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ARTICLE

Single-cell analyses identify circulating anti-tumor
CD8 T cells and markers for their enrichment
Kristen E. Pauken1,2*, Osmaan Shahid3*, Kaitlyn A. Lagattuta3,4*, Kelly M. Mahuron5*, Jacob M. Luber3,6,7*, Margaret M. Lowe8,
Linglin Huang3,9, Conor Delaney3, Jaclyn M. Long1,2,10, Megan E. Fung3, Kathleen Newcomer3, Katy K. Tsai11,12, Melissa Chow12,
Samantha Guinn1,2, Juhi R. Kuchroo1,2, Kelly P. Burke1,2,13, Jason M. Schenkel14,15, Michael D. Rosenblum8, Adil I. Daud11,
Arlene H. Sharpe1,2,6, and Meromit Singer1,3,6

The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used
paired single-cell RNA and TCR sequencing to detect and characterize “tumor-matching” (TM) CD8+ T cells in the blood of mice
with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation
compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which
has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By
leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated
NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for
characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of
these cells.

Introduction
Cancer immunotherapy has revolutionized treatment of many
solid and liquid tumors (Chen and Mellman, 2017; Ribas and
Wolchok, 2018; Sharma and Allison, 2015; Sharpe and Pauken,
2018; Sun et al., 2018). The systemic immune response is critical
for anti-tumor immunity following checkpoint blockade
(Fransen et al., 2018; Huang et al., 2019; Huang et al., 2017;
Kamphorst et al., 2017; Sharpe and Pauken, 2018; Spitzer et al.,
2017; Valpione et al., 2020; Wei et al., 2019; Wu et al., 2020).
Recruitment of new CD8+ T cells from the circulation into the
tumor, termed “clonal replacement,” is associated with better
responses to immunotherapy (Cloughesy et al., 2019; Valpione
et al., 2020; Wu et al., 2020; Yost et al., 2019). Blood is a major
site of CD8+ T cell trafficking between secondary lymphoid
organs, primary tumors, and metastatic sites (Masopust and
Schenkel, 2013), making it an ideal location to interrogate pe-
ripheral anti-tumor responses. Studies have profiled T cells in
the blood of cancer patients, including during checkpoint

blockade (Chalabi et al., 2020; Huang et al., 2019; Huang et al.,
2017; Kamphorst et al., 2017; Twitty et al., 2020; Valpione et al.,
2020; Wei et al., 2019; Wei et al., 2017; Wu et al., 2020).
However, improved methods to identify T cells directed against
tumors are needed to focus analyses to the minority of circu-
lating T cells that has prognostic and functional relevance.

Tracking antigen-specific T cells in the blood is difficult be-
cause of their small number and limited reagents for detection.
Tetramers have been the gold standard for identifying antigen-
specific T cells but have limitations, including (a) the antigen
must be known; (b) limited available MHC haplotypes for tet-
ramer reagents; and (c) inefficient binding to low-affinity TCRs
(Jenkins et al., 2010; Martinez and Evavold, 2015). In humans,
surrogate markers like programmed death 1 (PD-1, also known
as CD279) and B and T lymphocyte attenuator (BTLA) have been
used to enrich the anti-tumor response in blood because of as-
sociations with exhaustion in cancer (Gros et al., 2016; Gros
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et al., 2014; Huang et al., 2019; Huang et al., 2017; Kamphorst
et al., 2017; Twitty et al., 2020; Yan et al., 2018). However, PD-1 is
not an exhaustion-specific marker. PD-1 is at least transiently
expressed on all T cells upon activation, and PD-1+ T cells are
found in the blood of healthy people (Duraiswamy et al., 2011;
Sharpe and Pauken, 2018; Wherry and Kurachi, 2015). Conse-
quently, improving methods to allow routine, unbiased tracking
of tumor-specific T cells in blood would bring substantial sta-
tistical power and biological precision to analyses of anti-tumor
responses.

Here we asked whether single-cell RNA sequencing
(scRNAseq) could be used to track tumor-relevant T cell re-
sponses in the blood. Using the TCR as a “molecular barcode,”
we used paired tumor and blood samples to identify and
characterize tumor-matching (TM) blood CD8+ T cells that had
shared TCR sequences with CD8+ T cells in MC38 tumors in
mice or melanoma in patients. TM cells generally had an ef-
fector/effector memory–like phenotype and appeared less ex-
hausted than clones in tumor. In two longitudinal samples from
patients that failed to respond to checkpoint blockade, the TM
cells shifted to a stronger dysfunctional signature than before.
We identified candidate surface markers that enrich for TM
cells and validated three markers using CITE-seq in mice. Im-
portantly, combinations of these marker genes achieved im-
proved performance compared with single markers at
identifying TM cells. This work presents an approach to deeply
characterize tumor-relevant T cells in blood and identify
marker panels to enable focused and statistically powered
analyses of such populations.

Results
Characterization of CD8+ T cells in blood with TCRs that match
to CD8+ T cells in MC38 tumors
Considering the clinical relevance of tracking anti-tumor CD8+

T cells in the blood, we investigated ways to track these cells in
tumor-bearing mice. We first assessed PD-1 protein expression
on CD8+ T cells in mice with subcutaneous colon adenocarci-
noma (MC38) tumors. PD-1 levels were uniformly high on CD8+

T cells in tumors, but low in the blood (Fig. 1 A), casting doubt on
the ability of PD-1 to capture the tumor-relevant CD8+ T cell
component in blood.

Since the TCR encodes specificity for antigen, we hypothe-
sized that the TCR sequence could be used to assess which clones
in blood were relevant to the anti-tumor response. To test this,
we performed scRNAseq and TCR sequencing on CD8+ T cells
isolated from paired blood and MC38 tumors (Figs. 1 B and S1,
A–F). The single-cell transcriptomic landscapes of sorted CD44+

CD8+ T cells in blood (n = 10,289 cells; to enrich for rare antigen-
experienced cells) and bulk CD8+ T cells in tumors (n = 8,540
cells) were characterized (Figs. 1 C and S1, E and F). In the blood,
most of the cells had a naive-like and/or central memory–like
phenotype (Fig. 1 C and Table S1), as expected in specific
pathogen–free mice (Beura et al., 2016). Additional phenotypes
included recent IFN stimulation and an activated effector-like
population (Fig. 1 C and Table S1). In the tumor, more diversity
was observed, including progenitor and terminal exhausted

subsets (He et al., 2016; Im et al., 2016; Kurtulus et al., 2019;
Miller et al., 2019; Sade-Feldman et al., 2018; Siddiqui et al., 2019;
van der Leun et al., 2020), as well as an intermediate-like ex-
hausted subset, naive and/or central memory–like cells,
effector-like cells, cycling cells, and IFN-stimulated cells (Fig. 1 C
and Table S1; Best et al., 2013; Kakaradov et al., 2017; Milner
et al., 2017). These data highlight the diversity of CD8+ T cell
states in MC38 tumors, particularly compared with blood (Fig. 1
C and Table S1).

To assess clonal overlap between blood and tumor, we (a)
compared T cells with at least one α and one β chain (Fig. S1 G)
and (b) classified cells as the same clone if they exactly matched
in their TCR sequences. Using the TCR sequence as a molecular
barcode, we observed a population of TM cells in blood that
shared TCRs with CD8+ T cells in the tumor (Figs. 1 D and S1, A
and D). Differentially expressed (DE) gene analysis showed el-
evated activation markers (e.g., Ccl5, Gzmb, Klrg1, Klrk1, and
Cx3cr1) and decreased naive-like and/or central memory–like
markers (e.g., Ccr7, Sell, and Tcf7) in TM cells compared with
non-TM cells (Table S2). Pathway enrichment analysis of genes
in TM cells showed effector signatures, immune effector pro-
cesses, and lymphocyte migration, while non-TM cells were
enriched for naive CD8+ T cell signatures (Fig. 1 E and Table S3).
Additionally, using curated signatures from the literature (see
Materials and methods), TM cells were enriched for activation
and tissue-resident memory (TRM) signatures, while non-TM
cells were enriched for a naive signature (Figs. 1 F and S1, I and J;
and Table S3). TM cells were also more likely to be clonally
expanded (Fig. 1 G), although a signature of cell cycle was low
(Fig. S1 H). Importantly, only 11.2% of TM cells expressed the
Pdcd1 transcript (Fig. 1 H). Using receiver operating character-
istic (ROC) curves, Pdcd1 and other inhibitory receptors per-
formed poorly in distinguishing TM cells from non-TM cells,
nearing the level of random chance (Fig. 1 I). Collectively, these
data are consistent with TM cells actively responding to tumor
and support using the TCR to identify TM cells rather than re-
lying on individual markers like PD-1.

The transcriptional signature of TM CD8+ T cells in the blood
can be used to identify markers for enrichment via flow
cytometry
Following our observation that TM cells are transcriptionally
distinct, we hypothesized that a machine learning classifier
could be trained to predict if a given CD8+ T cell from blood is
TM or non-TM based on transcriptional data. Indeed, a regu-
larized logistic regression classifier achieved high sensitivity
and specificity (Fig. 2 A, cross-validated area under the curve
[AUC] = 0.99). We next asked if cell surface genes could dis-
tinguish TM from non-TM cells, to assess the potential of
identifying cell surface markers for flow cytometry–based
sorting for downstream applications. Classifiers using only a list
of cell surface genes (Chihara et al., 2018) also achieved high
sensitivity and specificity (Fig. 2 B, cross-validated AUC =
0.985).

To test whether single-gene surface markers could identify
the TM component, we applied COMET, a computational tool we
developed to predict markers from scRNAseq data (Delaney
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Figure 1. scRNAseq of CD8+ T cells identifies MC38 TM clones in blood based on TCR sequence. (A) FACS plots showing PD-1 and CD44 protein in MC38
tumors and paired blood on day 21. Gated on singlets, live, CD45+, CD8α+ cells. Frequency of parent expressing PD-1 indicated. Data representative of four
experiments, each with n = 5–9 mice. (B) Experimental design for scRNAseq. (C) Clustering and UMAP visualization of paired blood (n = 10,289 cells) and MC38
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et al., 2019). COMET identified 82 candidate positivemarkers for
the TM component (with q value ≤0.01) classified into four
general biological categories: negative regulatory pathways,
positive regulatory pathways, trafficking molecules, and natural
killer receptors (Fig. 2, C and D; and Table S4). COMET also
identified 21 candidate positivemarkers associated with non-TM
cells (Fig. S2 A), many consistent with their naive and/or central
memory–like phenotype (e.g., Ccr7, Sell, and Il7r; Figs. 1 E and
S1 I).

