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ABSTRACT

We propose a new computationally efficient sampling scheme for Bayesian inference involving
high dimensional probability distributions. Our method maps the original parameter space into a
low-dimensional latent space, explores the latent space to generate samples, and maps these samples
back to the original space for inference. While our method can be used in conjunction with any
dimension reduction technique to obtain the latent space, and any standard sampling algorithm to
explore the low-dimensional space, here we specifically use a combination of auto-encoders (for
dimensionality reduction) and Hamiltonian Monte Carlo (HMC, for sampling). To this end, we first
run an HMC to generate some initial samples from the original parameter space, and then use these
samples to train an auto-encoder. Next, starting with an initial state, we use the encoding part of the
autoencoder to map the initial state to a point in the low-dimensional latent space. Using another
HMC, this point is then treated as an initial state in the latent space to generate a new state, which is
then mapped to the original space using the decoding part of the auto-encoder. The resulting point
can be treated as a Metropolis-Hasting (MH) proposal, which is either accepted or rejected. While
the induced dynamics in the parameter space is no longer Hamiltonian, it remains time reversible,
and the Markov chain could still converge to the canonical distribution using a volume correction
term. Dropping the volume correction step results in convergence to an approximate but reasonably
accurate distribution. The empirical results based on several high-dimensional problems show that
our method could substantially reduce the computational cost of Bayesian inference.

1 Introduction

While Bayesian methods can provide a principled and robust framework for data analysis, they tend to be computationally
intensive since Bayesian inference usually requires the use of Markov Chain Monte Carlo (MCMC) algorithms to
simulate samples from intractable distributions. Although simple sampling methods, such as the Metropolis algorithm,
are often effective at exploring low-dimensional distributions, they can be very inefficient for complex and high-
dimensional models. In this paper, we propose a computationally efficient algorithm for Bayesian inference in
high-dimensional problems. Our approach maps the original parameter space to a low-dimensional latent space, which
can be explored efficiently using standard sampling algorithms. The resulting samples are then mapped back to the
original parameter space for inference. While theoretically our method can be set up as a proper MCMC algorithm
that converges to the true distribution, in practice however, it might be more efficient to trade some accuracy for
computational speed by setting up the algorithm such that it converges to an approximate distribution. In this sense, our
method shares some similarity with variational Bayes as compared to MCMC.
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Recent advances in sampling algorithms Many computationally efficient sampling algorithms based on geometri-
cally motivated methods, such as Hamiltonian Monte Carlo (HMC) and its variants, have been proposed in recent years.
See for example [1, 2, 3, 4, 5]. However, to make such geometrically motivated methods practical for big data analysis,
one needs to combine them with efficient and scalable computational techniques. One common approach is subsampling
[2, 6, 1, 7], which restricts the computation to a subset of the observed data. This is based on the idea that big datasets
contain a large amount of redundancy so the overall information can be retrieved from a small subset. In general
applications, however, we cannot simply use random subsets for this purpose: the amount of information we lose as a
result of random sampling leads to non-ignorable loss of accuracy, which in turn has a substantial negative impact on
computational efficiency [8]. Therefore, in contrast to subsampling, several recent methods have been proposed based
on exploring smoothness or regularity in parameter space in order to find detailed and free-form approximations of the
target posterior distribution [9, 10, 11, 12, 13, 14].

Variational Bayes as an alternative to MCMC When set up properly, an MCMC algorithm can converge to the
true target distribution in theory. However, for complex and high dimensional models, waiting for convergence to
the exact target distribution might not be practical. A main alternative to MCMC is variational Bayes (VB) inference
[15, 16, 17, 18, 19], which transforms Bayesian inference into an optimization problem where a parametrized distribution
is introduced to approximate the target posterior distribution by minimizing the Kullback-Leibler (KL) divergence with
respect to the variational parameters. Compared to MCMC methods, VB introduces bias but is usually faster.

The best of both worlds It is reasonable to think that a combination of both methods might be able to mitigate their
shortcomings. An early attempt in this direction was the work of [20], where a variational approximation was used
as proposal distribution in a block Metropolis-Hasting (MH) algorithm in order to capture high probability regions
quickly, thus facilitating convergence. More recently, some new methods have been proposed that rely on combining
fast variational methods with exact MCMC simulations in order to improve the overall accuracy and computational
efficiency of Bayesian models applied to big data problems [21, 22]

Here, we explore an alternative approach based on finding a low-dimensional representation of the parameter space.
The idea is that the seemingly high-dimensional parameter could in fact reside in a low-dimensional subspace. For
example, a regression model could include features that are either redundant or unrelated to the response variable. To
this end, we propose a novel HMC algorithm, which handles this situation naturally by performing dimensionality
reduction in the parameter space.

