the incomplete population adoption rate) and that of a
eR  (the within 

exposed subpopulation adoption rate) to choose as a second best estimate of aR ?  To 
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answer this question, we will compare the absolute values of the population adoption gap 

(GAP) and selection bias (PSB) resulting from using aR1  and a
eR  as an approximation of 

the true adoption rate of aR .   It is easy to see from the two bias formulas that 

GAP
R
R

a
e

a
e ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0

1PSB .  Hence, PSB<GAP  if and only if a
e

a
e RR 02> .  In other words, the 

incomplete population adoption rate is a better approximation of the true adoption rate 

than the within exposed subpopulation adoption rate only when there is a strong positive 

population selection bias such that the within exposed subpopulation adoption rate is 

more than twice as large as the would-be adoption rate within the non-exposed 

subpopulation.  Otherwise, the adoption rate within the exposed subpopulation is always 

a better approximation of the true adoption rate.  In particular, the adoption rate within 

the exposed subpopulation is unambiguously better than the incomplete population 

adoption rate when there is a negative population selection bias such that the 

subpopulation least likely to adopt is exposed first (Figure 3B).11   

In conclusion, although one cannot estimate the population selection bias through 

direct sample analogue computations to determine which situation one is faced with, one 

should always prefer a
eR  to aR1  as a second best approximation of aR , except when there 

are obvious indications that the exposed subpopulation is far more likely to adopt the 

technology compared to the non-exposed one.12  In any case, instead of settling on a 

                                                 
11 A negative population selection bias can occur, for example, in poverty targeted program that promotes a 
high yielding varietal technological package requiring use of fertilizer, which the targeted poor farmers 
cannot afford.   
12  This preference of a

eR over aR1  is further reinforced by the observation that when exposure is less than 

complete, NEB will be different from zero unless a
àeR equals zero. In contrast, PSB can be equal to zero 

under less than complete exposure when a
eR  and a

àeR  (the adoption rates within the two subpopulations of 
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second best population adoption rate estimate that may still carry a significant bias, one 

should really get the ATE estimate of aR  when the additional data (covariates other than 

exposure and adoption outcomes variables) required for such estimation is available. 

 

3. ATE estimation of population adoption rates and their determinants. 

The Average Treatment Effect (ATE) methodology provides the appropriate framework 

for the identification and consistent estimation of population adoption rates and 

determinants (Diagne and Demont 2007; Diagne, 2006).  Under the ATE estimation 

framework it is assumed that every farmer in the population has two potential adoption outcomes: 

with and without exposure to a technology (the treatment). Let us assume w  to be a binary 

variable indicating the observed status of exposure to the technology, where 1=w   if the farmer 

is exposed and 0=w  if the farmer is not exposed. Let 1y  be the potential adoption outcome of a 

farmer when exposed (i.e. when w=1 for him or her) and 0y  is his or her potential adoption 

outcome when not exposed (i.e. when w=0 for him or her). The observed adoption outcome y  

can be expressed as a function of the two potential adoption outcomes 1y  and 0y  and the 

treatment status variable w  as ( ) 01 1 ywwyy −+= . The population mean impact of exposure to 

the technology on population adoption outcomes is given by the expected value )( 01 yyE − , 

which is by definition the average treatment effect (ATE) of exposure.   

Because exposure to the technology is a necessary condition for their adoption, we have 

00 =y  for any farmer whether exposed to the technology or not.  Hence, in this adoption 

context, ATE is reduced to the expected value )( 1yE  which is the population mean potential 

                                                                                                                                                 
exposed and non-exposed) are equal.  This later event is arguably more likely to occur than that of a

àeR  
equaling zero.   
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adoption outcome.  The exposed subpopulation mean potential adoption outcome is given by the 

conditional expected value )1|( 1 =wyE , which is by definition ATE1, the average treatment 

effect (of exposure) on the treated.  Similarly, the non exposed (untreated) subpopulation mean 

potential adoption outcome denoted by ATE0 is given by )0|( 1 =wyE . Also, with 00 =y  the 

expression of the observed adoption outcome variable as a function of the two potential adoption 

outcomes and the exposure variable reduces to 1wyy = , an expression that shows clearly that the 

observed adoption outcome variable is a combination of the exposure and adoption outcome 

variables.  This justifies calling the population mean observed adoption outcome 

)()( 1wyEyE =  the population mean joint exposure and adoption parameter denoted as JEA to 

differentiate it from the population mean adoption parameter )( 1yE , which as we know is ATE 

and a measure of the potential demand of the technology by the population in terms of adoption. 

The difference between the JEA  and ATE parameters (i.e. the difference between the population 

mean observed adoption outcome and the population mean potential adoption outcome) is the 

population non exposure bias (NEB), which we also call the population adoption gap (GAP): 

)()( 1yEyEGAPNEB −== . The population selection bias (PSB) defined as the difference 

between the mean potential adoption outcome in the exposed subpopulation and the mean 

potential adoption outcome in the full population is given by: 

)()1|(1 11 yEwyEATEATEPSB −==−= .  

 

We should note that when the adoption outcome variable is a binary variable taking the values 0 

and 1 (i.e. a measure of adoption status with 1 corresponding to adoption), as is the case in our 

empirical analysis, then the expected values corresponding to the various population mean 

adoption outcomes reduce to probability quantities that correspond to measures of population 

adoption rates (i.e. proportions of adopting farmers in the population). In particular,  
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ATE= )( 1yE = )1( 1 =yP  corresponds to the population potential adoption rate, 

ATE1= )1|( 1 =wyE  = )1|1( 1 == wyP  to potential adoption rate in the exposed subpopulation 

and ATE0 = )0|( 1 =wyE = )0|1( 1 == wyP  to the potential adoption rate in the non exposed 

subpopulation. 

 

The ATE methodology enables the identification and consistent estimation of the population 

mean adoption outcome )( 1yE  and the population mean adoption conditional on a vector of 

covariates x )|( 1 xyE , which in this framework corresponds to the conditional ATE denoted 

usually as ATE(x) (Wooldridge 2002 chapter 18). One approach to the identification of ATE is 

based on the so-called conditional independence assumption (Wooldridge 2002, chapter 18) 

which states that the treatment status w  is independent of the potential outcomes 1y  and 0y  

conditional on the observed set of covariates z  that determine exposure ( w ). The ATE 

parameters identified through the conditional independence assumption can be estimated from a 

random sample of observed niiii xwy ,..,1),,( =  in two different ways:13 1) using a weighting 

estimator and  2) using an estimator based on a parametric regression procedure. 

