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Stasis, Stasis, Triple Stasis

Keith R. Dienes,1, 2, ∗ Lucien Heurtier,3, † Fei Huang,4, ‡ Tim M.P. Tait,5, § Brooks Thomas6, ¶
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3IPPP, Durham University, Durham, DH1 3LE, United Kingdom
4Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 7610001, Israel
5Department of Physics and Astronomy, University of California, Irvine, CA 92697 USA

6Department of Physics, Lafayette College, Easton, PA 18042 USA

Many theories of BSM physics predict the existence of large or infinite towers of decaying states. In
a previous paper [1] we pointed out that this can give rise to a surprising cosmological phenomenon
that we dubbed “stasis” during which the relative abundances of matter and radiation remain
constant across extended cosmological eras even though the universe is expanding. Indeed, such
stasis epochs are universal attractors, with the universe necessarily entering (and later exiting) such
epochs for a wide variety of initial conditions. Matter/radiation stasis is therefore an important and
potentially unavoidable feature of many BSM cosmologies. In this paper we extend our arguments to
universes containing significant amounts of vacuum energy, and demonstrate that such universes also
give rise to various forms of stasis between vacuum energy and either matter or radiation. We also
demonstrate the existence of several forms of “triple stasis” during which the abundances of matter,
radiation, and vacuum energy all simultaneously remain fixed despite cosmological expansion. We
further describe several close variants of stasis which we call “quasi-stasis” and “oscillatory stasis”,
and discuss the circumstances under which each of these can arise. Finally, we develop a general
formalism for understanding the emergence of stasis within BSM cosmologies irrespective of the
number or type of different energy components involved. Taken together, these results greatly
expand the range of theoretical and phenomenological possibilities for the physics of the early
universe, introducing new types of cosmological eras which may play an intrinsic and potentially
inevitable role within numerous BSM cosmologies.
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I. INTRODUCTION, MOTIVATION, AND
BASIC IDEA

Many theories of physics beyond the Standard Model
(BSM) predict the existence of infinite towers of unstable
states. In theories involving extra spacetime dimensions,
such states might be the Kaluza-Klein (KK) states as-
sociated with the spectra of quantized momenta in the
compactified dimensions. Alternatively, in theories with
dark sectors consisting of strongly coupled gauge theo-
ries, such states might be the infinite towers of increas-
ingly heavy bound-state resonances. Likewise, in string
theory, such towers of states can take the form of not
only the Kaluza-Klein and winding-mode states associ-
ated with the compactification geometry but also the in-
finite towers of fundamental string resonances which rep-
resent the quantized excitations of the fluctuating strings
and branes themselves. In fact, some BSM models can
contain mixtures of all of these states, with mass scales
that depend on the particular BSM model under study.

In general, such states are likely to be unstable. As a
result, they will decay, either to lighter states within the
same tower or directly to Standard-Model states. The
heavier states will generally decay first since they are
likely to have the largest decay widths for a given final
state. Likewise, for a given initial state, the largest de-
cay widths will generically arise for decays to the lightest
available final states, thereby endowing such states with
considerable kinetic energies and rendering them rela-
tivistic. Such decay products may therefore be consid-
ered as functionally equivalent to radiation. Of course,
the detailed properties of such decays will depend on
the particular BSM model under study. However, as
a general feature, we can expect the different states in
our tower to decay sequentially to very light states, with
the heavier states decaying first, then the next-heaviest
states, and so forth down the tower. With exceedingly
large (or infinite) towers of states, this decay sequence
may extend over a significant period of time before fi-
nally terminating once the lightest states have decayed.

In Ref. [1], we considered the cosmological implications
of such extended decay sequences occurring in the early
universe and found that such extended decay sequences
can lead to a surprising cosmological phenomenon which
we called “stasis”. During this form of stasis, the abun-
dances of matter and radiation in the universe remain
constant across extended cosmological epochs even though
the universe continues to expand . At first glance, it
might seem that such a phenomenon is impossible. After
all, any cosmological epoch consisting of both radiation
and matter will transition from radiation-dominated to
matter-dominated, purely as a result of cosmological ex-
pansion. This simple observation is a consequence of the
fact that the energy density associated with matter scales
as a−3 where a is the cosmological scale factor, while
that of radiation scales as a−4. Thus, as the universe ex-
pands, an increasing fraction of the total energy density
takes the form of matter rather than radiation, thereby

causing the matter abundance to rise and the radiation
abundance to fall. However, such a transition from radi-
ation domination to matter domination need not occur if
the BSM model in question gives rise to counterbalancing
effects which convert matter back into radiation [1–3].

In Ref. [1], we demonstrated that such an extended
decay sequence can furnish precisely the sort of coun-
terbalancing effect that is needed, converting matter (in
the form of the original infinite towers of heavy states)
into radiation (in the form of the decay products, either
photons or other highly energetic light states). Indeed,
as demonstrated in Ref. [1], this counterbalancing process
can persist across many e-folds of cosmological expansion
as the decays work their way down the tower. Moreover,
this counterbalancing effect can precisely compensate for
the effects of cosmological expansion, so that a period
of bona fide stasis ensues during which the abundances
of matter and radiation remain constant throughout this
entire epoch. Quite remarkably, this possibility requires
no fine-tuning and actually emerges as a global attractor
within the relevant cosmological framework [1–3]. More-
over, despite this attactor behavior, we demonstrated
in Ref. [1] that such matter/radiation stasis epochs ul-
timately have a finite duration, ending naturally when
the lightest states at the bottom of the tower decay.
Thus, the universe not only enters into a stasis epoch
but also emerges from it in a natural way. Indeed, a sim-
ilar kind of stasis between matter and radiation can also
arise through the decays of primordial black holes [2, 3].

