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Abstract

Logics of belief arc usually either quite complex, unintuitive,
make overly idealistic assumptions, orall of the above, because
they have to cope with the unusual characteristics of the be-
lief operator (relation, predicate). Some of these problematic
characteristics are referential opacity, the possible falsehood
of objects of belief, belief recursion, identification of referents
from outside of the belief operator in quantification contexts,
etc. The difficulties faced by traditional logical treatments seem
to stem mainly from the fact that an essentially subjective, in-
tensional phenomenon gets analyzed from an objective, outside
observer’s point of view in an extensional, logical framework.
As an altemmative, we propose a subjective, intensional logic
SL, which takes seriously the usual characterization of belief
as a propositional attitude, that is, in SL belief is treated as
a relation between an agent and a proposition (an intensional
object). As results we gain technical simplicity and a simple,
intuitive semantics for belief sentences.

Introduction

A unifying characteristic of standard logical treatments of
knowledge and belief is that they are, in some aspect or other,
quite complicated. Syntactic approaches, for example, (Ka-
plan, 1968; Haas, 1990), usually employ a quotation device
which leads to a notationally complex hierarchy of object and
metalanguages. Sentential or modal approaches, for example,
(Hintikka, 1962; Levesque, 1982; Halpern and Moses, 1992),
commonly use a complex and somewhat unintuitive semantic
notion, sets of possible worlds, to interpret belief sentences.
Referential opacity of belief contexts, quantifying in, possible
falsehood of beliefs, or simply technical difficulties with the
formalization, make it necessary to complicate things with re-
stricted equality reasoning, standard names, rigid designators,
naming maps, etc.

[t seems that one of the main sources of these various
complexities is that an inherently subjective, intensional phe-
nomenon such as belief gets analyzed in an objective, exten-
sional way. Notions such as truth and possible worlds are
extensional notions, which are then used to objectively ana-
lyze the mental states of believers from an outside observer’s
point of view. Rectifying assertions of truths about the world
with asscrtions about the mental states of believers that are in
some way about this world seems to be the main stumbling
block. As an alternative, we propose a subjective, intensional
model which we will describe below.
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A Logic of Thought

The authors’ interest in the subject of belief representation
and reasoning results from their long-term goal to build an
artificial cognitive agent capable of communicating with other
agents in natural language. Such an agent, which from now
on we will call Cassie, will need what is commonly called a
belief system, that is some sort of representation and reasoning
scheme that describes the set of beliefs held by the agent,
and its reasoning with them. Intuitively, Cassie’s mind can
be thought of as a container that is filled with some sort of
“objects”, some of which we will call Cassie’s beliefs. The
question is: What are these objects, and how can they be
described?

Following logical tradition, we will pick a formal language
whose expressions will denote the objects of Cassie’s beliefs.
Belief is usually characterized as a propositional attitude,
that is a relation between an agent and a proposition. Tak-
ing this characterization seriously, we will define a language
whose expressions denote propositions, and we will construct
Cassie’s mind as a set of such expressions. Depending on
a particular implementation or storage scheme, not all ex-
pressions in Cassie’s mind will denote propositions actually
believed by her. Some might just be residue from pondering
certain questions, others might be part of other propositions.
To be able to single out Cassie’s actual beliefs, we will think
of every expression in her mind to be associated with a flag,
which, if it is on, will indicate that the proposition denoted by
that expression is actually believed by Cassie.

We are of course well aware that in trying to build an
artificial cognitive agent we will have to be concerned with
many other important aspects of agenthood such as plans,
actions, intentions, sensory apparatus, etc., however, in this
paper we will only talk about the part that deals with beliefs.

It should be evident from the above that we take belief
spaces to be sets of propositions rather than sets of sentences.
For arguments in favor of this view and against viewing belief
as arelation between an agent and a sentence see, for example,
(Church, 1950; Shapiro, 1993). By now, the concerned reader
might be worried about the fundamental building block of our
theory, propositions, since their nature has been subject of
much philosophical debate. We will not add to this debate.
For us propositions are abstract, intensional entities that are
in the domain of discourse, or, as (Creary, 1979, p.176) puts
it, they are “abstractions of things psychological.”