 

The Inverse probability weighting (IPW) estimator of ATE  

 

The weighting estimator is based on a two-stage estimation procedure where the conditional 

probability of treatment )|1( zwP =  ≡ )(zP , called the propensity score (PS), is estimated in the 

first stage and ATE, ATE1 and ATE0 are estimated in the second stage using the following 

probability weighting estimators which are special cases of the general weighting estimators of 

ATE, ATE1 and ATE0 when 00 =y  (Diagne and Demont, 2007):  

                                                 
13  One can also use a Matching based estimator (see, for example, Imbens, 2004).  
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sample number of exposed farmers. 14  

 

Parametric estimation of ATE 

 

The parametric estimation procedure of ATE is based on the following equation that identifies 

ATE(x) and which holds under the conditional independence (CI) assumption (see Diagne and 

Demont 2007):  

  

( ) ( )1,||)( 1 =Ε=Ε= wxyxyxATE   (5) 

 

                                                 
14 The weighting estimators for the general case are based on the following results that identify ATE, ATE1 
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10  (see, for example, (Lee, 2005, pp. 65-70; Imbens, 204; and 

Wooldridge, 2002, p.). When the fact that ywy =  (which follows from the fact that 1wyy = ) is used, we 
get the simplifications that lead to the sample analogue estimators in equations (1), (2) and (3). The 
propensity score )(zp can be consistently estimated using non-parametric methods or using parametric 
methods such as probit or logit models (see Imbens, 2004). We note that the weighting estimator for ATE1 
is simply the proportion of adopters in the exposed subsample and does not depend on the estimated 
propensity score )(ˆ izp .  Also, implicit in the weighting estimators is the requirement that   1)(ˆ0 << izp  
and  nne <<0 . 
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The parametric estimation proceeds by first specifying a parametric model for the conditional 

expectation in the right hand side of the second equality of equation (4) which involves the 

observed variables y, x and w:  

),()1,|( βxgwxyE ==  (6) 

where g is a known (possibly nonlinear) function of the vector of covariates x and the unknown 

parameter vector β which is to be estimated using standard Least Squares (LS) or Maximum 

Likelihood Estimation (MLE) procedures using the observations ( ii xy , ) from the subsample of 

exposed farmers only with y as the dependent variable and x the vector of explanatory variables. 

With an estimated parameter β̂ , the predicted values )ˆ,( βixg  are computed for all the 

observations i in the sample (including the observations in the non-exposed subsample) and ATE, 

ATE1  and ATE0 are estimated by taking the average of the predicted )ˆ,( βixg  i=1,..,n  across 

the full sample (for ATE) and respective subsamples (for ATE1 and ATE0):  
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The effects of the determinants of adoption as measured by the K marginal effects of the K-

dimensional vector of covariates x at a given point x  are estimated as:  
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where kx  is the kth component of x.   
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In our empirical analysis below, we have estimated the ATE, ATE1, ATE0, the 

population adoption gap ( ETAAEJPAG ˆˆˆ −= )15, and the population selection bias 

( ETAEATBSP ˆ1ˆˆ −= ) parameters using both the inverse probability weighting (IPW) 

estimators (equations 1, 2, and 3) and the parametric regression based estimators (equations 4,5, 

and 6). The propensity score )(ˆ zP appearing in the IPW estimators is estimated using a probit 

model of the determinants of exposure:  )()( γzzP Φ=  where Ф is the standard normal 

cumulative distribution with density function )exp()()( 22
1 2tt −= πφ , z the observed vector of 

covariates determining exposure to the technology and γ is the parameter vector being estimated. 

This estimation of the determinants of exposure is important for its own sake as it can provide 

valuable information regarding the factors influencing farmers’ exposure to a new technology.  

These factors, which are mostly related to the diffusion of information, can very well be different 

from those influencing the adoption of the technology once exposed to it.     For the parametric 

regression based estimators, since y is a binary variable in our empirical analysis, the equation 5 

above is effectively a parametric probabilistic model as we have discussed earlier. That is, we 

have )1,|1()1,|( ==== wxyPwxyE  with, assuming a probit model, )(),( ββ xxg Φ= .   

Thus, in this particular case the parametric estimation of ATE reduces to a standard probit 

estimation restricted to the exposed sub-sample.  The marginal effects in equation (9) are also 

estimated using this ATE parametric model.16  For comparison purposes, we have also estimated 

a “classic” probit adoption model (which, as discussed above is in fact a model of the 

determinants of joint exposure and adoption): )()|1( θxxyP ′Φ=′=  where ),( xzx =′  is the 

                                                 
15 Note that as discussed earlier, the joint exposure and adoption parameter (JEA) is consistently estimated 

by the sample average of the observed adoption outcome values: ∑
=

=
n

i
iy

n
AEJ

1

1ˆ .    

   
16 Note that the marginal effects of the determinants of adoption (i.e. the effects of the marginal changes in 
the vector of covariate x) cannot be estimated from the IPW based estimators. 
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vector of covariates determining both exposure (w) and adoption ( 1y  ) and θ is the parameter 

vector to be estimated.17   All the estimations were done in Stata using the Stata add-on adoption 

command developed by Diagne (2007) to automate the estimation of ATE adoption models and 

related statistical inference procedures.18   The asymptotic distributions of ETA ˆ , 1ˆETA  and 

0ˆETA  are given in Lee (2005, pp. 67-69) for the general case where 00 ≠y and )(zp is 

estimated through a probit model 

 

4. ATE estimation of NERICA diffusion and adoption rates and their 

determinants 

 

The NERICA (New Rice for Africa) rice varieties, developed by WARDA in 1990s, are 

the result of interspecific crosses between Oryza sativa rice species from Asia and the 

locally adapted and multiple-stress resistant Oryza glaberrima African rice species.  

                                                 
17 We should note that usually the two vectors z and x have common elements so that the dimension of the 
vector x′  is usually less than the sum of the dimensions of its two components. It is clear that not 
including in the vector x′  determinants of w not in x will most likely result in the non-identification of  
“classic” adoption model.  However, in practical estimation terms the main difference between the ATE 
parametric adoption model and the “classic” adoption model lies in the fact that the latter uses all the 
sample observations while the latter uses the observations from the exposed sub-sample only.   
18  The adoption command is a Stata add-on command that works like standard Stata regression commands. 
It uses various Stata standard estimation commands internally to implement the estimation procedures 
described above and, depending on the option chosen,  provide IPW or parametric regression based 
estimates of ATE, ATE1, ATE0, JEA, GAP and PSB. The option include the choice of functional form for 
the propensity score (probit or logit) and the function ),( βxg described above.  The advantage of using the 
adoption command (instead of directly using the standard Stata commands) is that it provides the standard 
errors (and related confidence intervals and p-values) of all above estimated ATE parameters directly in a 
standard Stata estimation results table.  The standard errors of the IPW-based estimators are based on the 
derivation of asymptotic distributions of ETA ˆ , 1ˆETA  and 0ˆETA  given in Lee (2005, pp. 67-69) 
specialized to the adoption case (with provision covering the case where the propensity score is estimated 
by a logit model).  The standard errors (and related confidence intervals and p-values) of the parametric 
regression based estimators are obtained by using the delta method (Wooldridge, 2002, p.44) to derive the 
asymptotic distribution of the ATE estimators in equations 4 to 6.   The adoption command also includes 
Stata style post-estimation commands (in addition to the ones corresponding to the internally used Stata 
estimation commands ) that provide the same ATE estimates as above for any defined subgroup in the 
population and marginal effects for the estimated exposure and adoption models (with options not available 
with the Stata standard mfx command)       
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From 1996, NERICA were introduced in many African countries through Participatory 

Varietal Selection (PVS) trials and were then disseminated by farmers through their 

informal channels.  In this section we estimate NERICA diffusion rates and its actual and 

population adoption rates and gaps in Cote d’Ivoire, Guinea, Gambia and Benin where 

they were introduced starting 1996 (Cote d’Ivoire and Guinea) and 1998 (Gambia and 

Benin). The determinants of NERICA diffusion and adoption in these four countries are 

also estimated.  