The primary goal of this paper is to extend this dis-
cussion to include universes which contain significant
amounts of vacuum energy . First, we will investigate
the extent to which BSM physics can give rise to a two-
component stasis within a universe consisting of vacuum
energy and matter. We will then seek to understand
whether we can similarly achieve a two-component sta-
sis between vacuum energy and radiation. Finally, we
will go for broke and ask whether it is possible to have a
“triple stasis” in which vacuum energy, matter, and radi-
ation can all simultaneously be in stasis with each other.
Equally importantly, we will also investigate whether
such forms of stasis require fine-tuning, or whether they
follow the example of matter/radiation stasis and also
emerge as cosmological attractors. We will also construct
a “phase diagram” for stasis which will enable us to un-
derstand how all of these different forms of stasis can
merge and transition between each other as we change
the underlying parameters within our BSM models.

Ultimately, we shall find that all of these new forms of
stasis can indeed exist and emerge naturally from BSM
physics. This in turn reinforces our belief that the stasis
phenomenon is in fact a fairly generic and robust feature
in certain types of cosmologies involving BSM physics.

One important subtlety in our work concerns the man-
ner in which we incorporate vacuum energy into our dis-
cussion of stasis. At first glance, it might seem that vac-
uum energy can be treated simply as just another cos-
mological fluid whose pressure p and energy density ρ
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are related via the equation of state p = −ρ (i.e., with
an equation-of-state parameter w = −1). However, as
we shall discuss, näıvely taking w = −1 leads to a slew
of important mathematical and physical complications.
For this reason, one important aspect of our work is to
develop a method in which we might successfully model
vacuum energy. However, as we shall demonstrate here
and in Ref. [4], stasis is possible and emerges naturally
regardless of the particular manner in which vacuum en-
ergy is modeled.

How to model vacuum energy is not the only subtlety
we shall encounter. For example, we shall find that there
are often multiple ways of performing certain critical cal-
culations. While some methods work best in certain con-
texts, other methods work best in other contexts. Ac-
cordingly, with an eye towards potential future appli-
cations of our work, in this paper we shall outline all
relevant methods of performing certain calculations and
demonstrate how they relate to each other.

This paper is organized as follows. First, in Sect. II A,
we review the results of Ref. [1] which focused on stasis
between matter and radiation. We do this not only as
review, but also in order to establish our overall notation
and calculational procedures. In Sect. II B, we then ex-
tract certain general lessons from this example — general
lessons which will prove critical later in this paper as we
expand the scope of our analysis. Then, in Sect. III, we
begin our discussion of how vacuum energy may be intro-
duced into this picture. It is here that we discuss the sub-
tleties associated with the introduction of vacuum energy
into the stasis framework, but we ultimately demonstrate
that a similar stasis can be achieved between vacuum en-
ergy and matter once these subtleties are satisfactorily
addressed. In Sect. IV we then demonstrate that a simi-
lar pairwise stasis can exist between vacuum energy and
radiation. Finally, we conclude our discussion of pairwise
stases in Sect. V by outlining various elements of their
common algebraic structure.

Sect. VI in some sense serves as the central focal point
of this paper. In this section, pulling together our results
from previous sections and extending them in certain
critical ways, we demonstrate that we can even achieve
a triple stasis involving vacuum energy, matter, and ra-
diation simultaneously. As we shall see, this is a highly
non-trivial result because the existence of three differ-
ent pairwise stases between three different energy com-
ponents does not generally imply the existence of a triple
stasis amongst them all simultaneously. Indeed, we shall
find that several additional constraints must be satisfied
in order to allow such a triple stasis to exist. Fortu-
nately, these constraints are not severe, and many BSM
cosmologies give rise to triple stasis as well.

In Sect. VII, we then turn our attention to the attractor
behavior associated with these new forms of stasis. We
ultimately find that all of the stasis solutions we examine
in this paper are indeed global attractors. Likewise, in
Sect. VIII, we present a “phase diagram” for the stasis
phenomenon and demonstrate how the different types of

stasis we have examined in this paper are actually differ-
ent “phases” of the same stasis phenomenon in different
limits of the underlying parameter space.
Along the way we also develop a general formalism

which enables a general study of stasis regardless of the
number and types of different energy components in-
volved. In this way we also isolate the underlying ingre-
dients that allow stasis to exist. With these insights in
hand, in Sect. IX we then investigate what happens when
some, but not all, of these ingredients are present. In
this way, we discover several new “variants” of the orig-
inal stasis idea. One of these, discussed in Sect. IXA,
is a new theoretical possibility in which the cosmologi-
cal abundances of different energy components are not
strictly constant but instead exhibit highly suppressed
time-evolution. This too is not seen in the standard cos-
mological timelines, but may also represent a valid pos-
sibility for early-universe physics in certain situations.
We shall refer to this phenomenon as quasi-stasis. We
also discover a different variant of stasis — one in which
the abundances are again not constant but instead os-
cillate around their central stasis values. This phe-
nomenon, which we shall call oscillatory stasis, is dis-
cussed in Sect. IXB. Yet another possibility is discussed
in Sect. IXC. We then make concluding remarks and
present ideas for further research in Sect. X.
Just as in Ref. [1], our main interest in this paper is

the stasis phenomenon itself — i.e., the existence of sta-
ble mixed-component cosmological eras — and the man-
ner in which such cosmologies emerge from BSM physics.
Needless to say, phenomenological constraints may make
it difficult for an epoch of stasis to appear within certain
portions of the standard ΛCDM cosmological timeline
(particularly those near or after Big-Bang Nucleosynthe-
sis). Indeed, such phenomenological constraints in turn
might be used in order to constrain the range of possible
BSM theories governing physics at higher energy scales.
However, other regions of parameter space may be able
to accommodate stasis epochs without difficulty. In this
paper we shall therefore study our BSM-inspired real-
izations of stasis as general theoretical phenomena, and
defer discussion of their various phenomenological impli-
cations and constraints to future work. That said, the
emergence of these different forms of stasis within BSM
cosmologies gives rise to a host of new theoretical and
phenomenological possibilities for early-universe model-
building across the entire cosmological timeline. Such
possibilities are therefore ripe for future exploration.