Before we go on, two things should be clarified: 1) Our lan-
guage of propositions will have internal structure and quan-
tification, and 2) even though we model Cassie’s beliefs as a
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set of expressions denoting the propositions believed by her,
our model is not the database approach to belief representa-
tion as described and criticized by (Moore, 1977), hence, it
does not suffer from the problems of that approach. Figure |
shows an example snapshot of Cassie's mind that contains
various dilterent kinds of propositions that could be believed
by her. Note, that the top-level expressions are Cassie's im-
mediate beliefs, hence, they need not be framed in an extra
application of the belief function B. Only her beliefs about
other agent's beliefs as well as her introspective beliefs have
to make use of B. It should be pointed out that despite the
standard logical notation all “predicate” names as well as the
logical connectives are actually proposition-valued functions.
This will become more clear below.

SL: A Fully Intensional, Subjective Logic of
Belief

SL is the logic underlying SIMBA. SIMBA, an acronym for
simulative belief ascription, is the name of a reasoning system
that we are currently developing as part of a forthcoming
doctoral dissertation (Chalupsky, 1994). The main emphasis
of SIMBA is on the reasoning with other agents’ beliefs, or, put
more concretely, Cassie’s reasoning with beliefs she believes
are held by other agents.

SL is intended to be the basic building block of the belief
system of an artificial cognitive agents such as Cassie. Its
language, Lsy,, is the representational substrate for things in
Cassie’s mind, hence, it is a belief representation language
as opposed to a world representation language (see (Maida
and Shapiro, 1982, p.296) for a discussion of this distinction).
Due to this point of view, the design of Lgy, is guided by
the following principle assumptions which are derived from
(Maida and Shapiro, 1982) and (Shapiro, 1993):

e The domain of discourse, D, whose elements are denoted
by terms of Lsyr, is a set of intensional entities such as
propositions, objects of thought, fictional objects, etc.

¢ D consists of a set of atomic objects, D,, without internal
structure, and a set of structured objects, D,, whose struc-
ture derives in some well-defined way from more primitive
objects.

e Two distinct terms of Lsy, cannot denote the same entity, a
restriction which is called the uniqueness principle, because
every object is denoted by a unique term.

Since we take intensions or sets of intensional objects as
a completely independent realm, as opposed to, for example,
the notion used by Montague where intensions are defined
in terms of sets of extensions (Montague, 1974), we call our
approach fully intensional (see (Shapiro and Rapaport, 1987)
for more discussion on this view of intensionality). One
reason for this approach is that it provides elegant solutions to
problems of indirect reference such as McCarthy’s telephone
number problem (McCarthy, 1979; Maida and Shapiro, 1982),
or problems of representation with de re and de dicto belief
reports (Rapaport, 1986).

Since Lgy, is intended to be Cassie’s language of thought
in which she represents and reasons, we call SL a subjective
logic. Note, that in Cassie’s representations of other agents’
beliefs, imputations of her own view are a necessary con-
sequence of subjectivity: Cassie can only think in her own

language of thought, hence, she can only represent and un-
derstand other agents’ beliefs in her own terms (this intuition
also provides a strong reason against the use of a syntactic
approach).

Finally, the uniqueness principle is not so much a require-
ment than a reflection of how we view cognitive function:
Whenever Cassie creates a new (mental) individual (of Lsy)
for some object of D, she does so because no already existing
individual denotes that object for her, hence, it must be an
intensionally different object. Had it been the same, the pre-
existing individual would have been used as a consequence
of cognitive economy.

Formalization of SL,

SL isa nonmonotonic logic that supports belief revision, how-
ever, al the time of our writing its full formalization is still
work in progress; hence, we only present its monotonic pre-
cursor which we will call SLo.