 

Sampling and data  

The data used in the paper are collected from a sample of about 1,500 rice farmers in 50 

villages in Cote d’Ivoire in 2000, 1467 rice farmers in 79 villages in Guinea in 2001, 360 

rice farmers in 24 villages in Benin in 2004 and 600 rice farmers in 70 villages in Gambia 

in 2006. A Multi-stage stratified random sampling method was used to select the sample 

rice farmers in all four countries with the last two stages consisting of selecting the 

sample villages and farmers located in all the regions where NERICA has been 

introduced. The selection of sample villages was, however, not entirely random as it 

purposely included villages where WARDA has been conducting on-farm and 

participatory varietal selection (PVS) research activities.  In selecting the sample villages, 

a list of all villages where NERICA seed were introduced (called NERICA villages) was 

constituted first. The sample NERICA villages were then randomly selected from that 

list. Then, for each sample NERICA village, a list of neighboring villages within 5 to 10 

km where NERICA was not introduced (called non-NERICA villages) was constituted 

and 2 to 3 sample villages was randomly selected from that list. Thus, in  Cote d’Ivoire 
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25 NERICA villages and 25 non NERICA villages were selected in the forest and 

savanna regions. In Benin, 12 NERICA villages and 12 non NERICA villages were 

selected in the central region. In Gambia, 35 NERICA villages and 35 non NERICA 

villages were selected in all the four agricultural regions of the country. In Guinea, the 

villages were selected among four agro-ecological zones where NERICA dissemination 

activities were being conducted. In each zone a further stratification was done into two 

types of Prefectures: NERICA Prefecture (where NERICA varieties had been introduced) 

and non NERICA prefectures (where NERICA varieties were not yet introduced). Within 

NERICA prefectures, two NERICA villages were selected and 3 to 4 non NERICA 

villages selected for each selected NERICA village for a total of 79 villages.  Selection of 

farmers within the sample villages was done entirely randomly among the village 

population of rice farmers with the sample size varying across countries: 30 per village in 

Cote d’Ivoire, 15 per village in Benin, 20 per village in Guinea, and in Gambia, 10 form 

some region and 5 for other. 

 

In each country, the data was collected at both village and farmer levels through a 

structured questionnaire. At the village level, the data collected included the rice varieties 

known in the village (modern and traditional) and village infrastructures and community 

variables. At the farmer level, the data included the rice varieties known and cultivated by 

the farmer and other socio-demographic data.  Prior to administering the farmer level 

questionnaire, a list of the known varieties in the village was constructed from the village 

level survey and each sample farmer was asked his or her knowledge and cultivation of 

the varieties known in his or her own village. 
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 Demographic and socio-economic characteristics of sample farmers 

Table 1 reports selected descriptive statistics of the sample farmers in the 4 

countries disaggregated by their adoption status. Common variables have been chosen19 

for the purpose of comparison and shortness. The Table shows that non adopters and 

adopters of NERICA in each country have approximately the same average of age in 

Cote-d’Ivoire where adopters seem to be older than non adopters, but the difference is not 

statistically significantly different from zero. The mean household size is higher in 

Gambia (16) than in the other countries (6 in Benin, 7 in Cote-d’Ivoire and 10 in Guinea). 

The differences in household size between adopters and non adopters are not statistically 

different from zero, however, except in the case of Guinea. The same pattern also shows 

for the education level of the household’s head with adopters reporting significantly more 

years of formal education than non-adopters for Guinea.  There are no significant 

differences between adopters and non-adopters across the four countries in the attendance 

of professional training as well as in the type of experience in rice farming.  

[Place of Table 1] 

 

The results in Table 1 show that women are the large majority of rice growers in Gambia 

(more than 90%) but they constitute a very small minority in Guinea (less than 5%). The 

proportion of female adopters in the sample is lower than female non-adopters, except in 

Cote d’Ivoire.  The proportion of sample farmers with access to extension services is 

relatively high in Benin (more than 60%) and Guinea (more than 40%) compared to the 

other two countries. There are also more NERICA adopters with access to extension in 
                                                 
19 Results including the non common variables are available upon request 
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these two countries compared to non-adopters whereas in Gambia and Cote-d’Ivoire the 

proportions of farmers with access to extension service is about the same for adopters and 

non adopters.  As can be expected, in all four countries the proportion of NERICA 

adopters is higher in the NERICA villages compared to non-NERICA villages.  

  

Results of the ATE estimation of NERICA adoption rates and gaps  

The results of the estimation of the different NERICA diffusion and adoption 

rates and gaps are presented in Table 2. The NERICA diffusion rates are estimated to be 

4% for Cote d’Ivoire in 2000, 39% for Guinea in 2001, 26% for Benin in 2004 and 57% 

in Gambia in 2006.   Abstracting from country differences in NERICA dissemination 

efforts, we can see from these estimates a steady progress of NERICA diffusion from 

2000 to 2006. Table 2 also shows that the estimation of the population joint exposure and 

adoption rates (JEA) using the two different ATE methods of estimation (Inverse 

Propensity Score Weighting estimator and ATE probit) yields the same estimates as the 

directly computed sample adoption rates for all the four countries and the estimates are 

statistically significant at 1% level. These joint exposure and adoption rates are 19% for 

Benin, 4% for Cote-d’Ivoire, 40% for Gambia and 20% for Guinea. The two methods 

also yield the same range for the 95% confidence interval (between 14% and 24% for 

Benin, 3% to 5% for Cote-d’ivoire, 36% to 43% for Gambia and 18% to 22% for 

Guinea).  As demonstrated above, because of the relatively low diffusion of the NERICA 

varieties in all the four countries, these joint exposure and adoption rates estimates 

significantly understate the population adoption rate (i.e. the adoption rate that would 

obtain if the whole population were exposed to the NERICA varieties).    



 27

As shown in Table 2, the adoption rates within the NERICA-exposed 

subpopulation (ATE1) are estimated to be 52% for Benin, 37% for Cote-d’Ivoire, 86% 

for Gambia and 55% for Guinea with approximately the same range for the 95% 

confident intervals (respectively, between 39% to 65%, 27% to 48%, 77% to 94%, and 

50% to 65%) for the two methods (IPSW and ATE Probit). The estimates are all 

statistically significant at the 1% level of significance. As explained above, these 

adoption rates among the NERICA-exposed sub population are likely to overstate the 

NERICA (potential) population adoption rates because of positive selection bias.  