II. MATTER/RADIATION STASIS

In this section we begin by reviewing the results of
Ref. [1] concerning the possibility of stasis between mat-
ter and radiation. As discussed in the Introduction, our
purpose for including this review is two-fold. First, our
analyses of each kind of stasis that we shall be discussing
in subsequent sections can be patterned after our dis-
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cussion of this case. This section will therefore intro-
duce the main ideas and establish our notation. But sec-
ond, we shall find that many of the ingredients of this
matter/radiation stasis will become part of the larger
triple-stasis structure that we shall eventually construct
in Sect. VI. Thus it will be important to recall the details
of this case before proceeding further.

A. Algebraic analysis

We begin, as in Ref. [1], by assuming a flat Friedmann-
Robertson-Walker (FRW) universe containing two com-
ponents: a tower of matter states ϕℓ where the indices
ℓ = 0, 1, 2, ..., N − 1 are assigned in order of increasing
mass; and radiation (collectively denoted γ) into which
the ϕℓ can decay. This radiation may consist of photons
or other highly relativistic particles. We shall let ρℓ and
ργ denote the corresponding energy densities and Ωℓ and
Ωγ the corresponding abundances. We shall also assume
that the dominant decay mode of the ϕℓ is into radia-
tion, and let Γℓ denote the corresponding decay rates.
Note that in this section we shall not require that the ϕℓ

components be scalars, and indeed any (non-relativistic)
matter fields are acceptable. We shall also implicitly as-
sume that N is large (or potentially even infinite).

Recall that for any energy density ρi (where i denotes
matter, radiation, or vacuum energy), the corresponding
abundance Ωi is given by

Ωi ≡ 8πG

3H2
ρi , (2.1)

where H is the Hubble parameter and G is Newton’s
constant. From this it follows that

dΩi

dt
=

8πG

3

(
1

H2

dρi
dt

− 2
ρi
H3

dH

dt

)
. (2.2)

We can simplify this expression through the use of the
Friedmann “acceleration” equation for dH/dt, which in
a universe consisting of only matter and radiation takes
the form

dH

dt
= −H2 − 4πG

3

(∑
i

ρi + 3
∑
i

pi

)
= − 1

2H
2 (2 + ΩM + 2Ωγ)

= − 1
2H

2 (4− ΩM ) . (2.3)

Note that in passing to the second line we have defined
the total matter abundance ΩM ≡ ∑

ℓ Ωℓ, and in pass-
ing to the third line we have imposed the constraint
ΩM + Ωγ = 1, as suitable for a universe containing only
these two energy components. Substituting Eq. (2.3) into
Eq. (2.2) we then obtain

dΩi

dt
=

8πG

3H2

dρi
dt

+HΩi (4− ΩM ) , (2.4)

whereupon taking i = M (for the total matter abun-
dance) or i = γ (for the total radiation abundance) yields

dΩM

dt
=

8πG

3H2

∑
ℓ

dρℓ
dt

+HΩM (4− ΩM )

dΩγ

dt
=

8πG

3H2

dργ
dt

+HΩγ (4− ΩM ) . (2.5)

These are thus general relations for the time-evolution of
ΩM and Ωγ in terms of dρℓ/dt and dργ/dt in a universe
consisting of matter and radiation.
Given the relations in Eq. (2.5), our final step is to

insert appropriate “equations of motion” for dρℓ/dt and
dργ/dt. Since each ϕℓ is assumed to decay into radia-
tion γ with rate Γℓ, and given that each decay process
conserves energy, these equations of motion are given by

dρℓ
dt

= − 3Hρℓ − Γℓρℓ

dργ
dt

= − 4Hργ +
∑
ℓ

Γℓρℓ . (2.6)

While the final term on each line reflects the effects of
the decays, the first term on the right side of each line
reflects the redshifting effects of cosmological expansion
for matter and radiation respectively. Given these ex-
pressions for dρℓ/dt and dργ/dt, we find that Eq. (2.5)
then takes the form

dΩM

dt
= −

∑
ℓ

ΓℓΩℓ +H
(
ΩM − Ω2

M

)
(2.7)

with dΩγ/dt = −dΩM/dt.
We are seeking a steady-state “stasis” solution in which

ΩM and Ωγ are constant. Clearly such a solution will
arise if the effects of the ϕℓ decays are precisely counter-
balanced by the cosmological expansion. We therefore
wish to impose, at the very minimum, the condition that
dΩM/dt = 0, which from Eq. (2.7) yields the constraint

∑
ℓ

ΓℓΩℓ = H(ΩM − Ω2
M ) . (2.8)

However, it is not sufficient for this condition to hold
only for an instant of time — we want this condition
to hold over an extended interval of time. In order
to achieve this, we shall actually demand something
stronger, namely that this condition hold for all times t.
In imposing this latter constraint we are actually implic-
itly demanding an eternal stasis, one without beginning
or end. However, once we understand the conditions that
characterize such an eternal stasis state, we shall then
discuss the physics that will actually restrict this stasis
state to finite duration, essentially introducing not only
a natural entrance into the stasis state but also a natural
exit from it.
Demanding that Eq. (2.8) hold for all time requires

not only that this equation hold at one given time, but
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also that both sides of this equation have precisely the
same time-dependence when the abundances are held
fixed (which is the defining property of the stasis config-
uration we are hoping to understand). Let us therefore
assume that ΩM and Ωγ are fixed to their stasis values

