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ABSTRACT OF THE THESIS

Integrated Corridor Management for Connected Vehicles and Park and Ride Structures

By

Tyler Zhang

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Mohammad Al Faruque, Chair

The forthcoming Connected Vehicles (CV) technology promises to substantially aid in man-

aging traffic congestion and improving users’ mobility along transportation corridors. Through

CV technology, a global estimate of the corridor’s traffic flow state can be obtained through

analyzing data from its constituent components, which can enable globally-optimized traf-

fic management strategies that efficiently utilize existing transportation infrastructure re-

sources. In this paper, we propose a novel integrated corridor management (ICM) method-

ology that incorporates the underutilized infrastructure of park and ride facilities into its

global optimization strategy. Firstly, we discuss how vehicle-to-infrastructure (V2I) com-

munication protocols like basic safety messages (BSM) and traveler information messages

(TIM) can be tailored to collect the state of downstream traffic and advertise park and ride

advisories to upstream traffic respectively. Then, we model the system in terms of potential

delays that can be experienced by vehicles traversing the corridor, and accordingly, we im-

plement a novel centralized deep reinforcement learning (DRL) solution to control how and

when such messages are advertised, with the aim of maximizing throughput and minimizing

carbon emissions and travel time. We simulate our ICM strategy on a realistic model of

Interstate 5 using the Veins simulation software, and the DRL agent converges to a strat-

egy that provides marginal improvement to throughput, freeway travel time, and carbon

emissions but at the cost of added travel delay for those using park and ride services.
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Chapter 1

Introduction

Considerable advancements have been made in traffic management strategies over the past

few decades to enhance user mobility along freeways. Still, the continuous growth of metropoli-

tan regions and the increasing mobility needs tend to impede such progress, giving rise to

new congestion bottlenecks and curbing traffic flow along freeways. Pre-pandemic, the re-

cent Urban Mobility Report [2] showed that the total cost of traffic delay in the top urban

areas in the US has grown by almost 48% over the past decade. In many of these regions

(such as in California), freeways experience a great deal of traffic congestion [3], arising at

bottlenecks at which high-volume, free-flowing traffic transforms into tightly-packed clusters

of low-speed vehicles.

As such, recent development efforts have given special attention to the notion of integrated

corridor management (ICM) [4], which encourages the adoption of global traffic manage-

ment strategies. In practice, this is possible by consolidating the various traffic components

deployed along the corridor (e.g., ramp meter controllers) into a single interconnected sys-

tem with a global view of the traffic state along the entire corridor, allowing upstream traffic

components to be tuned to relieve downstream bottlenecks and congestion. In other words,
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an ICM strategy can coordinate various traffic control units to meet the system-wide opti-

mization objectives the entire freeway, rather than operate in isolation based on pre-specified

settings or in a localized adaptive fashion [5].

Moreover, the emerging connected vehicles (CV) technology is expected to substantially ben-

efit ICM enterprises, where through the support of Dedicated Short Range Communications

(DSRC), vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) standards [6], vehicles

could communicate with each other and the surrounding transportation infrastructure. Pro-

jected benefits from incorporating such connectivity are manifold. For instance, Road Side

Units (RSUs) could transmit traveler information messages (TIM) to inform commuters

on the state of traffic [7], heavy occupancy vehicles (HOV) could transmit signal request

messages (SRM) [7] to request priority at key corridor components, and vehicles could com-

municate with nearby vehicles and RSUs for travel planning and safety features such as

platooning and adaptive cruise control [6]. In fact, the potential of CVs has been recognized

by the National Highway Traffic Safety Administration (NHTSA), who recently proposed

a new Federal Motor Vehicle Safety Standard mandating the installation of DSRC-based

communication equipment for new vehicles [8, 9].

The combined potential of ICM strategies and CVs could be even greater when underutilized

resources are brought into the global optimization strategy through the power of wireless

connections. Amongst these underutilized resources are the park and ride (PAR) facilities

developed to enable cheap, accessible public transport from specialized parking lots to service

commuters and enhance traffic flow by reducing the number of vehicles on the road [10].

Recent reports have shown that most of the 302 park and ride facilities in California do not

come close to their maximum capacity, even at peak hours; they are only 65% full on average

and stakeholder agencies lose money on parking services [11, 12].

From here, our focus in this paper is to analyze and demonstrate how the effective accom-

modation of PAR supply and demand dynamics within ICM optimization strategies can
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benefit the overall traffic flow along the corridor. At the heart of our methodology is a

centralized learning-based approach that leverages traffic information from the corridor and

the parking availability from relevant PAR facilities, and uses them to devise a corridor-wide

advertisement strategy in which PAR advisor messages are broadcast from the various RSUs

deployed along the corridor. Through this integration, we envision increased usage with PAR

structures, enabling users to become more acquainted with PAR services and ultimately en-

hancing PAR efficiency, corridor flow, and commuters’ experiences. Our key contributions

can be summarized as follows:

• A realistic traffic model for a congested highway corridor is developed in chapter 3.

• Proof of concept hardware tests demonstrating useful V2I data propagation paths for

our ICM strategy are developed in chapter 4.

• A corridor-level simulation implementing our centralized ICM strategy. The approach

is developed in chapter 5 and chapter 6, and the remaining chapters describe the

simulation and evaluation of its performance.
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Chapter 2

Background

2.1 DSRC Technology

Dedicated short range communications (DSRC) is a wireless standard proposed by the Fed-

eral Communication Commission that reserves 75 MHz of bandwidth in the 5.9 GHz fre-

quency band for vehicle-to-everything (V2X) communications [13]. Typical DSRC architec-

ture adopts the IEEE 802.11p protocol to implement its PHY and MAC layers, while the

upper layers of the network stack are implemented by IEEE 1609.1, 1609.2, 1609.3, and

1609.4 [13]. Finally, the SAE J2735 and SAE J2945.1 protocols define messages for V2X

and V2V scenarios respectively [7, 14]. The DSRC network layers and their corresponding

protocols are summarized in table 2.1.

Typical DSRC systems consist of on board units (OBU) and roadside units (RSU) [13].

Our work focuses on leveraging V2I communications between OBUs and RSUs for our ICM

strategy.
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Network Layer Protocol

Application IEEE 1609.1
Messaging Sublayer SAE J2735 (V2X), SAE J2945.1 (V2V)

Security IEEE 1609.2
Network and Transport IEEE 1609.3

Upper MAC IEEE 1609.4
Lower MAC IEEE 802.11p
Physical IEEE 802.11p

Table 2.1: Network layers and their corresponding protocols

2.2 VEINS Simulator

To simulate V2I communications, we used an open source vehicular network simulation

framework called Veins (Vehicles in Network Simulation), which is built atop two popular

simulators: OMNeT++, an event-based network simulator, and SUMO, a microscopic traffic

simulator [15]. SUMO simulates the road geometry, routes, vehicle flows, and driving behav-

iors that can all be controlled using the Traffic Control Interface (TraCI) [16]. OMNeT++

simulations are built from modules that communicate by exchanging messages; users can de-

fine network topologies and model communication protocols at multiple levels of granularity

[17].