Outline Our paper is organized as follows. We first review some existing algorithms and preliminary concepts related
to our proposed method. More specifically, we focus on computational challenges of MCMC in high dimensional
problems. We then describe our method, Auto-encoding HMC (AE-HMC), in details. We prove that our sampling
method can in principle produce a proper Markov chain that converges to the true target distribution. However, we will
also show that it is possible to use our method to obtain a reasonably well approximate distribution without a substantial
sacrifice in performance. Finally, we examine our method using simulated and real data.

2 Preliminaries

A central task of Bayesian inference is to calculate the integral:

Eπ(f) =

∫
f(q)π(q)dq,

where π(q) = p(q)p(D|q) is the posterior distribution with respect to parameter q. The integral is typically high
dimensional and intractable. Therefore, we usually resort to numerical methods by obtaining samples from π(q) and
calculating a finite sum as an approximation to the integral. An accurate approximation usually relies on efficient
exploration of typical set, the region in the parameter space which contributes most to the integral [23].

2.1 Pathological Behavior of Random Walk Metropolis in High dimensional space

By far, the most commonly used sampling method is Markov chain Monte Carlo (MCMC). MCMC method samples
from the parameter space by generating a Markov chain which eventually converges to the target distribution (the
posterior distribution in Bayesian framework) as its stationary distribution. A new state is proposed at each iteration
according to a transition map T (q∗|q). In particular, Metropolis-Hastings algorithm is used to construct such a Markov
chain by proposing a new state and accepting it with the following probability:

a(q, q∗) = min(1,
π(q∗)T (q|q∗)
π(q)T (q∗|q)

),
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which can guarantee the convergence to π(q) due to detailed balance. Random walk Metropolis (RWM) is one of the
most widely used Metropolis algorithms, with T (q∗|q) set to be a Gaussian distribution centered at current state q.

Though RWM is simple to implement, it does not scale well to high-dimensional problems — exploration of typical set
in high dimensional space is very challenging for random walk proposals. As discussed by [23], the region outside the
typical set has vanishing densities and large volume, which does not contribute substantially to the integral. Thus, it
might not be efficient to spend computational resources to explore this area. As the dimension of the space grows, the
volume of the outside region grows exponentially, and overwhelms the volume of the interior region. As a result, RWM
tends to propose a state outside the typical set that is rejected with a high probability.

2.2 Hamiltonian Monte Carlo

Faster exploration can be obtained using, for example, Hamiltonian Monte Carlo (HMC), which was first introduced by
[24] and later reviewed by [25]. HMC reduces the random walk behavior of Metropolis by taking L steps of size ε
guided by Hamiltonian dynamics, which uses gradient information, to propose states that are distant from the current
state, but nevertheless have a high probability of acceptance. In particular, HMC introduces a set of auxiliary variables
p (called momentum) with the same dimension as the original parameters q. The parameter space is then augmented to
a phase space (q, p), and HMC proposes new states jointly for (q, p), according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

whereH = H(q, p) = U(q)+K(p). U(q) is associated with the target density, andK(p) is usually chosen to associate
with the density of a zero-mean Gaussian with covariance M .

U(q) = − log π(q) = − log[p(q)p(D|q)]
K(p) = pTM−1p/2

A new state will be proposed from (q(t), p(t)) to (q(t + s), p(t + s)). Since the Hamiltonian equations are not
analytically solvable in general, in practice, we resort to leapfrog method by discretizing the time to approximate the
dynamics. Given a step size ε and number of steps L, s is defined to be εL.

Hamilton’s equations describe the dynamics of a physical system with conservative energy H(q, p). q is the position
of the object, and p is the momentum. Correspondingly, U(q) is the potential energy, and K(p) is the kinetic energy.
While U(q) and K(p) are varying as the object moves, the Hamiltonian H(q, p) = U(q) +K(p) is constant.

In its MCMC application, exp(−H(q, p)) corresponds to the joint probability of (q, p), also referred to as canonical
distribution:

π(q, p) =
1

Z
exp(−H(q, p)/T )

where Z is a normalization constant, and T represents the temperature of the system. Eventually the Markov chain will
converge to the canonical distribution due to the reversibility and volume preservation properties of the Hamiltonian
dynamics. The marginal distribution of q is exactly the target density.