Several candidate markers were also detected at the protein
level (Fig. 2 E) and were enriched on CD44+ cells (Fig. S2 B).
Somemarkers trended toward a higher frequency in the blood of
mice bearing MC38 tumors than naive mice, but many including
PD-1 were not different (Fig. S2 C). To test if surface proteins
could enrich for TM cells, we evaluated three of the COMET-
predicted candidates (Entpd1 encoding CD39, Cx3cr1 encoding
CX3CR1, and Klrk1 encoding NKG2D; Fig. 2 D and Table S4). A
small number of CD8+ T cells expressed these proteins in the
blood of micewithMC38 tumors (Fig. 2, E and F), albeit less than
observed in the tumor (Fig. S2 D). We next performed a
scRNAseq experiment measuring gene expression, TCR, and
protein expression for CD39, CX3CR1, and NKG2D using CITE-
seq (Stoeckius et al., 2017) in two mice (Figs. 2 G and S2 E) to
determine if these proteins could enrich for TM cells identified
using the TCR. As single markers, each protein successfully
enriched for TM cells (Fig. 2, G and H). We next asked if com-
binations were useful for identifying TM cells. Most TM cells
expressed two or three of the markers (Fig. S2, F–I). Moreover,
using combinations improved on either or both the sensitivity
and specificity over single markers (Fig. 2 I and Table S5).
Consequently, while the TCR likely remains the most sensitive
and specific metric for determining whether T cells have shared
reactivity, cell surface markers can be identified and used to
distinguish TM cells from non-TM cells.

TM CD8+ T cells in blood are less dysfunctional than matching
clones found in tumor
We next examined the transcriptional heterogeneity of CD8+

T cells in the tumor whose TCRs were also detected in blood,
referred to as “blood-matching” cells. Blood-matching cells
were present in every transcriptional cluster in the tumor
(Fig. 3, A and B; and Fig. S1 D), with the majority present in
nonnaive/noncentral memory–like clusters (Fig. 3 B). Blood-
matching cells were more clonally expanded than non-
matching cells (Fig. 3 C, P = 4.9 × 10−26). In M1, clone size in
blood correlated with clone size in tumor (Fig. 3 D). While

clone sizes were too low in M2 and M3 to observe a significant
correlation in expansion between blood and tumor, we did
observe this correlation in the two mice in our validation
cohort (M4 and M5) where the number of TM cells recovered
was higher (Fig. S3 A).

To further characterize blood-matching T cells in the tumor,
we examined signatures related to CD8+ T cell functions. Com-
pared with nonmatching cells, blood-matching cells expressed
higher levels of a terminal exhaustion signature and a TRM
signature, associated with TRM cells, which can play a role in
protective anti-tumor immunity (Menares et al., 2019; Park
et al., 2019; Fig. S3 B). Blood-matching cells expressed lower
levels of a naive T cell signature, and no difference was observed
in a cell cycle signature (Fig. S3 B). Lastly, pathogen-specific
CD8+ T cells can infiltrate tumors in both mice and humans
(Mognol et al., 2017; Rosato et al., 2019; Simoni et al., 2018). This
bystander transcriptional signature (Mognol et al., 2017) was
observed in MC38 tumors (Fig. S3 B) but was expressed at lower
levels in blood-matching cells compared with nonmatching cells.
These findings suggest that the TM component in blood corre-
sponds to matching clones in the tumor that are likely re-
sponding to tumor antigens and relevant for tumor killing.

Next, we compared the transcriptional profiles of TM cells in
blood to matching clones in the tumor. The blood-matching
population within tumor was more diverse than the TM popu-
lation in blood (Fig. 3 B), suggesting that CD8+ T cells can di-
versify and take on a number of states upon entering tumors. On
both a population level (Fig. S3 C) and a clone-by-clone basis
(Figs. 3 E and S3 D), TM cells were significantly more enriched
for an effector-like signature than blood-matching cells in tu-
mor, and blood-matching cells in the tumor were more enriched
for the terminal exhaustion signature than TM cells in blood
(Figs. 3 E and S3 D). Additionally, DE gene analysis on clonally
matched populations between blood and tumor showed many
effector-like genes up-regulated in TM clones in the blood (e.g.,
Ccl5, Cx3cr1, Itga4, Runx1, and Klrg1) and exhausted-like genes up-
regulated in the blood-matching clones in tumor (e.g., Pdcd1,
Lag3, Ctla4, Havcr2, and Tigit; Table S6). Clones in tumors also
showed elevated levels of many of the granzymes (Gzmb, Gzmc,
Gzmf, and Gzmg; Table S6), consistent with work showing some
overlap between effector-associated genes and exhausted T cell
populations, particularly terminally exhausted T cells (Beltra
et al., 2020; Singer et al., 2016). These data suggest that TM
cells in the blood are less dysfunctional than their counterparts
in tumor, and that after migration into the tumor, these TM cells
acquire a dysfunctional state.

tumors (n = 8,450 cells) on day 18+, integrated from three mice (M1–3) from two experiments. Colors denote transcriptional clusters, labeled with functional
annotations. (D) UMAP showing CD8+ T cells in blood that have a TCR matching to CD8+ T cells found in tumor (TM cells), colored by each mouse. Gray
indicates non-TM cells. (E) Selected signatures associated with genes up-regulated in TM cells or non-TM cells in blood. Significance using a gene set en-
richment analysis PreRanked analysis. Full list in Table S3. ((F) UMAP showing a CD8+ activation signature in blood (top). Violin plots of enrichment (bottom).
Significance using a Wilcoxon rank sum test, P = 1 × 10−41. ***, P < 0.001. (G) UMAP showing clonal expansion in the blood (top). Box plot quantifying clonal
expansion (bottom). Boxes show the first quartile, median, and third quartile, while the whiskers cover 1.5× the interquartile range. Significance using a
Wilcoxon rank sum test, P = 4.6 × 10−7. (H) Frequency of Pdcd1+ cells in the blood. (I) ROC curve showing the sensitivity and specificity of Pdcd1, Btla, Ctla4,
Havcr2, Lag3, Cd160, or Tigit to distinguish TM cells from non-TM cells. AUC values: Pdcd1 = 0.548, Btla = 0.486, Ctla4 = 0.535, Havcr2 = 0.500, Lag3 = 0.556,
Cd160 = 0.574, and Tigit = 0.603. The dashed line represents the sensitivity and specificity values of random chance. (C–I) scRNAseq integrated from three
biological replicates (M1–3) from two experiments.
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Figure 2. Cell surface marker panels can enrich TM cells from blood. (A and B) Logistic regression showing classification of cells as TM or non-TM based
on (A) all genes and (B) a selected list enriched for surface-marker genes (Chihara et al., 2018). Shown are the first two principal component projections (left),
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Activated TM CD8+ T cells can be detected in the blood of
melanoma patients
We next performed scRNAseq and TCR sequencing on four
checkpoint treatment-naive advanced melanoma patients (Fig.
S4, A–H; and Table S7). Here, “tumor” refers to tissue resections
obtained from the primary tumor site and/or metastases (Fig. S4
B and Table S7). CD8+ T cells had transcriptional signatures in
blood consistent with naive-like, central memory–like, effector-
like, and effector memory–like cells and signatures in tumor
consistent with diverse exhausted subpopulations, effector-like,
resident memory–like, naive-like and/or central memory–like,
and cycling populations (Fig. 4, A and B; and Table S8), consis-
tent with previous reports (Guo et al., 2018; Sade-Feldman et al.,
2018; Siddiqui et al., 2019; Tirosh et al., 2016; van der Leun et al.,
2020; Yost et al., 2019).

Next, we detected TM cells in the blood using the TCR se-
quence as a molecular barcode (Figs. 4 C and S4 B). Despite
heterogeneity across patients (Fig. S4, E and F), the majority of
TM cells in each patient were present in nonnaive clusters (e.g.,
all clusters except clusters 0, 5, and 6; Fig. 4, A and C). The
percentages of TM cells in these nonnaive clusters were 89.5%
(K409), 100% (K411), 99.7% (K468), and 96.6% (K484). TM cells
mostly belonged to clusters associated with an effector and/or
effector memory–like phenotype (clusters 1, 2, and 4; Fig. 4, A
and C). Consistent with this, TM cells in the blood expressed
significantly higher levels of an activation signature compared
with non-TM cells (Fig. 4 D), and non-TM cells expressed sig-
nificantly higher levels of a naive signature (Fig. 4 E). To in-
terrogate how the level of exhaustion compared between clones
in blood and clones in tumor, we evaluated an exhaustion sig-
nature on a clone-by-clone basis between these two tissues. In
patient K409, there was no significant difference in the ex-
haustion score between clones in blood and tumor (Fig. 4 F,
K409, P = 0.2). However, in the other three patients analyzed,
the exhaustion signature was significantly elevated on matching
clones in tumor relative to blood (Fig. 4 F, K411, P = 4 × 10−5;
K468, P = 8.9 × 10−19; K484, P = 6.7 × 10−5). These data are
consistent with our results in mice, supporting the idea that TM
cells in the blood may be less dysfunctional than their corre-
sponding counterparts in tumor.

TM CD8+ T cells can be tracked longitudinally in patient
blood and show a temporal increase in exhaustion despite
anti–PD-1 treatment
Follow-up blood samples were obtained from two patients that
failed to respond to checkpoint blockade, K411 and K468 (Fig. S4
A). We detected overlapping TCRs between the two blood
samples and the tumor sample in each patient, despite one of the
samples being collected almost a year and half after the initial
sample (Figs. 5 A and S4 A). TM cells detected in the longitudinal
samples showed increased activation compared with non-TM
cells (Fig. S4, I and J), similar to the trend in the initial sample
(Fig. 4, D and E). Notably, the exhaustion signature was higher
in the longitudinal samples than the initial blood samples, but
lower than the tumor (Fig. 5 B). These data suggest that TM cells
in the blood can become more exhausted over time despite
anti–PD-1 treatment, but ultimately the highest levels of ex-
haustion were in the tumor.

We next quantified the extent to which the transcripts en-
riched in the TM component relative to the non-TM component
correlated across patient samples. The extent of similarity across
samples was greater for within-patient comparisons than
between-patient comparisons (Fig. 5 C and Table S9). Despite
the acquired differences in the T cell exhaustion signature of
clones following therapeutic intervention (Fig. 5 B), the general
transcriptional landscape of the TM component relative to the
non-TM component remained highly consistent within the two
patients assessed in this study (Fig. 5 C; R = 0.83, P < 2.2 × 10−16).

Analysis of between-patient variability revealed a significant
correlation (Fig. 5 C; R = 0.4, P < 2.2 × 10−16) in the extent to
which individual gene transcripts were specific to the TM
component or the non-TM component. This consistency sug-
gested there may be useful transcripts for isolating the TM
component from blood. We therefore restricted our correlation
analysis to cell surface markers (Chihara et al., 2018), since their
transcripts would have practical uses (e.g., sorting for se-
quencing, functional assays, or adoptive cell transfer therapy),
and correlations in the TM component remained (R = 0.31, P <
2.2 × 10−16). This result suggests that surface-expressed bio-
markers could be defined for the TM population that are robust
to varying tumor burdens and therapeutic conditions.