Veins is an OMNeT++ project that defines a dynamic network topology from moving SUMO

vehicles, models the DSRC communication stack in OMNeT++, and provides an API to

control and read values from the underlying SUMO traffic simulation via TraCI [15]. Any new

simulation module can utilize these functionalities, which provides a high degree of flexibility

when developing V2X simulations. We chose the Veins framework primarily because it is

open-source and for its flexibility.
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2.3 Related Work

2.3.1 Connected Vehicle Platoons

One common line of study in CV research is to use V2V coordination to organize traveling

vehicles into groups or platoons [18, 19], but these tend to focus on local algorithms and

lack system-wide awareness. One such study explored the benefits of utilizing three mobility

improvements called cooperative adaptive cruise control, speed harmonization, and queue

warning in a highway scenario [19]. The study concluded that individual vehicle safety was

improved but at the cost of sacrificing overall highway throughput.

2.3.2 Ramp Metering

A popular system-wide ICM approach is to adjust ramp metering rates to control the flow

of vehicles entering the highway [20, 21, 22, 23]. Several ramp metering algorithms such as

ALINEA and SWARM have existed and have been in use since the early 2000s [20]. SWARM

in particular can be found in Orange County; it calculates one ramp metering rate based

on local density and another based on a predetermined global volume reduction, picking the

most restrictive metering rate from the two [20].

Many advancements in ramp-metering approaches have been proposed since then. In 2014,

Fares and Gomaa implemented a deep reinforcement algorithm to adjust ramp metering tim-

ings based on vehicle density that increased highway flow and reduced total travel time [21].

In another study in 2016, Hashemi and Abdelghany proposed a system that dynamically

searches for an optimal traffic control scheme involving intersection timing plans, diversion

messages, ramp metering, and/or dynamic shoulder lanes [22]. They demonstrated improve-

ments to total travel time when more control options are available. In a follow-up work,
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Hashemi and Abdelghany trained a deep convolutional neural network to recognize the high-

way state and pick an optimal traffic control scheme [23]. These strategies do not explicitly

mention CV technology, but the state vectors from Fares and Goma [21] and Hashemi and

Abdelghany [23] could potentially be obtained through RSUs sampling data from nearby

CVs.

2.3.3 Dynamic Rerouting

Ramp metering seems to be a well-explored approach, so the scope of our work focuses on

improving corridor traffic using dynamic rerouting to underutilized PAR structures. Liu

et al. [24] set out to establish a framework for evaluating ICM methods and conducted a

study on diverting upcoming traffic to side roads using variable message signs on the freeway,

using throughput and travel time as evaluation criteria. They demonstrate that diverting

traffic reduces travel delay for freeway vehicles but degrades side road performance, so careful

evaluation of trade-offs is required. Our ICM approach is similar to this study, so it makes

sense to use highway throughput and vehicle travel time as our evaluation criteria as well.

A study conducted by Ortega et al. [25] demonstrated via simulation that use of a park and

ride is expected to increase the total trip time compared to not using the resource. This

indicates that we need to include evaluation criteria other than travel time in our evaluation

metrics, such as emissions or highway throughput.

2.3.4 Deep Reinforcement Learning in ICM Strategies

The studies conducted by Fares and Goma [21] and Hashemi and Abdelghany [23] utilize

deep reinforcement learning to estimate the state of the network with relative success. In

addition, Liu et al. [26] established a Markov decision process (MDP) framework for a
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freeway scenario. These examples serve as a foundation for establishing a MDP for our

scenario and using deep learning to optimize the ICM strategy. However, our deep learning

agent will differ from these studies in its action space of diverting traffic to PAR systems.
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Chapter 3

Scenario

3.1 Interstate 5

We conducted our study on a section of Interstate 5 in LA County, a freeway that consistently

ranks among the most congested corridors in California [27] and even the United States

[28, 29]. The corridor of interest is the northbound 10 mile stretch between Interstate 605

and California State Road 60. We used SUMO’s provided OSMWebWizard tool [16] to

convert an OpenStreetMap rendering of I-5 into a SUMO road network. The resulting

highway network is shown in figure 3.1. For this study, we considered vehicles travelling

northbound from the source I-605 to the sink SR 60.

3.1.1 Realistic Traffic Modeling

This corridor includes junctions to local roads and a couple of busier freeways, which provides

a diverse set of on ramps and exits in terms of traffic volume. Ramp volumes and average

daily traffic data was collected from the Caltrans Traffic Census Program [30] to generate

9



Figure 3.1: Interstate 5 model

realistic traffic flows. Average daily traffic volume was taken from the 2015 survey due to

the completeness of the data for the junctions in this corridor.

To model the on ramp traffic, we spawned vehicles at each on ramp as a Poisson process.

Since the ramp volumes are recorded as daily averages [30], we converted them into a Poisson

rate with units vehicles
second

according to equation 3.1.

λi =
Vi

veh
day

24 ∗ 60 ∗ 60 sec
day

=
Vi

86400
veh/sec (3.1)
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where λi is the Poisson rate for on ramp i and Vi is its average daily volume.

To model the exit behavior, each vehicle is assigned a destination following a fixed probability

distribution when it spawns (referred to as a route distribution [16]). We computed the

probability of taking an exit according to equation 3.2.

Pi =
Li∑i
n=1 Vn

(3.2)

where Pi is the probability of taking exit i, Li is the average daily volume of exit i, and Vn

is the average daily volumes for on ramps before exit i. Each on ramp has a unique route

distribution table populated with Pi for the exits that are accessible downstream. If none of

the exits are taken, the vehicle will route to the sink. For example, a vehicle at the on ramp

of S Downey Rd (see figure 3.1) will have:

1. Chance to exit at Ditman Ave = PDitmanAve

2. Chance to exit at Calzona St = PCalzonaSt

3. Chance to exit at the sink = 1.0− (PDitmanAve + PCalzonaSt) = Psink

NOTE: Indiana St does not have an exit, so it is omitted.

3.1.2 Park and Ride

Along this corridor is the North Lakewood Park and Ride structure just off of Lakewood

Blvd. For this study, we assumed that there exists a bus schedule that takes a passenger to

the sink of the highway at fixed intervals. Thus, buses spawn at a fixed interval throughout

the simulation. These buses do not get rerouted to any other exits and proceed directly to

the sink.
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3.2 Preliminary Exploration

We observe situations in which diverting traffic to the North Lakewood Park and Ride

structure yields improvements to mainline flow, CO2 emissions, and overall speed of traffic

at the cost of total travel time for the exiting vehicles. To begin, using the traffic scaling

parameter provided by SUMO, we scale the spawn rates of the vehicles until congestion

becomes apparent, which occurs when the spawn rates are doubled. When this is visualized,

we observe that the congestion is heaviest at the Interstate 605 and Interstate 710 junctions

due to the merges.

In this scenario, we divert vehicles to the park and ride using three different exits at a fixed

probability that we call the compliance parameter. If the vehicle is compliant with being

rerouted, it has an equal chance to take any of the three exits. These three exits are I610,

Lakewood Boulevard, and Paramount Boulevard and for this scenario we set the park and

ride to be just off of the Lakewood exit as shown in figure 3.1.

After running the simulation for a fixed amount of time, we evaluate the average travel

time, average carbon emissions, and number of vehicles that reach the sink for the following

vehicles:

• cars that intend to travel from source to sink without exiting

• cars that intend to travel from source to sink that are diverted

• buses leaving park and ride structure that drive to sink

Since diverted vehicles are removed from the simulation when they exit, we estimate the

cost of the detour using Google Maps data and the average bus travel time and add these

values to the vehicle’s simulation travel time. If their estimated arrival time is still within the

simulation time, we count these vehicles toward the overall throughput. We obtain emissions

12



values for each vehicle using SUMO’s default HBEFA3 emissions model [16]. Finally, to

evaluate the overall congestion of the scenario, we record the average speed of all vehicles in

the simulation.