ΩM and Ωγ . Under these stasis conditions, we can actu-
ally solve for the Hubble parameter directly via Eq. (2.3),
obtaining the exact solution

H(t) =

(
2

4− ΩM

)
1

t
=⇒ κ =

6

4− ΩM

(2.9)

where κ generally corresponds to the parametrization
H(t) = κ/(3t) during stasis. Indeed, from Eq. (2.9) we
verify the standard results thatH(t) = 2/(3t) for ΩM = 1
(i.e., for a matter-dominated universe), while H(t) =
1/(2t) for ΩM = 0 (i.e., for a radiation-dominated uni-
verse). Substituting Eq. (2.9) into Eq. (2.8) then yields
our matter/radiation stasis condition

∑
ℓ

ΓℓΩℓ(t) =
κ

3
ΩM (1− ΩM )

1

t

=

(
2− κ

)
ΩM

1

t
. (2.10)

where the individual matter abundances Ωℓ(t) within this
eternal-stasis cosmology are given by

Ωℓ(t) = Ω∗
ℓ

(
t

t∗

)2−κ

e−Γℓ(t−t(0)) . (2.11)

Here t∗ is some fiducial time within this stasis epoch,
while Ω∗

ℓ ≡ Ωℓ(t∗) and ΩM ≡ ∑
ℓ Ωℓ(t) for all t. By

contrast, the quantity t(0) within Eq. (2.11) denotes the
(presumed common) production time for the ϕℓ states,
and thus serves as the zero of the clock according to which
the decay lifetimes of these states are measured.

Of course, given our tower of components ϕℓ, the con-
dition in Eq. (2.10) cannot be strictly satisfied for all
times. Thus, we cannot truly have an eternal stasis. For
example, regardless of whether the tower of ϕℓ states is
finite or infinite, there is an early time immediately after
these states are produced at t(0) during which the decay
process is just beginning and thus will not yet have grown
sufficient to counterbalance cosmological expansion. In-
deed, the very presence of a production time t(0) within
Eq. (2.11) in some sense invalidates the assumption of a
truly eternal stasis. Likewise, there will eventually come
a time at which all of the decays will have essentially
concluded, at which point we expect our period of stasis
to end. However, the critical issue is whether there ex-
ist solutions for the spectrum of decay widths {Γℓ} and
abundances {Ωℓ} across our tower of states which will
lead to an extended period of stasis during the sequen-
tial decay process.

Our assertion in this paper is that many well-motivated
theories of physics beyond the Standard Model give rise

to towers of states with exactly this property. In order
to study this question in a general way, we observe — as
discussed in the Introduction and in Ref. [1] — that many
well-motivated BSM theories give rise to infinite towers
of states ϕℓ whose decay widths and initial abundances
either exactly or approximately satisfy scaling relations
of the forms

Γℓ = Γ0

(
mℓ

m0

)γ

, Ω
(0)
ℓ = Ω

(0)
0

(
mℓ

m0

)α

, (2.12)

where α and γ are general scaling exponents, where the
ϕℓ mass spectrum takes the form

mℓ = m0 + (∆m)ℓδ (2.13)

with m0 ≥ 0, ∆m > 0, and δ > 0 all treated as
general free parameters, and where the superscript ‘(0)’
within Eq. (2.12) denotes the time t = t(0) at which the
ϕℓ states are initially produced (thereby setting a com-
mon clock for the subsequent ϕℓ decays). For example,
if the ϕℓ are the KK excitations of a five-dimensional
scalar field compactified on a circle of radius R (or a
Z2 orbifold thereof), we will have either {m0,∆m, δ} =
{m, 1/R, 1} or {m0,∆m, δ} = {m, 1/(2mR2), 2}, de-
pending on whether mR ≪ 1 or mR ≫ 1, respectively,
where m denotes the four-dimensional scalar mass [5, 6].
Alternatively, if the ϕℓ are the bound states of a strongly-
coupled gauge theory, we have δ = 1/2, where ∆m
and m0 are determined by the Regge slope and inter-
cept of the strongly-coupled theory, respectively [7]. The
same values also describe the excitations of a fundamen-
tal string. Thus δ = {1/2, 1, 2} can serve as compelling
“benchmark” values. Likewise, the exponent γ is ulti-
mately governed by the particular ϕℓ decay mode. For
example, we will have γ = 2d − 7 if each ϕℓ state de-
cays to photons through a dimension-d contact operator
of the form Oℓ ∼ cℓϕℓF/Λd−4 where Λ is an appropriate
mass scale and where F is an operator built from photon
fields. Thus, values such as γ = {3, 5, 7} serve as relevant
benchmarks. Indeed, γ = 1 is also relevant in cases in
which ϕℓ are scalars decaying into fermions. Finally, α
is determined by the original production mechanism for
the ϕℓ fields. For example, it is easy to see that α < 0
for misalignment production [5, 6], while α can generally
be of either sign for thermal freeze-out [8].