2.3 Auto-encoder

Auto-encoder is a special type of feed forward neural network for learning latent representation of the data (Figure 1).
The data are fed from the input layer and encoded into a low-dimensional latent representation (code). The code is then
decoded into a reconstruction of the original data. The goal of auto-encoder is to learn an identity map such that the
output (reconstruction) is closely matched with the input data. The model is trained to minimize the difference between
the input and the reconstruction. Auto-encoder could learn complicated nonlinear dimensionality reduction and thus is
widely used in challenging tasks such as image recognition and artificial data generation.

According to universal approximation theorem [26], a feed-forward artificial neural network can approximate any
continuous function given some mild assumptions about the activation functions. Theoretically, an auto-encoder with
suitable activation functions could represent an identity map. Therefore, auto-encoder could learn a encoder φ and
decoder ψ such that ψ ◦ φ = I . An accurate reconstruction of the data implies a good low-dimensional representation.
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Figure 1: Auto-encoder Network Architecture

3 Auto-encoding HMC

While HMC explores the parameter space more effectively, each iteration is computationally demanding since we have
to evaluate a high-dimensional gradient function. To alleviate this issue, we propose a new method called Auto-encoding
HMC (AE-HMC). First, we collect a small set of posterior samples from the target distribution by running the standard
HMC algorithm. We then use the collected samples to find a low-dimensional latent parameter space by training an
auto-encoder. Given an initial state in the original parameter space, we use the encoding part of the auto-encoder to find
its projection in the latent space, simulate Hamiltonian dynamics to generate a new state, and use the decoding part
of the auto-encoder to project it back to the original space to obtain a proposal. While this exploration will not be as
accurate as the standard HMC, it could reduce the overall computational cost.

Illustration We illustrate our approach using a three-dimensional Gaussian distribution. Because the original
dimension is very low, we use a Principle Component Analysis (PCA), which can be considered as a special case of
auto-encoder [27]: the encoder of an auto-encoder reduces to a PCA if all the activation functions are linear and the
inputs are normalized. Suppose we are interested in sampling from a three-dimensional Gaussian distribution with zero
mean and covariance

Σ =

[
1 0.95 0.7

0.95 1 0.5
0.7 0.5 1

]

To perform dimension reduction using PCA, we simply find orthornormal matrix P such that Σ′ = PΣPT is
diagonalized, where the diagonal entries of Σ′ are the variances of the transformed variables. Here we extract the first
two principal components with greatest variance as the low-dimensional representation, and simulate Hamiltonian
dynamics in the latent space.

As shown in Figure 2, we only performed HMC in the space of two dimensions. But when the proposals are projected
back to the original space, the algorithm still efficiently explores the space with distant proposals.

Figure 2: A: HMC trajectory in the latent space (2-dimensional); the red square is the initial position, and the blue
squares are HMC proposals. B: Trajectories projected back to original parameter space (3-dimensional) showing that
our method can still explore the parameter space effectively.
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When it comes to high-dimensional problems, we will use auto-encoder for dimension reduction. More specifically,
denote the parameters of interest qv and its latent representation qh. We also denote the encoder and decoder as

φ : qv 7→ qh

ψ : qh 7→ q′v

where q′v is a reconstruction of qv . If the error of the auto-encoder goes to zero, we have:

ψ = φ−1 : qh 7→ qv

Our algorithm is composed of the following three stages:

1. Pre-sample a few (e.g. 1000) samples of qv using standard HMC
2. Train an auto-encoder to fit the samples, and obtain the fitted encoder φ and decoder ψ
3. Run AE-HMC to propose q∗v from qv (a detailed version is provided in Algorithm 1):

i Find qh = φ(qv)

ii Propose q∗h from qh by running HMC in the latent space
iii Obtain q∗v = ψ(q∗h)

3.1 HMC in the latent space

Denote the complementary momentum of qv as pv . The corresponding latent parameters are denoted as (qh, ph). The
auxiliary variable in the latent space is constructed using the same encoder ph = φ(pv), with pv sampled from a
Gaussian distribution. Further, denote the target density πqv (qv). We set the potential energy of the latent space to be
the negative log of πqv (qv):

Uh(qh) = Uv(ψ(qh)) = − log πqv (ψ(qh))

Notice that this is not a re-parameterization since we will still use the potential energy function from the original space
for our inference. If we use the density function of qh induced by φ(qv) to be the potential energy, we will need to
evaluate the volume change at each leapfrog step, which increases computational costs. As long as we could ensure
detailed balance in the original space, which we will prove in later section, the MCMC proposal mechanism will be
valid.