 

The NERICA population adoption rates (ATE), which inform on the demand of 

NERICA by the target population, is estimated to be 45%, 22%, 85% and 61% for Benin, 

Cote-d’Ivoire, Gambia and Guinea, respectively by the IPWS method and 47%, 24%, 

87% and 61%, respectively by the ATE Probit model. The estimates are all statistically 

significantly different from zero at the 1% level of confidence.  It can be seen that for 

each country, the ATE probit method shows in general adoption rates estimates that are 2 

% higher than those of the IPSW method, except for the Guinea case where the two 

estimates are the same.  We note also that the probability of adopting at least one 

NERICA varieties is the highest in Gambia, and the lowest in Cote-d’Ivoire.  

The corresponding estimates of the NERICA population adoption gap (i.e non-

exposure bias) as given by the IPSW and ATE Probit methods are respectively  -26% and 

-0,28% in Benin, -19% and -21% in Cote-d’Ivoire, -45% and -47% in Gambia and -41% 

in Guinea, with  all the estimates statistically significant at the 1% level.  These adoption 

gap estimates imply that there is still potential for increasing NERICA adoption rates 
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significantly in all the four countries.  It should be emphasized that this adoption gap is 

solely due to the lack of awareness of the existence of NERICA. However, the size of the 

adoption gap depends on the same factors that determine the exposure and population 

adoption rates, the effects of which are estimated below. Hence, by appropriately 

changing the values of these determinants through some policy instruments, one can 

increase actual adoption through a simultaneous narrowing of the adoption gap and an 

increase in the population adoption rate.    

The adoption rates within the subpopulation not exposed to the NERICA varieties 

(ATE0)  are estimated by the IPSW and ATE Probit methods to be 41% and 44% in 

Benin, 21% and 23% in cote d’Ivoire, 84% and 88% in Gambia and 64% in Guinea. The 

estimated implied population selection bias (PBS) is 7% and 5% in Benin, 15% and 13% 

in Cote-d’Ivoire, -1% in Gambia and -5% and -6% in Guinea for the IPSW and ATE 

probit methods, respectively. The PSB estimates are all significantly different from zero 

at least at the 5% level for all countries in the case of the ATE probit model. This implies 

that the probability of adoption for a farmer belonging to the subpopulation of exposed 

farmers is significantly different from the probability of adoption for any other farmer 

randomly selected in the general population. The negative PSB for Guinea and Gambia 

indicates that the farmers exposed to the NERICA varieties are significantly less likely to 

adopt at least one NERICA variety than any farmer randomly selected from the 

population.  

Determinants of NERICA exposure and adoption  

In this section we present and discuss the results of the estimation of the probit model of 

the determinants of exposure (i.e. awareness of) to the NERICA varieties and that of the 
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determinants of NERICA adoption in the population from the parametric ATE probit 

model. The results of the estimation of the classic probit adoption model (which is in fact  

a model of the determinants of joint exposure and adoption as shown above) are also 

presented for comparison purposes.  For ease of presentation, the results are presented in 

the tables country by country, although they are discussed together. 

 

Determinants of NERICA exposure 

Table 6, 7, 8 and 9 present the results of the exposure probit model and the marginal 

effects of the determinants of the probability of being exposed to the NERICA varieties 

in Cote d’Ivoire, Guinea, Benin and Gambia respectively. Several variables show 

statistically significant coefficients and marginal effects at the 5% level. Focusing on the 

marginal effects, the variables with significant marginal effects are for Cote d’Ivoire: 

living in a NERICA village (+43%), village contact with SATMACI/SODERIZ (the 

former extension agency, +7,5%), number of NERICA varieties known in the village 

(2%), number of traditional varieties known in the village (9%) and being from the Bete 

ethnic group (+25%). For Guinea, the main determinants of NERICA exposure are 

residence in a NERICA village (+11%), residence in upper Guinea (+19%), residence in 

forest Guinea (-28%), experience on lowland rice farming and (-11%), number of 

NERICA varieties known in the village and access toextension services (+10%). For 

Benin, only residence in a NERICA village and household size have significant marginal 

effects (32% and 3% respectively).  In the case of Gambia, residence in a NERICA 

village and being located in the Western Region are the main determinants of the 
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probability of being exposed to the NERICA varieties with positive marginal effects of 

27% and 21%, respectively.  

  

[Place of Table 6, 7, 8 and 9] 

 

The results above show that across all 4 countries, living in a NERICA village (where the 

PVS activities were conducted) is the most important determinant of exposure to the 

NERICA varieties. Access to extension services are also important determinants of 

exposure for Cote d’Ivoire and Guinea.  The results also show that rice farmers living in a 

village with relatively larger number of NERICA and traditional varieties are 

significantly more likely to be exposed to NERICA and that farmers who practice upland 

rice farming system are more likely to be exposed to the NERICA varieties, which is 

understandable given the fact that NERICA is an upland variety.  It is notable that in 

Guinea women are less likely to be exposed to the NERICA varieties compared to men. 

This suggests that the dissemination activities may have been biased against women and 

that more targeting of women should be done.  In Gambia, the fact that living in the 

Western Region was found to be an important determinant of exposure is not surprising 

because the first PVS activities were located in this region of the country (Tujereng and 

Jifanga villages). In addition, the fact that the headquarter of the National Agricultural 

Research Institute, NARI, is located in the same region can also explain the reason for the 

high probability of exposure to NERICA in the region.  

 

Determinants of NERICA adoption  
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Table 10, 11, 12 and 13 present the results of the estimated coefficients and 

marginal effects of the ATE probit adoption model and the classical probit adoption 

model for Cote d’Ivoire, Guinea, Benin and Gambia. As explained above, one should 

keep in mind when interpreting the results that the classical “adoption” model is really a 

model of joint exposure and adoption. The results in the tables show in general marked 

differences in the magnitudes as well as statistical significances of the coefficients and 

the marginal effects between the two models. The differences are particularly striking for 

the cases of Cote d’Ivoire where the marginal effects of the ATE probit model are up to 

100 times larger in absolute values than that of the classic “adoption” model.  

 

The results show that factors such as living in NERICA village, past participation in PVS 

trials, being from the Bete or Senoufo ethnic group contribute positively to the 

probability of NERICA adoption in Cote d’Ivoire.  Among these factors, living in a 

NERICA village has the highest marginal effect (+43%) followed by being from the 

Senoufo ethnic group (34%), being from the Bete ethnic group (25%) and past 

participation in PVS trials (21%). In Guinea, the results show that the factors that 

contribute positively and significantly to the probability of NERICA adoption are: being 

resident in forest Guinea (+21%), access to extension (17%), and the total number of 

IRAG varieties known by the farmer (9%), In the case of Benin, it is factors such as total 

land size and the age of the head of the household that contribute positively significantly 

to the probability of NERICA adoption in Benin (+12% and +6%, respectively) while for 

Gambia, it is only farmer contact with the Department of Agricultural services (DAS) 

that contributes positively to the probability of NERICA adoption in Gambia (9%).  
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[Place of Table 10, 11, 12 and 13)] 

 

The results also reveal several factors that constraint NERICA adoption in the four 

countries. In Guinea, the probability of NERICA adoption diminishes with being a 

female farmer (-26%), living in upper Guinea (-25%), living in middle Guinea (-19%) 

and with the number of traditional varieties known by a farmer (-3%).  In Benin, the 

probability of NERICA adoption diminishes with the squared of the age of the head of 

the household (-0.1%) while in the Gambia it diminishes with living in the North Bank 

Region (-21%) or in the Western Region (-19%) and with the nnumber of traditional 

varieties known by a farmer (2%). 