ROC curves (middle), and the recall–precision plots (right) with fivefold cross validation. (C) Top 20 surface markers by q value for identifying TM cells in the
blood using COMET. Significance using an XL-minimal hypergeometric test with multiple hypothesis test corrections. Full list in Table S4. (A–C) scRNAseq
integrated from three biological replicates (M1–3) from two experiments. (D) Biological functions for positive markers (q value ≤ 0.01) identified using COMET
for TM cells. NK, natural killer. (E) Frequency protein+ of CD8+ T cells in the blood of mice with MC38 tumors at day 21 (n = 9mice) by flow cytometry. Gated on
singlets, live, CD45+, CD8α+. Representative of two to four independent experiments depending on the marker, each with n = 5–9 mice. Bars show the mean,
and error bars represent SD. NK, natural killer. (F) FACS plots showing CD39, NKG2D, and CX3CR1 (y axis) as indicated above each plot, and CD44 (x axis) on
CD8+ T cells in the blood of mice in E. (G) UMAP visualization of mice from the validation cohort, two biological replicates, mouse 4 (M4), and mouse 5 (M5). Far
left shows cells colored by matching status (green, TM; gray, non-TM). The three UMAPs to the right show cells colored by protein (NKG2D, CD39, and CX3CR1)
using CITE seq (red, positive; gray, negative). Significance: CD39, P = 3.87 × 10−54 and P = 7.53 × 10−71; NKG2D, P = 3.19 × 10−122 and P = 1.93 × 10−175; CX3CR1, P
= 9.22 × 10−17 and P = 2.08 × 10−30 for M4 and M5, respectively, assessed using Wilcoxon rank sum test. (H) ROC curves showing the sensitivity and specificity
of each protein at identifying TM cells. (I) Sensitivity and specificity for proteins in identifying TM cells as single markers or two- and three-protein com-
binations, colored black if they are pareto-optimal (no other gate with strictly better sensitivity and specificity) and gray if not pareto-optimal. The “&” indicates
an “and” gate, and the “|” indicates an “or” gate. Full list of values in Table S5. (G–I) Two biological replicates from the validation cohort (one experiment).
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Cell surface marker combinations can be used to detect the
TM component from patient blood
We next asked if cell surface markers could enrich TM cells. We
first examined the use of inhibitory receptors. With the

exception of patient K409, PDCD1 RNA was detected on a mi-
nority of the TM cells (Fig. 6 A). Moreover, at the transcript
level, PDCD1 and a number of other inhibitory receptors had
poor performance as predictive markers (Fig. 6, B and C; and

Figure 3. TM CD8+ T cells in blood are less dysfunctional than the corresponding clones in tumor. (A) CD8+ T cells from the integrated MC38 tumor
samples colored by matching status. Navy blue, blood-matching cells; gray, nonmatching cells. (B) The distribution of cells in blood (top) and MC38 tumors
(bottom). Shown is the percentage of each cluster that is matching versus nonmatching. Shown are clusters with >50 cells. (C) UMAP visualization showing
clone size across in tumor (top). Box plot quantifying clonal expansion in the tumor (bottom). Significance using the Wilcoxon rank sum test, P = 4.9 × 10−26.
(A–C) scRNAseq integrated from three biological replicates (M1–3) from two experiments. (D) Expansion rates of clones in blood and MC38 tumor (log-scale,
for M1). Shown is M1 (one experiment), analysis of M4 and M5 from an independent experiment shown in Fig. S3 A. (E) Enrichment scores for a terminal
exhaustion signature (P = 1.9 × 10−9) and an effector-like signature (P = 1.3 × 10−9) in tumor and blood. Significance using a Wilcoxon signed-rank test. Each dot
shows the average gene signature of the cells in a given clone, and lines connect the same clone between tissues. Shown are clones detected in M1 (one
experiment). M2 and M3 from an independent experiment shown in Fig. S3 D. ***, P < 0.001.
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Table S9). Our finding that the AUC values for the inhibitory
receptors were hardly above chance for most patients suggested
that this class of markers could not reliably enrich TM cells in
blood. An independent study also found PDCD1 to be a poor
marker for cells in patient blood with TCRs matching to those in
paired melanoma samples (Lucca et al., 2021).

To determine better surface markers for TM cells in humans,
we again used COMET to identify transcripts that significantly
enriched for TM cells (Fig. 6 D and Table S10). We observed a

significant overlap betweenmarkers for the TM compartment in
patient samples and the markers in mice (Fig. 6 E and Table S11),
suggesting that some markers of TM cells are conserved across
species and cancer types. We identified 16 near-consensus sur-
face markers that had q < 0.05 in at least four of the six patient
samples (Table S12). Of the 16 near-consensus genes, many were
considered low or absent on TM cells (e.g., those for which
positive expression denotes that a cell is more likely to be non-
TM; see Materials and methods). The top four ranking markers

Figure 4. TM CD8+ T cell clones can be detected in the blood of metastatic melanoma patients and show fewer signs of dysfunction than matching
clones in tumor. (A and B) Clustering and UMAP visualization of paired blood (n = 21,833 cells) and tumor (n = 16,878 cells) samples from immunotherapy
treatment naive patients, filtered to show CD8+ T cells. Data are integrated from four patients (four experiments, patient clinical parameters in Fig. S4 A and
Table S7). Colors indicate transcriptional clusters. Functional annotations of each cluster are indicated. (C) CD8+ T cells in blood colored by matching status in
each patient (color, TM; gray, non-TM). (D and E) Enrichment of activation (D) or naive (E) CD8+ T cell signatures. Significance using a Wilcoxon rank sum test.
For D, P values are K409, P = 7 × 10−8; K411, P = 3.3 × 10−15; K468, P = 3.2 × 10−101; K484, P = 3.4 × 10−13. For E, P values are K409, P = 1.4 × 10−7; K411, P = 2.3 ×
10−10; K468, P = 1.6 × 10−91; K484, P = 1.4 × 10−12. (F)Mean value of an exhaustion signature in blood and in tumor. Significance using a Wilcoxon signed-rank
test; P values are K409, P = 0.2; K411, P = 4 × 10−5; K468, P = 8.9 × 10−19; K484, P = 6.7 × 10−5. Each dot shows a clone, and lines connect the same clone
between tissues. For patients, “tumor” refers to resections from the primary tumor and/or metastases as indicated in Fig. S4 B. (D–F) Four independent
experiments. ***, P < 0.001; ns, not significant.
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based on AUC were a reduction of LTB, CCR7, GYPC, and FLT3LG
on TM cells (referred to as LTBlow, CCR7low, GYPClow, and
FLT3LGlow). Low expression of these markers is consistent with
the nonnaive and/or effector or effector memory–like tran-
scriptional state of TM cells (Fig. 4, A and C). These markers
showed consensus despite differing tumor burdens and ther-
apeutic states, showing robust AUC performance (CCR7low,
0.741; FLT3LGlow, 0.620; GYPClow, 0.651; LTBlow, 0.771; empirical
P < 0.0001 for each; Fig. 6, D and F; Fig. S4 K; and Table S13).
However, these markers featured differing strengths in sensi-
tivity and specificity: CCR7low, 0.827 sensitivity and 0.619
specificity; GYPClow, 0.339 sensitivity and 0.819 specificity;
FLT3LGlow, 0.780 sensitivity and 0.447 specificity; and LTBlow,
0.725 sensitivity and 0.716 specificity (empirical P < 0.0001 for
each; Figs. 6 F and S4 L and Table S13). Though these top four
markers are negation markers (e.g., low/negative expression
on TM cells), we did observe some positive markers for TM
cells lower on the list, including KLRD1 and LGALS1 (Fig. 6 D and
Table S12), which came up in a companion study (Lucca et al.,
2021).

To increase performance of surface markers to isolate TM
cells from blood, we next explored the use of combinations. In all
samples, marker combinations of two or more genes signifi-
cantly improved performance on sensitivity and/or specificity
over single markers (Fig. 6, G and H; and Table S14). The best-
performing gate with even balance between sensitivity (0.780)
and specificity (0.716) was [CCR7low and (FLT3LGlow or LTBlow)]
(meaning that a cell has to be both low for CCR7 and low for
either FLT3LG or LTB to be classified as TM; empirical P < 0.0001
for each; Fig. 6, G and H; and Table S13). Collectively, these data

highlight the utility in using combinations of markers to enrich
TM cells.

Lastly, some TM cells may have been missed, since an exact
sequence match for both the α and β chain is a highly stringent
definition of a clone. To address this issue, we used two addi-
tional TCR clustering tools, GLIPH2 (Huang et al., 2020) and
iSMART (Zhang et al., 2020), which increased the number of
TM cells identified (5.26–20.4%; Fig. S5 A). However, TM cells
were still enriched in an activation signature (Fig. S5 B), and
non-TM cells were still enriched in a naive signature (Fig. S5 C).
Additionally, the sensitivity of PDCD1 and the other inhibitory
receptors remained insufficient overall (Fig. S5, D and E; and
Table S15). In contrast, the AUC performance of CCR7low,
FLT3LGlow, GYPClow, and LTBlow remained high (Fig. S5 F and
Table S15). While future studies coupling larger cohorts with
CITE-seq will be important to generalize findings across patients
and to validatemarkers, the concept that marker panels could be
built to monitor responses to immunotherapy in real time has
tremendous clinical potential.

Discussion
There is significant interest in monitoring anti-tumor immune
responses. The blood is a conduit of immune cell trafficking,
making it a window into these responses. However, compre-
hensive profiling of tumor antigen–specific T cells in the blood
has been challenging. Use of the TCR as a molecular barcode to
track TM cells provides an effective way to enrich tumor-
relevant populations. This approach is potentially less biased
than alternatives like PD-1 expression, while capturing a larger

Figure 5. Matching clones can be detected in longitudinal blood samples from melanoma patients. (A) Number of clones detected and overlapping
between samples in the initial blood, longitudinal blood, and tumor samples of K411 and K468 (two experiments). (B) Mean value of an exhaustion gene
signature from tumor, initial paired blood, and longitudinal blood. Each dot shows a clone, and lines connect the same clone between samples. Shown are only
clones that were detectable in all samples. Significance using a Wilcoxon signed-rank test. For patient K411, blood versus longitudinal blood, P = 0.025; blood
versus tumor, P = 3.5 × 10−4; longitudinal blood versus tumor, P = 0.001. For patient K468, blood versus longitudinal blood, P = 1.2 × 10−14; blood versus tumor,
P = 6 × 10−15; longitudinal blood versus tumor, P = 0.0015. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (C) Scatter plot showing each gene’s AUC for selecting TM
cells from blood. Purple is a comparison between longitudinal samples from the same patient (R = 0.4, P < 2.2 × 10−16). Green is a comparison between different
patients (R = 0.83, P < 2.2 × 10−16). Points outlined in black are surface-expressed genes. ***, P < 0.001. Significance using the Spearman correlation test. For
patients, “tumor” refers to resections from the primary tumor and/or metastases as indicated in Fig. S4 B.
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Figure 6. Identification of combinations of markers for tracking TM cells across patients. (A) Frequency of PDCD1+ cells (using transcript) in the initial
blood sample separated by TM and non-TM cells (four experiments). (B and C) ROC curves showing the sensitivity and specificity of inhibitory receptor
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breadth of the anti-tumor response than individual peptide/
MHC tetramers.

There are technical and biological considerations with this
method. First, paired blood and tumor samples are required to
identify TM cells. Second, sampling depth in the tumor may
impact the proportion of the TM repertoire detected. However,
the TM cells detected here showed consistent transcriptional
states and markers for their isolation despite variability in the
depth of coverage across patients. Third, use of negation
markers can be challenging in single-cell data, since these da-
tasets contain a large number of zero values, and it is debated
whether counts of zero are due to true biology or technical ar-
tifacts. It is generally accepted that genes receiving zero counts
are either not expressed or expressed to a low level within a cell
(Choi et al., 2020), and work has concluded that the zero
measurements in count data reflect true biology (Choi et al.,
2020; Hafemeister and Satija, 2019; Svensson, 2020; Townes
et al., 2019). We therefore conclude that TM cells are lower for
GYPC, CCR7, LTB, and FLT3LG than non-TM cells. Fourth, by-
stander T cells specific for pathogens have been identified in
mouse and human tumors (Mognol et al., 2017; Simoni et al.,
2018). Further work is needed to determine if the cells with the
bystander transcriptional signature indeed have TCRs that are
specific only to pathogens and not tumor. Follow-up studies
aimed at developing panels that can distinguish between tumor-
specific and bystander cells would be useful.