We run the SUMO simulation for one hour of simulated time using compliance parameters

of 0%, 10%, 25%, and 50%. Table 3.1 compiles the results of these experiments. We

Table 3.1: Fixed compliance experimental results

Compliance Travel Time (s) CO2 (kg) Speed (m
s
) Count (veh

hr
)

0% 1063.18 5.33 15.77 1793
10% 1040.60 4.96 16.15 1899
25% 1034.60 4.37 16.53 1992
50% 969.07 3.51 17.48 2188

can see that increasing the rerouting compliance yields improvements in all categories in

terms of average travel time, average CO2 emissions, overall simulation vehicle speed, and

throughput. One limitation of this preliminary study is that it cannot distinguish between

buses with passengers and buses without passenger, which may inflate the overall throughput

and emissions values. Additionally, we are always diverting vehicles in this scenario when in

practice we would prefer to divert vehicles in response to downstream congestion.

These results suggest that for this congestion scenario, diverting traffic to a PAR structure

may yield benefits. A well-designed reinforcement learning agent with more fine-grained

control may be able to find more optimizations.
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Chapter 4

V2I Communication Proof of Concept

We created a hardware test bed inspired by [1] to demonstrate the V2I communication flow

between a smart parking structure, cloud server, RSU, and an OBU for the ICM strategy.

To perform wireless DSRC communications, we used the USRP B210 board from Ettus Re-

search, which is a software-defined radio that can receive and transmit data at any frequency

between 70 MHz - 6GHz [31]. A diagram of the setup is shown in figure 4.1.

A Raspberry Pi 3 representing a smart parking structure is connected via Ethernet cable

to the desktop, which is running a Python script representing a cloud server. These two

communicate over TCP. Additionally, in a separate process on the desktop, another Python

script is running and represents an RSU. The RSU script communicates to the USRP B210,

which will broadcast or listen on the DSRC 5.9GHz band. A picture of this half of the setup

is shown in figure 4.2a. The other half of the setup is a laptop connected to another USRP

B210, which can also broadcast or listen on the DSRC 5.9GHz band. A picture of this half

of the setup is shown in figure 4.2b.

To interface with the USRP B210, we used a WiFi tranceiver module created by the open

source Wime Project [32], which provides a complete physical layer implementation of

14



Figure 4.1: Block diagram of the hardware test bed

802.11p in GNU Radio. This was modified to send and receive UDP packets from the

local machine as shown in figure 4.3. To send information to the USRP B210 for wireless

transmission, the Python script simply writes to a UDP socket at localhost:52001. To read

information received from the USRP B210, the Python script simply reads from a UDP

socket at localhost:52002.

4.1 DSRC Tests

The first test is a forward propagation of data from the Raspberry Pi to the laptop which

represents broadcasting park and ride information to a connected vehicle. The Raspberry

Pi sends a dictionary of parking space info to the cloud server, which forwards the data to

the RSU. The RSU wirelessly broadcasts the message to the awaiting laptop using DSRC.

Screenshots demonstrating this data propagation are shown in figures 4.4a and 4.4b.
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(a) A RPI 3 connected to the desktop via ether-
net, and the B210 plugged into the desktop via
USB (b) The B210 plugged into the laptop via USB

Figure 4.2: Hardware setup for testing DSRC communications

The second test is a backward propagation of data from the laptop to the cloud server which

represents collecting state information from a connected vehicle. The laptop broadcasts

some basic vehicle information to the awaiting RSU using DSRC. The RSU then forwards

the message to the cloud server. Screenshots demonstrating this data propagation are shown

in figures 4.5a and 4.5b.

4.2 Practical Implementation

This hardware proof of concept clarifies the ICM mechanisms needed to read traffic state and

alert drivers to reroute to a PAR structure. In these tests, we send data directly from one

script to another, but in practice, standard DSRC message types are needed in both cases.

The SAE J2735 standard [7] defines many message types for V2X communications; none are

designed specifically for our use case, but a couple message types are flexible enough to be

adapted. For an RSU broadcasting an advisory message to reroute to a PAR, one could use

the traveler information message (TIM) [7], which is used to broadcast various advisory or

road sign info messages. The TIM can be configured to be active on a minute by minute basis

and even has limited support for custom strings, which can be useful for informing drivers
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Figure 4.3: Hardware blocks for 802.11p in GNU Radio, the same interface from [1]

about the nearest PAR. For collecting state information, an RSU could collect a basic safety

messages (BSM) [7] from vehicles nearby and aggregate the data. Part 1 of the BSM frame

is mandatory and reports the vehicle’s position and velocity. Part 2 of the BSM frame is

optional but could be customized with additional information that is of importance to the

RSU or ICM strategy, such as emissions information or vehicle type.

The cloud server functions similarly to a Transportation Management Center (TMC) [33]

but with the additional role of a park and ride management system. Communicating to the

TMC from an RSU or a smart parking structure can be done over LTE; there are examples

of RSUs being equipped with bidirectional LTE radios such as one developed by Siemens

[34].
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(a) Desktop screenshot showing interface for RPI (top-left), cloud (top-right), and RSU (bottom).
Parking info is generated by RPI and propagates to RSU for broadcasting.

(b) Laptop screenshot showing interface for OBU (right). The OBU receives and displays the
parking info from the broadcast.

Figure 4.4: Screenshots demonstrating forward flow of information from parking structure
to OBU
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(a) Laptop screenshot showing interface for OBU (right). Vehicle info is generated and broadcast.

(b) Desktop screenshot showing interface for RPI (left), cloud (top-right), and RSU (bottom-right).
The RSU receives the vehicle from the broadcast and forwards it to the cloud.

Figure 4.5: Screenshots demonstrating backward flow of information from OBU to cloud
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Chapter 5

System Model

In this section, we model the possible travel times experienced by vehicles when traversing

the integrated corridor, and accordingly, define the evaluation metrics and formulate the op-

timization problem to effectively manage traffic along the ICM supported by CV technology

and PAR facilities. Table 5.1 summarizes the notation used for our model.