We also set the kinetic energy as follows:

Kh(ph) = Kv(ψ(ph)) = ψ(ph)TM−1ψ(ph)/2 (1)

Thus, we simulate the following Hamiltonian dynamics in the latent space:

dqhi
dt

=
∂Kh(ph)

∂phi
dphi
dt

= −∂Uh(qh)

∂qhi

The evaluation of the gradient of the potential function with respect to qh can be calculated by the chain rule. For
example, in the experiments discussed below, the decoder has one hidden layer with activation function tanh, and the
connection to the output layer is linear. We can calculate the gradient function with respect to the latent variable qh as
follows:

∂Uh(qh)

∂qh
=

(
∂qv
∂qh

)T
∂Uv(qv)

∂qv
(2)

where
∂qv
∂qh

= D2diag(1− tanh2(D1qh + b1))D1

tanh(z) =
ez − e−z

ez + e−z
, tanh′(z) = 1− tanh2(z)

where D1 and D2 are the estimated weights of the decoder (Figure 1). A detailed calculation of the gradient of U(qh)
regarding a logistic regression example can be found in appendix. The resulting gradient evaluation is less expensive
because of the much lower dimension.
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The evaluation of ∂Kh(ph)
∂ph

can be done in a similar way with ∂Kh(ph)
∂pv

= M−1pv and pv = D2 tanh(D1ph + b1),

∂Kh(ph)

∂ph
={D2diag(1− tanh2(D1ph + b1))D1}T ·

M−1D2 tanh(D1ph + b1) (3)

=DT
1 diag(1− tanh2(D1ph + b1))·

DT
2 M

−1D2 tanh(D1ph + b1)

where DT
2 M

−1D2 can be pre-calculated.

In practice, the Hamiltonian dynamics is simulated using leapfrog steps.

3.2 Proposal and correction

Joint distribution of (qv, pv) The density of pv is selected to be zero-mean Gaussian with a covariance M , corre-
sponding to Kv(pv) defined in equation (1). We then have the canonical distribution of the original phase space:

πqv,pv (qv, pv) ∝ exp(log πqv (qv)− pTvM−1pv/2) (4)

Notice the induced dynamics in the phase space (qv, pv) is no longer Hamiltonian, and does not have the property
of volume preservation as standard HMC. We hereby prove that the proposed HMC update will leave the canonical
distribution for qv and pv (equation 4) invariant, assuming that

i the update is time reversible and thus symmetrical
ii an appropriate volume correction term is added in the HMC acceptance probability

Time reversibility The proof is straightforward. Let Ts represent the Hamiltonian dynamic in the latent space from
the state (qh, ph) at time t to the state (q∗h, p

∗
h) at time t+ s. The reversibility of Hamiltonian dynamics indicates that:

Ts(q(t), p(t)) = (q(t+ s), p(t+ s))

Ts(q(t+ s),−p(t+ s)) = (q(t),−p(t))
If we let Q(q∗h, p

∗
h|qh, ph) represent the process of negating momentum, applying mapping Ts and negating the

momentum again, and let Φ(qv, pv) = (φ(qv), φ(pv)), Ψ(qh, ph) = (ψ(qh), ψ(ph)), our proposal can be denoted
Q′ = Ψ ◦Q ◦ Φ. We must have:

Q′(q∗v , p
∗
v|qv, pv) = Q′(qv, pv|q∗v , p∗v)

A detailed proof can be found in appendix.

Detailed Balance with Volume Correction Following the proof in [28], we can show that when accounting for
volume change in the acceptance ratio, detailed balance holds for our proposed Metropolis update.

Consider partitioning the phase space (q, p) into small regions Ak with small volume V . Suppose by applying mapping
Q′ to Ak, the image of Ak becomes Bk. The Bk will also partition the space due to reversibility, but has a different
volume V ′. We need to show detailed balance:

P (Ai)T (Bj |Ai) = P (Bj)T (Ai|Bj) ∀i, j
Since when i 6= j, T (Bj |Ai) = T (Ai|Bj) = 0, we only consider when i = j ≡ k:

T (Bk|Ak) = Q′(Bk|Ak) min(1,
exp(−HBk

)

exp(−HAk
)

V ′

V
)

See more details in appendix.