The majority of TM cells in the blood of our advanced mel-
anoma patients displayed an effector and/or effector memory–
like phenotype. This was counter to our predictions in that we
expected a more exhausted-like profile. While patient K409
showed similar enrichments for an exhaustion signature be-
tween matching clones in blood and tumor, the other three pa-
tients showed elevated exhaustion scores in the tumor. This
finding highlights the importance of using the TCR rather than
surrogate markers such as PD-1, which make an assumption
about expected differentiation states of relevant cells. As a class,
inhibitory receptor transcripts performed poorly at dis-
tinguishing TM cells in the blood, with the exception of patient
K409, suggesting that there may be better cell surface markers
for identifying tumor-relevant cells in blood.

Three markers validated here in mice for identifying TM
cells were NKG2D, CD39, and CX3CR1. When comparing

effector, memory, and exhausted populations, Klrk1 shows the
highest expression in memory CD8+ T cells (assessed from
GEO accession no. GSE41867; Doering et al., 2012), and NKG2D
is important for optimal memory formation (André et al.,
2012; Ferrari de Andrade et al., 2018; Prajapati et al., 2018;
Wensveen et al., 2013; Zloza et al., 2012). CD39 is associated
with exhaustion (Gupta et al., 2015). CX3CR1 correlates with
effector CD8+ T cell differentiation, with the highest levels on
the most effector-like cells (Gerlach et al., 2016). How NKG2D,
CD39, CX3CR1, and other candidate markers impact the
function of TM cells remains to be determined. Some of the
markers identified may be specific to this tumor type or its
location in the skin and may differ with tumor type or loca-
tion. However, a number were associated with a general
program of trafficking to inflamed tissues and were not skin
specific, including Ccr2, Ccr5, Cx3cr1, Itga4, Itgb1, and Itgb2 (Liu
et al., 2006; Masopust et al., 2010). The significant overlap
between TM markers in the mouse MC38 model and mela-
noma patients suggests that there can be similarities that span
tumor type and species.

In mice, the TM population in the blood was fairly homoge-
nous. However, blood-matching clones in tumors showed sig-
nificant transcriptional diversity. These data suggest that TM
cells have a high degree of plasticity upon entering the tumor,
and the tumormicroenvironment influences the development of
diverse functional states. On a clonal basis, TM cells in the blood
were less exhausted than their blood-matching counterparts in
tumor, in both mice and patients, with the exception of K409. In
the two longitudinal patient samples, the clones detected in the
second blood sample were more dysfunctional than the first,
consistent with the notion that exhaustion continues to develop
over time (Wherry and Kurachi, 2015). However, clones in blood
appeared less exhausted than clones in tumor, suggesting that
blood may be a reservoir of less dysfunctional cells.

In summary, we identified CD8+ T cells in blood that had
matching TCRs with CD8+ T cells in mouse or human tumors.
TM cells in blood were generally less dysfunctional than
matching clones in tumor. Additionally, we provide evidence
for an exciting and tractable innovation: the use of combina-
torial marker panels to isolate TM cells in blood. These panels
were consistent over time, across patients, and robust to
sampling variation. Follow-up studies interrogating how

transcripts to distinguish TM cells from non-TM cells in the initial blood samples (four experiments; B) and the longitudinal blood samples (two experiments; C).
Legend shared between B and C. (D) Plot showing the significance values from the COMET analysis across blood samples. Significance using an XL-minimal
hypergeometric test with multiple hypothesis test corrections. Circles sized by AUC for sorting TM cells from non-TM cells. The y axis corresponds to the
log2(x + 1) transformation of the −log10 of the COMET q values, capped at 10. PDCD1 and consensus markers are highlighted with color. All other surface
markers are gray. (E) Overlap between the single markers detected by COMET to distinguish TM cells from non-TM cells in the blood of mice (with MC38
tumors, M1–5 from three experiments) and patients (with melanoma, both treatment-naive samples and longitudinal samples, totaling six experiments).
Markers included if detected as significant (q value < 0.05) in a minimum of two samples. Significance using a hypergeometric test, P = 8.39 × 10−8. Lists of
genes and additional parameters in Table S11. (F) ROC curves for the consensus markers identified in D. (G) The sensitivity and specificity of all possible logic
gates derived from combinations of genes CCR7low, LTBlow, GYPClow, and FLT3LGlow. Points are shaped by the number of markers used in the logical gate and
colored black if they are pareto-optimal (if there is no gate with strictly better sensitivity and specificity) or gray if not pareto-optimal. A dotted line through the
pareto-optimal gates represents the ROC of this combinatorial marker collection. (F and G) The dashed line represents the sensitivity and specificity values of
random chance. (D, F, and G) Six experiments. (H) UMAP of CD8+ cells integrated from all patient blood samples (including longitudinal samples; data
combined from six experiments). Left: True TM cells as defined by matching TCR sequence in green, nonmatching in gray. Right: Putative TM cells as de-
termined by the best-performing gate, [CCR7low and (FLT3LGlow or LTBlow)], are colored blue; cells not expressing the marker combination in this gate in gray.
For this combination, sensitivity = 0.780 and specificity = 0.716. The symbol “&” indicates the “and” gate, and the “|” indicates the “or” gate.
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immunotherapies such as PD-1 blockade impact TM cells will
be highly relevant to determining predictors of response versus
resistance. Our algorithmic approach to generate marker pan-
els to identify TM cells coupled with future longitudinal studies
could assist with creation of diagnostics, potentially allowing
monitoring of the anti-tumor immune response in real time
without the need for single-cell sequencing.

Materials and methods
Experimental model and subject details
Mice and cell lines
WT female C57BL/6 mice were purchased from The Jackson
Laboratory (stock number 000664). Tumor cells were implanted
into mice at 8–10 wk of age. Mice were maintained at Harvard
Medical School in specific pathogen–free facilities under stan-
dard housing, husbandry, and diet conditions in accordance with
Institutional Animal Care and Use Committee (IACUC) and Na-
tional Institutes of Health guidelines. All experimental proce-
dures performed were approved by the IACUC at Harvard
Medical School.

For tumor studies, MC38 colon adenocarcinoma cells (a gift
from Dario Vignali, University of Pittsburgh School of Medicine,
Pittsburgh, PA) were used. MC38 cells were grown in DMEM
supplemented with 10% FBS, 100 U penicillin, and 100 µg
streptomycin in a 37°C incubator with 5% CO2. Cells were har-
vested at passage 2–3 after thaw, and 2.5 × 105 tumor cells were
injected subcutaneously into the flank of mice anesthetized with
2.5% 2,2,2,-tribromoethanol (Avertin). Tumors were measured
every 2–3 d using calipers, and mice were sacrificed when tu-
mors reached a 2-cm3 volume, ulceration, or a body condition of
>2 in accordance with IACUC guidelines. Tumor volume was
determined using the formula for the volume of an ellipsoid, 1/2 ×
D × d2, where D is the major axis of the tumor and d is the minor
axis. Tumors were harvested from mice at days 18–23 after
implantation for scRNAseq and flow validation experiments as
indicated in the figure legends.

Clinical samples
Studies of patients with melanoma were approved by the
Committee on Human Research from the Human Research
Protection Program at University of California, San Francisco
(UCSF; CC138510) and by the Institutional Review Board of
UCSF under protocol 13-12246. All patients provided written,
informed consent before biopsy and/or blood collection. Pa-
tient sample details including location of biopsy, treatments
following initial blood/tumor sampling, gender, age, and
timing of longitudinal blood collection can be found in Fig. S4,
A and B, and Table S7.

Method details
Lymphocyte isolation from mouse tissues
Peripheral blood was collected from mice using the retroorbital
bleeding route, and blood was collected into 4% sodium citrate
(Sigma-Aldrich) to prevent clotting. RPMI + 10% FBS was added
to dilute out the anti-coagulant, and then white blood cells were
separated from red blood cells using centrifugation through

histopaque-1083 (Sigma-Aldrich). The white blood cell layer at
the interface between the histopaque and remaining medium
was subsequently subjected to staining for flow cytometry
analysis or sorting for scRNAseq.

Tumors were dissected and mechanically disaggregated. For
flow cytometry validations, a GentleMACS (Miltenyi) was used
for disaggregation, whereas for scRNAseq scissors were used to
finely mince the tumors instead of the GentleMACS. The dis-
sociated tissue was digested with collagenase type I (400 U/ml;
Worthington Biochemical) for 20–30 min at 37°C. Samples were
then passed through a 70-µm filter, and lymphocytes were en-
riched using centrifugation through a Percoll gradient (40% and
70%). The enriched lymphocyte layer at the 40%/70% interface
was subsequently stained for flow cytometry or sorted for
scRNAseq.

Flow cytometry and sorting of mouse samples
Single-cell suspensions were generated as described above.
Suspensions were labeled with LIVE/DEAD Fixable Near-IR
Cell Stain in PBS (Thermo Fisher Scientific) to exclude dead
cells from downstream analyses. Cells were preincubated
with TruStain Fc Receptor Block (anti-mouse CD16/CD32,
clone 93; BioLegend), and then labeled with extracellular
antibodies including CD3 (clone 145-2C11) and CD8α (clone
53-6.7; from BD); CD11a (clone M17/4; from Thermo Fisher
Scientific); CCR2 and NKG2I (from R&D Systems); Lag3
(clone C9B7W; from Bio-Rad); and CD45.2 (clone 104), PD-
1 (clone RMPI-30), CX3CR1 (clone SA011F11), CD62L (MEL-
14), CD44 (IM7), CCR5 (clone HM-CCR5), CXCR6 (clone
SA051D1), CD49D (clone R1-2), CD18 (clone M18/2), CD29
(clone HMβ 1-1), CD48 (clone HM48-1), CD94 (clone 18d3),
NKG2D (clone CX5 or C7), CD39 (clone Duha59), NKG2A
(clone 16A11), NK1.1 (clone PK136), Tim-3 (clone RMT3-23),
CD160 (clone 7H1), Slamf7 (clone 4G2), TIGIT (clone IG9), and
NRP1 (clone 3E12; from BioLegend). Flow cytometry labeling
(without inclusion of Feature Barcoding antibodies fromBioLegend)
was performed in PBS supplemented with 2% FBS. For CITE-seq
validation experiments, cells were labeled with TotalSeqC an-
tibodies against CD39 (TotalSeq C0834, clone Duha59) and
CX3CR1 (TotalSeq C0563, clone SA011F11) as directly conju-
gated antibodies and NKG2D as a biotin/streptavidin reaction
(NKG2D-biotin clone C7 paired with TotalSeq C0971-Steptavidin;
from BioLegend). Labeling with Feature Barcoding antibodies
was performed in PBS supplemented with 2% BSA and 0.01%
Tween. Samples were acquired on a FACSymphony (BD Bio-
sciences) and analyzed with Flow Jo software (BD Biosciences).
Flow cytometry–based sorting for scRNAseq was performed
using a FACSAria (BD Biosciences). Because we expected TM
cells in the blood to be rare, we sorted for CD44+ CD8+ T cells to
enrich for antigen-experienced populations in the blood (full
sorting strategy = live, CD45.2+, CD3+, CD8α+, CD44mid-high).
Although all CD8+ T cells sorted from blood expressed some
level of CD44, cells from mouse 1 (M1, experiment 1) were
sorted on CD44high, while cells from mouse 2 and mouse 3 (M2
and M3, experiment 2) included both CD44mid and CD44high