Let ΠN = {π1, π2, ..., πN} be the N consecutive links constituting the integrated corridor,

where each πi ∈ {0, 1}d can be represented as a d-dimensional binary vector characterizing

the number of lanes in each link, and d being the maximum number of lanes supported by

any corridor link; PM = {ρ1, ρ2, ..., ρM} represent the M park and ride structures associated

with the integrated corridor; Ψ = [ψ1, ψ2, ....ψN ] as a binary vector to characterize possible

entry ramp positions where ψi = 1 indicates that an entry ramp exists at link πi; ΘN =

[θ1, θ2, ....θN ] characterize possible exit ramp positions where θi = 1 indicates that an exit

ramp exists at section πi.
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Notation Definition
VK The set of K vehicles traversing the corridor from start to the sink, i.e.,

{v1, v2, ..., vK}
PM The set of M PAR and ride structures accessible for the corridor management

process, i.e., {ρ1, ρ2, ..., ρM}
ΠN The set ofN consecutive partitions (links) constituting the integrated corridor’s

mainline, i.e., {π1, π2, ..., πN}
ΨN Vector of N binary variables indicating whether an exit ramp exists associated

with link partition πi, i.e., [ψ1, ψ2, ....ψN ]
ΘN Vector of N binary variables indicating whether an entry ramp exists at every

partition πi, i.e., [θ1, θ2, ....θN ]
Sj The number of total parking slots at PAR structure j such that j < M

s
(t)
j The number of occupied parking slots in the PAR structure j at time t

λk,ρj The arrival time of vehicle k at PAR ρj.
τHOV
j The recurring time period at which an HOV vehicle leaves the jth PAR struc-

ture
τk,i→j Time taken by vehicle k to travel from i to j.
Taction Delay experienced by a vehicle when performing action defined in the subscript;

action ∈ {exit, PAR, ret}
x
(t)
j Binary variable indicating transmission of park and ride messages at time in-

terval t from RSU j.
X(t) Binary vector of park and ride advertisements states for the L deployed RSUs

at time t, i.e., [x
(t)
1 , x

(t)
2 , ...x

(t)
L ]

yk binary variable expressing the manner in which the kth vehicle commuters opted
to traverse the corridor, i.e., directly or through PAR

Table 5.1: Table of notations for the proposed system model

5.1 Travel Delay

Assume a vehicle k enters the corridor through a link n with the final destination being the

corridor’s sink at link N . Given PAR is supported, the time taken by vehicle k to traverse

the corridor can be given as follows:

Tk,N =


∑N−1

i=n τπi→πi+1
, if yk == 0

Texit + T total
PAR + Trem, if yk == 1

(5.1)
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where yk ∈ {0, 1} describes the method by which vehicle k traversed the corridor: yk=0

indicating the conventional direct approach and yk=1 implying opting for a PAR option.

For the former, the time taken by vehicle k is estimated through the accumulation of times,

τπi→πi+1
1, representing the time taken by the vehicle to traverse from one link i to the next i+1

until the final transition to the sink point, τπN−1→πN
. For the latter case, we breakdown the

time experienced by vehicle k commuters opting for a PAR option into three components: (i)

Texit is the time taken to reach an exit ramp from the corridor once yk values has turned to 1,

(ii) T total
PAR representing the total PAR service time, and (iii) Trem representing the remainder

time to be traversed by the returning vehicle until the sink. These delay components are

further defined as follows:

Texit =
n′−1∑
i=n

τπi→πi+1
s.t. θn′ == 1 (5.2)

where Texit is vehicle k’s cumulative time to reach the exit ramp at link n′ from a starting

position n on the corridor.

Concerning T total
PAR , we first define Tρ(·) as a function characterizing the added time expendi-

ture of vehicle k commuters when serviced by a PAR structure as follows:

Tρ(δ, ρj, πn′) = τδ→ρj + τwait
ρj

+ τρj→πn′ s.t. sj < Sj (5.3)

where δ is a generic expression for the starting position of vehicle k navigating towards the

the servicing PAR structure, ρj. We specify δ generalized as such to account for cases in

which vehicle k did not navigate directly to the servicing PAR (as shown below); ρj is the

servicing PAR facility, and πn′ represents the corridor link n′ with an accessible entry ramp

(i.e., ψn′=1) that is nearest to the ρj. Hence, τδ→pj is the time taken by vehicle k to reach

ρj from a starting position δ, whereas τρj→πn′ is the time expenditure by the HOV carrying

1We omit the subscript k here for reading convenience
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vehicle k commuters from when it is released at ρj until it re-enters the corridor through link

πn′ – intrinsically capturing the travel and ramp metering times. Lastly, the waiting time

endured by the arriving passengers at ρj till the HOV leaves is denoted by τwait
ρj

defined as

follows:

τwait
ρj

= τHOV
j − (λk,ρj (mod τHOV

j )) (5.4)

where λk,ρj is the arrival time of vehicle k at its designated slot in ρj; τ
HOV
j is the time

period length before a new HOV is released from ρj with a final destination at the corridor’s

sink πN . λk,ρj is defined with in reference to the same time unit of τHOV
j . For example,

if τHOV
j = 15 minutes and λk,ρj is the 47th minute within a certain hour of the day, then

τwait
ρj

translates to 13 minutes waiting time. From here, the total PAR time, T total
PAR , can be

modeled as follows:

T total
PAR =



Tρ(πn, ρj, πn′), if sj < Sj

τπn→ρj +
∑j′−2

i=j τρi→ρi+1
+ Tρ(ρj′−1, ρj′ , πn′),

if sj == Sj∀j < j′, and sj′ < Sj′ s.t. j
′ < M ′

τπn→ρj +
∑M ′−1

i=j τρi→ρi+1
+ τρM′→πn′ ,

if sj == Sj∀j ≤M

(5.5)

where the first case captures the conventional scenario when PAR service is provided for

vehicle k at ρj as its occupancy sj did not exceed the maximum Sj. Otherwise, the latter

two cases capture unfavorable scenarios when the vehicle arrives at ρj to find its occupancy

at full capacity (i.e., sj=Sj). The vehicle’s behavior afterwards is to either navigate to

another facility from theM ′ nearby PAR structure (if any), or return to traverse the corridor
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normally. The former is captured by the second case which accounts for the possibility that

vehicle k may explore multiple PAR facilities until it reaches one with empty parking slots

at j′. The third and last case is for when the vehicle navigates back to the corridor after

failing to find a single parking spot in all M ′ facilities. Parking unavailability represents

corner cases that need to be accounted for. In reality, only a small fraction of vehicles may

experience this since space availability of PAR facilities would be updated regularly at the

centralized management system for the corridor.

Lastly, Tret represents the remainder time to be traveled along the corridor once the returning

vehicle (HOV or the same vehicle k) renters the corridor at link πn at which an entry ramp

exists as follows:

Tret =
n′∑
i=n

τπi→πi+1
s.t. θn == 1 (5.6)

5.2 Evaluation Criteria

Let the set VK = {v1, v2, ..., vK} be the total number of vehicles on the corridor during a

time window t, where every vk ∈ VK has entered the corridor from its starting link, πn, with

a final destination at the sink, πN . Let also VK′ ⊂ VK be the subset of vehicles that reach

the corridor’s sink during window t such that K ′ ≤ K. As such, we can define the following

key metrics to evaluate the overall congestion state along the corridor:

FR = |VK′ | (5.7)

T =

∑K′

k=1 Tk,N
FR

∀ v′k ∈ VK′ (5.8)

CE = f(VK , efficiency, SPEED) (5.9)
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in which FR represents the flow rate of the corridor during window t, evaluated as the

cardinality of VK′ ; T represents the average travel time experienced by the vehicles reaching

the sink, πN , evaluated as the sum of individual travel times over the flow rate; CE represents

the carbon emissions exerted by the VK set of vehicles traversing the corridor during window

t. The evaluation of CE depends on VK as well as their corresponding fuel efficiency and

travel speeds.