The core idea in the formalization of SLq is derived from
(Shapiro, 1993): It is that Lsy, is primarily a language of
terms, not of sentences. The main vehicle for constructing
these terms are proposition-valued functions. Logical con-
nectives, the main sentence constructors in standard logical
treatments, are just a special subset of these functions. Sen-
tences of Lsy, are only used to associate a particular term
with an agent such as Cassie. Consequently, and hopefully
not surprisingly, we do not deal with truth values. An expres-
sion such as B(Mary, B(Sally, Cute(John))) is then simply a
nested function application which yields a proposition as its
result, and not a higher-order expression as it would be in a
standard treatment where B is viewed as a relation.

Notational conventions: We will use sans serif for object-
language terms, ifalics for meta-variables ranging over such
terms, bold sans serif for domain objects, and bold italics
for meta-variables ranging over such objects. The denota-
tion relation is expressed with the usual double brackets, for
example, [Man(Hans)]=Man(Hans), [p\]=p1. f(z)| will
mean that f is defined for z, f(z)] that itis not.

Syntax

Lsy, is an internal language, hence, it is or at least can be
different for every agent. However, there is a certain structure
that we require for every instance of Lsr,. For that reason,
we describe the various sets of symbols defined below as sets
of metavariables. Where appropriate, typical object-language
instances of these variables are given.

The atoms of Lsy, are defined as the following sets of
symbols:

1. P =44 {(,).,,¥, 3,!}, punctuation, quantifiers, assertion

2. I =4e5 {11,12,13, ...}, the set of individual constants, e.g.,
Mary, B;, B, ...

3. 1., the ego or self concept, e.g., |

4. I, C I, the set of individual propositional constants

5. F™ =45 {fT', f2, f3,.. .} the set of n-ary function con-
stants

6. F =4y U,>, F". the set of all function constants, e.g.,
Loves, Knowsy, . ..

7. F, C F, the set of propositional function constants
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Cassie

Loves(John, Mary)

'Vx(Man(x) D Mortal(x))

'B(Mary, B(Sally, Loves(John, Sally)))
'B(l, Loves(John, Mary))

I-B(l, Equiv(P,NP))

!Smart(l)
Va(B(a, Exists(Santa)) O Child(a))
PA-P

'B(John, Nice(Mary)) V B(John, ~Nice(Mary))

...plain belief

...quantified belief

...nested belief

...positive introspection
...negative introspection
...disjunctive belief

...false belief

...agent quantification
...conception without belief

Figure 1: A snapshot of Cassie’s mind: B is the name of the belief function and I is Cassie’s self concept. The intended
interpretations of the other symbols should be evident. The ‘I’ is used to flag the propositions believed by Cassie.

8. Fi =gy {f-, fa, fv, f>, f=}, the set of logical connective
functions, Iy C Fp,eg, 7, AV, D, =

9. fB, the belief function,e.g., B

10. V. =4ey {z1,22,23,...}, the set of variables, e.g.,
X, ¥2, dogl WA

The substitution e/; is defined as the expression obtained
from replacing all free occurrences of z in the expression e
by 1.

The set of terms, T', is defined by the following inductive
rules:

1. Every i € I'isaterm. If ¢ € I, then i is a propositional
term.

2. Ifty,...,1, are terms and f* € F then f™(t1,...,tn)
is a function term. If f* € F, then f*(ty,...,t,) is a
propositional function term.

3. Ifr isa variable and ¢ is a propositional function term with
an individual 7 as a subterm such that no occurrence of i
is in the scope of a quantifier Yz or 3z, then Yzt;/. and
3xt/, are propositional terms.

Finally, let T,, be the set of propositional terms. Then
S =45 {!t|t € T, } is the set of all sentences.