 

We can draw some important conclusions regarding the major determinants of NERICA 

adoption across countries. First, one can see from the above findings the importance of 

the residence place of the farmer (NERICA village, in Cote d’Ivoire, being resident in 

forest Guinea for Guinea, and living in the Western Region or in the North Bank Region 

for Gambia) in affecting positively and significantly the probability of NERICA adoption 

in all the four countries, except in Benin. These residence places are often the villages or 

the regions where NERICA varieties have been introduced. However, it must be 

emphasized that these effects of the farmer’s village and region of residence is on the 

probability of adoption per se and independently of the positive effect that the 

introduction of NERICA in those places has on the actual adoption (i.e. joint exposure 

and adoption) through increasing the probability of their awareness by farmers.  These 

location specific effects reveal the importance of the conduct of PVS activities in those 

villages in increasing farmer knowledge of the characteristics of the NERICA varieties. 
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Indeed, farmers living in these areas, even if they are not participating in the PVS trials, 

can more easily visit the NERICA trials by themselves or discuss with PVS participants 

to learn about the varieties NERICA.  This explanation is reinforced by the finding that 

direct participation in PVS trials has a significant and positive effect on NERICA 

adoption in Cote d’Ivoire. These location specific effects also reveal the suitability of the 

NERICA varieties to those identified regions relative to the others; an information very 

useful for targeting purposes in dissemination activities. 

 

Second, the results also show the importance of access to extension services in 

determining NERICA adoption. The positive contribution of access to extension services 

is consistent with prior expectations and the general findings in the literatures (Sunding 

and Zilberman, 2001; Feder et al. 1985).  This is also consistent with the role of extension 

as an importance source of information about the characteristics and performances of 

varieties for farmers  and the importance such information plays in the five stages of the 

adoption process proposed by Rogers (2003): (a) knowledge, (b) persuasion, (c) decision, 

(d) implementation, and (e) confirmation.  However, the results of the study show that the 

number of farmers who have access to extension advice remains relatively low in these 

countries which suggests that there is scope for increasing the cultivation of NERICA 

through an intensification of extension efforts.  This is particularly important for Guinea 

and Gambia where agricultural extension workers have had a significant impact in 

persuading farmers to adopt the NERICA varieties in addition to creating awareness of 

them among farmers.   
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Third, the negative correlation between being female and NERICA adoption found in 

Guinea points to some possible gender biases in the way the NERICA varieties 

disseminated in Guinea were selected and introduced in the farming communities in 

Guinea.  First, it is well known that the various NERICA lines tested in the PVS and on 

farm trials in Guinea differed on some key characteristics that are of importance to 

women (ease of threshing for example). It may well be that the NERICA lines that were 

ultimately selected for release and seed multiplication were the ones that satisfied mostly 

the varietal characteristics preferences of Guinean men rice farmers (high potential yield 

for example). Second, related to this point, Guinean extension workers, most of them 

men, may have focused their extension efforts on male farmers to the point that not much 

information on the differing characteristics and performances of NERICA varieties 

promoted in Guinea were provided to women. This finding is consistent with an 

observation made by Lo (2000) in which it is observed that despite their role as the 

backbone of the farm household’s food production and consumption in the Sahel, women 

have limited access to critical resources, technology inputs and support services such as 

credit and extension due to cultural, traditional and sociological factors. The World Bank 

(1995) also note that rural women in the Sahel are not frequently reached by extension 

services and are rarely members of cooperatives, which often distribute government 

subsidized inputs to small farmers. Still, consistent with this notion Kinkingninhoun-

Mêdagbé et al (2008), in their analysis on the impact of gender discrimination on 

productivity and technical efficiency in Benin, observe that female rice farmers in Benin 

are particularly discriminated against with regards to the access to production resources 

resulting into significant negative impacts on their productivity and income.  
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5. Conclusion  

This study has shown the importance of appropriately controlling for exposure 

and selection bias when assessing the adoption rates of a new technology and its 

determinants. The paper has argued that the main source of the commonly observed low 

level of adoption of modern technologies in smallholder farming in Sub-Saharan Africa is 

lack of awareness of the existence of the technologies by smallholder farmers. The 

structure of the adoption gap resulting from this lack of awareness was analyzed in the 

paper and a methodology for estimating that gap and truly informative adoption rates and 

their determinants based on the ATE framework was presented and discussed. This 

methodology was then used to provide estimates of the NERICA population potential 

adoption rates and gaps as well as estimates of the determinants of NERICA exposure 

and adoption in four West African Countries: Cote d’Ivoire, Guinea, Benin and Gambia.      

From a methodological point of views, four major conclusions can be drawn from 

the analysis of the paper with respect to the conduct of adoption studies.  First, from a 

data collection point of view, adoption surveys must collect information on the farmer 

awareness of the existence the technologies. Otherwise, they are unlikely to lead to 

reliable estimates of adoption rates and their determinants. Second, when the diffusion of 

a technology in the population is not complete, estimated adoption rates from direct 

sample computation and from the classical adoption model are implicitly about joint 

exposure and adoption and do not inform about adoption per se. Third, it is the 

population adoption rate estimated through the ATE estimation framework that provides 

reliable information on the adoption of a technology in terms of its desirability and 
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potential demand by the target population. Fourth, the difference between the observed 

joint exposure and adoption rate and the population adoption rate estimated through the 

ATE framework is the adoption gap that results from the lack of awareness of the 

existence of the technology, which we argue is the main cause of the observed low 

adoption rates of modern agricultural technologies in smallholder agriculture.  

The results of the analyses of the determinants of NERICA exposure and adoption 

in Cote d’Ivoire, Guinea, Benin and Gambia show that, were the whole rice farming 

population of these four countries exposed to the NERICA varieties at the time of the 

surveys,  their adoption rates could have been up to 61%, 24%, 47% and 87%, 

respectively instead of the estimated observed actual adoption rates of 4%, 20%, 19% and 

40% for Cote d’Ivoire in 2000, Guinea in 2001, Benin in 2004 and for Gambia in 2006.  

The implied estimated adoption gaps of 21% in Cote-d’Ivoire, 41% in Guinea, 28% in 

Benin and 47% in Gambia suggest that there is potential for increasing the NERICA 

adoption significantly in these four countries.  