5.3 Problem Formulation

From here, we can formulate our problem as follows: given an integrated corridor with RSUs

that can broadcast PAR availability to CVs, our goal is to find the optimal advertisement

strategy, X∗(t), at time window t to inform upstream traffic about the state of traffic condi-

tions and suggest PAR alternatives accordingly. Thus, we can define the global optimization

objective at time t as follows:

X∗(t) = max
X(t)

F (T,FR,CE) (5.10)

where F represents a global optimization function to be maximized with respect to the

evaluation metrics defined in equations 5.7, 5.8, and 5.9. One straightforward implementation

of F would be to employ a weighted sum formula with negative weights assigned to the

metrics that need to be minimized (i.e., CE and T). It should be noted that the global

optimization objective can be generalized to account for other objectives, such as minimizing

the costs of fuel and park and ride charges for commuters.
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Chapter 6

Deep Reinforcement Learning

In this section, we present our solution for ICM leveraging CV technology and existing PAR

infrastructure. At the heart lies a Deep Reinforcement Learning (DRL) model deployed on

the centralized server capable of pooling traffic data from various corridor partitions, as well

as the PAR occupancy status. Accordingly, collected data can be analyzed by the agent

in real-time to guide the optimization process of the PAR advertisement strategy across

the deployed RSUs. The key components of our proposed DRL solution are detailed in the

following sections.

6.1 State Space

We define the set of observation parameters that need to be collected during time window t

to be provided as input signals to the DRL agent.
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6.1.1 Parking Occupancy Status

Firstly, information about the current available parking slots, ϕ
(t)
j , for each associated PARj

are provided as {ϕ(t)
j = Sj−s(t)j }Mj=1. In reality, occupancy status may vary in real-time (e.g.,

due to vehicles arriving from outside the corridor), and thus, every ϕj merely serves as an

indication rather than a guarantee on the current occupancy status.

6.1.2 Traffic Density

At the jth RSU, the traffic density, Γ(t) can be estimated through monitoring the percentage

of time in which nearby linked sensors (e.g., induction loops) are occupied on the main line.

Given M RSUs, the set of densities’ observation can be given as {Γ(t)
j }Mj=1. Note that each

density estimate can be multi-dimensional in d due to collecting data from multiple sensors

deployed across several adjacent lanes. Additionally, since RSU coverage is limited to the

range of DSRC, density may also be estimated by collecting BSMs to count the number of

vehicles in range.

6.1.3 Speed

Similarly at each RSU, we can estimate the traffic flow speed to monitor the time it takes

a vehicle to traverse to consecutive points along the mainline. As mentioned in chapter 4,

BSMs are required to report vehicle speed, so RSUs could average this information collected

over time window t to approximate flow speed. Thus, we also include the set of speeds

{µ(t)
j }Mj=1.
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6.2 Action Space

For each RSU deployed along the corridor, the DRL decides whether to broadcast park and

ride advisories to connected vehicles based on the collected data, allowing drivers to decide

whether to continue on the corridor or reroute to one of the nearby PAR structures. Such

advertisement lasts for the entire duration of the corresponding time window. Formally, the

action space can be given by the following vector as X(t) = [x
(t)
1 , x

(t)
2 , ...x

(t)
L ] where L is the

index of the last RSU on the corridor.

6.3 Training and Reward

The DRL agent uses a double Q-learning (DDQN) algorithm [35] in order to learn Q-values

of actions for the corresponding state estimation. We utilize an epsilon-greedy method

to balance between exploration and exploitation and implement a replay buffer to avoid

catastrophic forgetting.

In order to train the DRL agent, we define training episodes of length c · t, where c is a

positive integer multiplier specifying the number of steps and t represents the window of

simulation time per step. An episode terminates whenever c training windows have passed

for a fair assessment. The reward evaluation metrics are three-fold:

1. The throughput of passengers, computed using equation 5.7.

2. The average travel time per passenger, computed using equation 5.8.

3. The average carbon dioxide emitted per passenger, computed using equation 5.9.

These values are accumulated dynamically as vehicles exit at the sink. Not all vehicles will

accumulate their rewards when reaching the sink, we concern ourselves only with mainline
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vehicles, which we define as:

• Vehicles that spawn at the source and travel to the sink without rerouting to a park

and ride structure

• HOVs that carry redirected passengers to sink

All other vehicles that do not fit this criteria are ignored as far as rewards are concerned.

With this in mind, our reward function is specified in equation 6.1 as a weighted sum of the

three reward metrics.

R = β1 · (FR− targetFR) + β2 · (T− targetT ) + β3 · CE (6.1)

where R is the reward, β1 is the weight modifier for the throughput FR, β2 is the weight

modifier for the travel time T, and β3 is the weight modifier for the CO2 emissions CE.

Since mainline vehicles will continuously be exiting the simulation, we subtract a fixed value

targetFR from throughput FR, with targetFR representing the expected minimum through-

put. Similarly, since mainline vehicles will always take time to reach the end of the corridor,

we subtract a fixed value targetT from the measured travel time T, with targetT representing

the minimum time a vehicle may need to drive from sink to source.
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Chapter 7

Experimental Setup and Training

The basic idea of the experiment is to train the DRL model with the I5 Veins simulation in

the loop until the model converges to a policy. SUMO generates randomized traffic patterns

based on real-world ramp volume data as explained in chapter 3. The Veins framework lets

us map SUMO vehicles to OMNeT++ vehicle applications and SUMO lane detectors to

OMNeT++ RSU applications. The Veins-Gym interface [36] allows the Veins simulation to

communicate with the Python DRL script. Figure 7.1 shows a high-level overview of the

simulation structure and functionality.

We built the Veins simulation from the I5 corridor developed in chapter 3. For the simulation,

we chose to use SUMO’s default driving behavior and CO2 emissions model [16]. We also

reduced the size of the scenario, setting the sink just after Garfield Ave (see figure 3.1) to

reduce computation complexity. SUMO performs a vast amount of calculations and the

program can only run on a single core, which bottlenecks training.

The RSU application collects data about the number and average speed of nearby vehicles

from the lane detectors. In real life, RSUs could collect this data by aggregating BSMs

received from vehicles via DSRC, and this behavior could be simulated in Veins. However,
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Figure 7.1: Flow chart of simulation-in-the-loop training process

to keep simulation complexity low, we simply programmed the RSU application to read

the necessary measurements from its corresponding lane detectors. These RSUs send their

observations to a central Transportation Management Center (TMC), which interacts with

the DRL agent.

The vehicle application keeps track of its travel time and total emissions. If it reaches the

sink of the simulation, it will update the rewards accumulator in the TMC for the current

time window t with the vehicle’s travel time and emissions, and increment the throughput by

one. If the vehicle leaves the simulation to park at a PAR, and a parking space is available, its

rewards will be transferred to the next HOV. If the vehicle attempts to park but no parking

space is available, its rewards will be transferred to a continuing vehicle that will proceed to

the sink of the simulation. HOVs and continuing vehicles that carry the rewards of a parked

vehicle will update the TMC once they reach the sink, and they cannot be rerouted at any
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point.

Periodically, the TMC sends a vector of RSU observations and the rewards for time window

t to the Python script, and the script responds with an action vector indicating which RSUs

should broadcast a PAR message. The TMC relays this information to the RSUs which

will broadcast PAR messages via simulated DSRC at a fixed interval to nearby vehicle

applications. Vehicle applications that receive an advisory PAR broadcast from a nearby

RSU have a fixed percent chance to reroute to the park and ride by taking the next exit.

Here are some assumptions made when designing the Veins simulation:

• There is only one PAR structure, the North Lakewood Park and Ride.

• There is only one passenger per vehicle. When vehicles update the accumulated re-

wards, they will only increase the throughput by one. If HOVs have N passengers

onboard, they will increase the throughput by N .