The only role of sentences is to flag the set of propositional
terms that are actually believed by the agent under consider-
ation. Functions are intended to generate structured names
that denote structured individuals, for example, the function
symbol Loves is intended to denote the function which has all
propositions of the form that one individual loves another indi-
vidual as its range. The term Loves(John, Mary) is intended
to denote the proposition that John loves Mary. The term
B(Lucy, Loves(John, Mary)) is intended to denote the propo-
sition that Lucy believes that John loves Mary, a proposition
which contains the proposition from the previous example as
a part.

For now, we assume that the structure defined by the stan-
dard syntax of function application and composition is suffi-
cient to describe the structure of objects such as propositions.
The main drawback of this scheme is that it always encodes the
order of the arguments even if the resulting proposition should
be order independent. The logical-connective functions pro-
vide a good example: Inour current scheme the terms A(P, Q)
and A(Q, P)! denote two different propositions (because of

! Usually, the logical connective functions are written in the stan-
dard prefix and infix notation (see Figure 1) instead of as function
applications.
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the uniqueness principle), but one could make an argument
that this should not be so. There are solutions to this problem,
but we will not discuss them here.

Agent Interpretations

Intuitively, Cassie's belief system is filled with a set of Lgy,,
expressions; hence, Lgy, can be viewed as Cassie’s language
of thought. It is an internal language, much like the language
used inside the scope of Konolige's modal belief operator
[Si] (Konolige, 1986), but SLy does not define an external
language that describes Cassie's belief system from an outside
observer’s point of view. Since Lsy, is Cassie’s language of
thought, she uses that very language to represent other agents’
beliefs, and there is no need for quotation, standard names,
naming maps, etc.

As builders of Cassie, we are of course interested in how her
internal language is linked to the outside. That these internal
expressions denote the proper individuals and propositions
is a prerequisite for her being able to understand and be un-
derstood by other agents. The connection between Cassie's
internal language and the external, though not extensional,
domain D will be made via agent interpretations.

Definition: An intensional domain of discourse, D, is a
non-empty set of intensional individuals which consists of
two disjoint subsets: D,, a set of atomic elements, and D,, a
set of structured elements. Each of these parts is further split
into a propositional part, D,, and D,, which taken together
form D,, and a non-propositional part, D, ., and D, which
taken together form D,,,.

An intensional domain is intended to contain objects of
thought, discourse entities, concepts, propositions, impossible
objects, fictional objects, etc., all of which are denoted by
terms of Lgy,,. For the purposes of our exposition, it suffices
to mainly distinguish between propositions and other objects.
To provide proper denotations for function terms we need
actual functions that operate on D. Because of the uniqueness
principle, not just any set of functions will do. The following
definition specifies some necessary characteristics for a set of
domain functions that can be used in an interpretation:

Definition: Let D be an intensional domain of discourse.
A set of functions F is a basis for D, iff

Gnp Snp

1. every f € F is an n-ary, injective (or I-to-1) function
D" — D,,n>1,and



2. forevery fy, f2 € F such that fy # f3 the range of f is
disjoint from the range of fa, and

3. for every @ € D, there is an n-ary function f™ € F
and a set of arguments @1,...,2,,x; € D such that
P2y B0 ) =10,

The conditions that the functions need to be I-to-1, and
that their ranges are required to be mutually disjoint are direct
consequences of the uniqueness principle. If a particular
function were not 1-to-1, then there would be two different
sets of arguments for which the function would have the same
value. If the ranges were not disjoint, then there would be
two different functions with a value in common. If such a set
of functions were to be used in an interpretation then there
would be at least two different terms of Lsr, with the same
denotation, a violation of the uniqueness principle.

Finding an actual basis of domain functions is a very hard
and mainly unsolved problem. It amounts to the construc-
tion of a theory about how natural language gets mapped into
propositional meaning representations. Every domain func-
tion can be viewed as a kind of case frame, and the problem
then becomes to find a correct and complete set of such case
frames. This problem is not unique to our approach, every
standard logical approach faces a similar problem as soon as
an actual domain theory has to be constructed.