Calculation of acceptance ratio For acceptance ratio α = min(1, ρ), we have

ρ = exp(−H(q∗v , p
∗
v) +H(qv, pv))

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣
= exp(−Uv(q∗v) + Uv(qv)−Kv(p

∗
v) +Kv(pv))

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣
6



Algorithm 1 Auto-encoding HMC (AE-HMC)

Inputs:
encoder φ, decoder ψ
Uv(qv)
grad_Uh(qh) according to equation (2)
grad_Kh(ph) according to equation (3)
auto-encoder weights and biases W, b
step size ε, number of leapfrog steps L
current qv

Initialize q(0)
v = current qv

Sample momentum p
(0)
v ∼ Normal(0,M)

Set q(0)
h = φ(q

(0)
v )

Set p(0)
h = φ(p

(0)
v )

for i = 1 to L do
p

(i−1/2)
h = p

(i−1)
h − ε/2 · grad_Uh(q

(i−1)
h )

q
(i)
h = q

(i−1)
h + ε · grad_Kh(p

(i−1/2)
h )

p
(i)
h = p

(i−1/2)
h − ε/2 · grad_Uh(q

(i)
h )

end for
Calculate q(L)

v = ψ(q
(L)
h )

Calculate ρ = exp(−H(q
(L)
v , p

(L)
v ) +H(q

(0)
v , p

(0)
v )) ·

∣∣∣∣∣∂(q
(L)
v , p

(L)
v )

∂(q
(0)
v , p

(0)
v )

∣∣∣∣∣ according to equation (5) (W, b will be needed

accordingly)
Sample u ∼ Uniform(0, 1)
if u < min(1, ρ) then

return q∗v = q
(L)
v

else
return q∗v = current qv

end if

The determinant of
∂(q∗v , p

∗
v)

∂(qv, pv)
is infeasible to evaluate. As shown in appendix,

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣ can be approximated by

Vol(q∗v , p
∗
v)

Vol(q∗h, p
∗
h)

Vol(qh, ph)

Vol(qv, pv)
.

These two Jacobian matrices are not full rank, so we use the square root of its Gramian function G(·) to calculate the
volume change (see appendix for more details). Thus, we have:

ρ = exp(−Uv(q∗v) + Uv(qv)−Kv(p
∗
v) +Kv(pv))· (5)√

G(
∂(q∗v , p

∗
v)

∂(q∗h, p
∗
h)

)

√
G(
∂(qh, ph)

∂(qv, pv)
) (6)

Algorithm 1 summarizes the steps for a single iteration of AE-HMC.

3.3 Approximate Bayes inference

Given finite computational resources, in practice it would be more reasonable to keep a balance between accuracy of
estimates and speed of computation. To do this, we can drop the volume adjustment. This way, instead of converging
to the true distribution, our algorithm converges to an approximate but reasonably accurate distribution. In Bayesian
analysis, if prediction is the ultimate goal, the resulting drop in the accuracy of estimating the posterior distribution
might not lead to substantial deterioration in the prediction accuracy. Note that our method would still be preferable to
those that only provide point estimates for predictions since it provides a reasonable estimate of prediction uncertainty.

Illustration To demonstrate that the approximate posterior distribution provided by AE-HMC can still capture high
probability regions, we conduct a high-dimensional logistic regression experiment with simulated data.
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Figure 3: Comparing posterior distributions based on Standard HMC (blue) and Auto-encoding HMC (orange). As we
can see, although the approximate distributions provided by AE-HMC tend to be more concentrated, they clearly cover
the true parameter values (black).

In this experiment, we create a relatively challenging synthetic dataset for binary classification with 500 features from
which 50 of them are highly correlated (ρ = 0.85), and the rest are sampled from a standard normal distribution. In
total, we simulate 550 data points for training and 150 for testing. We assume β’s have N(0, 102) priors.

We first run the standard HMC to obtain 1000 samples, which are used to train the auto-encoder. For both standard
HMC and AE-HMC, we tune the acceptance rate to be around 0.65 to 0.7, which is optimal in terms of computational
efficiency [29]. We compare the results using 1000 samples after the convergence has been reached.

Figure 3 shows the posterior distributions of five different β’s for both sampling methods. As we can see, our method
still provides a reasonable approximation of the posterior distribution (at much lower computational cost as shown in
the next section). Similar results are obtained for other parameters.

4 Experiments

In this section, we evaluate the performance of our proposed method by comparing it to standard HMC. To this end,
we will use two types of models: 1) high dimensional Bayesian logistic regression, and 2) high dimensional Bayesian
inverse problem with Eliptic PDE.

4.1 High-dimensional Bayesian logistic regression

Along with the synthetic dataset discussed above, we also examine our method based on three real datasets: CNAE-9,
Optical Recognition of Handwritten Digits (both from the UCI Machine Learning Repository), and MNIST. For each
dataset, we only focus on the first two groups for binary classification.