cells. Tumor samples were sorted based on live, CD45.2+, CD3+,
CD8α+.
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scRNAseq of mouse samples
Gene expression and TCR libraries for mouse samples were
generated using the Chromium Single Cell 59 Library and V(D)J
Reagent Kit (10X Genomics) according to the manufacturer’s
recommendations. For samples requiring Feature Barcoding li-
braries to detect TotalSeqC antibodies (from BioLegend), the
Chromium Single Cell 59 Feature Barcode Library Kit (10X Ge-
nomics) was used according to the manufacturer’s recom-
mendations. Following sorting as described above, ~10,000 cells
per sample were loaded into each channel of the Chromium
Chip, and recommendations were followed assuming targeted
cell recovery of 2,001–6,000 cells. Libraries were sequenced on a
NextSeq sequencer (Illumina) by the Dana-Farber Cancer In-
stitute Sequencing Core. Gene expression libraries and Feature
Barcoding libraries were sequenced using the 26 × 8 × 91-bp
parameters recommended by 10X Genomics. TCR libraries
were sequenced using the 150 × 8 × 150-bp parameters recom-
mended by 10X Genomics. Based on approximate cell numbers
expected, we sequenced a minimum of 20,000 reads per cell for
gene expression libraries and 5,000 reads per cell for TCR and
Feature Barcoding libraries.

Lymphocyte isolation from human tissue samples
Human melanoma tumor samples were mechanically dissoci-
ated and enzymatically digested overnight for 12–14 h. Following
fine mincing with scissors, samples were digested in RPMI
media (Gibco) containing 250 U/ml type IV collagenase (4188;
Worthington Biochemical Corp.), 20 µg/ml DNase (SDN25-1G;
Sigma-Aldrich), 10% FBS (Alphabioregen), 1% Hepes (Gibco), 1%
penicillin/streptomycin (Gibco), and 2 mM glutamine (GLUTA-
max; Gibco) at 37°C in a tissue culture incubator with 5% CO2.
Following overnight incubation, digestion was quenched with
excess media, and samples were transferred to 50-ml conical
tubes, briefly shaken, and filtered through a 100-µm sieve.
Samples were pelleted and washed in media before downstream
applications.

Lymphocyte isolation from human blood samples
Blood from patients withmelanomawas collected in heparinized
or EDTA tubes and diluted with an equal volume of PBS before
being layered over a Ficoll Paque PLUS gradient (GE Healthcare)
in 50-ml conical tubes that were centrifuged at room tempera-
ture for 15 min at 932 g. Cells were isolated from the Ficoll/PBS
interface and washed at least twice in PBS/2% FBS before
downstream applications. For the two patients with longitudinal
blood samples processed (K411 and K468), both patients still had
tumor at the time of longitudinal blood collection.

Flow cytometry and sorting of human samples
Melanoma tumors (primary tumors or metastases as indicated
in Fig. S4 B and Table S7) or blood were stained in PBS with
Tonbo Ghost Dye Violet 510, anti-CD45 (clone H130), anti-CD3
(clone SK7), anti-CD4 (clone SK3), and anti-CD8 (clone SK1).
Some samples were additionally stained with anti-PD-1 (clone
EH12.2H7), anti-CD25 (clone M-A251), anti-CD27 (clone LG.7F9),
and anti-CD127 (clone HIL-7R-M21). CD8+ T cells were sort pu-
rified as singlet, live, CD45+, CD3+, CD4−, CD8+ events on an Aria

2 or Aria 3u (BD) in the UCSF Parnassus Flow Cytometry Core. In
some cases the total CD3+ T cell population was sort purified as
singlet, live, CD45+, CD3+ events, and CD8+ T cells were identi-
fied bioinformatically. Cells were counted after sorting on a
hematocytometer and resuspended to target ~1,000 cells/µl in
media with 10% FBS for scRNAseq.

scRNAseq of human samples
Following sorting, cells were prepared for scRNAseq using the
10X Chromium Platform (10X Genomics) by the Institute for
Human Genetics at UCSF. Cells were processed following the
recommended protocol with the Chromium Single Cell 59 Li-
brary Construction kit and Chromium Single Cell V(D)J En-
richment Kit (Human T Cell; Single Cell 59 PE Chemistry).
Libraries were run on a HiSeq 4000. FASTQ files were gener-
ated and analyzed with Cell Ranger (version 3.0.2) by the UCSF
10X Genomics Core using the GRCh38 human reference genome
for alignment.

Demultiplexing and read processing
Raw reads were processed using Cell Ranger version 3.0.2 to
generate raw counts matrices of gene expression and CSV files
corresponding to TCR clonality. The GRCh38 human reference
genome was used for alignment of human samples, and the
mm10 mouse reference genome was used for alignment of
mouse samples. Aether version 1.0 (Luber et al., 2018) was used
to process certain resource-heavy jobs on compute instances
rented from Amazon Web Services.

Computational processing of gene expression data
All analyses were conducted using R version 3.6.1 and Seurat
version 3 with additional utilization of the dplyr, data.table,
ggplot2, cowplot, viridis, gridExtra, RColorBrewer, ggpubr,
ggrepel, gtools, DescTools, doParallel, doSNOW, and tibble
packages. Seurat objects were created with the min.cells pa-
rameter set to 3 and the min.features parameter set to 400.
Filtering cells based on expression of housekeeping genes was
conducted using the human and mouse (where appropriate)
gene lists maintained by the Seurat developers (available on the
Satija laboratory website), with cells passing the filtering crite-
ria if they had expression >0 for more than half of the genes in
the list. Subsequently, the MitoCarta database from the Broad
Institute was used to filter out cells based on expression of mi-
tochondrial genes (Calvo et al., 2016). Cells were filtered out if
they expressed >500 of the 1,158 mitochondrial genes in hu-
mans, or if the number of mitochondrial genes expressed was
more than two SDs from the mean in mouse.

Data were normalized using the default Seurat function
(generating log-transformed transcripts-per-10K read meas-
urements) followed by scaling, and variable genes were found
using “ExpMean” for the mean.function parameter and
“LogVMR” for the dispersion.function parameter. The RunPCA
function was run using 50 principal components, and then the
FindNeighbors function was run using 30 dimensions. Subse-
quently, the FindClusters function was run with a resolution
aiming to generate five to seven biologically meaningful clusters
per sample. To filter for CD8+ T cells in humans, clusters were
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kept if (a) the proportion of cells in the cluster with at least two
genes out of CD3E, CD3D, or CD3G being expressed was >30% and
either (b) CD8B was expressed in >30% of cells in the cluster,
CD8A was expressed in >30% of cells in the cluster, FOXP3 was
expressed in <5% of cells in the cluster, and CD4 was expressed
in <5% of cells in the cluster or (c)MKI67was expressed in >70%
of cells in the cluster and either CD8A or CD8B was expressed in
>20% of the cells in the cluster. This last criterion was to account
for proliferating clusters. In mice, which had less contamination
from non-CD8+ T cells due to prior sorting, clusters were kept if
>30% of cells in the cluster expressed Cd3e, Cd3d, or Cd3g and if
>30% of cells in the cluster expressed Cd3e and Cd8a while
having <5% of the cells express Foxp3. When applicable, samples
were integrated using the SCTransform method (Hafemeister
and Satija, 2019).

The samples from the first three mice with MC38 tumors
were integrated to generate an “integrated blood” sample and an
“integrated MC38 tumor” sample as a discovery cohort. These
three biological replicates were generated between two inde-
pendent experiments (M1, experiment 1; M2 and M3, experi-
ment 2). M4 and M5 (two biological replicates) were generated
as a separate validation cohort from one experiment that in-
cluded CITE-seq. For patient samples, each patient was collected
and processed separately, making each patient an independent
experiment. Therefore, we have four independent experiments
for treatment-naive patients and two independent experiments
for longitudinal follow-up analyses. The majority of analyses
were performed on each patient individually, not the integrated
sample. Integration was performed for clustering and uniform
manifold approximation and projection (UMAP) visualization
purposes and included only the initial four pretreatment sam-
ples with the exception of Figs. 6 H and S4 L, which included all
six samples (the initial four pretreatment samples and the two
longitudinal samples). For patient K409, tissue from both the
primary tumor site and an involved LN was processed for
scRNAseq. For this patient, the data for primary tumor and the
involved LN were pooled, and cells in the blood were considered
TM if they had a TCR sequence matching either tumor resection.

Upon obtaining transcriptional clusters in the integrated
datasets, up-regulated genes associated with each cluster were
determined via the Wilcox rank sum test implemented in the
FindAllMarkers function in Seurat. Cells were classified as
positive for the PD-1 transcript (Pdcd1 in mice, PDCD1 in humans)
if they had any number of reads >0. To classify mouse cells as
positive for the Klrk1 (encoding NKG2D), Entpd1 (encoding
CD39), and/or Cx3cr1 (encoding CX3CR1), a more stringent cutoff
was used for a cell to qualify as positive, determined by COMET
(Delaney et al., 2019).

For enrichment analysis tests (Fig. 1 E), all genes were ranked
by their P value and fold change, and then the two ranking
values were aggregated to create a single ranking by taking the
mean of the P value and fold change rankings. We then searched
for significant associations with gene signatures by using the
ranked list in the PreRanked analysis of gene set enrichment
analysis (Subramanian et al., 2005). Default settings were used,
except permutations was set to 100, the enrichment statistic was
set to “classic,” and the max size was set to 2,500. The signature

sets used were all gene ontology terms, Kegg and reactome
pathways, and immune signatures from MSigDB (groups c2, c5,
and c7). Gene signatures derived from the literature were also
analyzed as cited in the figures and text.

To perform the clonal-corrected DE gene analysis comparing
TM cells in the blood to blood-matching cells in the tumor (Table
S6), the nonnormalized integrated mouse blood object was
subsetted to keep only TM cells, which were then collapsed into
their clones such that for each gene, the counts for all the cells in
a clone were summed together. This was done for the integrated
tumor as well, but with blood-matching cells. The tumor and
blood-derived datasets were then merged to a single object, and
the edgeR package was used to call differential expression.
Genes were considered if they expressed at least one count per
million, and then counts were normalized using the trimmed
mean of M values. Taking into account the paired nature of
matching clones in blood and tumor, genes were fitted to a
generalized linear model using the ‘glmFit’ function, and likeli-
hood ratio tests were conducted to detect DE genes between
blood and tumor with the ‘glmLRT’ function.

