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Abstract

In the last ten years or so, exemplar theory has enjoyed
much growth in the field of phonetics. More recently,
attempts have been made to apply exemplar theory to
syntactic phenomena. Thus far, the issue of unifying
phonetic and syntactic exemplar-theoretic models has
not been addressed. This paper presents a single over-
arching exemplar-based model of constituent interac-
tions across both linguistic domains which represents a
significant first step towards a unified account of exem-
plar theory. Our simulations for one phonetic and two
syntactic phenomena provide insights into how a unified
account can be achieved. In addition, the phenomena
we investigate shed light on the role of prototypes in
exemplar theory and on whether exemplar clouds are
defined by a fixed radius or by a fixed number of near-
est neighbors.

Keywords: Exemplar theory; computational mod-
elling; phonetics; syntax; acquisition; grammaticality;
diachronic language change

1. Introduction

Exemplar-theoretic models are among the most success-
ful in explaining human categorization (Nosofsky, 1986;
Nosofsky & Zaki, 2002). There is also an increasing body
of work applying exemplar-theoretic models to phonetic
phenomena (e.g., Goldinger (1997), Johnson (1997)).
Recent research in speech perception has provided con-
siderable evidence indicating that the perception process
is partly facilitated by accessing previously stored exem-
plars rich in phonetic detail. That is, speakers accu-
mulate exemplars over time and compare input stimuli
against them. Exemplars are categorized into clouds of
memory traces with similar traces lying close to each
other while dissimilar traces are more distant.

The appeal of exemplar models in phonetics is that
they explain a number of phenomena that can pose prob-
lems for more abstractionist models. These phenomena
include the detailed episodic memory of linguistic events
that humans retain; the gradual change of categories in
one speaker (as opposed to the speech community) in his-
torical language change (Pierrehumbert, 2001); the plas-
ticity of phonological categories (Norris, McQueen, &
Cutler, 2003) and frequency effects in phonetics (Juraf-
sky, Bell, Gregory, & Raymond, 2001) and syntax (Bod,
2006; Bybee, 2006).

Our main contribution in this paper is that we present
a unified model that explains phonetic as well as syntac-
tic phenomena. The key innovation of the model is that
it explicitly formalizes the relationship between exem-
plars on the constituent level and exemplars on what we
call the unit level. Constituents are segments (e.g., con-
sonants and vowels) in phonetics and words in syntax.
Units are syllables in phonetics and phrases or sentences
in syntax. Our simple hypothesis is that there is a com-
petition between the submodel of the constituent level
and the submodel of the unit level and that the unit sub-
model “wins” if the unit exemplar receives enough acti-
vation. A similar relationship between constituents and
units holds in other models (e.g. Adaptive Resonance
Theory (Grossberg, 2003)), but to our knowledge the
model we present here is the first that explicitly models
constituency in exemplar theory.

We will show that this simple competition model ex-
plains three different phenomena. The first phenomenon
is variation in syllable duration, a phonetic phenomenon.
The other two phenomena are syntactic: the grammati-
calization of going to in English and the emergence of the
notion of grammaticality in child language acquisition.

One of the important theoretical questions in exemplar
theory concerns the status of prototypes. It has often
been argued that a purely exemplar-theoretic account
fails to explain many observations in human categoriza-
tion (e.g., during early learning of a category, (Smith,
Murray, & Minda, 1997)). The model proposed here is
strictly exemplar-theoretic without any prototype com-
ponent.

Finally, we address in this paper how exemplar clouds
are formed. An exemplar cloud can be defined as ei-
ther the k nearest neighbors around a stimulus or as all
exemplars that have a distance of at most d from the
stimulus, where k and d are parameters. We refer to
these two types of exemplar cloud as nearest-neighbor
and radius-based. We argue that for the two syntactic
phenomena we consider, radius-based exemplar clouds
are needed.

The paper is structured as follows. Section 2 intro-
duces the unified exemplar-theoretic model. In Section 3,
we use the unified model to explain variation in sylla-
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syllable duration grammaticalization grammaticality

stimuli syllable to be produced phrase (in perception) phrase (in perception)
constituents segments words words
constituent representation acoustics, duration word representation, left context, right context, tense
similarity of constituents sum of similarities of the components of the representation
units syllables phrases phrases
unit representation sequence of constituents
similarity of units sum of similarities of the constituents of the units
exemplar-based inference duration of syllable future tense grammaticality of novel phrase

Table 1: Components of the unified exemplar-theoretic model.

