
Lawrence Berkeley National Laboratory
LBL Publications

Title
The total-factor energy productivity growth of China’s construction 
industry: evidence from the regional level

Permalink
https://escholarship.org/uc/item/1wf6s50d

Journal
Natural Hazards, 92(3)

ISSN
0921-030X

Authors
Huo, Tengfei
Ren, Hong
Cai, Weiguang
et al.

Publication Date
2018-07-01

DOI
10.1007/s11069-018-3269-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wf6s50d
https://escholarship.org/uc/item/1wf6s50d#author
https://escholarship.org
http://www.cdlib.org/


ORIGINAL PAPER

The total-factor energy productivity growth of China’s
construction industry: evidence from the regional level

Tengfei Huo1 • Hong Ren1 • Weiguang Cai1 • Wei Feng2 •

Miaohan Tang1 • Nan Zhou2

Received: 3 December 2017 / Accepted: 10 March 2018
� Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract This study uses the total-factor energy productivity change index (TFEPCH) to

investigate the changes in energy productivity of construction industry for 30 provincial

regions in China from 2006 to 2015, adopting the improved Luenberger productivity index

combined with the directional distance function. In addition to traditional economic output

indicator, this study introduces building floor space under construction as a physical output

indicator for energy productivity evaluation. The TFEPCH was decomposed into energy

technical efficiency change and energy technical progress shift. Results indicate that, first,

energy productivity of China’s construction industry decreased by 7.1% annually during

2006–2015. Energy technical regress, rather than energy technical efficiency, contributed

most to the overall decline in energy productivity of China’s construction industry. Second,

energy productivity in the central region of China decreased dramatically, by a cumulative

sum of approximately 77.1%, since 2006, while energy productivity in the eastern and

western regions decreased by over 54.3 and 65.3%, respectively. Only two of the 30

provinces considered—Hebei and Shandong—improved their energy productivity during

2006–2015. The findings presented here provide a basis for decision-making and refer-

ences for administrative departments to set differentiated energy efficiency goals and

develop relevant measures. Additionally, the findings are highly significant for energy and

resource allocation of Chinese construction industry in different regions.
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1 Introduction

Energy use is the main driver of carbon emission and leads to environmental problems

(Zhang and Wang 2017). With the increase in energy consumption, China’s CO2 emission

is largest on earth (BP 2017). However, energy efficiency in China remains low relative to

that of developed countries, resulted from the restrictions from China’s economic devel-

opment mode these years (Zhang et al. 2017a). The continued increase in energy intensity,

accompanied by environmental problems, has created a bottleneck, restricting China’s

social progress and economic development. Thus, China’s energy efficiency issue requires

much attention.

The construction industry has become China’s pillar industry. China is carrying out

urban–rural construction on the largest scale in the world as a result of rapid urbanization,

with an average annual construction area of more than 10 billion square meters (m2) since

2010 (Liang et al. 2014, 2016). In 2015, construction industry added value took up 6.86%

of GDP, with an increase of 6.9% over 2014; construction enterprises’ profits achieved

650.8 billion yuan, with a growth of 1.57% over the previous year (NBSC 2016). At the

same time, the construction industry accounts for the largest share of energy use among

Chinese industries. The total energy demand by the construction industry increased 8.9%

annually on the average from 2005 to 2014 (NBSC 2016). Moreover, the proportion of

building-related energy consumption in national total energy consumption is up to 46%

(Cai 2011; Zhao et al. 2017): upstream links to the construction industry include sectors

with high volume of energy demand (e.g., the iron and steel sector and cement sector);

downstream links to the construction industry include the building sector, the highest

energy consumption sector among end-users in addition to industrial and transport sectors.

Therefore, improving energy and resource utilization efficiency in construction industry is

critical for China to achieve its carbon emissions goals. In this context, the Chinese

government has sought to promote green building and industrialized building to reduce

energy consumption at the construction stage (Zhao et al. 2016; Liu et al. 2017). The

‘‘thirteenth five-year plan (FYP),’’ released by the Ministry of Housing and Rural–urban

Development (MOHURD), emphasizes on improving energy utilization efficiency and

optimizing energy structures to effectively curb the increase of building energy use. As for

Chinese construction industry, whether these energy policies will in fact improve its

regional energy efficiency remains unknown. An effective way to assess energy utilization

efficiency in regional construction industry is lacking, limiting the government’s ability to

evaluate local authorities and set differentiated energy-saving goals. Hence, examining

energy utilization efficiency level in Chinese construction industry is imperative, and this

can provide guidance for the government in setting differentiated energy-saving goals.

Many scholars used to assess the efficiency level related to energy and environment by

data envelopment analysis (DEA) method. Measurement methods they used for energy

efficiency evaluation are broadly categorized into two groups: the single-factor energy

efficiency (SFEE) approach (e.g., energy intensity indicator) and the total-factor energy

efficiency (TFEE) approach. However, energy efficiency values obtained in such studies do

not reflect the ‘‘separate contribution’’ of energy as an input in total-factor productivity.