Our goal will then be to determine for which combina-
tions of these scaling exponents (α, γ, δ) and other dimen-

sionful parameters (m0,∆m,Γ0,Ω
(0)
0 ) an extended stasis

state may arise. In this way, through a general study of
these scaling exponents and dimensionful parameters, we
can survey the effects of many different BSM theories at
once. Of course, within the context of this model, we
shall assume that ΩM = 1 at t = t(0) before the decay
process has begun. This reflects the fact that no radiation
has yet been generated at t = t(0), and that our universe
at that time consists of only the initial ϕℓ states. This
in turn requires that we choose the overall normalization

Ω
(0)
0 =

[∑N−1
ℓ=0 (mℓ/m0)

α
]−1

.
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For future use, it will prove convenient to define two
different dimensionless combinations of the above param-
eters:

η ≡ α+
1

δ
, ξ ≡ 2

κ

m0

Γ0
. (2.14)

Roughly speaking, we shall find that η describes how
the energy density scales per unit mass across the tower,
while ξ describes the decay rates of our tower components
(as parametrized through Γ0) relative to the overall rate
of cosmological expansion during stasis (as parametrized
through κ). Indeed many of our future results will de-
pend directly on these two quantities. Unlike η, however,
we shall find that ξ makes its appearance in our equations
only after our system has reached stasis. It is for this rea-
son that ξ has been defined directly in terms of κ rather
than κ itself. Thus ξ has a fixed value during stasis.

Given the scaling relations in Eqs. (2.12) and (2.13), we
can now evaluate the conditions for stasis by evaluating
the sum which appears on the left side of our constraint
equation in Eq. (2.10). Let us first focus on the behavior
of Ωℓ(t). In Eq. (2.11), we provided an expression for
Ωℓ(t) in terms of a fiducial time t∗ already within stasis,
but in order to connect with the abundance-scaling rela-
tion in Eq. (2.12) we would like to replace t∗ with the pro-
duction time t(0). However, the expression in Eq. (2.11)
assumed an eternal stasis that was already in effect at
the fiducial time t∗. Indeed, it is for this reason that we
were able to assume within Eq. (2.11) that Ωℓ(t) accrues
a net gravitational redshift factor (t/t∗)

2−κ between t∗
and t. However, as discussed above, these assumptions
will no longer be true if t∗ is replaced by t(0), since we
now expect that stasis will not emerge until some time
after t(0).

For simplicity and generality, we shall therefore let
h(ti, tf ) denote the net gravitational redshift factor that
accrues between any two times ti and tf . We thus have

Ωℓ(t) = Ω
(0)
ℓ h(t(0), t) e−Γℓ(t−t(0)) . (2.15)

Note that this h-factor is necessarily ℓ-independent since
the gravitational redshift affects all components equally.
It turns out that there are important subtleties associ-
ated with our use of an h-factor in this way, but these
subtleties will not affect our results. We shall therefore
defer a more detailed discussion of this h-factor until
Sect. VIE. However, given Eq. (2.15), we then find that∑
ℓ

ΓℓΩℓ(t) = Γ0Ω
(0)
0 h(t(0), t)

×
∑
ℓ

(
mℓ

m0

)α+γ

e
−Γ0

(
mℓ
m0

)γ
(t−t(0))

, (2.16)

where we have used the scaling relations in Eq. (2.12).
In order to evaluate this sum, we can pass to a contin-

uum limit in which we have a large number of ϕℓ states.
We can therefore imagine that the spectrum of decay
times τℓ ≡ Γ−1

ℓ is nearly continuous, merging to form a

continuous variable τ . We can likewise view the discrete
spectrum of energy densities ρℓ and abundances Ωℓ as
continuous functions ρ(τ) and Ω(τ) where the states are
now indexed by the continuous τ -variable corresponding
to their decay times. This allows us to rewrite our expres-
sions such that ℓ is eliminated in favor of τ . For example,
we replace mℓ/m0 with (Γ0τ)

−1/γ . We can then convert
the ℓ-sum over states to a τ -integral, i.e.,∑

ℓ

⇐⇒
∫

dτ nτ (τ) , (2.17)

where nτ ≡ |dℓ/dτ | is the density of states per unit τ .
Of course, this passage from the sum to the integral in-

volves a number of approximations whose effects are dis-
cussed in Ref. [1]. One important observation is that this
approximation becomes increasingly accurate for times t
which are far from the “boundary” (or “edge”) effects as-
sociated with the initial entry into or exit from the stasis
epoch. For a finite tower ϕℓ with ℓ = 0, 1, ..., N − 1 with
N ≫ 1, this implies that our integral approximation will
be especially valid for times t within the range

τN−1 ≪ t ≪ τ0 (2.18)

where of course we recall our original assumption that
t(0) < τN−1, where t(0) is the initial production time for
the ϕℓ tower. The requirement that t ≫ τN−1 implies
that we are focusing on a time interval after which a siz-
able number of states at the top of the tower have already
decayed from matter to radiation. This allows our inte-
gral approximation to capture the general behavior of our
system after any initial transient effects have dissipated
and the flow of energy density from matter to radiation
is well underway.
Evaluating the sums in Eq. (2.16) in this way and as-

suming γ > 0 and η > 0 leads to the result

∑
ℓ

ΓℓΩℓ(t) =
Γ0Ω

(0)
0

γδ

( m0

∆m

)1/δ
Γ

(
η

γ
+ 1

)
× h(t(0), t)

[
Γ0(t− t(0))

]−1−η/γ

,

(2.19)

where Γ(z) is the Euler gamma function. Likewise, let-
ting t∗ continue to denote a fiducial time at which stasis
has already developed, we can write [1]

h(t(0), t) = h(t(0), t∗)h(t∗, t)

= h(t(0), t∗)

(
t

t∗

)2−κ

. (2.20)

Substituting this result into Eq. (2.19), we see that∑
ℓ ΓℓΩℓ will scale as 1/t — as required by Eq. (2.10)

