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ABSTRACT

We develop a simple closed-form valuation model for options when the
volatility of the underlying asset is stochastic. Our approach differs from
previous research in that we model the pricing density direetly. We
show that implied volatility estimates from the Black-Scholes model can
be very misleading, even when at-the-money options are used in the
cstimation. We also illustrate that the smile effect in index option prices
carn be explained by allowing changes in volatility to be correlated with
index refurns.



1. INTRODUCTION

One of the most-important issues in option pricing theory is the guestion of how op-
tions should be valued when the volatility of the underlying asset is stochastic, This
issue is relevant to both practitioners and academic researchers given the extensive

evidence that velatility varies significantly over time in many financial markets.

In thig paper, we develop a simple framework for valuing options when volatility
is stochastic. This approach differs from previous research by Wiggins (1987), Hull
and White (1987), Scott (1987}, Johnsen and Shanno (1987}, Stein and Stem (1991),
Amin and Ng (1993), Heston {1993}, Duan {1994] and others in that we model the
pricing demsity directly. The advantage of this approach is that it allows us to
derive simple closed-form solutions for option prices under a variety of assumptions
about the term structure of volatility. In fact, for some parameter values, the
stochastie volatility option pricing model is easier to evaluate than the Black-Scholes
option pricing formula. This approach complements recent work by Shimke (1993,
Longstaff (1994), Rubinstein (1994), Ait-Sahalia (1994), and Hutchinson, Lo, and
Poggio (1994) in which the pricing density is also modelled directly.

The results provide a number of important insights into the pricing of options
when wolatility is stochastic. For example, we show that implicd volatibity esti-
mates obtained by inverting the Black-Scholes model can be very misleading when
volatility 15 stochastie—even for at-the-money options. In addition, we show that
the majority of the “smile’ effect for 5§ & I* 500 index options can be explained by

allowing volatility to be eorrelated with index returns.

The paper iz organized as follows. Section 2 presents the basic stochastic valatil-
ity valuation model, Section 3 examines the implications of the model for option

prices. Section 4 contrasts the stochastic volatility model with the Black-Scholes
maodel. Seetion 5 shows how alternative volatility specifications can be incorporated

into the model. Section 6 summarizes the results and presents concluding remarks.

2. THE VALUATION MODEL

In this section, we develop the basic valuation model for pricing options when the



valatility of the underlying asset is stochastic. To make the intuition of the model
clear, we usc the simplest possible framework in deriving the valuation model. The

extension of the model to more general specifications is illustrated in Seetion 5.

When state variables are hedgable, Cox and Ross (1976) and Harrison and
Kreps (1979) show that prices of derivative claims are given by taking the expec-
tation of their payoff with respect to a specific density, and then discounting the
expectation at the riskless rate. This is often known as risk-neutral valuation. When
there are non-hedgable state variables such as volatility, derivative claims must he
priced in an equilibrium rather than no-arbitrage framework. As shown by Cox,
Ingersoll, and Ross (1985) and others, however, the equilibrium valuation operator
has the same form as the psk-nentral valuation operator. The only difference is
that the pricing density may incorporate preference-dependent market price of risk
terms. In either case, however, we only need to know the density function to be

able to value derivative securities,

Because the density function is ultimately the primitive in any valuation frame-
work, we adopt the more intuitive approach of specifying the pricing density di-
rectly. In doing this, of coursé, we are implicitly assuming that some underlying
no-arbitrage or general equilibrium framework could be specified which would be
consistent with the pricing density. Specifically, let § denote the current or time-
zero value of a traded asset, and let Sp denote its value at time T. Furthermore,
let F(St) be a function of Sy with the property that the expected value of F2(Sy)

is fimte and let r denote the constant riskless interest rate,

Assumption 1. We assume the existence of a risk-neutral pricing density such
that the present value PV of any claim with payoff funciion F{St) at time T can

he represented as the discounted expected value or certainty equivalent,

PV =e¢"TE[ F(57) ) (1)

Here we use the term risk-neutral density in a broad sense since the pricing density
may incorporate a market price of volatility risk. All probabilities and expectations

are taken with respect to this risk-neutral density.