The calculated energy efficiency therefore does not correspond to the actual total-factor

energy productivity (TFEP) (i.e., dynamic energy efficiency). In measuring and evaluating

energy efficiency, previous studies have not considered physical output indicators, which

play a role equivalent to that of economic indicators, especially in the construction

industry. To date, dynamic energy efficiency in the construction industry has not been

researched.
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This study seeks to bridge the knowledge gap by offering three main contributions.

First, we utilize ‘‘physical output’’, i.e., floor space under construction by construction

enterprises, as an output indicator to establish a set of uniform and rational input and output

indicators. Second, we introduce the TFEP change index (TFEPCH), which is the inte-

gration of TFEE index and Luenberger productivity index (LPI), to measure changes in

TFEP. Third, we measure the ‘‘real TFEP’’ of construction industry in Chinese 30 pro-

vinces between 2006 and 2015, adopting improved LPI combined with the directional

distance function (DDF).

The rest parts of this study are: the second part is the review on pervious literatures The

third part shows method and data used in this paper. The following part is results and

discussion. Finally, conclusions and recommendations for policy makers and administra-

tive departments are proposed.

2 Literature review

Selecting an appropriate energy efficiency measurement method is key to the accurate

measurement of energy efficiency. Two measurement methods are commonly employed in

the existing literature: the single-factor measurement method and the total-factor mea-

surement method (Wu et al. 2017; Zhang et al. 2017b, 2018; Zhu et al. 2018). Single-factor

energy efficiency (also called partial factor energy efficiency) is used to measure energy

consumed in the production of economic output. The two most commonly used indicators

under the single-factor approach are ‘‘energy intensity.’’ Energy intensity represents the

energy used when generating each unit of economic output and energy productivity is the

energy consumed by a unit of economic output (Patterson 1996; Han et al. 2007; Nel and

van Zyl 2010; Hu et al. 2017; Zhu et al. 2018). It is simple and convenient to use the

single-factor energy efficiency (SFEE) approach when comparing energy efficiencies of

different countries and regions at specific times or over a selected period. It has therefore

been widely adopted by many scholars (Liu and Ang 2003; Han et al. 2007; Shi 2007;

Liang et al. 2016; Cao et al. 2017) in recent decades. This approach, however, has sig-

nificant limitations. First, it views energy as the sole input and ignores relationships

between energy and other productive factors. It disregards the elasticity of energy and other

productive factors, measuring energy efficiency from different angles such as energy

macro efficiency, energy efficiency, and physical efficiency. When other factors, such as

labor and capital, are taken into account, energy use cannot be adequately evaluated by

examining only SFEE or energy productivity. The energy efficiency index may, for

example, increase solely because labor has been substituted for energy rather than due to

the increase in the technical energy efficiency (Patterson 1996; Zhang et al. 2018; Zhu

et al. 2018).

To eliminate these defects, Hu and Wang first presented the TFEE concept (Hu and

Wang 2006). The percentage of target energy input (TEI) on actual energy input (AEI) for

a given level of output was defined as TFEE in their study. Employing a data envelopment

analysis (DEA) model, they measured TFEE of China’s provinces between 1995 and 2002.

Their results showed that SFEE indicator that pervious scholar always used overestimates

the contribution of energy owing to the significant substitution effects among those inputs.

Following this study, Wei and Shen (2007) provided a vertical comparison and analysis of

TFEE of Chinese provinces, using provincial data from 1995 to 2004 (Wei and Shen

2007). Hu and Kao (2007) studied energy-saving among APEC countries by adopting
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TFEE method. Following their studies, Zhou and Ang (2008) measured economy-wide

energy efficiency performance, using linear programming models. Wang and Wei (2014)

studied regional energy efficiency in industrial sector aiming to 30 urban areas in China

during 2006–2010. Adopting network DEA, Liu and Wang investigated the efficiency level

of energy in Chinese industrial sector (Liu and Wang 2015). Using the World Input–Output

Database, Foster-McGregor and Verspagen calculated total-factor productivity (TFP)

growth in 40 economies during 1995–2009 and found that the TFP growth in Asian

economies has been relatively strong (Foster-Mcgregor and Verspagen 2017). Zhang et al.

(2018) used the CDM project evidence and measured the technology gap with DEA.

Within the total-factor framework, two main methods are used to evaluate energy

efficiency: one is stochastic frontier analysis (SFA) approach (Liu et al. 2016), and another

one is DEA method that is a nonparametric method (Charnes et al. 1981). When evaluating

energy efficiency, people need to consider artificial parameters are required in SFA

approach, while the assumed functions are not needed in DEA approach (Zhang and Bin

2013; Fernández et al. 2018). The DEA method can overcome the impact on evaluation

results due to subjective factors in the SFA method, and therefore the estimation accuracy

can be improved. Therefore, DEA is widely popular as a method of evaluating energy

efficiency (Zhang and Wei 2015; Qin et al. 2017; Zhang et al. 2018). When comparing the

results obtained with DEA methods, the energy utilization efficiency differences can be

found between those DMUs. However, efficiency values obtained using DEA software

actually pertain to overall technical efficiency, not the real ‘‘energy efficiency.’’ Moreover,

DEA is a static evaluation method, so evaluations based on it can provide only relative

levels of energy efficiency across DMUs but cannot show increases or decreases in energy

efficiency between periods. Hence, effective practical recommendations and guidance

cannot be proposed based on such methods (Wu et al. 2017; Fernández et al. 2018).