We use STAN [30] and Keras [31] with the TensorFlow backend to implement our method and compare its performance
to the standard HMC algorithm implemented in STAN.

We use an auto-encoder of three fully connected layers with linear activation where the dimension of the middle layer is
roughly ten times smaller than the input layer. In the first step, we generate initial samples (from the warm-up stage) for
training the auto-encoder using STAN. These samples consisted of approximately 10% of the full HMC simulation.
Then the auto-encoder is trained using these samples and its weights are extracted for custom implementation in STAN
in order to generate samples from the latent space. Then, the samples are projected back to the original space followed
by the accept-reject step.

As we can see in Table 1, our method could substantially improve the speed of Bayesian inference, while providing
accuracy rates similar to those of standard HMC.
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Method Dataset Synthetic CNAE9 Digits MNIST

#Parameters 500 856 64 784
HMC Time 11,077.8 3,793.3 865.7 33,300.8

Accuracy 82% 98.3% 100% 99.6%

#Parameters 50 85 6 78
AE-HMC Time 3,471.8 1,083.0 145.6 4,878.5

Accuracy 82% 98.3% 100% 99.2%

Speed-up 3.2 3.5 5.9 6.8

Table 1: Comparing accuracy rate (on test sets) and computational cost (time in second) of HMC and AE-HMC based
on four different logisitic regression models. The number of parameters for AE-HMC shows the dimension of the latent
space. Both methods use the same number of MCMC iterations.

4.2 High-dimensional Bayesian inverse problem with elliptic PDE

Next, we examine the performance of our method using a more complex model — Bayesian inverse problem. The
model involves the following elliptic PDE defined on the unit square domain Ω = [0, 1]2:

−∇ · (k(s)∇p(s)) = f(s), s ∈ Ω

〈k(s)∇p(s), ~n(s)〉 = 0, s ∈ ∂Ω∫
∂Ω

p(s)dl(s) = 0

where k(s) is the transmissivity field, p(s) is the potential function, f(s) is the forcing term, and ~n(s) is the outward
normal to the boundary.

To generate data, we construct a true transmissivity field k0(s) as shown on the left panel of the Figure 4. Partial
observations are obtained by solving p(s) on an 80× 80 mesh and then collecting at 25 measurement sensors as shown
by the circles on the right panel of the Figure 4. The corresponding observation operator O yields the data

y = Op(s) + η, η ∼ N (0, σ2
ηI25)

where the signal-to-noise ratio is set at SNR := maxs{u(s)}/ση = 10.

The inverse problem involves finding the transmissivity field k(s) from the observations. Bayesian approach endows a
log-Gaussian prior for k(s):

k(s) = exp(u(s)), u(s) ∼ N (0, C)

Figure 4: True log-transmissivity field u0(s) (left), and 25 observations on selected locations indicated by circles (right),
with color indicating their values.
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Method Mesh (20× 20) (40× 40)

Parameters 1681 6561
pCN Time 4,368.7 15719.7

Log-likelihood -7.47 -7.46

Parameters* 441 441
AE-pCN Time 1,008.6 1,038.3
(10× 10) Log-Likelihood -7.906 -7.915

Speed-up 4.3 15.1

Table 2: Comparing accuracy (in terms of log-likelihood) and computational cost (time in second) of pCN and AE-pCN
based on a high dimensional Bayesian inverse problem involving Eliptic PDE. The number of parameters for AE-HMC
shows the dimension of the latent space. Both methods use the same number of MCMC iterations.

where the covariance operator C is defined through an exponential kernel function

C :X→ X, u(s) 7→
∫
c(s, s′)u(s′)ds′,

c(s, s′) = σ2
u exp

(
−‖s− s

′‖
2s0

)
, for s, s′ ∈ Ω

with the prior standard deviation σu = 1.25 and the correlation length s0 = 0.0625 in the experiment. Then, the
problem reduces to sampling from the posterior of the log-transmissivity field u(s), which becomes a vector of
dimension over 6500 after being discretized on 40× 40 mesh (with Lagrange degree 2). See more details in [32, 33]

This is a very challenging sampling problem. To make the sampling rigorous in such a high dimensional space, we refer
to the following pre-conditioned Crank-Nicolson (pCN) proposal, which can be viewed as a variant of RWM [34, 33]:

q∗v = ρ qv +
√

1− ρ2 pv , pv ∼ N (0, C)

where ρ = (1− h
4 )/(1 + h

4 ) with h being the step size. We follow the same procedure as AE-HMC to project qv to qh
in the latent space of a much smaller dimension e.g. 600, make a proposal q∗h based on the above proposal and finally
map it back the original space. We refer to this modified version of our method as AE-pCN.