The denotations of the logical connective functions and the
belief function are the only ones defined by SLy itself, as
opposed to leaving that up to a particular interpretation:

Definition: The set of logical connective functions, Fi,
is the set {f_,,fa,fy,fo, f=} whose individual elements are
defined as follows (let p, ¢ € D, be arbitrary propositions):

f- : D, — D,,. The value of f(p) is the proposition that it
is not the case that p.

fa o D;;’ — D,,. The value of fa(p, g) is the proposition
thal ll is the case that p and q.

fv D — D,,. The value of fv(p, q) is the proposition
thal u is the case that either p or g or both.

f5 : D2 — D, . The value of f5(p, g) is the proposition
[hat 1F|t is the case that p then it is the case that q.

f= : D) — D,,. The value of f=(p, g) is the proposition
that it is the case that p if and only if it is the case that q.

Definition: The belief function, fg, is defined as follows
(leta€D,,,,p€ Dy):

fs : D,,, x Dy — D,,. The value of fg(a, p) is the propo-
sition that a believes p.

Qnp

Since we do not have a formal theory of propositions (our
semantic domain), we used English sentences to define the
class of propositions yielded by the proposition-valued func-
tions defined above. So, in a sense, English is our external
language that we use to interpret Cassie’s internal language.
This is not all that much different from standard truth recursion
rules which usually define the truth of compound expressions
with help of natural-language conjunctions whose semantic
function is taken to be understood.

Terms of Lsy,, will be mapped onto the domain of discourse
by means of an interpretation function which has to fulfill the
following requirements:

Definition: Let D be an intensional domain of discourse
and F abasis for D,. A functionint : T — D is an admissible
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Lsy, interpretation function for D and F if it satisfies the
following conditions:

If i € I then int(7) € D,.

Ifi € I, then int(i) € D

If f € F then int(f) € F.

If f € Fy then int(f) € F,.

int(=) = f, :nt(/‘\) f;\. int(V) = fy,

int(D) = fy,int(=) = 1=, int(B) = fg.

If ¢ is an n-ary funclion term of the form f"(zy,...z,)

then int(t) = int(f")(int(z,),.. ., int(z,)).

7. If t is a term of the form Yzt' then int(t) is the proposi-
tion that for every atomic domain element #nt(i) such that
int(t'z7;)| itis the case that int(t';/;).

8. Ift is a term of the form 3zt’ then int(t) is the proposition
that there is an atomic domain element int(:) such that
int(t';/i)| and it is the case that int(t'; ;).

9. For any two terms ¢y,15 if ty # to then int(ty) # int(t2).

Now we can finally define how Lgy, terms in the "mind”
of an agent are to be interpreted:

Definition: Let a = (D, F, B, e, int) be an agent inter-
pretation structure, where D is an intensional domain of dis-
course, F is a basis for Dy, B C D, is the base set of the
agent’s beliefs, e € D,,, is the agent’s ego or self-concept,
and int is an admissible Lsr, interpretation function for D
and F. Then forevery t € T': [t]a =4es int(t).

The agent’s base set of beliefs B is intended to describe
the set of propositions believed by the agent without being
justified by the logic SLgitself, i.e., they serve as a set of extra-
logical belief axioms. Intuitively, such beliefs are formed
from sensory information, from being told by somebody, etc.
Since we are concerned with the modeling of realistic agents,
we will usually take B to be finite.

Apart from being able to interpret what actual propositions
arc believed by an agent, it would be interesting to know
whether the agent behaves rationally. One aspect of rational
behavior is to draw proper conclusions from one's current set
of beliefs. Below we present a notion of justification which
defines whether an agent is justified in believing a certain
proposition relative to some agent interpretation. We will use
the notation J=; !p (a turnstile with a J-bar for ‘justification’)
to express that an agent is justified in believing [p], relative
to some interpretation a. Intuitively, if Cassie tells us that she
believes some proposition [p], then we can verify whether she
is justified in believing it by checking whether J= !p holds.
If Cassie tells us that she does not believe [[p], then checking
whether J=!pisnot of much help, because we do not assume
that Cassie's beliefs are deductively closed. In that sense, our
notion of justification characterizes the reasoning of an ideal
agent, or, to use Levesque’s terminology, it specifies the set
of implicit beliefs of Cassie (Levesque, 1984).