To address the incomparability of energy efficiency levels in different years, Chang and

Hu introduced a dynamic method used to measure changes in TFEP at the country level

(Chang and Hu 2010). Other scholars have also employed a dynamic method to evaluate

changes in energy efficiency (Wang 2011; Yang et al. 2013; Zhang et al. 2014; Fujii et al.

2016; Liang et al. 2016; Fernández et al. 2018; Li and Lin 2018). The energy utilization

level of Chinese iron and steel industry and energy consumption in Turkey were measured,

respectively, but authors only considered energy-related input indicators, disregarding

other input indicators, such as labor and capital (Wei and Shen 2007; Du and Lin 2017). If

the adopted methods were used under the TFEE framework, the efficiency measure

obtained would be total-factor productivity, not total-factor energy productivity (TFEP).

Yang et al. (2013) constructed a total-factor productivity (TFP) index to evaluate changes

in TFP in 30 provinces in China during 2006–2015. However, the results that they obtained

actually pertained to TFP.

In summary, the main drawbacks of the current literature are as follows: (1) the results

obtained do not pertain to actual TFEP. These studies merely took energy as one kind of

input among others in the DEA-Malmquist index within the traditional total-factor

framework and measured the ability of DMUs to maximize output. They did not differ-

entiate energy from other productive factors, such as labor and capital. Thus, the measures

of energy efficiency they obtained could not reveal the ‘‘characteristics’’ of energy, and

their results actually pertain to total-factor productivity with three inputs—labor, capital

and energy—or, more precisely, total-factor productivity considering energy element

input. Such an error leads to an overestimation of energy productivity. (2) These studies

mainly considered three key inputs (i.e., labor force, capital, and energy) and only one

economic output (e.g., industry value-added or GDP, etc.). None of this research
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considered physical output, which is just as important as economic output, especially in the

construction industry. This is because energy consumption per unit of GDP and energy

consumption per unit of floor space are, respectively, macro- and micro-energy intensity

indictors that play equivalent roles in evaluating output in construction industry. Failure to

consider this output indicator will lead biased measurements of energy efficiency. (3) None

of this research focused on dynamic energy efficiency in construction industry. Xue et al.

(2015) attempted to study changes in energy utilization efficiency regarding construction

industry, but they included merely two energy-related indicators (coal consumption and

electricity consumption). They maintained that all regional differences in output in the

construction industry were due to differences in energy inputs, ignoring the impact of other

inputs on output. As a result, they also failed to obtain the measurement of ‘‘total-factor

energy productivity.’’

With this in mind, this study seeks to bridge the gaps by pursuing three main objectives.

Specifically, (1) we utilize the ‘‘physical output’’—floor space under construction—as an

output indicator, additional to economic output, and establish a set of uniform and rational

input and output indicators. Constructed buildings are the special ‘‘product’’ of the con-

struction industry, and therefore, building floor space plays a role equivalent to that of

economic output, one ignored in all other studies. Including floor space as an output can

improve the accuracy of measurements of energy productivity in Chinese construction

industry. (2) We introduce the TFEPCH index, the integration of TFEE index and LPI, to

measure the changes in TFEP of construction industry. This can extend previous related

studies, which often focus on other industries, and provide the government with an

effective way of assessing energy utilization in the construction industry and encouraging

the construction industry in particular regions to reduce energy consumption. (3) We adopt

an improved LPI—combined with the DDF—to measure construction industry TFEP

rather than TFP, as in most previous literature. This approach captures the ‘‘separate

contribution’’ and ‘‘dynamic characteristics’’ of energy within the TFEE framework, which

represents actual total-factor energy productivity. Through this approach, evidence needed

by the government to set differentiated energy-saving goals can be obtained.

3 Data and methods

3.1 Data description

Determining appropriate input and output indicators and accurately measuring them is vital

for measuring energy utilization efficiency in construction industry and calculating the

inputs needed to achieve a given energy target. With increasing focus on energy, an

economic growth model based on capital, labor and energy has been widely adopted by

scholars. Based on previous literatures and the characteristics of Chinese construction

industry, we selected suitable indicators regarding input and output. In Table 1, we show

the specific description of these indicators.
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3.2 Methods

3.2.1 Luenberger productivity index (LPI)

Chambers et al. (1998) proposed the LPI, and this index is now widely adopted to estimate

changes of total-factor productivity of DMUs (i.e., 30 provinces in China) between dif-

ferent time periods. The LPI was more applicable than Malmquist productivity index in

some scholars’ view because of the flexible characteristics of the DDF (Wang and Wei

2016). The LPI can be used to measure changes in TFP because it is actually a multiple

factor productivity index (Chang and Hu 2010).