• Commuters rerouted to the PAR structure can take the next HOV leaving the PAR

once they arrive. See section 7.2 for how rerouting delay is computed.

• Vehicles do not exit the PAR structure during the simulation, the number of available

spaces depends solely on the DRL agent.

• HOVs do not encounter additional waiting times at entering ramp meters. We added

a dedicated HOV lane at the on ramp nearest to the North Lakewood Park and Ride.

• RSUs are positioned prior to every exit and on ramp along the corridor. See figure 7.2

to see the full placement.

• DSRC broadcasts have no propagation delay. Simulating broadcast delay would create

simulation overhead and does not add much value to the scope of this experiment.
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• DSRC range is limited to 75m radius around RSU, which is within the 250-300m

effective range of DSRC [13].

Figure 7.2: RSU placement for Veins simulation
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7.1 Parameters

The following defines a list of Veins simulation parameters.

• S: traffic spawn scale factor

• λHOV : the frequency of the HOVs leaving the PAR

• t: the time window that constitutes one step in the reinforcement learning algorithm

• α: compliance probability of vehicles with PAR messaging

• γ: probability distribution function capturing additional time for the vehicle to get to

and find parking at the PAR

• fredirect: the frequency of PAR broadcasts during a time window t

• P : number of parking spaces available at PAR

• r: fixed ramp metering rate for on ramps

Training of the reinforcement learning algorithm took place with the simulation parameters

described in table 7.1. The HOV frequency schedule λHOV is set spawn every 60s so pas-

Parameter Value

S 2.0
λHOV

1
60sec

t 600 s
α 10%

fredirect 30 s
P 400
r 900 VPH

Table 7.1: Parameter values for Veins simulation

sengers would not wait too long relative to the time it takes to traverse the corridor. The

amount of time that constitutes a step size and the action space t is set to 600s because it
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takes roughly 300s for a vehicle to reach the sink and contribute its rewards. The compli-

ance parameter α is only at 10% since realistically the majority of drivers would ignore an

advisory message to find the nearest PAR. The ramp metering rate is set to a fixed interval

of 900 VPH or one vehicle every four seconds, which is within range of typical ramp meter

rates in California [37].

7.2 Delay

As vehicles exit the simulation, the travel time cost of reaching the PAR is calculated before

its reward is transferred to an HOV or continuing vehicle. This penalty is dependent on the

exit that it takes. Since we used OpenStreetMap to generate our network as explained in

chapter 3, the simulation distance and speed limits are based on real life values, so we can

use Google Maps data to approximate the travel time for exiting vehicles. Using Google

Maps, we estimated the travel time to reach the North Lakewood Park and Ride structure

from each exit along the corridor. These values are summarized in table 7.2.

Exit Time to N Lakewood PAR (s)

I-605 300
Lakewood Blvd 30
Paramount Blvd 180
Slauson Ave 300
Garfield Ave 360

Washington Blvd 540
Atlantic Blvd 720

Atlantic and Triggs 840
Eastern Ave 900
Ditman Ave 1080
Calzona St 1200

Table 7.2: Approximate travel times to reach the North Lakewood Park and Ride from
various highway exits, taken from Google Maps

Parameter γ is simply a normal distribution that models the additional time for the vehicle to
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get to and find parking within the PAR. We take the absolute value of the normal distribution

to avoid negative delay values. If the vehicle instead finds that there are no more parking

spots available, the delay is modeled more harshly. Thus, the total travel time penalty for a

vehicle taking an exit is represented in equation 7.1.

delay =


Texit + |normal(0, Texit/8)|+ (Tarrival mod 1

λHOV
) if spaces available

2 ∗ Texit + |normal(0, Texit/4)| else

(7.1)

where Texit represents the corresponding exit time from table 7.2, and (Tarrival mod 1
λHOV

)

represents the additional delay a driver would experience waiting for the next HOV to leave

the station.

7.3 Deep RL Training

From table 7.2, exits to I-605, Lakewood, Paramount, and Slauson have the smallest rerout-

ing time penalty. Thus, the action vector is restricted to RSU[0], RSU[3], RSU[4], RSU[6],

and RSU[7], marked in figure 7.2. Since each RSU is represented as a bool in the action

vector, this limits the action space size to 25 = 32, which helps with exploration.

The DRL agent utilizes two hidden layers for its neural network. Since the state vector

involves {average speed, occupancy} for 12 RSUs and the available parking spaces, the

flattened input vector is 1 + 12 ∗ 2 = 25 floating point values. These are fed into a hidden

layer of 128 perceptrons using the the ReLU activation function. The next hidden layer is

64 ReLU perceptrons. Finally, the output layer contains 32 perceptrons to approximate the

Q values for each possible combination of actions for the 5 RSUs.

In terms of reward function, we programmed the TMC to perform equation 6.1 when the

Veins simulation is running. The reward metric weights are:
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• targetFR = 600. This is the fixed constant that is subtracted from throughput before

weighting. Typically at least 600 vehicles can exit the simulation in one simulation

step.

• β1 =
10

targetFR
. This is the weight for throughput, making it so an additional 60 vehicles

will add an extra point of reward.

• targetT = 400. This is the fixed constant that is subtracted from travel delay before

weighting. Typically it takes at least 400s to reach the end of simulation.

• β2 = − 1
targetT

. This is the weight for travel delay, it is negative so that it will be

minimized.

• β3 = − 4
10000000

. This is the weight for the carbon emissions, it is negative so that it

will be minimized. The emissions values are in the order of magnitude of 106.

We trained the deep learning agent on one fixed seed of the simulation for 1000 episodes to

obtain the DRL agent model. Setting the seed to a fixed value makes the traffic behavior

(including route probabilities, Poisson process spawning, and driver AI) deterministic within

SUMO. Then, in the next chapter, we evaluate the model’s performance on other simulation

seeds to test if the model generalizes to different permutations of the defined traffic behavior.
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Chapter 8

Results and Discussion

Figure 8.1 shows the training results, a plot of rewards over episode number when training

on simulation seed 1201 for 1000 episodes. To test if the model generalizes to different

Figure 8.1: DRL agent training results on seed 1201
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permutations of the defined traffic behavior, we evaluated the model on three different seeds

of the SUMO simulation and plotted the throughput, average travel delay per passenger, and

average carbon emissions per passenger for each seed. In the following sections, we compare

these metrics against the same seed simulation without any ICM control agent.

8.1 Experiment 1: Seed 64643

Figure 8.2 shows the results from the optimal policy applied to seed 65643. Figure 8.3

shows the results for seed 64643 without ICM control. Our DRL agent shows a 3.99%

Figure 8.2: Results for running the DRL agent on SUMO seed 65643

increase in throughput, 2.69% reduction in average travel time, and 2.97% reduction in

average emissions over the no control scenario. Additionally, the 3732 drivers on the freeway
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Figure 8.3: Results for running SUMO seed 65643 without DRL agent

experience a 4.67% reduction in travel time while the 147 drivers taking HOVs experience a

47.34% increase in travel time over the no control scenario.

8.2 Experiment 2: Seed 44435

Figure 8.4 shows the results from the optimal policy applied to seed 44435. Figure 8.5

shows the results for seed 44435 without ICM control. Our DRL agent shows a 2.95%

increase in throughput, negligible difference in average travel time, and 3.00% reduction in

average emissions over the no control scenario. Additionally, the 3597 drivers on the freeway

experience a 2.55% reduction in travel time while the 165 drivers taking HOVs experience a

52.56% increase in travel time over the no control scenario.