The results of the analysis of the determinants of NERICA adoption illustrate the 

importance of controlling appropriately for awareness in adoption models. Three main 

empirical findings emerge from that analysis.  First, the mere conduct of PVS trials in a 

village promote the adoption of NERICA beyond the subpopulation participating in the 

trials; most likely because it enables non-participating farmers to learn about the 

characteristics and performance of varieties from the participating farmers. This 

beneficial effect on adoption is in addition to the positive effect it has on actual adoption 

through increased awareness of the existence of the varieties among farmers.  



 37

Second, the importance of farmer access to extension services in promoting 

NERICA adoption was also a very important finding of the study. Like the PVS trials, 

access to extension services enables farmers to learn the characteristics and relative 

performances of varieties after they are made aware of their existence. This is consistent 

with the argument by Feder et al. (1985) and numerous other authors who emphasize the 

critical importance of this knowledge in farmer adoption decisions.  According to Rogers 

(2003), knowledge of a new technology begins with information about its existence and 

understanding how it works. And, when the farmeris not involved in the development 

process of a new technology from the start, all adoption or rejection decisions are very 

much conditioned by his or her understanding of how it works.   

Finally, the results of the analysis of the determinants of NERICA adoption in 

Guinea reveal a possible gender bias in the dissemination of NERICA varieties in that 

country. This is an important finding that requires a closer look of 1) the suitability of the 

NERICA varieties disseminated in Guinea to the particular needs of women rice 

producers and 2) the gender composition of extension service in Guinea and the way 

male extension agents work in rice farming communities.   
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Figure 1: Population adoption and Joint exposure and adoption rates under partial exposure to a 
technology and positive population selection bias   
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Figure 2: Population adoption rates and non-exposure and selection biases as function of 
exposure rate 

Figure 2A: The positive population selection bias case: the subpopulation most likely to 
adopt is exposed first
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Figure 2B: The negative population selection bias case: the subpopulation least 
likely to adopt is exposed first
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Figure 2C: The zero population selection bias case: all subpopulation members are 
equally likely to be exposed
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List of tables 
 

Table1: Demographic and socio-economic characteristic of adopters and non-adopters. 
 

Characteristics Benin Cote d’ivoire Gambia Guinea 
Adoption Non-

adoption  
Difference Adoptio

n 
Non-
adoptio
n 

Differenc
e 

Adoptio
n 

Non-
adoption 

Difference Adoption Non-adoption Difference 

Age   42.98 42.72 0.015 43.774 40.898 0.147 45.186 45.129 0.003 48.717 48.049 0.035 
Household size 7.24 5.71 0.383*** 7.666 6.909 0.100 16.536 15.937 0.032 10.907 9.899 0.122** 
Years of 
schooling 

   
2.981 2.231 0.148

4.198 3.824 0.086 4.4
  4.8 

       0.077* 

Percentage of 
women 

58 61 -3 43 34 9
92           94 

-2
3

7 -4 
Percentage of 
men 

42 39 3 57 66 -9
08            6

2
97

93
4 

Extension 70 60 10 9.4 9.8 -0.4          14          14 0 62 40 22 
Alphabetization 8 5 3 33 37 -4 1.4 1.7 -0.3 
NERICA 
village 

74 44 30 68 52 16
68 38

30
58

38
20 

Non-NERICA 
Village 

26 56 -30 32 48 -16
32 62

-30
42

62
-20 



 44

Table 2: Estimates of NERICA Adoption rates in Cote-d’Ivoire and their 95% 
confidence intervals 

 
Parameters   Sample  

moment 
estimates 

Inverse propensity 
score weighting 
(IPW) estimator of 
ATE    

ATE probit adoption 
model 

NERICA exposure rate  
 

0.09 (0.08)   

Joint exposure and adoption rate 
(Probability of knowledge and adoption 
of at least one NERICA variety):   

 
  

 

  

In the full population   0.04 (0.005) 0.04 (0.03  0.05) 0.04 (0.03  0.05)  
Within the NERICA-exposed 
subpopulation  

 
0.37 (0.27  0.48) 0.37 (0.27  0.48)  

NERICA adoption rate ( Probability of 
adopting at least one NERICA variety):  

 
  

In the full population  (ATE)       0.22 (0.10 
0.35)***      0.24 (0.15  0.34)*** 

Within the NERICA-exposed 
subpopulation   (ATE1)  

 
0.37 (0.27  0.47)*** 0.38 (0.30  0.45)*** 

Within the sub-population not 
exposed to the NERICA (ATE0) 

 
0.21 (0.07  0.34)*** 0.23 (0.13  0.33)*** 

Estimated population adoption gap:    
Expected non-exposure bias(NEB)   -0.19 (-0.31 -

0.07)*** 
-0.21 (-0.30 - 
0.12)*** 

Expected population selection bias 
(PSB)  

 
0.15 (0.03  0.26) ** 0.13 (0.04  0.22) *** 

Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
 
 
Table 3: Estimates of NERICA adoption rates in Guinea and their 95% confidence intervals  
 
 Sample  

moment 
estimates 

Inverse propensity 
score weighting 
(IPW) estimator of 
ATE    

ATE probit adoption 
model 

NERICA exposure rate  
 

0.39 (0.08)   

Joint exposure and adoption rate  
(Probability of knowledge and 
adoption of at least one NERICA 
variety):   

   

In the full population   0.20 (0.04) 0.20 (0.18  0.22) 0.20 (0.18  0.22) 
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Within the NERICA-exposed 
subpopulation  

 
0.55 (0.50  0.61) 0.55 (0.50  0.61) 

NERICA adoption rate ( Probability of 
adopting at least one NERICA 
variety):  

 

  
In the full population  (ATE)  0.61 (0.50 0.71)*** 0.61 (0.56  0.65)*** 
Within the NERICA-exposed 
subpopulation   (ATE1)  

 
0.55 (0.47  0.64)*** 0.55 (0.51  0.59)*** 

Within the sub-population not 
exposed to the NERICA (ATE0) 

 
0.64 (0.50  0.78)*** 0.64 (0.59  0.70)*** 

Estimated population adoption gap:    
Expected non-exposure bias(NEB)   -0.41 (-0.50 -

0.32)*** 
-0.41 (-0.45 - 
0.38)*** 

Expected population selection bias 
(PSB)  

 
-0.05 (-0.14  0.04) 

-0.06 (-0.09  -0.03) 
*** 

Legend: * p<0.05; ** p<0.01; *** p<0.001 
Source: WARDA/IRAG/SNPRV 2004, NERICA Impact Study 
 
 
Table 4: Estimates of NERICA Adoption rates in Benin and their 95% confidence intervals 
Parameters   Sample  

moment 
estimates 

Inverse propensity 
score weighting 
(IPSW) estimator of 
ATE    

ATE probit adoption 
model 

NERICA exposure rate  
 

0.26 (0.07)   

Joint exposure and adoption rate  
(Probability of knowledge and adoption 
of at least one NERICA variety):   