We first define Pt as the production technology of construction industry. We assume that

during each period t 2006�2007; 2007�2008; 2014�2015ð Þ, there are many inputs which

are represented as xt 2 RM
þ and can produce many outputs, represented as yt 2 RS

þ. Then the

production technology, Pt, can be represented as

Pt ¼ ðxt; ytÞ : xt can produce ytf g: ð1Þ

In this study, inputs include the number of person employed in construction, the total

assets of construction enterprises, the total capacity of machinery and equipment owned

and energy consumption in the construction industry. Outputs are represented by gross

output value in the construction industry and building floor space. The calculation of the

LPI depends on DDFs (Chambers et al. 1998). The DDF at time t can be represented as:

F
!

tðxt; yt; hx; hyÞ ¼ max b 2 R : ðxt � bhx; y
t þ bhyÞ 2 Pt

� �
: ð2Þ

Table 1 The introduction of indicators regarding input and output

Variable description Data source

Input indictor

Labor
force

The number of persons employed in construction at the end of
each calendar year denotes the labor input

China Statistical Yearbook
(NBSC 2016)

Capital Total assets of construction enterprises represent capital
investment in the construction industry, measured in
constant prices as a portion of GDP during 2006–2015
(using 2005 as the base year)

China Statistical Yearbook
(NBSC 2016)

Technical
input

Total capacity of machinery and equipment owned (year-end)
is represented the technical input

China Statistical Yearbook
(NBSC 2016)

Energy
input

The physical quantity of each kind of energy in each province
is converted into SCE, according to the conversion
coefficient for each energy type, with the different
quantities at the national level, respectively, and then
aggregate them together

China Energy Statistical
Yearbook (NBSC 2016)

Output indicator

Economic
output

Gross output value in construction industry in each province
is used as the economic output indicator, measured in
constant prices as a portion of GDP during the investigated
period, 2006–2015 (using 2005 as the base year)

China Statistical Yearbook
(NBSC 2016)

Physical
output

The floor space of buildings under construction by
construction enterprises in each region is the physical
output indictor

China Statistical Yearbook
(NBSC 2016)
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In this equation ðhx; hyÞ represented as a nonzero vector in RM
þ � RS

þ. Therefore, when

contracting inputs in this function, outputs can be increased at the same time. Given the

above definition, only if the point ðxt; ytÞ was on the production frontier,

Ft

!
ðxt; yt; hx; hyÞ� 0 and Ft

!
ðxt; yt; hx; hyÞ ¼ 0. Thus, the LPI can be represented as follows:

Lðxtþ1; ytþ1; xt; ytÞ ¼ 1

2
ðFt

!
ðxt; ytÞ � Ft

!
ðxtþ1; ytþ1ÞÞ þ ðFtþ1

!
ðxt; ytÞ � Ftþ1

!
ðxtþ1; ytþ1ÞÞ

h i
:

ð3Þ

If the LPI exceeds zero, productivity will increase. If LPI equal to zero, the productivity

will remain unchanged. If LPI is less than zero, the productivity will decrease during the

time period t to t þ 1.

3.2.2 The generalized DDF

The input decreases and output expansions can be measured by DDF in efficiency eval-

uation, but exact input or output slacks cannot be obtained through this function (Chambers

et al. 1998). To address this problem, a generalized DDF combining with a linear pro-

gramming method was proposed by Färe and Grosskopf. So, the input or output slack

adjustments can be acquired when calculating the efficiency (Färe and Grosskopf 2010;

Zhang and Chen 2017). We made the following assumptions: in terms of one object in N

objects during one period T , there are M inputs and S outputs. xtij represents the ith input of

the jth object; ytrj denotes the rth output variable at time t. Therefore, regarding observation

o at time t, the input-based DDF functions can be represented as the linear programming

problem (Färe and Grosskopf 2010) shown as follows:

F
!

tðxt; ytÞ ¼ max
XM

i¼1

ui

s:t:
PN

j¼1

kixtij � xtioð1� uiÞ

PN

j¼1

kixtrj � ytro

i ¼ 1; . . .;M; j ¼ 1; . . .;M;

ki � 0;ui � 0 r ¼ 1; . . .; S

8
>>>>>>>><

>>>>>>>>:

ð4Þ

where ki represents the intensity variable. The convex combination of inputs and outputs

can be formed by this intensity variable. ui represents the contracting amount of the ith

input needed to achieve efficiency. Thus, if all redundant variables are zero, then

u1 ¼ u2 ¼ � � � ;¼ uM ¼ 0, and DMU o is in the frontier of the production. Obviously, the

true slacks are on the basis of the assumption that the returns will keep constant to scale.

This illustrates that inputs and outputs efficiency level needed to aggregate technical

efficiency.

3.2.3 The TFEPCH

The LPI cannot be used to analyze the change in productivity from a separate factor, such

as energy, labor or capital, within the total-factor framework (Chang and Hu 2010). This
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study attempts to use an improved LPI and the TFEPCH index to measure TFEP of

Chinese construction industry. The TFEPCH index is in fact a combination of the gen-

eralized DDF and TFEE index. Energy efficiency, as defined within the TFEE framework,

will be substituted for all the corresponding components in the LPI. In this case, the change

in productivity resulted from individual input factors within the TFEE framework can be

calculated simultaneously when computing TFP. This paper’s purpose is to explore

changes in productivity brought about by the ‘‘energy element’’ in the construction

industry during the 2006–2015 period within the TFEE framework. The improved LPI

satisfies the requirements of the construction industry in this study.