We run pCN on two mesh sizes (20 × 20) and (40 × 40) which are reduced to a problem of size (10 × 10) using
AE-pCN. We observe on Table 2 a significant reduction on computation time but similar log-likelihood values using our
proposed method. These results indicate an excellent trade-off between computational run time and the log-likelihood
approximation.

5 Discussion

In this paper, we have proposed a new approach for approximating high dimensional probability distributions for fast,
yet accurate Bayesian inference. Using synthetic and real data, we have shown that the resulting algorithm achieves a
good balance between computational cost and posterior approximation.

There are some possible future directions worth pursuing. First, our method loses a nice property of standard HMC,
namely, volume preservation. If a volume preserving embedding can be developed, it will allow for better approximation
of posterior distribution.

The computational saving mainly depends on the dimension of the latent space. However, reducing dimension
empirically could lead to substantial loss of information. More work needs to be done to automatically determine
the optimal size of the latent space. In addition, it is conceivable that some specific auto-encoder architectures and
activation functions could provide better trade-offs between computational cost and accuracy.

Finally, note that our work can be extended to other MCMC algorithms using a similar framework (as shown in the
previous section). Also, because our method focuses on high-dimensional problems with a large number of parameters,
conceptually, it can be combined with some recent sampling algorithms that focus on problems with large sample sizes.
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Appendix

A Calculating the gradient of Uh(qh) for Bayesian logistic regression

Consider a logistic regression model yi|Xi, qv ∼ Bern(πi), πi = 1
1+exp(−Xiqv) , where Xi =

(Xi1, Xi2, · · · , XiD), qv = (qv1, qv2, · · · , qvD)T . We set the prior to be zero mean Gaussian with unit variance.

The total Likelihood is p(y|X, qv) =
N∏
i=1

(
1

1 + exp(−Xiqv)

)yi ( 1

1 + exp(Xiqv)

)1−yi

Given that the decoder has one hidden layer and tanh is used as the activation function, we have:
qv = D2 tanh(D1qh + b1).

Consider
Uv(qv) = − log(p(qv))− log p(y|X, qv)

=
1

2
qTv qv −

N∑
i=1

(
yi log

1

1 + exp(−Xiqv)
+ (1− yi) log

1

1 + exp(Xiqv)

)

=
1

2
qTv qv −

N∑
i=1

yi(Xiqv) +

N∑
i=1

log(1 + exp(Xiqv))

∂Uv(qv)

∂qv
= qv −XT

D×N

(
y − 1

1 + exp(−Xqv)

)
N×1

= qv −
N∑
i=1

XT
i yi +

N∑
i=1

XT
i

1 + exp(−Xiqv)

Thus,
∂Uh(qh)

∂qh
=
∂Uv(qv)

∂qh

=

(
∂qv
∂qh

)T
∂Uv(qv)

∂qv

=
[
D2diag(1− tanh2(D1qh + b1))D1

]T ·[
D2 tanh(D1qh + b1)−XT y + XT 1

1 + exp(−XD2 tanh(D1qh + b1))

]
=DT

1 diag(1− tanh2(D1ph + b1))·[
DT

2 D2 tanh(D1qh + b1)−
N∑
i=1

(XiD2)T yi +

N∑
i=1

(XiD2)T

1 + exp(−XiD2 tanh(D1qh + b1))

]
(7)

where DT
2 D2 and XiD2 can be pre-calculated. Notice that dim(XiD2) << dim(Xi).

B Time reversibility

Given that ψ is the inverse map of φ, and define function h(q, p) = (q,−p) we have
Ψ(Q(Φ(qv, pv))) = Ψ(Q(φ(qv), φ(pv)))

= Ψ(Q(qh, ph))

= Ψ(h ◦ Ts ◦ h(qh, ph))

= Ψ(h ◦ Ts(qh,−ph))

= Ψ(h(q∗h,−p∗h))

= Ψ(q∗h, p
∗
h)

= (ψ(q∗h), ψ(p∗h))

= (q∗v , p
∗
v)

11



and

Ψ(Q(Φ(q∗v , p
∗
v))) = Ψ(Q(Ψ−1(q∗v , p

∗
v)))

= Ψ(Q(ψ−1(q∗v), ψ−1(p∗v)))

= Ψ(Q(q∗h, p
∗
h))

= Ψ(h ◦ Ts ◦ h(q∗h, p
∗
h))

= Ψ(h ◦ Ts(q∗h,−p∗h))

= Ψ(h(qh,−ph))

= Ψ(qh, ph)

= Φ−1(qh, ph)

= (φ−1(qh), φ−1(ph))

= (qv, pv)

Thus Q′ = Ψ ◦Q ◦ Φ is symmetric.