Definition: Let ¢,t;,7, be propositional terms of Lsg,,
a = (D,F,B,e,int) be an agent interpretation structure,
and i, be the i € I such that [{], = e. Then we define
whether an agent is justified in believing [t], relative to an
agent model, written J= '£. To avoid a circular definition we
do this in two steps. First we define J= 't which does not say
anylhmg about belief sentences that involve other agents:

1. If [t]a € B then =t
2 = -t iff b Nt

e ) s

=4



P ity Aty iff Pty and 35, 1o,
B Vi iff =t oor = M.
Bty Dty iff !ty or = .

3= Wt iff 35 't i forall i € I such that [t,),]a].
K, 3zt iff =, ’t,/. for some i € I such that [t,/]al.
Jﬂa'B(:e,t)aff =t

Now we can define J=, 't:

9. J= 'B(b, t)ﬂ,b# £ |fftherearc terms py,...,pn,n 20
such that J=, B(b, p1), ..., 5= 'B(b, pn) and

ot witha' = (D, F, {[P1]]m-- [Apnla}. [8]a, int).
10. Otherwise: J=, 't iff }-

The cases for the logical con necli\'es in the definition above
are very similar to the truth recursion rules used in standard
semantics of first-order predicate logic. The main difference
is the terminology, because we are not concerned with the
notion of truth. The interesting cases are discussed below:

Case | deals with the fact that our interpretation function
simply maps propositional terms onto propositions. It does
not say anything about the agent’s belief status regarding these
propositions. By comparison, the corresponding case in a
standard first-order semantics is the one that handles the truth
of ground sentences such as Red(Apple; ). There the interpre-
tation function maps predicate or relation names onto sets, and
the truth of atomic sentences is determined by membership of
the interpreted arguments in these sets.

Case 8 defines the semantics of introspection. It exempli-
fies best the subjective character of SLy, since the self belief is
based on a “plain” proposition that is not itself nested inside
a belief function (though it could be). This case has some
similarity with a subjective version of the inference rule S4
of modal systems, but of course, S4 is an inference rule of the
deductive system of certain modal logics, while the above is
a definition of the semantics of introspection in SLy. We do
not need an extra case J=, 1-B(i.,t) iff - 1t to character-
ize negative introspection, because that follows as a simple
theorem from the definition.

Case 9 defines the semantics of a mechanism called simula-
tive reasoning (Creary, 1979; Chalupsky, 1993), in which an
agent such as Cassie hypothetically assumes beliefs it thinks
are held by other agents, and then tries to infer consequences
from these beliefs with its own reasoning mechanism. The
result of such a simulation gets then ascribed to the simulated
agent. The semantics of this is captured by basing the justi-
fication of a belief sentence on a variant of the agent model
which only contains the beliefs of the simulated agent as the
base set, and which uses the simulated agent as its ego.

There are usually infinitely many interpretations under
which a particular sentence is justified, hence, we normally
work with the following stronger definition of justification:

Definition: !py, ..., !p, J=¢,n > 0iff all agent interpre-
tations which justify !'py, . .., !p, also justify !q.

Since B might contain arbitrary propositions, it is also use-
ful to only consider consisrent agent interpretations. An inter-
pretation a is consistent if there is no p such that J=; 'p A —p.
An alternative to the consistency requirement would be to re-
strict B to primitive propositions which do not contain any log-
ical connective functions or quantifiers, however, this would
not allow us to model agents who believe in universally quan-
tified propositions that they were simply told about.