According to the definition (Hu and Wang 2006), TFEE is the percentage of the TEI in

the AEI in construction industry, and we know that energy inputs must reduce the total

adjustment needed to achieve optimal energy input. If the energy efficiency of one pro-

vince is inefficient, the energy input need to be adjusted according to the inefficient portion

of the energy actually consumed in each province. The redundant energy input and the

inefficient portion of output can be obtained according to Eq. (4), and TFEE of DMU i (the

given province) at time t is represented as:

TFEE i;tð Þ ¼
PE i;tð Þ
AE i;tð Þ

¼
AE i;tð Þ � TE i;tð Þ

AE i;tð Þ
ð5Þ

where PEði;tÞ represents the target energy input of province i, AEði;tÞ represents the actual

energy input of province i, and TEði;tÞ is the total adjustments in the energy input of the

construction industry in province i.

We use FEt

!
ðxt; ytÞ to represent the distance from provinces at the production frontier

(i.e., the optimal energy input) for energy use at time t t ¼ 2006; 2007; 2015ð Þ. From

Eq. (3), we can see that Ft

!
ðxt; ytÞ and Ftþ1

!
ðxtþ1; ytþ1Þ actually measure distance within the

same time periods, t and t þ 1, while Ft

!
ðxtþ1; ytþ1Þ and Ftþ1

!
ðxt; ytÞ measure distance in the

intertemporal comparison between AEI and TEI during the period from t to t þ 1.

Therefore, the percentage of the TEI in the AEI can replace the corresponding components

in the input-oriented distance functions, which are shown in the following equation:

TFEE t;tð Þ ¼
PEt

AEt

¼ 1� FEt

�!
xt; ytð Þ: ð6Þ

We can obtain TFEEðtþ1;tþ1Þ ¼ PEtþ1

AEtþ1
¼ 1� FEtþ1

!
ðxtþ1; ytþ1Þ, according to formula (6).

TFEEðt;tþ1Þ and TFEEðtþ1;tÞ can also be obtained. Therefore,

TFEPCH ¼ TFEEðtþ1;tþ1Þ � TFEEðt;tÞ
� �

þ 1

2
½ðTFEEðtþ1;tÞ � TFEEðtþ1;tþ1ÞÞ

þ ðTFEEðt;tÞ � TFEEðt;tþ1ÞÞ�

¼ 1

2
½ðTFEEðtþ1;tþ1Þ � TFEEðt;tÞÞ þ ðTFEEðtþ1;tÞ � TFEEðt;tþ1ÞÞ� :

ð7Þ

The TFEP the construction industry in each province depends on the comparison of the

value of TFEPCH and zero. If the TFEPCH is greater than zero, this means the TFEP

improves. Similarly, if the TFEPCH is equal to or less than zero, this means TFEP remains

unchanged or decreases from the period t to t ? 1. The linear programming in formula (4)

is used to calculate the components in formula (7).
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From Eq. (7), we know that the TFEPCH index is an aggregate index equal to average

value of TFEP in construction industry. However, if we rely exclusively on this index, we

cannot identify the driving force behind the changes in energy productivity. Therefore, it is

necessary to more specifically decompose TFEPCH. The TFEPCH can be broken down

into two parts: energy technical efficiency change (EFFCH) and energy technical progress

shift (ETECHCH) (Wang and Wei 2016). The EFFCH is used to measure changes in

relative energy efficiency, while the ETECHCH is utilized to measure shifts in the frontier.

The formulas for EFFCH and ETECHCH are as follows:

EFFCH ¼ TFEE tþ1;tþ1ð Þ � TFEE t;tð Þ ð8Þ

ETECHCH ¼ 1

2
TFEE tþ1;tð Þ � TFEE tþ1;tþ1ð Þ
� �

þ TFEE t;tð Þ � TFEE t;tþ1ð Þ
� �� �

: ð9ÞÞ

4 Results and discussion

4.1 Measurement results

The DEA measurement software—MaxDEA5—is adopted to measure the total adjustment

and projection of energy consumption, based on formula (4). Then, the TFEE index in the

construction industry in each province in China can be obtained using formula (5). The

TFEPCH index can be obtained according to formulas (6) and (7). The calculated results

are shown as follows.

4.1.1 Changes in TFEP of China’s construction industry

Table 2 lists the TFEPCH values for Chinese construction industry by provincial region in

China from 2006 to 2015.

Figures 1 and 2 show TFEPCH in the construction industry of three major regions (the

eastern, central and western region) during each period and cumulative energy productivity

changes in the three regions in each year.

4.1.2 The components of changes in TFEP in China’s construction industry

The TFEPCH index can be broken down to its two primary components—the EFFCH and

the ETECHCH, using Eqs. (8) and (9)). Energy technical efficiency change is actually the

change in the relative efficiency of energy input in each region, as shown in Table 3. The

ETECHCH indicates the technology changes in energy utilization during one period,

showing movements of the production frontier within the total-factor framework. Table 4

shows the ETECHCH in the construction industry in China by region during 2006–2015.