An immediate implication of this assumption is that the risk-neutral density
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muat, satisfy the no-arbitrage condition given by applying the pricing operator to

the underlying asset,

S=c¢VE[S5r]. (2)

This no-arbitrage condition will play a eentral role in this valuation framework since

it places an identification restriction on the mean of the risk-neutral pricing density.

Let I denote the current instantaneous variance of returns on the underlying
asset. Let Vi denote the total variance of the return on the underlying asset over

the valuation horizon, where

T
Vi = f ik, 3)
1}

is a random variable. In the option pricing models developed by Merton (1973),
Hull and White {1987), Scott (1987), and others, the risk-neutral density depends
on the instantaneous volatility only through the average variance Ay = Vo /T, This
is intuitive since it is the average amount of uncertainty during the life of an option
which should affect its value. This intuition underlies the next assumption about

the conditional distribution of returns.

Assumption 2. Conditional on the realization of Vip, In St is normally distributed

with mean and variance

E[InSy |V | = pr + Vi, (4)
Vﬂ:{lnST|VT]=VT. {5}

For the present, we leave pp unspecified; the value of g 15 determined later by
requiring the no-arbitrage condition (2} to be satisfied. The parameter  allows
for the possibility that realizations of ln 87 and Vp are correlated. Positive values
of = imply positive correlations between In Sy and Vp, and vice versa. As an
illustration, recall that in the Black-Scholes model, T is constant, Vo = o7, and
In St is normally distributed with mean In § 4+¢T — T2 and variance ¢°T. Thus,
the Black-Scholes model satisfies Assumption 2 with gr =In§+r7 and v = —1/2.
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Assumption 3. The total variance Vi is gamma distributed with density function

1 —aVr\ (aVp =
T(a?/ By “’”‘P( i )(T) = (6)

where @ and % are the mean and variance of Vi respectively.

This assumption implies that ¥Vp > 0. Note that a gamma variate is simply the
product of a standard chi-square variate and a positive constant, Thus, this as-
sumption is consistent with the implications of many standard econometric models
in which the chi-square distribution ariges naturally as the distribution of sums
of squared normals. In addition, ARCH and GARCH models as well as many
continuous-time specifications imply distoibutions for Vi that converge to, or ave

closely approximated by this distribution.

To close the model, we need to specify the conditional mean and varance of
Vo. The following specification is perhaps the simplest possible. More general

specifications are considered later.
Assumption 4. The mean o and variance 42 of V¢ are

oa=17, (7)
ﬁ‘j - I]IIIT?.I {E}

Recall that in the Black-Scholes model, & = T and 52 = 0. Thus, the Black-Scholes
model ean be nested within this specification by imposing the restriction n® = 0.

The joint density of In 57 and Vr is given by multiplying the conditional density
of In S7 by the marginal density for Vr,

v’ﬁw—‘&? Plo /6%) 2V 32 ,

To value continent claims using (1), we need to solve for the marginal density of
In S7. This marginal density is obtained by integrating out the value of Vi in (9).
Let z = In ST — gt. From Gradshteyn and Ryzhik (1970) 3.471.9,
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and where K[ - ) is the modified Bessel function of order a.'

This cxpression is the density function for the well-known Bessel distribution
and 15 described in detail in Chapter 12 of Johnson and Kotz (1970). Intuitively,
thiz distnbution can be obtained as the distribution of the difference between two
independent chi-square variates. Examples of densities implied by this family of
distributions are graphed in Fig, 1. As shown, virtually any pattern of skewness

and kurtosis for the risk-neutral density is possible by varying the parameters.