8.3 Experiment 3: Seed 27438

Figure 8.6 shows the results from the optimal policy applied to seed 27438. Figure 8.7

shows the results for seed 27438 without ICM control. Our DRL agent shows a negligible
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Figure 8.4: Results for running the DRL agent on SUMO seed 44435

Figure 8.5: Results for running SUMO seed 44435 without DRL agent

difference in throughput, 1.6% reduction in average travel time, and 3.09% reduction in

average emissions over the no control scenario. Additionally, the 3639 drivers on the freeway

experience a 3.26% reduction in travel time while the 123 drivers taking HOVs experience a
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Figure 8.6: Results for running the DRL agent on SUMO seed 27438

Figure 8.7: Results for running SUMO seed 27438 without DRL agent

48.46% increase in travel time over the no control scenario.
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DRL Agent vs No Control
Seed Count Avg Delay Diverted Delay Freeway Delay Avg CO2
64643 +3.99% -2.69% +47.34% -4.67% -2.97%
44435 +2.95% -0.13% +52.56% -2.55% -3.00%
27438 +0.53% -1.6% +48.46% -3.26% -3.09%

Table 8.1: Summary of ICM performance against no control

8.4 Discussion

We observe that our ICM approach provides marginal improvements to highway throughput,

average delay, and average CO2 emissions. The findings are summarized in table 8.1. Further

investigation into the optimal policy learned by the DRL agent shows that the agent primarily

redirects traffic to the PAR structure from Interstate 610 and Lakewood Blvd. This makes

sense because taking these two exits result in the least amount of travel time to reach the

PAR (see table 7.2). Additionally, rerouting at I-610 may be especially beneficial because as

observed in chapter 3, the merges at the I-610 junction are a heavy source of congestion.

We also find that average delay per passenger does not tell the whole story. Although the

travel time for drivers on the corridor is improved, the travel time for drivers using the PAR

services is drastically increased in all cases. In other words, by letting a few drivers suffer

significantly greater travel delay by taking public transport, the other drivers on the freeway

are allowed to get to the destination slightly faster. This is a significant trade-off to keep in

mind for this ICM strategy, one which is consistent with the results of Ortega et al.’s study

[25], who found that travellers utilizing PAR systems experience significantly increased travel

time.

Our DRL agent most consistently improves average CO2 emissions per passenger. This

is likely due to the fact that HOVs are not utilized in the uncontrolled scenario but still

contribute to the overall emissions of the corridor, wasting resources. When passengers ride

on an HOV, the CO2 cost for the vehicle per passenger decreases at a rate of 1
N
, rapidly
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increasing the efficiency of the HOV. Modifying some simulation parameters could result

in even greater HOV emission savings. For instance, a less frequent HOV schedule λHOV,j

would reflect more realistic public transportation schedules and allow more passengers to

accumulate at the PAR before the next HOV leaves, but this would further sacrifice the

travelers’ delay during the extended waiting period. Another possibility is to set a higher

reroute compliance probability α to reroute more vehicles to the PAR, but too high a value

would be unrealistic; not many drivers are willing to reroute to a PAR. However, a higher α

could be made a realistic assumption if drivers are piloting autonomous vehicles instead of

just connected vehicles.
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Chapter 9

Conclusion and Future Work

This work proposes a novel ICM strategy that redirects vehicles to underutilized park and

ride structures to maximize freeway throughput and minimize CO2 emissions and travel

time. This approach leverages the V2I capabilities of RSUs and OBUs to observe the state

of connected vehicles on the freeway and to broadcast advisory messages to drivers to redi-

rect them to the nearest park and ride structure. A centralized cloud server hosted at a

Transporation Management Center communicates with the RSUs and uses deep reinforce-

ment learning to process the observed congestion state of the corridor and choose where to

broadcast PAR advisory messages.

We created a realistic corridor simulation based on Interstate 5 in the Los Angeles area to

test the ICM strategy. The deep reinforcement learning agent converges to a strategy that

redirects vehicles to the I-605 and Lakewood Blvd junctions, which can achieve marginal

improvements in throughput, average travel time, and average emissions at the cost of sig-

nificant travel delay for the few drivers taking an HOV. Specifically, we observe up to 3.99%

increase in throughput, 4.67% reduction in freeway travel time, and 3.09% savings in CO2

emission savings, but with the cost of up to 52.56% additional delay for diverted drivers.
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9.1 Future Work

In section 8.4, we recommend some parameter adjustments, such as decreasing the HOV

schedule frequency and increasing driver compliance with PAR messages, to see if there

are scenarios where rerouting vehicles to the PAR structure can create even more emissions

savings. These changes could be translated into a study involving autonomous vehicles, where

the system could have more control over the behavior of autonomous passenger vehicles and

the timing of autonomous HOVs.

More studies are needed to see how this approach can be scaled up. The difficulty in this will

be in observing and assigning rewards to the ICM actions; with our current experimental

setup, a longer freeway means more time will pass before a passenger reaches the sink in

an HOV, i.e. more time will pass before rewards reflect the new action. This increases

simulation complexity and overall training time. One alternative could be to deploy multiple

DRL agents for small sections of the freeway and coordinate them into a larger system.

Additionally, as with any system that aggregates data to make decisions, there are security

concerns. An automotive security survey conducted in 2019 [38] explains that V2X commu-

nications opens up multiple new attack surfaces for vehicles in addition to the preexisting

vulnerabilities in automotive electronic components. In particular, the authors find data

spoofing to be a common attack method on V2I-based systems such as our ICM approach,

resulting in increased traffic congestion. A 2022 study [39] develops an attack modeling

methodology for a V2X Advisory Speed Limit traffic control scenario and establishes various

metrics to assess the impact of an attack. A future research direction could be to develop a

similar attack methodology and evaluation metrics for our V2I-based ICM approach and to

test its resilience.

One could also adopt a more general security framework to analyze our ICM approach. In

a previous study [40], the authors present a security analysis framework for cyber-physical
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systems (CPS). By modeling cyber domain information, such as device firmware and appli-

cation data, and physical domain information, such as RF signals and other side channels, as

information flows, the authors show that applying data-driven algorithms can improve un-

derstanding of the cyber-physical domain relationships and reveal new vulnerabilities in the

system. Moreover, our ICM approach can be classified as a networked control system (NCS)

that can be modeled as generalized mathematical formula as demonstrated in [41]. Once the

vulnerabilities and attacks of our ICM strategy are understood, they can be modeled and

fed as input to the NCS model to study the system response to attacks over time.

Any proposed security solutions should focus on extensibility [42], i.e. solutions that are

easily adapted to new use cases to support the still-developing automotive technology scene.

Several previous works describe extensible security solutions for V2X communications. For

instance, the authors in [43] and [44] propose novel methods for physical layer key generation

that result in faster key generation time and reduced code size respectively; reduced compu-

tational resources means these cryptography methods can be implemented in more devices.

In another study [45], the authors propose a blockchain-based architecture to validate a con-

nected vehicle’s location in V2I contexts, preventing position spoofing. These solutions can

be incorporated into our ICM strategy.
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activity plans of travelers using the park-and-ride system and autonomous vehicles:
Work and shopping trip purposes,” Applied Sciences, vol. 10, no. 8, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/8/2912

[26] X. Liu, N. Masoud, Q. Zhu, and A. Khojandi, “A markov decision process framework
to incorporate network-level data in motion planning for connected and automated
vehicles,” Transportation Research Part C: Emerging Technologies, vol. 136, p. 103550,
2022.