Single-cell TCR and clonal analysis
Cells for which at least one α and one β chain were annotated in
the TCR data were determined as matching or nonmatching
based on whether there was a cell in the paired tissue data that
had the exact same α and β chain composition as the given cell.
Only cells that had at least one α chain and one β chain annotated
were included in all of the analyses comparing matching to
nonmatching cells. Two cells were assigned to be in the same
clone if they had both the exact same α and β chains assigned
based on the amino acid sequence. If cells had more than one α
and β chain, they were considered matching if all of the α and β
chains detected were shared. This strict definition was used to
ensure that each pair of cells within the same clone had complete
similarity of the TCR chains detected, and hence was with high
probability derived from the same T cell clone. TCR information
was also used to quantify clonal expansion. The extent of clonal
expansion was determined by counting the number of cells in
each clonotype.

To define TM status by clustering of TCRs, two algorithms
were employed: GLIPH2 (Huang et al., 2020) and iSMART
(Zhang et al., 2020). For each patient, the joint collection of
blood and tumor CD8+ TCRs were submitted to each algorithm
individually for clustering on default parameters. All resultant
clusters that included at least one TCR found in the tumor
sample were considered to represent reactivity to a tumor an-
tigen, and therefore all blood CD8+ T cells with TCRs belonging
to these clusters were considered TM cells. In general, the re-
sults of GLIPH2 and iSMART were concordant with 4,926 cell
TM labels in agreement and 70 in disagreement. To buffer this
analysis against variation in algorithm and parameter choices,
we disregarded the 70 cells for which the two algorithms gave
conflicting results (<1.43% of cells).

Functional annotations of Seurat clusters
Functional annotations for Seurat clusters were manually
curated using a combination of up-regulated genes for each
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cluster (Table S1 for mouse and Table S8 for human) and vi-
sual inspection of key markers using UMAP visualization. Key
markers used for aiding in annotation included Sell, Tcf7, Lef1,
Ccr7, Il7r, S1pr1, Klf2, Cxcr3, Klrg1, Cx3cr1, S1pr5, Tnf, Ifng, Il2ra,
Gzmb, Prf1, Mki67, Slamf6, Pdcd1, Lag3, Tigit, Cd160, Havcr2,
Ctla4, Bst2, Irf1, Irf2, Irf7, Mx1, Ccr6, Rorc, Cxcr6, Itgae, cd69,
Tbx21, and Eomes. Transcriptional signatures in blood were
consistent with naive, central memory, effector, and effector
memory cells, and signatures in tumor were consistent with
diverse exhausted subsets, effector-like, resident memory–
like, naive/central memory–like, IFN-stimulated, and cycling
populations, as previously reported (Best et al., 2013; Guo
et al., 2018; He et al., 2016; Im et al., 2016; Kakaradov et al.,
2017; Kurtulus et al., 2019; Miller et al., 2019; Milner et al.,
2017; Sade-Feldman et al., 2018; Siddiqui et al., 2019; Tirosh
et al., 2016; van der Leun et al., 2020; Yost et al., 2019).

Clusters that expressed high levels of Sell, Tcf7, Ccr7, Il7r,
S1pr1, and Klf2 and lower levels of Klrg1, Cx3cr1, S1pr5, Tnf, Ifng,
Gzmb, Prf1, Mki67, and the inhibitory receptors (e.g., Pdcd1,
Havcr2, and Ctla4) were considered naive and/or central
memory–like. Clusters that expressed high levels of Klrg1, Cx3cr1,
S1pr5, Tnf, Ifng, Gzmb, and Prf1 and low levels of Sell, Tcf7, Lef1,
Ccr7, and Il7r were considered effector and/or effector
memory–like. Exhausted subsets were classified as those ex-
pressing multiple inhibitory receptors (Pdcd1,Havcr2, Lag3, Tigit,
etc.), low levels of naive and/or central memory–like markers,
and generally lower levels of some effector molecules such as
Klrg1 and Cx3cr1. The exhausted populations were further sub-
divided into progenitor-like (based on expression of Tcf7 and
lower levels ofHavcr2), intermediate-like (based on low levels of
Tcf7 and Havcr2 and expression of other IRs, including Pdcd1,
Ctla4, Lag3, CD160, etc.), and terminal-like (based on high levels
of multiple inhibitory receptors, including Pdcd1, Havcr2, Ctla4,
Lag3, Cd160, etc.). An IFN-stimulated cluster was defined based
on over representation of IFN responsive genes in the up-
regulated gene list, including Bst2, Irf1, Irf2, Irf7, Stat1, Stat2,
and Mx1. Clusters containing cells that were undergoing cell
cycle were identified based on over representation of cell cycle
genes (including Mki67 and several Kif, Cdk, and Cdc genes).
Lastly, resident memory–like populations were identified based
on expression of Itgae, Itga1, and Cxcr6.

Transcriptional signature analysis
We computed the extent to which gene signatures were ex-
pressed in cells by using Scanpy’s ‘score_genes’ function on the
centered and scaled gene count data objects (Wolf et al., 2018).
Because gene signature computation is relative (following cen-
tering and scaling of the gene expression data), data of all cells
compared were merged before the centering and scaling pro-
cedure. Violin plots were generated with the ‘seaborn’ package
in Python. Signatures were derived or obtained from previously
published datasets. For mouse, the naive signature was from
Kaech et al. (2002), the CD8 T cell activation signature was from
Sarkar et al. (2007), the cell cycle signature was from Kowalczyk
et al. (2015), the TRM signature was from Beura et al. (2018), the
bystander signature was from Mognol et al. (2017), and the
effector-like and terminally exhausted signatures were from

Miller et al. (2019). For human, the naive and activation sig-
natures were derived from Akondy et al. (2017), and the ex-
haustion signature was obtained from Sade-Feldman et al.
(2018).

To create the plot shown in Fig. S3 C, all cells were merged
into a single data object and normalized to 10,000 counts per
cell. Only cells with at least one α and one β chain were included.
Then each count was logarithmized according to log(1 + X),
where X is the gene count, and each gene was standardized to
unit variance and zero mean. Given a signature, a score was
calculated for each cell with Scanpy’s ‘score_genes’ function. The
average of the cell scores was calculated for each sample.

Machine learning
Classification of TM cells in mouse (Fig. 2, A and B) was con-
ducted using L2 regularized logistic regression using the Scikit-
learn package in Python version 2.7 (Pedregosa et al., 2011). Plots
were generated using matplotlib. For the logistic regression, the
liblinear solver was used with an l2 penalty and C parameter set
to 0.02.

Calculation of AUC
For each gene in each patient, the AUC in distinguishing TM
cells from non-TM cells was computed with the AUC( ) function
of the R DescTools package. To construct an input for the AUC( )
function, we calculated a vector of (1 − specificity) values and a
vector of corresponding sensitivity values from 39 potential
expression level thresholds for dividing the two populations. For
each gene in each patient, the 39 thresholds were every fifth
percentile expression of the gene (21 values including 0th per-
centile and 100th percentile) combined with 18 evenly spaced
expression values between the minimum and maximum, to
account for heavily skewed distributions in which useful
thresholds may lie above the 95th or below the 5th percentile. To
these input vectors we added (0,0) and (1,1), representing the
trivial options of selecting none and all of the cells as TM,
respectively.

Similarity of TM component across patients
Similarity between samples in terms of the power of a tran-
script in distinguishing the TM component from the non-TM
component was computed in Fig. 5 C via pairwise correlation of
gene transcript AUC values for selecting the TM component.
The AUC for each gene transcript in each patient was calculated
as described above, and all pairwise combinations between
patient samples were plotted for each gene, resulting in

� 6
2

�
=

15 points per gene. Negation markers are represented by AUC
values <0.5 when selecting the TM component. To mitigate
the x axis being arbitrarily biased toward the patients ap-
pearing first in the data, x and y coordinates were switched
for each point with a probability of 0.5 and a random seed set
to 27 in R. With the function stat_cor( ) from R package
ggpubr, Pearson correlation statistics were computed for the
resultant x and y values, stratified by whether each sample
pair was within the same patient or across different patients.
The plot is restricted to transcripts that were measured in all
six patient samples.
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COMET
COMET (Delaney et al., 2019) runs were conducted with version
0.1.12 and the default X parameter (0.15) and with the L pa-
rameter set to the minimum of (1) 10 × K and (2) 0.35 × N, where
K is the number of TM cells and N is the total number of cells
with at least one α and one β chain annotated, to account for our
willingness to allow for greater levels of contamination in the
identified TM samples than allowed by default.

The full lists of unranked markers from COMET are provided
in Table S4 for mouse and Table S10 for human. In these files,
the COMET-determined threshold value (column labeled
“cutoff_val”) is indicated for each marker when used as a pos-
itive marker or a negation marker. Negation markers are labeled
as “marker_negation,” whereas positive markers are listed as
simply “marker.” For positive markers, a cell is predicted to be
TM if its gene expression is above the threshold. For negation
markers, a cell is predicted to be TM if its gene expression is
lower than the threshold. In COMET’s original output, negation
markers are multiplied by (−1). We therefore took the absolute
value of all reported thresholds in the output tables to increase
clarity. Since “negation” does not necessarily equate to no ex-
pression for a marker, throughout, the text cells deemed positive
for a “negation marker” are referred to as “marker low” instead
of “marker negative.”

Ranking singleton human markers
Leading candidate markers for follow-up analysis from the hu-
man samples were determined by the number of patient samples
in which a given marker reached significance in COMET (q <
0.05). From the input list (Chihara et al., 2018), we removed
CD8A because this is a lineage-definingmarker and therefore not
ideal for separating the TM and non-TM components, alongwith
cytokines CCL4, CCL5, and MIF in order to strictly consider
surface-expressed markers. The 16 markers derived from this
filtered list had q < 0.05 in the majority of patient samples (four
of six) and were considered for follow-up analysis. These 16
candidate markers were ranked in order of descending average
AUC in distinguishing TM cells from non-TM cells across patient
samples (Table S12). The top four on this list were negation
markers for LTB, CCR7, GYPC, and FLT3LG, meaning that low or
absent expression of these markers is associated with TM cells.

Empirical P values and confidence intervals for gate performance
Confidence intervals for gate AUC, sensitivity, and specificity
were determined by 10,000 iterations of random bootstrap
resampling with replacement in the pooled CD8+ blood cell
population and separately with respect to each individual
patient blood sample. The 95% confidence intervals go from
the 2.5th percentile to the 97.5th percentile of 10,000 boot-
strapped recalculations of AUC, sensitivity, and specificity. A
null distribution for each gate was generated iteratively
through each resample by permuting the TM labels and cal-
culating the AUC, sensitivity, and specificity from the resul-
tant datasets. These distributions represented the null
hypothesis that each given marker was sorting TM cells from
non-TM cells by chance alone. Reported empirical P values
<0.0001 reflect the observation that the point estimate for the

marker’s AUC, sensitivity, or specificity was never observed
in the 10,000 iterations of the null.