To identify pp, we require that the model be arbitrage free in the sense of
satisfying the no-arbitrage condition in (2). Recalling the definition of z, the no-

arbitrage condition can be expressed as

5=e"Tetr g e*]. (11)

Using the moment generating function of the Bessel density given in Johnson and
Kotz (1970) results in

'The properties of this Bessel function are described in Chapter 9 of Abramowitz

and Stegun (1970).
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) 4 _-2 a1,/2
§ =g Tebr (m) 1 (12}

provided that (¢ — 8)* < 1. Inverting this expression and solving for pr gives,

1—-¢®
g = In8+¢T - {{I T 1!2}111 (m) []3}

Thus, the no-arbitrage condition determines the pr parameter. This means that
the risk-neutral pricing operator 1= fully specified by a, 4, and v, or equivalenily,
by e, b, and ¢. In order to introduce alternative specifications for the mean and
variance later, we will derive the option pricing expressions in terms of a, b, and ¢

rather than explicitly substituting in the specification given in Assumption 4,
3. OPTION VALUATION

Let C(5, X, T) denote the value of a European call option on the underlying asset
with strike price X and time to expiration of T. From (1), the value of this call

option can be expressed as

C(S, X, T) = ¢~ "TE| mex(0, 57 — X) ], (14)

where the expectation is taken with respect to the risk-neutral density given in
(10). Evaluating this expectation leads to the following closed-form expression for
the wvalue of a call option

C(S,X,T)= S B(g;0,b,c—b)— Xe™™T B{g;n,b,e). (15)

L (1—{c—b]“) ’

and where B{q;a,b,c) is the complementary Bessel distribution funetion

where
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B{q;q,b:c}zf P(z;a,b, ¢)dx.
?

Structurally, this valuation expression is similar to the Black-Scholes model. In
fact, the only substantive difference is that the Bessel distribution function appears
in {15) rather than the normal distribution. In this model, the value of a call option
is a function of 5, v, X, T and the parameters o, 3, and ¥. In furn; given the
specification in Assumption 4, ¢ and 7 can be expressed in terms of I, T, and the
parameter 7. Thus, option prices depend on 5, X, [, T, r, and the two parameters

I E.ﬂ.l'.:l. -

To illustrate the option pricing function, Fig. 2 graphs the value of a call for
different values of the correlation parameter 7. Recall that in the Black-Scholes
model, 7 = —1/2 and the time value of an option is essentially symmetric around
the strike price. Fig. 2 shows that when + 18 very different from zero, the time value
of the option can be far from symmetric, Intuitively, this is because the correlation
parameter ¢ introduces an asymmetry into the shape of the Bessel density as shown
i Fig, 1.

To contrast this model with the Black-Scholes model, we first compute option
prices from (15) using the same values of § and I for all options, but for varying
values of X. We then solve for the implied volatility” of each oplion by inverting the
Black-Scholes formula and graph them in Fig. 3. As shown, the resulting implied
volatility patterns can be very similar to the smile pattern typically observed in the
market. In partienlar, negative values of 7 result in the generally downward pattern

that has persisted in many index options markets during recent years.

Fig, 3 also illustrates that the implied value of I obtained by inverting the
Black-Scholes model 15 genetally very different from the actual value of I. In par-
tienlar, the instantaneous standard deviation using in Fig. 3 is .10. As shown,
however, the implied volatility estimates obtained from the Black-Scholes model
are quite different from 10 sven when the calls are at the money. This result is
important since it is frequently claimed in the literature that estimates of I im-
plied from at-the-money options using the Black-Scholes model are unbiased even
if volatility is actually stochastic.



The analytical expression for C{S, X, T) can be differentiated to obtain hedge
ratios and comparative statics. For example, the derivative of the call price with

respect to S gives the delta of the option

C.5'= BI':Q{G,I[J,L:—IJ}I, [lﬁ'j

which is positive and always between zero and one. Fig. 4 illustrates that the delta
of a call option can differ significantly from the delta implied by the Black-Scholes

model,

A number of other derivatives can be obtained in closed form. In particular,

Plg;a,be— ) -

Cug = 5 . (17)
Cx =—e "1 B(q;a,b,¢) <0, {18}
. =Xe™"TT Big;a,b,c) > 0. (19)

An increase in the current value of T increases both the mean and the variance of the
total volatility V. An analysis of the pricing expression in (15) shows that the call
price is an increasing function of I. This 15 intwitive, since an increase in [ inplies
that the average volatility over the life of the option will be higher. Furthermore,
as I increases, the increase in the variability of the average variance contributes to
the total amount of uncertainty about the option payoff, which tends to increase
the value of the option. The relation between I and the value of a call option is
illustrated in Fig. 5.