[27] “L.A. County’s I-5 named ‘most congested freeway’ in Califor-
nia,” 2014. [Online]. Available: https://www.dailynews.com/2014/02/13/
la-countys-i-5-named-most-congested-freeway-in-california/

[28] S. Carpenter, “Interstate 5 from Euclid Avenue to 605 is bus-
iest corridor in the U.S.” Spectrum News 1, 2021. [On-
line]. Available: https://spectrumnews1.com/ca/la-west/traffic/2021/12/07/
interstate-5-from-euclid-avenue-to-interstate-605-is-busiest-corridor-in-the-u-s-

[29] “Los Angeles Has Top Two Worst Traffic Corridors in the Nation, Study
Says ,” 2020. [Online]. Available: https://www.nbclosangeles.com/news/local/
los-angeles-has-top-two-worst-traffic-corridors-in-the-nation-study-says/2325974/

[30] “Traffic Census Program.” [Online]. Available: https://dot.ca.gov/programs/
traffic-operations/census

[31] E. Research, “Usrp hardware driver and usrp manual,” https://files.ettus.com/manual/
page usrp b200.html, 2023.

[32] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Performance Assessment of IEEE
802.11p with an Open Source SDR-based Prototype,” IEEE Transactions on Mobile
Computing, vol. 17, no. 5, pp. 1162–1175, May 2018.

[33] F. H. Administration, “Transportation management centers,” https://ops.fhwa.dot.
gov/freewaymgmt/trans mgmnt.htm, 2020.

[34] Siemens, “Connected vehicle roadside unit (rsu),” https://www.mobotrex.com/
product/siemens-connected-vehicle-roadside-unit/, 2018.

50

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12376
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12376
https://doi.org/10.3141/2396-05
https://www.mdpi.com/2076-3417/10/8/2912
https://www.dailynews.com/2014/02/13/la-countys-i-5-named-most-congested-freeway-in-california/
https://www.dailynews.com/2014/02/13/la-countys-i-5-named-most-congested-freeway-in-california/
https://spectrumnews1.com/ca/la-west/traffic/2021/12/07/interstate-5-from-euclid-avenue-to-interstate-605-is-busiest-corridor-in-the-u-s-
https://spectrumnews1.com/ca/la-west/traffic/2021/12/07/interstate-5-from-euclid-avenue-to-interstate-605-is-busiest-corridor-in-the-u-s-
https://www.nbclosangeles.com/news/local/los-angeles-has-top-two-worst-traffic-corridors-in-the-nation-study-says/2325974/
https://www.nbclosangeles.com/news/local/los-angeles-has-top-two-worst-traffic-corridors-in-the-nation-study-says/2325974/
https://dot.ca.gov/programs/traffic-operations/census
https://dot.ca.gov/programs/traffic-operations/census
https://files.ettus.com/manual/page_usrp_b200.html
https://files.ettus.com/manual/page_usrp_b200.html
https://ops.fhwa.dot.gov/freewaymgmt/trans_mgmnt.htm
https://ops.fhwa.dot.gov/freewaymgmt/trans_mgmnt.htm
https://www.mobotrex.com/product/siemens-connected-vehicle-roadside-unit/
https://www.mobotrex.com/product/siemens-connected-vehicle-roadside-unit/


[35] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” 2015. [Online]. Available: https://arxiv.org/abs/1509.06461

[36] M. Schettler, D. S. Buse, A. Zubow, and F. Dressler, “How to Train your ITS? Inte-
grating Machine Learning with Vehicular Network Simulation,” in 12th IEEE Vehicular
Networking Conference (VNC 2020). Virtual Conference: IEEE, 12 2020.

[37] D. of Traffic Operations, “Ramp metering design manual,” https://dot.ca.gov/
programs/traffic-operations/ramp-metering, California Department of Transportation,
Tech. Rep., 2022.

[38] A. Lopez, A. V. Malawade, M. A. Al Faruque, S. Boddupalli, and S. Ray, “Security of
emergent automotive systems: A tutorial introduction and perspectives on practice,”
IEEE Design & Test, vol. 36, no. 6, pp. 10–38, 2019.

[39] A. B. Lopez, W.-L. Jin, and M. A. A. Faruque, “Attack modeling methodology and tax-
onomy for intelligent transportation systems,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 8, pp. 13 255–13 264, 2022.

[40] S. R. Chhetri, J. Wan, and M. A. Al Faruque, “Cross-domain security of cyber-physical
systems,” in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), 2017, pp. 200–205.

[41] A. Sargolzaei, A. Abbaspour, M. A. Al Faruque, A. Salah Eddin, and K. Yen, Security
Challenges of Networked Control Systems. Cham: Springer International Publishing,
2018, pp. 77–95. [Online]. Available: https://doi.org/10.1007/978-3-319-74412-4 6

[42] S. Ray, W. Chen, J. Bhadra, and M. A. Al Faruque, “Extensibility in
automotive security: Current practice and challenges: Invited,” in Proceedings
of the 54th Annual Design Automation Conference 2017, ser. DAC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3061639.3072952

[43] S. Ribouh, K. Phan, A. V. Malawade, Y. Elhillali, A. Rivenq, and M. A. A. Faruque,
“Channel state information-based cryptographic key generation for intelligent trans-
portation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 12, pp. 7496–7507, 2021.

[44] J. Wan, A. Lopez, and M. A. A. Faruque, “Physical layer key generation: Securing
wireless communication in automotive cyber-physical systems,” ACM Trans. Cyber-
Phys. Syst., vol. 3, no. 2, oct 2018. [Online]. Available: https://doi.org/10.1145/3140257

[45] A. Didouh, A. B. Lopez, Y. E. Hillali, A. Rivenq, and M. A. A. Faruque, “Eve, you shall
not get access! a cyber-physical blockchain architecture for electronic toll collection
security,” in 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), 2020, pp. 1–7.

51

https://arxiv.org/abs/1509.06461
https://dot.ca.gov/programs/traffic-operations/ramp-metering
https://dot.ca.gov/programs/traffic-operations/ramp-metering
https://doi.org/10.1007/978-3-319-74412-4_6
https://doi.org/10.1145/3061639.3072952
https://doi.org/10.1145/3140257

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	DSRC Technology
	VEINS Simulator
	Related Work
	Connected Vehicle Platoons
	Ramp Metering
	Dynamic Rerouting
	Deep Reinforcement Learning in ICM Strategies


	Scenario
	Interstate 5
	Realistic Traffic Modeling
	Park and Ride

	Preliminary Exploration

	V2I Communication Proof of Concept
	DSRC Tests
	Practical Implementation

	System Model
	Travel Delay
	Evaluation Criteria
	Problem Formulation

	Deep Reinforcement Learning
	State Space
	Parking Occupancy Status
	Traffic Density
	Speed

	Action Space
	Training and Reward

	Experimental Setup and Training
	Parameters
	Delay
	Deep RL Training

	Results and Discussion
	Experiment 1: Seed 64643
	Experiment 2: Seed 44435
	Experiment 3: Seed 27438
	Discussion

	Conclusion and Future Work
	Future Work

	Bibliography