— only if we take t ≫ t(0) and require

η

γ
= 2− κ . (2.21)
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FIG. 1. Matter/radiation stasis. Left panel : The individual matter abundances Ωℓ (shown with colors ranging from orange to
blue) and the corresponding total matter abundance ΩM (red), plotted as functions of the number N of e-folds since the initial
time of production. Even though the individual abundances Ωℓ exhibit complex behaviors which are affected by cosmological
expansion as well as ϕℓ decay, the system quickly evolves into a stasis state in which their sum ΩM becomes constant. These
curves were generated through a direct numerical solution of the Boltzmann equations corresponding to our discrete tower of
decaying states without invoking any approximations, and correspond to the parameter choices (α, γ, δ) = (1, 7, 1) — for which

ΩM = 1/2 — with ∆m = m0, N = 300, and ΓN−1/H
(0) = 0.01. Right panel : The total matter abundances ΩM , plotted

as functions of N for different values of (α, γ) satisfying the constraints in Eq. (2.23). For each plot we have taken δ = 1,

∆m = m0, N = 105, and H(0)/ΓN−1 = 0.1. In each case we see that the system settles into a prolonged stasis epoch lasting
many e-folds, with a corresponding stasis abundance ΩM predicted by Eq. (2.22). Ultimately, in all cases, the stasis epoch ends
as we approach the final decays of the lightest modes. Both figures are taken from Ref. [1].

Equivalently, through Eq. (2.9), this yields

ΩM =
2γ − 4η

2γ − η
. (2.22)

Thus, for t ≫ t(0) and for any values of η and γ within
the ranges

γ > 0 , 0 < η ≤ γ

2
, (2.23)

our system has a stasis configuration during which ΩM is
given in Eq. (2.22). Indeed, it is further shown in Ref. [1]
that this state is a global attractor , and thus our system
will evolve into the stasis state even if it does not begin
in stasis at t = t(0). This attractor behavior is discussed
further in Sect. VII. The stasis state then ends when the
last ϕℓ has decayed. Indeed, it is shown in Ref. [1] that
this stasis state will generally last for Ns e-folds, where

Ns ≈ 2γδ

4− ΩM

logN . (2.24)

Here N is the number of ϕℓ states in the tower. We
thus see that we can adjust the number Ns of e-folds
associated with the stasis epoch simply by adjusting N .
In Fig. 1 we illustrate this matter/radiation stasis by

plotting the numerical results that emerge from an ex-
act Boltzmann evolution of our individual abundances
within the cosmology defined by the successive decays

of our ϕℓ states. In the left panel we plot the individ-
ual abundances Ωℓ (shown in orange/blue) as well as the
corresponding total matter abundance ΩM (red) as func-
tions of the number N of e-folds since the initial time
of production. The individual abundances Ωℓ(t) exhibit
complex behaviors, first rising due to cosmological expan-
sion and then falling due to ϕℓ decay. However, as time
advances, this happens in such a way that the identity
of the ϕℓ state with the largest abundance keeps changing
as the decays work their way down the ϕℓ tower. This
causes the individual Ωℓ(t) abundances to keep crossing
each other in an interleaving, cross-hatched fashion, as
shown. This cross-hatched behavior for the individual
abundances is a hallmark of the stasis state. Indeed, de-
spite the complex behaviors exhibited by the individual
abundances Ωℓ(t), we see that the system quickly evolves
into a stasis state in which their sum ΩM becomes con-
stant.

In the right panel of Fig. 1 we plot the total mat-
ter abundances ΩM as functions of N for a variety of
different values of (α, γ) satisfying the constraints in
Eq. (2.23). In each case we see that the system set-
tles into a prolonged stasis epoch lasting many e-folds,
with a corresponding stasis abundance ΩM predicted by
Eq. (2.22). Ultimately, in all cases, the stasis epoch ends
as we approach the final decays of the lightest modes.
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B. General lessons going forward

Having reviewed the main results of Ref. [1], let us
now extract several lessons from this analysis which will
serve as critical guideposts for our subsequent work in
this paper.

First, we note that our main stasis constraint in
Eq. (2.10) has been formulated by demanding that
dΩM/dt = 0 for all times t during stasis. It is this which
led to the constraint equation in Eq. (2.21) and to the
result for ΩM in Eq. (2.22). However, an alternative ap-
proach would have been to proceed by demanding the
condition ∑

ℓ

Ωℓ(t) = ΩM (2.25)

where each Ωℓ(t) is given in Eq. (2.11). This simple con-
dition would then replace the condition in Eq. (2.10).
Evaluating the sum within Eq. (2.25) would then lead to
an integral that is similar to the one we encountered be-
tween Eqs. (2.16) and (2.19), and demanding that the
resulting quantity be independent of time would then
produce the same results as in Eqs. (2.21) and (2.22).

Of course, these two approaches are not distinct: the
former is simply the time-derivative of the latter. Indeed,
the requirement that

∑
ℓ Ωℓ(t) be time-independent dur-

ing stasis is ultimately tantamount to the constraint that
the quantities in Eq. (2.10) scale as 1/t during stasis. We
shall therefore refer to these two possible formulations of
our stasis constraints as employing either the differen-
tial approach or the integral approach. However, these
approaches generally have different advantages. The in-
tegral approach is more direct, but it requires having
an explicit solution for the abundances Ωℓ(t) such as in
Eq. (2.11) or Eq. (2.15). For complicated cosmologies,
these solutions may not always be easily determined.
By contrast, the differential approach does not require
this information. Moreover, because the differential ap-
proach is the time-derivative of the integral approach, it
explicitly describes the flow of energy densities and abun-
dances between our different energy components. Indeed,
as we shall see more explicitly in Sect. VI, the left side
of Eq. (2.10) functions as the driving “pump” of energy
density from matter to radiation, while the right side de-
pends on the Hubble parameter and thus captures the
redshifting effects of cosmological expansion.