An increase in T has a similar effect on the value of an option as it does in
the Black-Scholes model. As the time until expiration T increases, the flexibility
provided by the option is more valuable {assuming that there are no dividends or
similar stock price changes). Thus, an increase in T increases the value of a call
option. This is illustrated in Fig. 6 which graphs the valuc of a call option as &

function of T.



The pricing expression for the value of a European put option can be obtained
from (15) using the standard put-call parity relation. The basic comparative statics
for puts parallel those of call aptions described abave.

Although computing the DBessel distribution function is straightforward, the
Bessel distribution function can be expressed entirely in terms of elementary fune-
tions when the ratio a®/8% = 1/n* is an integer. In this situation, a = N +1/2,
where N 15 also an integer. From Gradshteyn and Ryzhik (1970) 8.468,

i N i)l e
Knspall2/8 1) = “5 '“'Zm- (20)

Substituting this expression into (10) and integrating allows the Bessel distribution

function to be expressed entirely in terms of simple algebraic and exponential terms.

As an example, consider the empirically relevant casc where the mean and
standard deviation of Vi are equal. In this case, the Bessel distribution funetion

has the simple form

B(gi1/2,b,¢)= L= -, (21)

for ¢ = 0. When g < 0, the distribution function can be evaluated using the identity

B{‘ﬁ a, E'! CJ =1- B[, L E‘". _E}r [:22}

which 1s true for general o, b, and c. Similarly, in the case where o/ = 2, the
Bessel distribution function has the form

B(g;3/2,b,¢) = (1;”}2 (E-I-c-l- @) e~ {t+ele/b, (23)

for ¢ = 0. Note that both (21) and (23) are much easier to evaluate than the
cumulative normal distribution function that appears in the Black-Schales model.
In the general case where o /82 = N 4 1, where N is a positive integer, the Bessel
distribution funection is given by the sumn
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Blg; N4+1/2,b,c) =

ivi (1 - N4 (N 4 i) ol o
i=0 j=0 S B N ) (T 7 -

for g = (0.

4, IMPLIED VOLATILITY ESTIMATES

To illustrate further how the stochastic volatility option pricing maodel differs from
the Black-Scholes model, we use both maodels to imply estimates of the instantaneous
volatility I from a common set of § & P 500 index option prices. We then contrast
the estimates from the Black-Scholes model with those from the stochastic volatility

model.

The § & P 500 index option prices are obtained by taking the closing call and
put prices listed in the November 22, 1994 Wall Street Journal for the next two
expiration months of December and January. This procedure resulted in a set of
8 eall prices for both the December and January expirations, and 11 put prices
for both the December and January expirations. Since 8 & P 500 index options
are European options, the Black-Scholes and the stochastic volatility models are
directly applicable. The closing stock index value and the value of the riskless rate
are also obtained from the Wall Street Journcl. We assume that the dividend rate
on the index 1s .03 per annum. [n inverting the stochastic volatility model, we also
assume that 4 = —20 and that 5 = 1. Although realistic, these parameter values
are illustrative only. By specifying both v and 5, however. the stochastic volatility
model can now be inverted to obtain an individual estimate of I from each option.
The implied volatility estimates for the December and January calls are shown in
Fig. 7 and Fig. 8. The implied volatility estimates for the December and January
puts are shown in Fig. 9 and Fig. 10.

If the Black-Scholes model were correctly specified, then the estimates of T
would be similar across strike prices, expiration dates, and type of option. As
shown, however, the implied volatility estimates from the Black-Scholes model vary

dramatically across strike prices (illustrating the smile effect }, expiration dates, and
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whether the options are calls or puts. In contrast, the estimates of I implied from
the stochastic volatility model are much more stable, In particular, the estimates
of I are generally within 100 basis points across all strike prices, expiration dates,

and option type.