The change in the average EFFCH and the average energy technical change in three

major regions and at the national level are shown in Figs. 3 and 4.

4.2 Analysis and discussion

To address the geographical disparity and challenges, to conduct regional analysis is

critical. In the light of the rules of economic development and geographical division,
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Chinese 30 provincial regions are categorized into three major regions.1 Considering the

above results, several findings are obtained.

4.2.1 Analysis on the TFEP changes from three main regions

According to the above results, three major regions experienced negative growth of energy

productivity in the construction industry almost over all periods during 2006–2015. In fact,

TFEPCH was positive only in the eastern region during 2012–2013 and the central region

during 2007–2008. With the rapid growth of urbanization process in China, higher con-

struction standards and building quality are required to achieve green construction and

energy-saving buildings. More construction quantities would increase for this purpose,

which would lead to more energy consumption in the construction process. Besides, the

environmental protection requirements, such as noise control, dust control and building

wastes disposal, are even stricter in the new urbanization context in China. These measures

would also result in higher energy consumption. These can be served as the explanations

for energy productivity decrease in China’s construction industry.
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Fig. 1 Annual TFEP growth in three regions and at national level
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Fig. 2 Cumulative energy productivity changes in three regions and at national level in China

1 We categorize the 30 provinces into three groups. The eastern region includes 11 provinces: LN, HB, SD,
JS, ZJ, FJ, GD, BJ, TJ, SH, HAI. The central region contains eight provinces: JL, HLJ, SX, HN, AH, JX, Hu,
Hb. The western region contains 11 provinces: IM, XJ, GS, SAX, NX, SC, CQ, GZ, YN, GX, QH.
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From Table 2 we can see, average TFEP of China’s construction industry decreased by

7.1% annually since 2006 and decreased especially sharply from 2009 to 2010 (13.5%). By

contrast, according to the traditional energy productivity index, energy productivity in the

construction industry in China increased by 4.05% annually during 2006–2015, as cal-

culated using data from uniform data sources: Chinese energy statistics and statistics

yearbook (NBSC 2016). This indicates that the energy productivity changes were over-

estimated using conventional energy productivity index, because only energy was con-

sidered as the input. The significant substitution effects of other inputs can be served as the

explanation of this phenomenon. This finding conforms to that of Chang and Hu (2010).

As Fig. 2 shows, the cumulative changes in energy productivity in the three main

regions were negative over the period (the initial TFEP was assumed to equal to unity in

2006). This result conforms to the changing trend in energy productivity, seen in Fig. 1.

Energy productivity in the central region decreased dramatically, by a cumulative 77.1%

since 2006, while energy productivity in the eastern and western regions decreased by over

54.3 and 65.3%, respectively. From Fig. 2, we also know that the economic growth and

energy productivity growth in eastern region were both the highest compared to the other

two regions, a finding that conforms with those of other studies (Chang and Hu 2010;
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Fig. 3 Average energy technical efficiency changes in three major areas and at the national level
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Fig. 4 Average energy technical changes in three major areas and at the national level
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Wang et al. 2013; Zhang et al. 2016). This can be attributed to the regional disparities in

China. In line with other scholars’ study results, the economy and technology are the major

drivers influencing energy productivity (Chang, 2015; Wu et al. 2012). As the pioneer of

‘‘Reform and Open Policy,’’ eastern region has developed firstly and therefore become the

manufacturing center of China and the advanced economic development regions (Liang

et al. 2016). The gross output of construction industry, the building floor space, and energy

productivity growth in eastern region were highest among three regions, whereas these

indicators in western region were the lowest, and the technological level was lower in

central and western regions. The eastern region has the highest level of per capita income

and the highest level of energy productivity growth, while the western region has the

lowest level of per capita income and energy productivity growth. The convergence of

energy productivity of China construction industry cannot be represented with the results,

suggesting that regions with relatively lower economic growth cannot catch up to devel-

oped regions (Hu and Wang 2006).

4.2.2 Analysis on the TFEP changes at the provincial level

Changes in energy productivity in different provinces varied widely due to the disparities

of different provinces, with only two provinces showing positive growth in energy pro-

ductivity. As shown in Table 2, only Hebei and Shandong improved their energy pro-

ductivity during the reference period. Energy productivity in Shandong increased by a

cumulative 27.6% since 2006, while the annual growth rate in Hebei was 0.7%. Regional

disparities such as the economic development modes, the technological development

levels, and the industry structures are large in China’s different province, and therefore

energy productivity levels in the construction industry in different provinces are also

discrepant. As shown in Tables 3 and 4, the average energy technical efficiency in the

construction industries of Shandong and Hebei increased by 4.5 and 4.2%, respectively.