   

In the full population   0.18 (0.06) 0.19 (0.14  0.24) *** 0.19 (0.14  0.24) ***  
Within the NERICA-exposed 
subpopulation  

 
0.52 (0.39  0.65) *** 0.52 (0.43  0.61) ***  

NERICA adoption rate ( Probability of 
adopting at least one NERICA variety):  

 
  

In the full population  (ATE)  0.45 (0.33  0.56)***  0.47 (0.37  0.57)***  
Within the NERICA-exposed 
subpopulation   (ATE1)  

 
0.52 (0.35  0.69)*** 0.52 (0.43  0.61)*** 

Within the sub-population not 
exposed to the NERICA (ATE0) 

 
0.41 (0.29  0.52)*** 0.44 (0.32  0.56)*** 

Estimated population adoption gap:    
Expected non-exposure bias(NEB)   -0.26 (-0.33  -

0.19)*** 
-0.28 (-0.36  -
0.20)*** 

Expected population selection bias 
(PSB)  

 
0.07(-0.02  0.17) 0.05(-0.01  0.11)** 

Legend: * p<0.05; ** p<0.01; *** p<0.001 
Source: WARDA 
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Table 5: Estimates of NERICA Adoption rates in Gambia and their 95% confidence intervals 
   

Parameters   Sample  
moment 
estimates 

Inverse propensity 
score weighting 
(IPW) estimator of 
ATE    

ATE probit adoption 
model 

NERICA exposure rate  
 

0.57 (0.12)   

Joint exposure and adoption rate  
(Probability of knowledge and adoption 
of at least one NERICA variety):   

   

In the full population   0.40 (0.03) 0.40 (0.36  0.43) *** 0.40 (0.36  0.43) *** 
Within the NERICA-exposed 
subpopulation  

 
0.86 (0.77  0.94) *** 0.86 (0.77  0.94) *** 

NERICA adoption rate ( Probability of 
adopting at least one NERICA variety):  

 
  

In the full population  (ATE)  0.85(0.75  0.95)*** 0.87 (0.83 0.91) *** 
Within the NERICA-exposed 
subpopulation   (ATE1)  

 
0.86 (0.70  1.02)*** 0.86 (0.81  0.90)*** 

Within the sub-population not 
exposed to the NERICA (ATE0) 

 
0.84 (0.75  0.92)*** 0.88 (0.84  0.92)*** 

Estimated population adoption gap:    
Expected non-exposure bias(NEB)   -0.45 (-0.50  -

0.41)*** 
-0.47 (-0.50 -
0.45)*** 

Expected population selection bias 
(PSB)  

 
-0.01(-0.08  0.10) -0.01 (-0.02  -0.00)** 

Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
Table 6: Exposure probit model and marginal effects in Cote d’Ivoire 
 

    Variable                
Exposure probit 
model     

Marginal effect 
(dy/dx) 

NERICA village   0.92*** 0.427*** 
    Village contact with ANADER              -0.20  
    Village contact with CIDT/GVC -0.21  
Village contact with 
SATMACI/SODERIZ 1.57*** 0.075*** 
Number of NERICA varieties known in 
the village              0.51*** 0.023*** 
Number of traditional varieties known in 0.043*** 0.002*** 
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the village            
Number of NARS upland rice varieties 
known in the village            -0.13* -0.006* 
Number of WARDA upland 
interspecific rice varieties known in the 
village                0.07  
    Past participation to PVS trials           0.10 0.210* 
Practice upland rice cultivation 0.89*** 0.090 
    lx5totar         0.16 -0.030 
    Household size in 1996                  0.01  
 Being born in the same village                  0.24  
         age        0.003 0.000 
      Having a secondary activity       0.280* 0.090 
      Years of formal schooling        0.039* -0.010 
     Being woman      0.29 0.000 
Being from Ethnie Bete -0.99*** 0.249* 
     Being from Ethnie senoufo        1.20 0.340** 
     Being in Forest zone 0.91  
Farmer contact with CIDT/GVC  0.220 
    Farmer contact with 
SATMACI/SODERIZ  0.040 
Average Household size for the 5 past 
years  0.010 
       _Constant  -6.19***  
           N                      1261  
        r2_p          0.37  
        chi2          296.42  
        df_m                         20  
          ll         -257.09  
Aic 556.17  

Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
Table 7: Exposure probit model and marginal effects in Guinea 
 

Variable 
Exposure probit 
model 

Marginal effect 
(dy/dx) 

Age .0065 0.002 
Number of years resident in village  -0.002 -0.001 
NERICA village  0.387***      0.113*** 
Household size  0.011 0.003 
Being woman  -0.467*    -0.122** 
Middle Guinea  -0.046 -0.013 
Upper Guinea  0.612***      0.190*** 
Forest Guinea  -1.189***      -0.287*** 
Experience in upland rice farming  0.178 0.050 
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Experience in lowland rice farming  -0.400***    -0.108*** 
Village contact with SG2000 0.173 0.050 
Total number of  IRAG varieties known 
in the village  0.012 0.003 
Total number of NERICA varieties 
known in the village  0.462***    0.130*** 
Total number of traditional varieties 
known in the village  -0.002 -0.001 
Extension 0.352***      0.101*** 
Total number of IRAG varieties known 
by farmer   
Total number of  traditional varieties 
known by farmer   
Contact with SG2000   
Access to credit   
_cons -1.592***  
Number of sample farmers 1467 1467 
Pseudo R2 0.235  
Khi 2 448.197  
Df m 15  
Log of likelihood -731.481  
AIC 1494.962  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
Table 8: Exposure probit model and marginal effects in Benin 
 

Variable 
Exposure probit 
model 

Marginal effect 
(dy/dx) 

Knowledge of writing in traditional 
language 0.403 0.135 
Education form -0.193 -0.062 
Within a farmer association -0.106 -0.034 
Receving training on rice 0.080 0.026 
NERICA Village 0.922*** 0.316*** 
Household size 0.097** 0.031** 
Man gender  0.395 0.127 
Age 0.015 0.005 
Age squared -0.000 -0.000 
Log of total land size 0.367  
Number of rice varieties known 0.163  
Constant term -2.331*  
Number of sample farmers 268.00  
Pseudo R2 0.13  
Khi 2 46.97  
Df m 9.00  
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Log of likelihood -151.35  
AIC 322.70  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
 
 
 
Table 9: Exposure probit model and marginal effects in Gambia 
 

Variable 
Exposure probit 
model 

Marginal effect 
(dy/dx) 

NERICA Village  0.727*** 0.269*** 
Number of modern varieties in the 
village          0.054 0.019 
Contact with NARI 0.562* 0.196* 
Western Region    0.588***    0.210*** 
Household Size    
basfond   
Number of traditional varieties known by 
a farmer   
Farmer contact with DAS    
North Bank Region    
_cons -0.748***  
Number of sample farmers 600.00  
Pseudo R2 0.11  
Khi 2 89.65  
Degree of freedom 4  
Log of likelihood -369.30  
AIC 748.59  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
Table 10: Coefficients estimates of estimated parametric models for NERICA adoption and 
marginal effects in Cote d’Ivoire 
 