This simple illustration suggests that the stochastic volatiity option pricing
model can potentially explain the persistent smile effect characterizing many option
markets. Furthermore, this illustration suggests that the term structure of volatility
obtained by implying estimates of I from options with different maturities may be
largely an artifact of the constant volatility assumption underlying the Black-Scholes

model.

5. ALTERNATIVE VOLATILITY SPECIFICATIONS

In assumption 4, we specified the functional form of the mean o and the variance 5°
af the total variance Vo This specification, however, is only one of many possible.
To illustrate how alternative specifications can be incorporated within this option
pricing framework, we provide several other specifications of & and 4% in this section
and show how closed-form expressions can be obtained. '

One strategy for specifying the mean and variance parameters is to assume
that the instantaneons volatility I follows a contimious-time procees and then set
a and # equal to the mean and variance of the corresponding value of V..

=

Example 1. Assume that the instantanecus variance I follows the following geo-

metrie Brownian motion process

df = odZ, (25)

where Z is a standard Wiener process, These dynamics imply the following mean
and variance for Vo

a=IT, (26)
F=r (%(aﬂ’?'q)—i"z—i—{). (27)
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This specification is very similar to that given in Assumption 4.

Example 2. Assume that the nstantanecus variance [ follews the square root

Process

dI = (6 — kI)dt + oV TdZ. (28)

These dynamics imply the following mean and vanance for 1%

a=Sry (5 - fé-) (1-e*T), (20)
K M K
¥
g#== (E— 9 (I— E)e_"T)T
A e o
2
- E'i:r [1_ ﬂ—nl)
b0 o ¢ , ‘
f (2% +5 (r— :D (1 — e 2T}, (30)

Similarly, many other possible specifications can be obtamed by assuming that
I follows an ARCH or GARCH type of process, integrating I to obtain Ve, and
then taking expectations and setting the first two moments equal to o and 5%

Since the option pricing formmula is expressed in terms of the general paramsters
o, f,and v {or a, b, and ¢}, these alternative specifications can simply be substituted
into (15) provide alternative closed-form sclutions. Thus, this framework allow
us significant flexability in deriving elosed-form stochastie volatility option pricing

models under a variety of assumptions about the properties of the average volatility.

6. CONCLUSION

We have presented a risk-neutral-density-based framework for valuing options when
the volatility of the underlying asset is stochastic. An important advantage of this
approach 15 that it allows us to derive simple closed-form stochastie velatility option

pricing expressions and to study their implications for the behavior of option prices.
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We find that the implied volatility estimates obtained from the Black-Scholes
model can be very biased when volatility i stochastic. This result is important
because of the widespread use of the Black-Scholes model in obtaining volatility
estimates, In addition, we find that allowing for stochastic volatility that is corre-

lated with the returns on the underlying asset has the potential to explain many of
the observed hiases of the Black-Scholes model,
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Fig. 1. Examples of the Beszel density function. The parameter gamma
governs the correlation between volatility and returns on the underlying
asset.
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Fig. 2. Examples of call pnices nnplied by the model. The model inputs
used are r = .05, T = .25, X = 40, f = .04, and 7 = 1. The parameter
gamma governs the correlation between volatility and returns on the
underlying asset.
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Fig. 3. Implied volatilities obtained by inverting the Black-Scholes
model when the underlying option prices are generated by the stochas-
tic volatility option pricing model. The actual instantaneous volatility
iz . 10.
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Fig. 4. Call option deltas mplied by the model. The model inputs
used are r = .06, T = .26, X =40, I = .04, and y = 1. The parameter
gamma governs the correlation between volatility and returns on the
underlying asset.
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Fig. 6. Call option prices graphed as a function of the time until
expiration. The model inputs used are r = 05, T = 04, X = 40,
S = 4, and n = 1. The parameter gamma governs the correlation
between volatility and returns on the underlying asset.
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Fig. 7. Implied volatility estimates for December 1994 5 & P 500 index
call options.
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Fig. 8. Implied volatility estimates for January 1995 5 & P 500 index
call options.
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Fig. 9. Implied volatility estimates for December 1994 S & P 500 index
put options.
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Fig. 10. Implied volatility estimates for January 1995 5 & P 500 index
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