C Detailed Balance with Volume Correction

Following the proof in [28], we can show that when accounting for volume change in the acceptance ratio, detailed
balance holds for our proposed Metropolis update.

Consider partitioning the phase space (q, p) into small regions Ak with small volume V . Suppose by applying mapping
Q′ to Ak, the image of Ak becomes Bk. The Bk will also partition the space due to reversibility, but has a different
volume V ′. We need to show detailed balance:

P (Ai)T (Bj |Ai) = P (Bj)T (Ai|Bj) ∀i, j

Since when i 6= j, T (Bj |Ai) = T (Ai|Bj) = 0, we only consider when i = j ≡ k. Let

T (Bk|Ak) = Q′(Bk|Ak) min(1,
exp(−HBk

)

exp(−HAk
)

V ′

V
)

Then, we can write P (Ak)T (Bk|Ak) as

V exp(−HAk
)Q′(Bk|Ak) min(1,

exp(−HBk
)

exp(−HAk
)

V ′

V
)

=Q′(Bk|Ak) min(V exp(−HAk
), V ′ exp(−HBk

))

=Q′(Ak|Bk) min(V exp(−HAk
), V ′ exp(−HBk

))

=V ′ exp(−HBk
)Q′(Bk|Ak) min(

exp(−HAk
)

exp(−HBk
)

V

V ′
, 1)

=P (Bk)T (Ak|Bk)

The volume correction term
V ′

V
is simply the determinant of the Jacobian matrix

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣.
D Approximating volume correction term

Following [28], let’s consider a one dimensional example. For mapping

Tδ(q, p) =

[
q
p

]
+ δ

[
dq/dt
dp/dt

]
+O(δ2)

The Jacobian matrix:

Bδ =

1 + δ
∂2H

∂q∂p
δ
∂2H

∂p2

−δ ∂
2H

∂q2
1− δ ∂

2H

∂p∂q

+O(δ2)
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Consider a 3× 2 matrix A and 2× 3 matrix C:

[
a11 a12

a21 a22

a31 a32

]
1 + δ

∂2H

∂q∂p
δ
∂2H

∂p2

−δ ∂
2H

∂q2
1− δ ∂

2H

∂p∂q

+O(δ2)


[
c11 c12 c13

c21 c22 c23

]

It gives a 3× 3 matrix with element (i, j) to be

ai1c1j + ai2c2j + δ(ai1c1j
∂2H

∂q∂p
− ai2c1j

∂2H

∂p2
+ ai1c2j

∂2H

∂p2
− ai2c2j

∂2H

∂p∂q
) +O(δ2)

We could show that
det(ABδC) = det(AC) +O(δ2)

The result can be generalized to higher dimensions.

Now let’s denote z = (q, p), Ai =
∂ziv
∂zih

, Bδ =
∂zih
∂zi−1
h

, Ci =
∂zih
∂ziv

. We have:

det(
∂zLv
∂z0
v

) = det(
∂zLv
∂zLh

∂zLh
∂zL−1
h

∂zL−1
h

∂zL−1
v

· · · ∂z
1
v

∂z1
h

∂z1
h

∂z0
h

∂z0
h

∂z0
v

)

= det(ALBδCL−1AL−1 · · ·A1BδC0)

= det(ALBδCL−1) det(AL−1BδCL−2) · · · det(A1BδC0)

= (det(ALCL−1) +O(δ2))(det(AL−1CL−2) +O(δ2)) · · · (det(A1C0) +O(δ2))

=
V ol(zLv )

V ol(zLh )

V ol(z0
h)

V ol(z0
v)

+O(δ)

→ V ol(zLv )

V ol(zLh )

V ol(z0
h)

V ol(z0
v)

as δ → 0

For matricesAL andC0, the number of vectors are less than the dimension of the ambient space. We could use the square
root of the gramian function of the matrix to calculate k-volume in n-space where k < n. In particular, for k linearly
independent vectors v1, · · · , vk, the gramian function is G(v1, ..., vk) = det(MTM) where M = (v1, · · · , vk). The
volume of the parallelepiped with the vectors is calculated by:

V ol(v1, ..., vk) =
√
det(MTM)
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