Figure 1: Architecture of the unified model. Example:
The exemplar-theoretic inference process starts with the
desire to articulate the word big. The exemplar cloud
of big is computed in the unit (in this case: syllable)
database. An exemplar cloud for each of the segments
of big is also computed in the constituent (in this case:
segment) database. The desired inference (in this case:
duration) is then computed on the exemplar cloud(s)
that were chosen based on greatest activation (unit vs.
constituent).

ble duration in phonetics. In Section 4, we model the
grammaticalization of going to as a future auxiliary in
English. Section 5 applies the model to the acquisition
of grammaticality. Section 6 discusses our experimental
results, related work and future directions.

2. Exemplar-theoretic model

The architecture of the unified model is shown in Fig-
ure 1. The model has five components:

• A generation/perception component that generates
(possibly underspecified) unit exemplars that serve as
stimuli for the model. This component is either in-
stantiated by a speaker different from the one that we
are modeling (as when grammaticality judgments are

modeled) or as the part of the cognitive system that
determines which words or phrases are to be gener-
ated next. The unit exemplar big is an example for
the latter case in the figure.

• An exemplar model on the unit level. The unit exem-
plar model retrieves all exemplars that are within a
distance of at most du from the stimulus. If the acti-
vation the stimulus receives is above a threshold, then
inference will be based on this unit exemplar cloud.

• An exemplar model on the constituent level. Operat-
ing in parallel with the unit level exemplar model, for
each constituent of the stimulus, the constituent ex-
emplar model retrieves all exemplars that are within
a distance of at most dc from that constituent. If the
stimulus does not receive sufficient activation in the
unit exemplar model, then inference is based on the
resulting constituent exemplar clouds.

• An inference component. The inference component
takes an exemplar cloud and infers a property of the
stimulus from its nearest neighbors in the exemplar
database. For example, the duration of a syllable is
computed as the average duration of the members of
its exemplar cloud.

• Parser and composer (not shown in the figure). Im-
plicit in this model is a mechanism that parses a unit
into its constituents and composes a sequence of con-
stituents into a unit. This component is different for
each of the three instantiations of the model. For ex-
ample, the duration of a unit is equal to the sum of the
durations of its constituents. The tense of a phrase of
the form going to walk is the tense of the constituent
word going.

Table 1 shows how the unified model is instantiated
in the phonetic and in the two syntactic models. The
following sections describe these instantiations in more
detail.

Our methodology in this paper is to model the input
data in a particular linguistic scenario (articulation, lan-
guage change or language acquisition), present the model
in Figure 1 with these input data, and then compare the
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predictions of the model with the outcome that was ob-
served in the linguistic scenario.

3. Variation of syllable duration

In an exemplar model of speech production, exemplars
serve as targets or plans of articulation. Schweitzer and
Möbius (2004) note that speakers should have a signif-
icant number of exemplars for high frequency syllables,
which would then act as a production target region, and
a small or negligible number of exemplars for low fre-
quency syllables. Consequently they argue that low fre-
quency syllables would have to be computed online from
exemplars of their constituents. They predicted, and
observed, greater variation in duration for frequent syl-
lables than for infrequent syllable.1 The first simulation
tests whether we can reproduce these experimental find-
ings.

Stimuli. Stimuli were syllables of the form CVC
where C was one of five consonants and V one of five
vowels (for a total of 125 syllables). For each segment
(phone) the acoustic properties are modeled as a ran-
domly generated two-dimensional vector, and the dura-
tion value stored in a single dimension. The similarity of
two segments or constituents was computed as the sum
of the similarities of their acoustic vectors and their du-
rations. For vector similarity, we employed the cosine,
for duration similarity an exponential transformation of
difference:

sim(~v, ~w) =

∑

i viwi
√

∑

i v2
i

√

∑

i w2
i

sim(x, y) = e−α(|x−y|)

where x and y are durations and α = 0.05. α was chosen
to give good sensitivity for typical lengths of consonants
and vowels. Durations of syllables in the seed set were
chosen to be 280 ms (but see Section 6), distributed in
a ratio of 1:2:1 over the three constituents CVC. These
numbers were chosen because 70 ms is a typical duration
for a consonant and 140 ms is a typical duration for a
vowel. The 125 syllables types were randomly assigned
to either the frequent or the infrequent subclass.