N LW

169

Discussion

Did we achieve our goal? Is SLj less complicated than stan-
dard logics of belief but at least as expressive, and does it
have a more intuitive semantics of belief sentences? People
have of course different views on what counts as simple or
intuitive, but let us quickly discuss some of these points:
Suppose that Cassie believes that John loves Mary, and
that Sally believes that John loves Mary. In a first-order
syntactic logic the above would be expressed with help of
some sort of quotation device, e.g., Loves(John, Mary) and

B(Sally, 'Loves(John, Mary)!). This becomes more compli-
cated with deeper nesting and once quantification into quo-
tation contexts is considered. It also complicates the proof
theory. More serious than the syntactic complications are the
semantic implications. Both sentences denote truth values.
The first sentence describes a relation between two agents, the
second describes a relation between an agent and a sentence,
i.e., a syntactic object which basically is a complicated string
constant. For an agent that uses this as its language of thought
the expressions Loves(John, Mary) and rLOVeS(JOhﬂ, Mary)]
are of very different character, they mean completely differ-
ent things. In (Shapiro, 1993) it is argued that to the agent
B(Sally, "Loves(John, Mary)') actually means that Sally be-
lieves some incomprehensible gibberish, because the object
of the belief is expressed in a language different from its own
language of thought.

Modal logics of belief usually employ a different modal
operator for every agent. These operators get applied to com-
plete sentences, e.g., Bs,jiyLoves(John, Mary). There is no
need for quotation, but we have the disadvantage that we can-
not express sentences that quantify over agents. Moreover, the
semantics of such modal belief sentences is usually rendered
as something like the following: Loves(John, Mary) holds in
all worlds that Sally considers possible according to some ac-
cessibility relation. While such Kripke-style possible-worlds
semantics are technically elegant, they are certainly notamong
the most intuitive explanations of the concept of belief. An-
other drawback of standard possible-worlds analyses is that
agents are modeled as logically omniscient.

In SL; the above situation would be represented with
ILoves(John, Mary) and !B(Sally, Loves(John, Mary)). The
semantics of the propositional term Loves(John, Mary), or
[Loves(John, Mary)], is the proposition that John loves
Mary. Once one accepts that it is as easy to accept that
[B(Sally, Loves(John, Mary))] is the propositions that Sally
believes that John loves Mary, a proposition that contains the
previous one as its part; hence, the semantics of belief sen-
tences is exactly the same and as simple as the semantics of
plain sentences (which are Cassie’s immediate beliefs). This
model also meshes well with the characterization of belief as
a propositional attitude. Since SLy is subjective, all constants
are in Cassie’s head, or put differently, the only way Cassie
can think about other agents’ beliefs is in her own terms or
language of thought. Therefore there is no need for technical
devices such as standard names, rigid designators, naming
maps, etc. in order to identify objects across opaque belief
spaces of agents, or across possible worlds.

Because of space restrictions, we did not present the in-
ference mechanism (or proof theory) of SLp. The current
implementation of SIMBA which is built upon SL, uses a



natural-deduction-based inference package to perform rea-
soning. Cassie's reasoning with the beliefs of other agents is
based on a simulative reasoning mechanism.

SLg does of course have shortcomings which will be over-
come by its full-blown, nonmonotonic version SL. One of
them is a form of simulative idealization, where Cassie
assumes every agent to make the same inferences as she
does in its simulation, hence, she cannot deal with a situa-
tion where she believes B(Mary, P), B(Mary,P D Q), and
-B(Mary, Q). Another shortcoming is that SLy cannot
handle inconsistent agents, for example, if Cassie believes
B(Mary, P), B(Mary, P 5 Q) and B(Mary, P D -Q). Such
situations can occur if Cassie's model of another agent is in-
correct, or if that agent really is inconsistent. Inconsistencies
of this kind need to be handled gracefully without jeopardizing
Cassie’s own reasoning.
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