They were ranked 6th and 7th in China and were the only two provinces in the eastern area

whose average EFFCH ranked above that of China as a whole. The energy consumption in

construction industry in Shandong exhibited a downward trend during the reference period

and reached a low point of 4.43 Mtce in 2013 (NBSC 2016). During the 12th FYP period,

Shandong developed green building pilots, enhanced energy conservation and emissions

reduction in construction industry. Apart from that, many large-scale construction enter-

prises in Shandong increased their investment in science and technology during the ele-

venth FYP period. Similarly, energy consumption in the construction industry in Hebei saw

a significant decline, from 4.06 Mtce to 2.95 Mtce, from 2012 to 2015, although the

figure increased during the 11th FYP period. This is due to Hebei’s policy of promoting

green and low-carbon techniques and transformation from an extensive-oriented to an

intensive-oriented construction industry during the 12th FYP period. However, eight

regions (Hainan, Tianjin, Ningxia, Henan, Jiangxi, Heilongjiang, and Xinjiang) saw dra-

matic declines of more than 10% in their energy productivity since 2006.

These findings conform to those of some existing related studies. For example, Yang

found that strategies regarding regional development in China directly drive the widening

spatial development gap (Yang 2002; Zhang and Hao 2015). Zhang et al. argued that

industrial structure adjustment can be served as an important policy tool for local gov-

ernments in achieving low-carbon development and energy productivity growth (Zhang

et al. 2016). Additionally, Yan et al. (2017) proposed that adjusting the structure of cross-

industrial linkages in the construction industry can improve energy efficiency, while Chen
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et al. (2012) and Wang et al. (2016) claimed that the shift of industry structure can greatly

impact energy efficiency.

4.2.3 Analysis on the EFFCH

In the following section, we intend to explore the driving forces behind energy productivity

of Chinese construction industry. The TFEPCH can be decomposed into two primary

components, EFFCH and ETECHCH, based on the results shown in Sect. 4.1.2. And

therefore several findings are obtained as follows.

Regions differed with respect to shift in energy technical efficiency, but the overall

trend was positive. In Table 3 and Fig. 3, we observe that the average EFFCH was highest

(2.4%) in the western area throughout the period, while the figure in central and eastern

areas was 1.9 and 0.7%, respectively. This finding conforms to those of related studies, and

the reasons can be attributed to the regional disparity in China. The eastern region

emphasizes the adoption of environmentally friendly energy technologies and reform of

traditional production and consumption patterns, while inland regions with less economic

development attach importance to the efficient use and conservation of energy.

Energy technical efficiency in Chinese construction industry increased by approxi-

mately 1.6% annually, which means that the gap in energy technical efficiency among

China’s all regions has gradually narrowed since 2006. This is attributed to the research on

the technology regarding energy conservation and emissions reduction in China during the

eleventh and twelfth FYP periods. The government has encouraged advanced and mature

energy-saving emissions reduction technologies to reduce the use of building materials

with high carbon emissions and gradually increased the proportion of high-strength and

high-performance building materials. In addition, according to the report on the 11th and

12th FYP for the construction industry, the government has implemented energy-saving

and emissions reduction technology integration pilot projects, such as green construction

demonstration projects, and established the green labeling system in the housing system.

Additionally, the state has introduced a series of specific policies (e.g., differential elec-

tricity price policies) in some high energy-consuming industries, like cement, iron and

steel, and electrolytic aluminum, among others (Zhang et al. 2015; Zhang and Peng 2017).

Such measures could reduce unit energy consumption in the production of building

materials, effectively promoting energy conservation and improving the energy utilization

efficiency level.

4.2.4 Analysis on the ETECHCH

From the perspective of the national level, the overall ETECHCH of Chinese construction

industry declined throughout the whole period, and the decline in energy technology

improvement was the main cause of the decline in energy productivity. As demonstrated in

Table 4 and Fig. 4, the average energy technical change at the national level is - 0.087,

which shows that energy utilization technology in China’s construction industry declined

dramatically, by 8.7% annually, throughout the 2006–2015 period. The explanations are

that the construction industry was still labor-intensive and that construction enterprises

were small in scale; construction methods were backward, the degree of industrial mod-

ernization was low, and technological innovation capabilities were insufficient. In addition,

the market was homogeneous and characterized by excessive competition. The proportion

of clean energy consumption (e.g., electricity) was still low, and low-efficiency energy

sources (e.g., coal) continued to grow in China from 2006 to 2015 (NBSC 2016).
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If looking into from the perspective of three main region groups, the average

ETECHCH across the three regions showed a downward trend and then increased grad-

ually, with some fluctuations during 11th FYP period. This probably was due to new goals

regarding saving energy and reducing emissions, proposed during twelfth FYP period,

motivating enterprises to focus more on scientific and technological innovation and

improve their management models. At the same time, the government provided a strong

policy environment, encouraging improvements in energy technology. ETECHCH in

eastern and western regions exceeded zero at the end of the 12th FYP period as a result of

green and energy-saving techniques developed during the 12th FYP period.

At the provincial level, we can observe that no region exhibits nonnegative ETECHCH

throughout the 2006–2015 period, showing that the energy technology frontier in all the

provinces of China regressed during the research period. ETECHCH decreased most

rapidly—by more than 10% annually—in more than ten provinces, including Xinjiang,

Hainan, Henan, Jiangxi, and Tianjin. Moreover, average ETECHCH in Heilongjiang was

- 12.6%, while the annual average ETECHCH in Liaoning and Jilin was - 10.4 and -

6.8% annually on average, respectively. This phenomenon can be attributed to the regional

unique characteristics. Heilongjiang, Jilin, and Liaoning are all China’s oldest industrial

bases. The technological regression in construction industry and inefficient energy usage

are the main reasons leading to the negative average ETECHCH in these three provinces.