Ranking of combinatorial marker gates
All possible one-, two-, three-, and four-gene logical gates were
enumerated from the four top-ranking markers in the patient
samples (CCR7low, FLT3LGlow, GYPClow, and LTBlow) and evaluated
for their sensitivity (e.g., capture rate) and specificity (e.g.,
contamination rate) in isolating the TM component in each pa-
tient at a universal threshold of 0.001 unique molecular iden-
tifiers. The optimal threshold to discriminate these two
populations must be calibrated to the distribution of read counts
as well as the target sensitivity and specificity. We used COMET
to determine the optimal threshold for each marker in each
patient sample (Table S14) and chose a universal threshold of
0.001 following manual inspection (COMET-derived thresholds
averaged across patient samples were 0.001, 0.001, 0.833, and
0.334 for CCR7low, FLT3LGlow, GYPClow, and LTBlow, respectively,
and any threshold between 0 and 1 is functionally equivalent
when applied to count data). To identify the best-performing
combinatorial gate, we computed a penalty for each gate based
on both its distance from perfect sensitivity and specificity and
its balance between the two metrics. To calculate this penalty,
we first computed the Euclidean distance from perfect sensi-
tivity and specificity (corresponding to (0,1) on ROC curve plots)
to the point on the plot representing that gate’s sensitivity and
specificity in the pool of CD8+ cells across all patient blood
samples. To this Euclidean distance, we added the difference
between the gate’s sensitivity and specificity in the pool of CD8+

T cells across all patient blood samples in order to promote the
selection of the most balanced gate. This process identified
[CCR7low and (FLT3LGlow or LTBlow)] as the best-performing and
most balanced gate (lowest penalty).

Quantification and statistical analysis
Flow cytometry validations in mouse
Statistical analyses for flow cytometry data were performed
with Prism software (GraphPad), and P values <0.05 were
considered statistically significant. Multiple t tests were per-
formed using the Holm–Sidak method with α = 0.05. Each row
was analyzed individually, without assuming a consistent SD.
Asterisks indicating significance in the figures correspond to P <
0.05 (*), P < 0.01 (**), and P < 0.001 (***). Statistical tests used for
computational analyses are indicated in the corresponding fig-
ure legends and Materials and methods sections. Exact P values
for significant comparisons are indicated in the figure legends
and supplemental tables.

Resource availability
Further information and requests for resources and reagents
should be directed to and will be fulfilled by the corresponding
authors. This study did not generate new unique reagents. The
gene expression scRNAseq data for patients K409 and K411
(initial blood/tumor pair) and the TCR data (for tumor) can be
found on GEO with accession no. GSE148190 (Mahuron et al.,
2020). The scRNAseq generated during this study can be found
on GEO as a SuperSeries with accession no. GSE159252. Within
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the SuperSeries, the mouse scRNAseq data can bewith accession
no. GSE158520, and the human scRNAseq data can be foundwith
accession no. GSE159251. Code used for this study is available on
GitHub at https://github.com/MSingerLab/Blood_Tumor_Code.

Online supplemental material
Fig. S1 is associated with Fig. 1 and provides additional details
characterizing the scRNAseq discovery cohort in mice. Fig. S2 is
associated with Fig. 2 and provides additional information about
the COMET output, flow cytometry validations in mice, and
combinations of NKG2D, CX3CR1, and CD39 in our flow cy-
tometry and CITE-seq experiments. Fig. S3 is associated with
Fig. 3 and provides additional comparisons between matching
clones in blood and tumor inmice. Fig. S4 is associatedwith Figs.
4 and 6 and provides supporting information regarding the
scRNAseq in the melanoma patients. Fig. S5 is associated with
Figs. 4 and 6 and details results from alternative methods to
identify matching clones based on the TCR in melanoma pa-
tients. Table S1 shows up-regulated genes for each Seurat cluster
in mouse integrated blood and MC38 tumor samples. Table S2
shows up-regulated genes for TM and non-TM CD8+ T cells in
the peripheral blood of micewithMC38 tumors. Table S3 is a full
list of pathways and signatures enriched in TM and in non-TM
CD8+ T cells from the peripheral blood of mice with MC38 tu-
mors. Table S4 shows significance measures calculated with
COMET in sorting TM from non-TM CD8+ T cells in the blood of
mice with MC38 tumors. Table S5 shows the sensitivity and
specificity of all possible gates made from combinations of
NKG2D, CD39, and CX3CR1, measured by CITE seq inmice. Table
S6 lists DE genes between TM cells in blood and blood-matching
cells in tumor. Table S7 shows clinical parameters for patient
samples. Table S8 shows up-regulated genes for each Seurat
cluster in human integrated blood and initial tumor samples.
Table S9 shows transcript AUC performance, delineated by
melanoma patient sample. Table S10 shows significance mea-
sures calculated with COMET for all transcripts in sorting TM
from non-TM CD8+ T cells in the blood of melanoma patients.
Table S11 shows similarities and differences in COMET-
identified markers to identify TM cells in mice with MC38 tu-
mors compared with human melanoma patients. Table S12 lists
the 16 transcripts that were significant in at least four patient
samples, ordered by average ranking of AUC. Table S13 lists
empirical significance values and 95% confidence intervals for
the AUC, sensitivity, and specificity of featured gates in each
patient sample. Table S14 lists sensitivity and specificity values
for all possible transcriptional marker combinations of CCR7low,
GYPClow, FLT3LGlow, and LTBlow, delineated by patient sample.
Table S15 lists empirical significance values and 95% confidence
intervals for the AUC, sensitivity, and specificity of featured
gates in each patient sample using the intersection of GLIPH2
and iSMART.
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Figure S1. Transcriptional landscape of CD8+ T cells in paired peripheral blood andMC38 tumors in mice. (A and B) Tables indicating details about each
mouse in the discovery cohort (M1–3), including the number of cells recovered that had gene expression (GEX) data, GEX and TCR data, number of matching
cells, percentage matching cells of the total sorted population, and the frequency of Pdcd1+ TM cells in peripheral blood (A) and MC38 tumors (B). The samples
from M1, M2, and M3 were integrated to generate an integrated blood sample and an integrated MC38 tumor sample as a discovery cohort. These three
biological replicates were generated between two independent experiments (M1, experiment 1; M2 and M3, experiment 2). (C) UMAP of the integrated blood
samples (top) and MC38 tumor samples (bottom) showing the distribution of each mouse in the integrated dataset (datasets combined from M1, M2, and M3).
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Cells from eachmouse are shown in color (M1, red; M2, green; M3, blue), and the cells from the other twomice are shown in gray for each plot. (D) UMAP of the
integrated blood samples (top) and MC38 tumor samples (bottom) showing the distribution of clones shared between tissues (TM cells in blood, and blood-
matching cells in tumor). Only TM cells (green), blood-matching cells (navy blue), and nonmatching cells (gray) from each individual mouse are shown, and the
cells from the other two mice in the integrated object are excluded. (E and F) UMAPs showing distribution of expression of select transcripts in the integrated
blood (E) and MC38 tumor (F) samples. Genes include Pdcd1 (encoding PD-1), Havcr2 (encoding Tim-3), Sell (encoding CD62L), Tcf7 (encoding TCF-1), Mki67
(encoding Ki-67), and Gzmb (encoding granzyme B). (G) Heatmap showing the fraction of cells in the integrated MC38 tumor (top) and blood (bottom) datasets
with the indicated number of TCR α and β chains detected. (H–J) Top: UMAP of integrated blood samples showing expression of a cell cycle signature
(Kowalczyk et al., 2015; P = 0.24; H), a CD8+ naive T cell signature (Kaech et al., 2002; P = 4.6 × 10−125; I), and a TRM signature (Beura et al., 2018; P = 5.5 ×
10−60; J). Violin plots quantifying the expression of each signature in H–J in TM compared with non-TM cells in the blood (bottom). ***, P < 0.001; ns, not
significant. Significance determined using Wilcoxon rank sum tests. (C–J) scRNAseq integrated from three biological replicates (M1–3) between two inde-
pendent experiments.
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Figure S2. Identification and validation of markers to identify TM CD8+ T cells in blood (A) Top surface markers for identifying non-TM cells from TM
cells in the blood based on COMET (Delaney et al., 2019) analysis. Significance determined using an XL-minimal hypergeometric test with multiple hypothesis
test corrections. scRNAseq integrated from three biological replicates (M1–3) between two independent experiments. (B) Quantification of the frequency of
bulk CD8+ T cells in the peripheral blood of mice with MC38 tumors on day 21 after implantation (n = 9 mice) that express the indicated proteins using FACS.
Cells are gated on singlets, live/dead−, CD45+, and CD8α+ and are further gated based on CD44 expression to compare CD44low and CD44high cells. **, P < 0.01;
***, P < 0.001. (C) Comparison of bulk CD8+ T cells (gated on singlets, live/dead−, CD45+, CD8α+) from the peripheral blood of mice with MC38 tumors on day
21 after implantation (n = 9 mice) to naive B6 mice (n = 4 mice). (B and C) Data are representative of two to four independent experiments depending on the
marker, with n = 3–4 naive mice and n = 5–9 mice with MC38 tumors (days 19–22). Bars show the mean, and error bars represent SD. Significance determined
using multiple t tests using the Holm-Sidak method, with α = 0.05. Each row was analyzed individually, without assuming a consistent SD. Reported are the
adjusted P values considering multiple tests. Significant comparisons in B are indicated with asterisks and include PD-1, P = 2.6957 × 10−5; Lag-3, P = 0.0012;
TIGIT, P = 0.0012; CD39, P = 3.7639 × 10−9; NRP1, P = 5.1172 × 10−7; CX3CR1, P = 0.0002; CCR2, P = 0.0012; CCR5, P = 6.4414 × 10−10; CXCR6, P = 6.1903 × 10−5;
CD49, P = 0.0002; CD29, P = 1.6745 × 10−9; CD11a, P = 1.1636 × 10−7; CD18, P = 1.9906 × 10−7; NKG2D, P = 1.1863 × 10−7; NKG2A, P = 1.8567 × 10−7; CD94, P =
1.8567 × 10−7; NKG2I, P = 2.6625 × 10−6; Slamf7, P = 5.06 × 10−13. In B, CD160 expression between CD44high and CD44low was not significant. In C, there were
no significant differences between naive B6 and B6 mice with MC38 tumors. (D) Representative FACS contour plots showing NKG2D, CD39, and CX3CR1
expression (y axis) as indicated above each plot and CD44 (x axis) on CD8+ T cells in the MC38 tumor of mice in Fig. 2 F. Representative of three independent
experiments, each with n = 5–9 mice. (E) UMAPs showing distribution of expression of select transcripts in the blood of M4 (top) and M5 (bottom), two
biological replicates from the validation cohort (one experiment). Genes include Pdcd1 (encoding PD-1), Klrk1 (encoding NKG2D), Entpd1 (encoding CD39), and
Cx3cr1 (encoding CX3CR1). (F) Representative FACS contour plots showing all possible pairwise combinations of NKG2D, CD39, and CX3CR1 expression (as
indicated in each plot) on CD8+ T cells in the blood of mice on day 21 after implantation of MC38 tumor cells. Plots are gated on singlets, live/dead−, CD45+,
CD8α+. Numbers on plots indicate the percentage of cells within each quadrant of the total parent population. (G) Quantification of the flow cytometry plots in
F showing the frequency of cells expressing one, two, or three of the indicated proteins (NKG2D, CD39, and CX3CR1) determined using Boolean gating, of the
population of cells expressing at least one of the markers. Shown are the average frequencies of all possible combination gates from six mice. In G, 70.5%
expressed only one of the markers but not the others, 20.1% expressed only two of the markers, and 9.4% expressed all three of the markers. Data in F and G
are representative of three independent experiments with five to nine mice per experiment. (H and I) Quantification of the frequencies of cells expressing one,
two, or three of the indicated proteins (NKG2D, CD39, and CX3CR1) of the population of cells expressing at least one of the markers in the blood of M4 and M5
using the CITE seq data (two biological replicates from the validation cohort; one experiment). The frequencies of all possible combination gates on the total
population of cells from the CITE seq experiment (not subsetting based on TM status; H) and only the TM population (I). (H) 61.9% of cells expressed only one
marker, 28.7% expressed only two markers, and 9.4% expressed all three markers (values averaged between M4 and M5). (I) 28.1% of cells expressed only one
marker, 52.7% expressed only two markers, and 19.2%, expressed all three markers (values averaged between M4 and M5). The pie charts in G and H share the
legend to the left of I.
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Figure S3. TM CD8+ T cells in the blood show stronger enrichment for effector signatures and weaker enrichment for exhaustion signatures than
the corresponding clones in the tumor. (A) Expansion rates of clones in blood and MC38 tumor (log scale), for M4 (left) and M5 (right). Shown are two
biological replicates from the validation cohort (one experiment). Data from M1 from an independent experiment are shown in Fig. 3 D. (B) Top: UMAP vi-
sualization of signatures related to CD8+ T cell transcriptional states in the mouse integrated MC38 tumor samples. From left to right are signatures of terminal
exhaustion from Miller et al. (2019); TRM cells from Beura et al. (2018); cell cycle from Kowalczyk et al. (2015); naive cells from Kaech et al. (2002); and
bystander cells with TCRs that are not specific to the tumor from Mognol et al. (2017). Bottom: Violin plots quantifying the expression of each signature in