Procedure. The unit exemplar database was seeded
with 500 syllables. In all instantiations of the model,
when a unit is added to the unit database, its con-
stituents are simultaneously added to the constituent
database.

We then ran 5000 iterations of a production-
perception loop. Each iteration consists of randomly

1Note that Schweitzer and Möbius (2004) found that z-
scores of frequent syllable durations were more variable than
z-scores of infrequent syllable durations. We interpret this
here to mean that frequent syllables are more variable in du-
ration than infrequent syllables. We are currently conducting
further analysis of their data to confirm the validity of this
interpretation.
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Figure 2: Experimental results for variation of syllable
duration. Infrequent syllables (dashed line) have lower
variability in duration than frequent syllables (solid line).

picking one of the 125 syllable types. If the type is rare,
it is discarded with probability 0.99 and a new sylla-
ble type is generated. For the constituents of frequent
syllables and infrequent syllables that survive the elimi-
nation step, acoustic vectors are generated (slightly per-
turbed, using uniform noise, from the canonical vector
of a consonant or vowel to reflect variation in (planned)
articulation). We then retrieve the syllable’s and con-
stituents’ nearest neighbors in the unit and constituent
databases respectively, within a fixed radius. If activa-
tion in the unit database is below the threshold θ1 (i.e.,
there are fewer than θ1 exemplars in the cloud), then the
unit cloud is discarded, and the three neighborhoods in
the constituent database are employed instead. The tar-
get duration of an exemplar is inferred to be the average
duration of the members of its cloud. Finally, random
noise proportional to the computed duration is added.
The choice of the radius parameters and of θ1 will be
discussed below.

After the syllable with the inferred duration has been
produced, it is added to the exemplar database. This
part of the procedure models a production-perception
loop, either on the individual or the community level:
every produced exemplar becomes a perceived exemplar
after its production.

The final phase of the procedure consists of probing
the model, in an identical manner to the initial 5000
iterations, with 10 syllables of each of the 125 syllable
types. The standard deviation for the syllable type is
then computed on just this sample of 10 per syllable
type. In this phase, syllables and their units are deleted
after each probing to make sure that infrequent syllables
do not change their status to frequent in the probing
phase.

Results. Figure 2 is a cumulative histogram of 10
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runs of the above experiment, corresponding to 1250
standard deviations. The model successfully simulates
the finding of Schweitzer and Möbius (2004): frequent
syllables are more variable in duration than infrequent
syllables. This result was significant (p < 0.001, Welch
Two Sample t-test on 634 rare and 616 frequent sylla-
bles).

The difference in variation arises from the interaction
between the two submodels. Frequent syllables have
enough density, so that their duration is computed in
the unit model, with noise added that is proportional to
the length of the syllable. Infrequent syllables are com-
positions of constituents that are computed in the con-
stituent model, each with independent noise. Therefore,
the noise components often cancel out. Over many iter-
ations of the production-perception loop, frequent sylla-
bles become more variable in duration whereas the vari-
ability of infrequent syllables does not change much.

4. Grammaticalization of going to

Starting in the 17th century, the construction going to
was grammaticalized in its use as a form of future tense.
We chose to model this phenomenon because it is of-
ten used as a prototypical example of the role frequency
plays in language change.

One hypothesis is that this grammaticalization was
caused by the temporary rise in frequency of phrases
like moving to do with the connotation of intention and
future (where moving is any motion verb) (Tabor, 1994;
Bybee, 2006). Additional facts about the English of the
17th century (and today’s English) are that to go is the
most frequently used motion verb and that there are
many more literal uses of motion verbs (motion to a loca-
tion or to an object: went to London) than “verbal” uses
like running to meet. We will show presently that based
on these three assumptions, the unified model predicts
the grammaticalization of going to as a future tense. We
begin by motivating the representation of words in the
unified model.