In summary, during 2006–2015, energy productivity in China dropped by a cumulative

64.1%, and the average annual rate dropped 7.1% since 2006. However, energy technical

regress—rather than changes in energy technical efficiency—contributed most to the

overall decline in TFEP in China’s construction industry. The above analytical results

reveal significant regional disparity of the energy productivity in China. Developed eastern

region suffered the slowest drop in the energy productivity, while central and western

regions witnessed faster decline in the energy productivity. On the whole, China suffers

from great imbalance of regional economy and energy productivity, although benefiting to

its fast growth of economy.

4.3 Policy implications

Based on the above results obtained in this study, this section proposes and discusses

measures to increase energy productivity of China’s construction industry and overcome

the negative impacts generated from the decrease of it and regional imbalance.

1. Promoting technology and process innovations. Technology innovation and transfer is

the foundation. Sustainable and clean construction technologies and processes are the

foundation to achieve energy-saving and emission mitigation for the construction

industry. Compared with the eastern regions of China, the western and central regions

in China lack enough funds to implement the new and innovative technologies and

processes. Therefore, the Chinese government is supposed to set special funds to

enhance the technologies and process innovations, especially for regions that consume

large volume of energy but produce low outputs, such as the central and western

regions.

2. Developing alternative renewable energy sources: renewable energy sources can be

promoted to developed, especially the cleaner energy sources, such as solar power,

wind power, and hydropower. These green energy sources can be used substitute the

traditional fossil fuels for adjusting the energy structure of the western and central
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regions. This can significantly improve the energy utilization efficiency of Chinese

construction industry.

3. Establishing flexible energy consumption and emission reduction policies. The

government is supposed to design flexible and distinct energy consumption and

emission reduction policies to accommodate the varied and specific characteristics of

different regions. The energy-saving and emission mitigation measures should be

implemented for achieving clean and environmental-friendly production especially for

those old processed plants in less developed regions.

4. Enhancing the inter-region cooperation. Cooperative efforts should be initiated and

strengthened at the inter-region level to make common progress and narrow regional

differences. The western region should learn advanced and energy-saving technologies

from the eastern and central regions and develop low-energy consumption industries to

continuously improve their energy utilization level.

5 Conclusions

To investigate real ‘‘TFEP’’ in the construction industry in China, we used the TFEPCH

index and adopted an improved LPI combined with a generalized DDF within the TFEE

framework. Additionally, we added a physical output indicator to more conventional

output indicators. We then measured and analyzed the TFEP of Chinese construction

industry in 30 provinces during 2006–2015. The main conclusions and contributions are as

follows.

First, at the national level, average TFEPCH in China’s construction industry decreased

by 7.1% annually since 2006, with the steepest decline (13.5%) occurring in the

2009–2010 period. EFFCH increased by approximately 1.6% annually, while average

ETECHCH declined dramatically, by 8.7% annually, throughout the 2006–2015 period.

Energy technical regress—rather than changes in energy technical efficiency—contributed

most to the overall decline in energy productivity in China’s construction industry.

Second, three regions experienced nearly negative growth of energy productivity in

construction industry nearly all over the period during 2006–2015. Average TFEPCH at

regional level and the national level were negative, illustrating that energy productivity

decreased annually throughout the 11th and 12th FYP period. The central area’s energy

productivity dramatically decreased by a cumulative 77.1% since 2006, while the decrease

in the eastern and western areas was over 54.3 and 65.3%, respectively. Average EFFCH in

the western region was the largest (2.4%) throughout the period, followed by central region

(1.9%), while the figure for eastern region was lowest (0.7%).

Third, at the provincial level, only two of 30 provinces (Hebei and Shandong) improved

their energy productivity during the reference period. Conversely, eight regions (Hainan,

Tianjin, Ningxia, Henan, Jiangxi, Heilongjiang, and Xinjiang) saw a dramatic decline, of

more than 10%, in their energy productivity since 2006. For ETECHCH, no region

exhibited nonnegative ETECHCH throughout the 2006–2015 period, illustrating that the

energy usage technology frontier in all provinces in China regressed during the referenced

period.

Finally, energy productivity of Chinese construction industry was measured, and the

‘‘best practice’’ provinces and those lagging behind with regard to TFEPCH in the con-

struction industry were identified. These findings provide a basis for decision-making and a

reference for administrative departments in setting differentiated energy efficiency goals
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and developing relevant measures. Such measurements are vital to energy and resource

allocation in the construction industry in China’s various regions. At last, policy impli-

cations are proposed, such as promoting technology and process innovation, developing

alternative renewable energy sources, establishing flexible energy consumption and

emission reduction policies and enhancing the inter-region cooperation.

As for future work, much remains to be done. For example, we can continue to

investigate TFEE in Chinese construction industry with respect to undesirable output.

Additionally, we can explore sources of inequality and discrepancies among regions.
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