Thus, going forward, we shall utilize either the deriva-
tive forms of our stasis constraints, as in Eq. (2.10), or the
integral forms of such stasis constraints, as in Eq. (2.25),
choosing whichever form is calculationally cleaner given
the particular stasis scenario under study. Indeed, we
shall even occasionally find that a mixture of both ap-
proaches is needed in order to obtain certain results.

A second relevant issue concerns whether there are
any further constraints that should be imposed in or-
der to achieve a stasis epoch. After all, our analysis in
Sect. II A merely ensured that the left side of the stasis

constraint in Eq. (2.10) has the required 1/t scaling de-
pendence. Indeed, this is what gave rise to the constraint
in Eq. (2.21). We shall refer to such constraints as scal-
ing constraints. However, it might seem that there is an
additional constraint that we should also impose, namely
that which ensures the correct prefactor in Eq. (2.10). In
general such prefactor constraints may contain additional
information beyond that which emerges from the scaling
constraints.
This issue is more subtle than it may at first appear.

Given the result in Eq. (2.19), we see that we can write∑
ℓ ΓℓΩℓ(t) = C ′t−1 where the prefactor C ′ is given by

C ′ ≡ 1

γδ

( m0

∆m

)1/δ
Γ

(
η

γ
+ 1

)
h(t(0), t∗)

Ω
(0)
0

(Γ0t∗)η/γ

=
1

γδ

( m0

∆m

)1/δ
Γ

(
η

γ
+ 1

)
Ω0(τ0) e

Γ0(τ0−t(0)) .

(2.26)

In writing Eq. (2.26) we have used Eq. (2.21) in order
to simplify our expressions, and we have likewise defined
τ0 ≡ Γ−1

0 . In this connection, we note that in passing to
the second line of Eq. (2.26) the value of C ′ has become
independent of the choice of t∗, as it must, since t∗ is
only a fiducial time with no physical significance.
In principle the result for C ′ in Eq. (2.26) bears no

relation to the desired prefactor (2−κ)ΩM in Eq. (2.10).
However, if we calculate ΩM by directly evaluating the
sum in Eq. (2.25) by similarly utilizing our integral ap-
proximation and imposing the constraint in Eq. (2.21),
we find that

∑
ℓ Ωℓ(t) = C where C is the same expres-

sion as in Eq. (2.26) except that the argument of the
Euler gamma function is now given by η/γ rather than
η/γ + 1. Using the identity Γ(1 + z) = zΓ(z), we can
therefore bundle these results together in order to find
that our two prefactors are related to each other via

C ′ =

(
η

γ

)
C = (2− κ) C . (2.27)

Of course, this is only a relative relation between C and
C ′ — one which is independent of their individual abso-
lute sizes. However, it eliminates all of the complicated
factors such as those in Eq. (2.26) which arose from our
conversion of the discrete sum to an integral, and it is
also consistent with Eq. (2.10).
Given these results, the final remaining step is to

demonstrate that either of our two prefactors C or C ′

takes the correct absolute size — i.e., that

C = ΩM , (2.28)

or that

C ′ =

(
η

γ

)
ΩM = (2− κ) ΩM , (2.29)

where ΩM is the matter abundance that ultimately
emerges during stasis. In conjunction with Eq. (2.27),
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this would then guarantee the correct prefactors in
Eq. (2.10). Indeed, from Eq. (2.29) and the definition
of C ′ above Eq. (2.26), we find that∑

ℓ

ΓℓΩℓ(t) =

(
η

γ

)
ΩM

1

t
(2.30)

during stasis. However, this final absolute-prefactor
constraint in Eq. (2.28) or (2.29) is unlike the oth-
ers. Whereas our overall scaling constraint and rela-
tive-prefactor constraint are independent of the specific
approximations involved in passing from Eq. (2.16) to
Eq. (2.19) [or equivalently in obtaining a precise value for
the discrete sum

∑
ℓ Ωℓ(t)], the absolute-prefactor con-

straint in Eq. (2.28) or (2.29) is highly sensitive to the
details of these approximations.

Fortunately, as discussed in Ref. [1], we need not worry
about this absolute-prefactor constraint because it ba-
sically functions as an overall normalization constraint,
and the proper normalizations of these sums are ulti-
mately guaranteed by the attractor behavior of this sys-
tem. Indeed, even if this overall normalization constraint
is not initially satisfied, the system will inevitably flow
towards the stasis attractor solution in which the proper
overall normalization comes into balance. This feature is
illustrated explicitly in Fig. 1 and in Ref. [1].

It is important to understand how this balancing oc-
curs. A priori , the individual abundances are given in
Eq. (2.15) where h(t(0), t) represents the net gravitational
redshift factor that accrues between the original produc-
tion time t(0) and any later time t. Thus, h(t(0), t) car-
ries with it an explicit time-dependence. Indeed, because
this factor is ℓ-independent, this same factor also appears
within the total sum

∑
ℓ Ωℓ(t). However, once our system

settles into a stasis configuration, h(t(0), t) factorizes as
in Eq. (2.20) where t∗ is any fiducial time during stasis.
The factor (t/t∗)

2−κ within Eq. (2.20) is then cancelled
as part of the overall scaling constraints, leaving behind
the time-independent factor h(t(0), t∗) which appears in
Eq. (2.26). This factor thus represents the part of the net
redshift that occurs between t(0) and t∗, and its value has
already been dynamically adjusted during the pre-stasis
epoch so as to ensure that C = ΩM .
Phrased somewhat differently, we may define

h(t) ≡ h(t(0), t)

(
t

t∗

)−2+κ

. (2.31)

In general, this quantity is time dependent and evolves
significantly during the time interval from t(0) to t∗ prior
to the emergence of stasis. However, upon reaching t∗,
we know that our system has entered the stasis regime.
The quantity h(t) is then a constant, and from Eq. (2.20)
we see that this constant is what we have been calling
h(t(0), t∗). Indeed, during the pre-stasis epoch when h(t)
was still evolving, this quantity was heading towards (and
ultimately assumed) precisely the value h(t(0), t∗) needed
to ensure that C = ΩM . We will discuss these h-factors
in further detail in Sect. VIE.