Representation of words. The similar syntactic
behavior of two nouns like cow and hen is not directly
apparent from their pronunciation or semantics. But
an exemplar-theoretic account of syntactic behavior re-
quires a similarity metric where cow and hen are simi-
lar. Building on the ideas described in (Schütze, 1995),
we define left-context and right-context components of
the representation of a given focus word, where the left
(right) context consists of a probability distribution over
all words that occur to the left (right) of the focus word
and the dimensionality of the vector for each word is de-
pendent on the number of distinct neighbors (left and
right). For example, if we have experienced take cow
twice and drop cow once, then the left context distri-
bution of cow is P (take) = 2/3, P (drop) = 1/3. The
similarity of two left context distributions can then be

computed from the Jensen-Shannon divergence (which
we again transform into a similarity using exp(−αx),
here: α = 5):

0.5(DKL(P ||
P + Q

2
) + DKL(Q||

P + Q

2
))

where P and Q are the probability distributions of the
left (right) context of words 1 and 2, respectively, and
DKL is the Kullback-Leibler divergence (which we do
not use as a distance measure because it is asymmetric
and undefined if there is a single word that occurred in
only one of the two left (right) contexts, giving rise to a
0 probability).

The intuition behind this representation of words is
that we remember the typical left and right contexts of
words. Two left (or right) contexts are similar to the
extent that the distributions of words occurring in them
are similar.

Future and motion are represented as two different
four-dimensional vectors (as before, noise is added each
time a tense or motion vector is generated to reflect slight
contextual differences). Finally, the word itself is also
represented as a four-dimensional vector. The similar-
ity of two words is then computed as the sum of the
similarities of the four components just enumerated: left
context, right context, future/motion, and word.

Stimuli. In this simulation, five different construc-
tions were presented to the model. We give an example
for each: going to fetch, going to Peter, walking to fetch,
walking to Peter, and Peter fetch(es). Sentences of type
going to fetch and walking to fetch are either generated
as future sentences or as motion sentences. There were
four moving verbs like walking in addition to going, five
different non-moving verbs like fetch and five different
nouns (objects or locations) like Peter. To model the
three observations of historical English outlined above,
going was as frequent as the other four moving verbs
combined; 75% of walking/going to fetch sentences were
generated with future, the rest with motion; and sen-
tences of type walking/going to Peter were always gen-
erated with motion and twice as likely as walking/going
to fetch sentences.

Procedure. 2000 sentences were generated accord-
ing to the distribution described. Left and right context
vectors for each word were computed for these 2000 sen-
tences. The model was then presented with 30 sentences
each of types going to fetch, walking to fetch, and going
to Peter. If activation of the unit exemplar cloud was
high enough, the prevalence of future tense was com-
puted as the percentage of phrases in the unit exemplar
cloud that were in future tense. Otherwise the preva-
lence was computed on the constituent exemplar cloud
of the verb (walking, going etc).

Results. Figure 3 shows cumulative histograms for
10 runs. We assume a suitable competitive behavior be-
tween motion and future, so that only the more strongly
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Figure 3: Experimental results for grammaticalization
of going to. Histogram for strength of future tense in
exemplar cloud for sentence types going to fetch (solid),
walking to fetch (dashed) and going to Peter (dotted).

activated alternative survives. Thus a percentage of 60%
would correspond to future, a percentage of 40% to mo-
tion.

In 99.3% of cases the future tense was not inferred for
going to Peter sentences (future inference only occurred
with activations in excess of 0.5, and 96.3% of the ac-
tivations which were less than or equal to 0.5 were 0).
For walking to fetch sentences the prevalence of future
uses was consistently below 40%, for going to fetch con-
sistently above 60%. Thus, the model correctly predicts
the three key phenomena that occurred in the grammat-
icalization of going to: (i) going to fetch is grammatical-
ized as future tense; (ii) the other moving verbs are not
grammaticalized and instead retain their original motion
sense; and (iii) sentences of type going to Peter also re-
tain their original motion sense.

The basic mechanism responsible for the simulation
result is again the competition between the two levels.
Sentences of type going to fetch have dense exemplar
clouds due to their frequency and are processed on the
unit level. Sentences of type running to fetch have sparse
exemplar clouds due to their infrequency and are pro-
cessed on the constituent level where there is no preva-
lence of future uses. Sentences of type going to Peter are
not similar on the unit level to going to fetch because of
the different left and right contexts of (proper) nouns
like Peter and verbs like fetch.

5. Grammaticality judgments

In this section, we show that grammaticality judgments
in the unified model can be formalized as activation of a
sentence as a unit. The reasoning is that when a sentence
does not give rise to enough activation as a unit, but is
represented by an activation pattern of separate words,
then it is perceived as ungrammatical.
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Figure 4: Experimental results for grammaticality judg-
ments. Attested sentences (solid line) receive slightly
higher activations than unattested grammatical sen-
tences (dotted line). All 250 ungrammatical sentences
in the 10 runs received an activation of 0 (not shown).