    Variable                

 ATE 
probit 
adoptio
n  
model 

ATE probit 
adoption  
Model 
(dy/dx) 

Classic 
probit 
joint 
exposure 
and adoption 
model 

Classic 
probit 
adoption 
Model 
(dy/dx) 

NERICA village   
1.90**      
  0.427***  1.11*** 0.057*** 

    Village contact with 
ANADER                     0.25 -0.010 
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    Village contact with 
CIDT/GVC     -1.485* -0.010 
Village contact with 
SATMACI/SODERIZ   0.075***  3.26*** 0.217*** 
Number of NERICA varieties 
known in the village                0.023***  1.56*** 0.077*** 
Number of traditional varieties 
known in the village              0.002***  0.01 0.00 
Number of NARS upland rice 
varieties known in the village        -0.006*  -0.635*** -0.032*** 
Number of WARDA upland 
interspecific rice varieties 
known in the village                   0.31*  0.000 
    Past participation to PVS 
trials           0 .91* 0.210*  0.37 0.033* 
Practice upland rice 
cultivation 0 .46 0.090  2.20*** 0.037*** 
    lx5totar          -0.13 -0.030 0.22  0.000 
    Household size in 1996               -0.06 0.000 
 Being born in the same village       0.35 0.010 
         age         -0.01 0.000  0.0004 0.000 
      Having a secondary 
activity        0.45 0.090 0.57**  0.026* 
      Years of formal schooling      -0.05 -0.010  0.02 0.000 
     Being woman       -0.02 0.000  0.26 0.010 
Being from Ethnie Bete  1.12** 0.249* -1.86***  -0.010 
     Being from Ethnie senoufo      1.71** 0.340**  0.03 0.150 
     Being in Forest zone     -3.40*** 0.040 
Farmer contact with 
CIDT/GVC 0 .96 0.220  0.33 0.030 
    Farmer contact with 
SATMACI/SODERIZ  0.19 0.040  0.39 0.010 
Average Household size for the 
5 past years 0.05 0.010 0.09 0.000 
       _Constant  -2.90**  -6.92***  
           N                      123  1261  
        r2_p          0.20  0.415  
        chi2          40.48  107.96  
        df_m                         13    23  
          ll         -64.95  -115.55  
Aic 157.91       279.10  

Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
Table 11: Coefficients estimates of estimated parametric models for NERICA adoption and 
marginal effects in Guinea 
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Variable 

 ATE 
probit 
adoption  
model 

ATE 
probit 
adoption  
Model 
(dy/dx) 

Classic probit 
joint exposure 
and adoption 
model 

Classic probit 
adoption 
Model (dy/dx)

Age -0.003 -0.001 -0.002 0.001 
Number of years resident in 
village  0.008 0.002 0.002 0.001 
NERICA village  -0.082 -0.024 0.230* 0.057* 
Household size  0.006 0.002 0.013 0.002 
Being woman  -0.892**    -0.264** -0.513* -0.138*** 
Middle Guinea  -0.615*  -0.187* 0.059 -0.074* 

Upper Guinea  -0.831*** 
    -
0.255*** 0.166 -0.002 

Forest Guinea  0.732* 0.213* -0.055 -0.126*** 
Experience in upland rice 
farming  -0.106 -0.032 0.039 0.018 
Experience in lowland rice 
farming  -0.248 -0.071 -0.258* -0.090*** 
Village contact with SG2000   0.292** 0.029 
Total number of  IRAG 
varieties known in the village    -0.036 0.002 
Total number of NERICA 
varieties known in the village    0.353*** 0.075*** 
Total number of traditional 
varieties known in the village    -0.016* -0.000 
Extension 0.588*** 0.169*** 0.457*** 0.125*** 
Total number of IRAG varieties 
known by farmer 0.295*** 0.087*** 0.127* 0.033*** 
Total number of  traditional 
varieties known by farmer -0.095*** -0.028*** 0.025* -0.011*** 
Farmer contact with SG2000 -0.145  -0.004  
Access to credit   0.261 0.066 
_cons 0.565  -1.927***  
Number of sample farmers 511 1467 1467 1467 
Pseudo R2 0.171  0.150  
Khi 2 98.724  189.886  
Df m 14  19  
Log of likelihood -291.916  -619.814  
AIC 613.832  1279.629  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
Table 12: Coefficients estimates of estimated parametric models for NERICA adoption and 
marginal effects in Benin 
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Variable 

 ATE 
probit 
adoption  
model 

ATE 
probit 
adoption  
Model 
(dy/dx) 

Classic probit 
joint exposure 
and adoption 
model 

Classic probit 
adoption 
Model (dy/dx)

Knowledge of writing in 
traditional language    0.261 0.064 
Education form    0.008 -0.030 
Within a farmer association    -0.374 -0.016 
Receving training on rice    0.433* 0.012 
NERICA Village 0.038 0.012 0.649** 0.153*** 
Household size 0.021 0.007 0.094* 0.017* 
Man gender  -0.285 -0.094 0.421 0.027 
Age 0.193** 0.064** 0.095 0.025* 
Age squared -0.002** -0.001** -0.001* -0.000* 
Log of total land size 0.260* 0.122*  0.044* 
Number of rice varieties known 0.087 0.054  0.019 
Constant term -3.448*  -4.240***  
Number of sample farmers 96.00  268.00  
Pseudo R2 0.12  0.16  
Khi 2 19.03  48.41  
Df m 7.00  11.00  
Log of likelihood -58.26  -107.86  
AIC 132.53  239.72  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 
 
Table 13: Coefficients estimates of estimated parametric models for NERICA adoption and 
marginal effects in Gambia 
 

Variable 

 ATE 
probit 
adoption  
model 

ATE 
probit 
adoption  
Model 
(dy/dx) 

Classic probit 
joint exposure 
and adoption 
model 

Classic probit 
adoption 
Model (dy/dx)

NERICA Village   0.688*** 0.234*** 
Number of modern varieties in 
the village   0.063* 0.016 
Contact with NARI   0.592* 0.172* 
Western Region  -0.820***   -0.192** 0.282 0.066 
Household Size  -0.012 -0.002 0.001 -0.001 
basfond -0.250 -0.043 -0.519*** -0.021 
Number of traditional varieties 
known by a farmer -0.091** 

    -
0.017*** 0.021 -0.008*** 

Farmer contact with DAS  0.555*     0.093** 0.182 0.045** 
North Bank Region  -0.900***     -0.217** -0.340* -0.103** 
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_cons 2.200***  -0.600**  
Number of sample farmers 277.00  600.00  
Pseudo R2 0.13  0.12  
Khi 2 32.90  89.35  
Degree of freedom 6  9  
Log of likelihood -99.59  -355.11  
AIC 213.17  730.23  
Legend: * p<0.05; ** p<0.01; *** p<0.001 
 