Pauken et al. Journal of Experimental Medicine S6

Characterizing circulating anti-tumor CD8 T cells https://doi.org/10.1084/jem.20200920

https://doi.org/10.1084/jem.20200920


blood-matching compared with non–blood matching clones. Significance determined using a Wilcoxon rank sum test. Colored bars beneath the violin plots
indicate whether the mean is statistically greater in blood-matching cells (terminal exhaustion, P = 1 × 10−41; TRM P = 6.9 × 10−13), not statistically significant
(cell cycle, P = 0.97), or statistically greater in non–blood-matching cells (naive, P = 2.2 × 10−65; bystander, P = 0.0016). scRNAseq integrated from three
biological replicates (M1–3) between two independent experiments. (C) Shown are average gene scores per sample for mouse blood and tumor, separated by
matching status. M1–3 indicate each mouse sample number (three mice between two independent experiments). For a given signature, a gene score was
calculated for each cell. Shown are naive-like (Kaech et al., 2002), cell cycle (Kowalczyk et al., 2015), and the effector-like, progenitor, and terminally exhausted
signatures fromMiller et al. (2019). (D) Clone-by-clone analysis examining the mean expression of an effector-like gene signature or a terminal exhaustion gene
signature fromMiller et al. (2019). Each dot shows the average gene signature of the cells in a given clone, and lines connect the same clone between blood and
tumor samples. Shown are clones detected in M2 (top) and M3 (bottom) from one experiment. Data from M1 from an independent experiment are shown in
Fig. 3 E. Significance determined using a Wilcoxon signed-rank test. For M2, P = 0.0084 for the effector-like signature and P = 5.3 × 10−4 for the terminally
exhausted signature. For M3, P = 0.024 for the effector-like signature, and P = 1.7 × 10−3 for the terminally exhausted signature. *, P< 0.05; **, P < 0.01; ***, P <
0.001; ns, not significant.

Pauken et al. Journal of Experimental Medicine S7

Characterizing circulating anti-tumor CD8 T cells https://doi.org/10.1084/jem.20200920

https://doi.org/10.1084/jem.20200920


Pauken et al. Journal of Experimental Medicine S8

Characterizing circulating anti-tumor CD8 T cells https://doi.org/10.1084/jem.20200920

https://doi.org/10.1084/jem.20200920


Figure S4. Transcriptional landscape of CD8+ T cells in paired patient peripheral blood andmelanoma samples. (A) Schematic of clinical parameters for
patient samples. Patients were checkpoint-treatment naive at the time of initial paired blood/tumor sampling. Subsequent course of treatment indicated.
Timing of longitudinal blood sample collection for follow-up analysis in patients K468 and K411 indicated. The longitudinal sample for K468 was taken 1 mo
after the initial blood sample, and during that time the patient received anti–PD-1 and anti–CTLA-4 combination therapy. The longitudinal sample for K411 was
taken ~16 mo after the initial sample, after the patient had received anti–PD-1 as a single agent followed by combination therapy with anti–PD-1 and ta-
vokinogene telseplasmid (TAVO; Algazi et al., 2020 for TAVOmonotherapy, and clinicaltrials.gov reference NCT03132675 for combination). (B) Table indicating
details regarding each patient in the cohort, including the site of tissue resection, number of cells recovered that had gene expression (GEX) data, GEX and TCR
data, number of matching cells, percentage matching cells of the total sorted population, and the frequency of PDCD1+ TM cells. Each patient and time point
was processed as an independent experiment for a total of six experiments (four treatment-naive blood/tumor pairs and two longitudinal blood follow-up
samples). (C–F) UMAP visualization of the integrated initial paired blood samples (C and E) and melanoma samples (D and F) showing the distribution of each
patient in the integrated object. Cells are colored by patient, and the remaining cells in the integrated object are excluded from visualization. C and D indicate all
cells from a given patient; E and F show matching cells colored in green (TM cells in blood) or navy blue (blood-matching cells in tumor) and nonmatching cells
in gray from each patient. (G and H) UMAP visualizations showing the distribution of expression of select transcripts in the integrated blood (G) and melanoma
(H) samples. Genes include PDCD1 (encoding PD-1), HAVCR2 (encoding Tim-3), SELL (encoding CD62L), TCF7 (encoding TCF-1), MKI67 (encoding Ki-67), and
GZMB (encoding granzyme B). The data in C–H are integrated from the four initial blood/tumor samples, totaling four independent experiments. (I and J) Violin
plots showing expression of activation (I) or naive (J) CD8+ T cell signatures in TM and non-TM cells in the longitudinal blood samples from K411 and K468.
Signatures derived from Akondy et al. (2017). Significance determined used a Wilcoxon rank sum test. For the activation signature in I, P = 1.2 × 10−76 for K411
and P < 0.001 for K468. For the naive signature in J, P = 6.5 × 10−52 for K411 and P < 0.001 for K468. Each longitudinal patient sample was collected and run
separately, totaling two independent experiments. ***, P < 0.001. (K) Histogram showing the distribution of AUC values averaged across the six patient
samples for each of the human surface markers (Chihara et al., 2018) as positive or negative indicators of TM status. Colored lines represent the AUC for CCR7,
FLT3LG, GYPC, and LTB averaged across the six patient samples as negative indicators of TM status. (L) UMAP visualizations of the top singleton marker gates in
human in CD8+ cells from all six patient blood samples integrated as described in Materials and methods. In each plot, cells are colored if they pass the
particular negation gate; that is, if they are selected as TM because of their low expression of the marker (labeled markerlow). For CCR7low, sensitivity = 0.827,
specificity = 0.619; for FLT3LGlow, sensitivity = 0.780, specificity = 0.447; for GYPClow, sensitivity = 0.339, specificity = 0.819; for LTB low, sensitivity = 0.725,
specificity = 0.716. K and L show the data integrated for all six blood samples (four initial treatment-naive samples and two longitudinal follow-up samples),
totaling six independent experiments. For patient samples, “tumor” in the figure refers to resections from the primary tumor and/or metastases as indicated in
Fig. S4 B.
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Figure S5. TM CD8+ T cells identified using GLIPH2 and iSMART show similar signs of activation and sensitivity/specificity rates of markers as
matching cells identified based on sequencematching. (A) Summary metrics showing the increase in frequency of CD8+ T cells classified as TM cells in each
of the four treatment-naive patient samples determined using the TCR cluster-based matching method (defined as cells identified as TM using both GLIPH2 and
iSMART) compared with the exact sequence matchingmethod. (B and C) Violin plots showing enrichment of activation (B) or naive CD8+ T cell signatures (C) in
TM and non-TM cells on the cells identified using the TCR cluster-based matching method. Signatures derived from Akondy et al. (2017). Significance de-
termined used Wilcoxon rank sum test. For the activation signature in B, P = 4.3 × 10−8 (K409), P = 8.5 × 10−15 (K411), P = 5.9 × 10−99 (K468), P = 5.4 × 10−14
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Provided online are 15 tables. Table S1 shows up-regulated genes for each Seurat cluster in mouse integrated blood and MC38
tumor samples. Table S2 shows up-regulated genes for TM and non-TM CD8+ T cells in the peripheral blood of mice with MC38
tumors. Table S3 is a full list of pathways and signatures enriched in TM and in non-TM CD8+ T cells from the peripheral blood of
mice with MC38 tumors. Table S4 shows significance measures calculated with COMET in sorting TM from non-TM CD8+ T cells in
the blood of mice withMC38 tumors. Table S5 shows the sensitivity and specificity of all possible gates made from combinations of
NKG2D, CD39, and CX3CR1, measured by CITE seq in mice. Table S6 lists DE genes between TM cells in blood and blood-matching
cells in tumor. Table S7 shows clinical parameters for patient samples. Table S8 shows up-regulated genes for each Seurat cluster in
human integrated blood and initial tumor samples. Table S9 shows transcript AUC performance, delineated by melanoma patient
sample. Table S10 shows significancemeasures calculatedwith COMET for all transcripts in sorting TM from non-TM CD8+ T cells in
the blood of melanoma patients. Table S11 shows similarities and differences in COMET-identified markers to identify TM cells in
mice withMC38 tumors comparedwith humanmelanoma patients. Table S12 lists the 16 transcripts that were significant in at least
four patient samples, ordered by average ranking of AUC. Table S13 lists empirical significance values and 95% confidence intervals
for the AUC, sensitivity, and specificity of featured gates in each patient sample. Table S14 lists sensitivity and specificity values for
all possible transcriptional marker combinations of CCR7low, GYPClow, FLT3LGlow, and LTBlow, delineated by patient sample. Table
S15 lists empirical significance values and 95% confidence intervals for the AUC, sensitivity, and specificity of featured gates in each
patient sample using the intersection of GLIPH2 and iSMART.

(K484). For the naive signature in C, P = 7.2 × 10−8 (K409), P = 2.7 × 10−11 (K411), P = 2.5 × 10−89 (K468), P = 9.6 × 10−12 (K484). ***, P < 0.001. (D) Summary
metrics showing the sensitivity and specificity of the PDCD1 transcript to identify TM cells from non-TM cells in the blood using exact sequence matching
compared with TCR cluster-based matching. (E and F) ROC curves for TM cells classified using the TCR cluster-based matching showing the sensitivity and
specificity of a collection of inhibitory receptor genes (PDCD1, BTLA, CTLA4, HAVCR2, LAG3, CD160, and TIGIT; E), or the consensus markers for identifying TM
cells (CCR7low, LTBlow, GYPClow, or FLT3LGlow, referred to as negation markers; F), shown for each patient. Each treatment-naive patient sample was collected and
run separately, totaling four independent experiments. Each patient is plotted individually.
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