Stimuli. Using 5 different verbs and 5 different nouns,
25 sentence types of the form I verb noun (e.g, I love
coffee) were generated and randomly assigned to the
subclasses attested and unattested. In addition, 25 un-
grammatical types of the form I coffee love were also
generated. The same representation for words as in the
previous experiment was used.

Procedure. In 1000 iterations, an “attested” gram-
matical sentence was generated and stored in the model.
No ungrammatical and no unattested sentences were
stored. An instance of each of the 25 grammatical and
of the 25 ungrammatical sentences was then presented
to the model.

Results. Figure 4 shows cumulative histograms for
10 runs. While unattested grammatical sentences re-
ceive slightly lower activation than attested sentences,
they clearly are close to the distribution of grammatical
sentences. In contrast, no ungrammatical sentence re-
ceived any activation on the unit level. Thus, the model
distinguishes grammatical (activation > 0) and ungram-
matical sentences (activation = 0) with 100% accuracy.

The simulation succesfully models the acquisition of
grammaticality because (i) attested and unattested sen-
tences have very similar representations due to similar
left and right contexts and (ii) ungrammatical sentences
are dissimilar to grammatical sentences due to different
left and right contexts. An example for the latter is that
when comparing I love coffee with I tea drink, the left
context of love (containing the subject I ) is very differ-
ent from the left context of tea (consisting of verbs like
love, drink and make).
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6. Discussion

We have presented a model that makes correct predic-
tions for three linguistic phenomena. It is noteworthy
that the model achieves this without prototypes or any
explicit abstraction mechanism. Note in particular that
Abbot-Smith and Tomasello (2006) express doubts in a
recent paper that a pure exemplar-theoretic model can
account for grammaticality judgments. Based on our
simulations exemplar theory seems to provide an ade-
quate account.

In our opinion, the experiments show conclusively that
neighborhoods in exemplar theory must be radius-based
as opposed to nearest-neighbor. In the case of gram-
maticality, even ungrammatical sentences have nearest
neighbors (albeit neighbors that are far away). It is
not clear how grammaticality judgments could be mod-
eled with nearest-neighbor clouds. Similarly, the differ-
ence between the grammaticalization of going to fetch
vs. non-grammaticalization of walking to fetch also re-
quires a fixed-radius neighborhood. Previous arguments
for nearest-neighbor clouds were based on difficulty of
implementation (Pierrehumbert, 2001) and not on any
fundamental reasons.

One challenge for exemplar theory is to explain how
exemplars of constituents interact with exemplars of
compositions of constituents into larger units. Segments
and words on the one hand, and syllables and phrases
on the other hand, each give rise to exemplar clouds at
different levels. One of the key properties of language
is the interaction of such units at different levels. The
model proposed here is the first formal model of exem-
plar theory to address this issue.

The main deficiency of the work we have presented
here is that we manually selected the parameters di (the
radii of the exemplar neighborhoods) and the thresholds
θi (the activation thresholds below which the constituent
level is chosen). Obviously, the performance of the model
depends on the values of these parameters. If the radius
in the grammaticality model is too large, then even un-
grammatical sentences will be judged grammatical (as-
suming a sufficiently small θ). However, we believe that
these parameters can be estimated from the distribution
of exemplars. For example, the distances of ungrammat-
ical sentences from the nearest neighbor are much larger
that that of grammatical sentences. We are currently
exploring density estimation as one possible solution to
this problem. In addition, although the syllable data
here are simulated, parallel work with this model, em-
ploying the Schweitzer and Möbius (2004) corpus, has
yielded z-score results in keeping with their findings.
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Schweitzer, A., & Möbius, B. (2004). Exemplar-based
production of prosody: Evidence from segment and
syllable durations. In Proc. of the speech prosody con-
ference (pp. 459–462).

Smith, J. D., Murray, M. J., & Minda, J. P. (1997).
Straight talk about linear separability. Journal of Ex-
perimental Psychology: Learning, Memory, and Cog-
nition, 23, 659-680.

Tabor, W. (1994). Syntactic innovation: A connection-
ist model. Unpublished doctoral dissertation, Stanford
University.

1466