There is also one additional constraint that is worthy
of note. As indicated below Eq. (2.16), it was necessary
to assume in passing from Eq. (2.16) to Eq. (2.19) that
γ > 0 and that

η > 0 . (2.32)

Indeed, if our initial parameters had satisfied η = 0, we
would have obtained a logarithmic (rather than power-
law) dependence on t, and there would have been no hope
of achieving a true stasis in such a case because of the
resulting logarithmic drift.
Of course γ > 0 is a perfectly natural assumption for

our underlying model, since this implies that our decay
widths grow with ℓ — i.e., that the more massive ϕℓ

states decay more rapidly than do the lighter ϕℓ states.
By contrast, it is not a priori required that η > 0 (or
equivalently that α+1/δ > 0). In principle, this therefore
becomes an additional constraint that must be imposed
on our model in order to avoid logarithmic drift and
achieve stasis. However, it turns out that this constraint
is already guaranteed by Eq. (2.21): since purely matter-
dominated and radiation-dominated universes have κ = 2
and κ = 3/2 respectively, any universe exhibiting a two-
component stasis between matter and radiation must
necessarily have 3/2 < κ < 2. Eq. (2.21) then implies
that η > 0. The constraint η > 0 is also already implicit
within Eq. (2.23).
Thus, to summarize, we see that in general there are

several kinds of constraints that must be satisfied in order
to achieve stasis:

• overall scaling constraints such as that in
Eq. (2.21);

• relative prefactor constraints such as that in
Eq. (2.27);

• absolute prefactor constraints such as that in
Eq. (2.28) or (2.29) which ensure the correct overall
normalizations; and

• constraints such as that in Eq. (2.32) which ensure
that there is no logarithmic drift, and that a true
power-law time-dependence emerges from our sums
over states, ultimately to be cancelled through cos-
mological redshifting effects.

In general, the absolute-prefactor constraints will be sat-
isfied as a consequence of the attractor behavior associ-
ated with our stasis solutions when these solutions are
indeed attractors. However, a priori , each of the other
constraints is generally capable of yielding new restric-
tions on our model or independent information concern-
ing the properties of the resulting stasis. Of course, for
the case of the pairwise matter/radiation stasis we have
examined here, we have found that the relative-prefactor
and logarithm-avoidance constraints are already satisfied
whenever the overall scaling constraint is satisfied. In
other words, matter/radiation stasis may be viewed as an
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over-constrained system which nevertheless gives rise to
stasis solutions because these different constraints hap-
pen to be redundant (or subsumed within each other)
without providing additional information. However, as
we shall shortly see, this will not always be the case.

We close this section with one final comment.
Throughout this section, we have been referring to
Eq. (2.21) as a constraint equation. In reality, however,
this equation is not a constraint on our scaling exponents
(α, γ, δ) so much as a prediction for the value of κ dur-
ing the resulting stasis. Indeed, so long as our scaling
exponents are chosen to lie within the ranges specified
in Eq. (2.23), we see that Eq. (2.21) simply allows us to
calculate the corresponding value of κ, and this in turn
allows us [via Eq. (2.9)] to determine the stasis abun-
dance ΩM , as in Eq. (2.22). Thus, so long as our scaling
exponents are chosen to lie within the ranges specified in
Eq. (2.23), we will always obtain a stasis. We see, then,
that our desire to achieve matter/radiation stasis does
not impose any actual constraints on our model beyond
those in Eq. (2.23); indeed, stasis emerges quite robustly
for all values of the relevant parameters within these
ranges. We shall nevertheless often refer to Eq. (2.21)
and its cousins as constraint equations in what follows.

III. VACUUM-ENERGY/MATTER STASIS

We now turn our attention to one of the main tasks of
this paper: the inclusion of vacuum energy into the sta-
sis discussion. In this section we begin by exploring the
possibility of a stasis between vacuum energy and mat-
ter, and the ways in which this might arise from BSM
physics. Of course, we know that any epoch in which
both matter and vacuum energy are present and which is
initially matter-dominated will evolve — simply as the re-
sult of cosmological expansion — into a vacuum-energy-
dominated epoch. This is because the matter energy den-
sity falls like ρM ∼ a−3 as the universe expands, while
the vacuum-energy density ρΛ remains constant. Achiev-
ing stasis between matter and vacuum energy therefore
requires a mechanism to counterbalance this effect and
convert vacuum energy back to matter.

A. Modeling vacuum energy and the transition to
matter

To study this, we begin with a discussion of how we
might introduce vacuum energy into our analysis. As we
shall see, this issue turns out to be surprisingly subtle
and requires some care.

By definition, vacuum energy has equation-of-state pa-
rameter w = −1. Indeed, such a state is pure potential
energy (this is the “vacuum energy”) and no kinetic en-
ergy. One natural approach towards studying a stasis
involving vacuum energy and matter would therefore be
to repeat the analysis in Sect. II for matter/radiation sta-

sis, only replacing the equation of state of the initial ϕℓ

components from w = 0 to w = −1 until the moment
they each undergo some sort of transition to matter. We
would then replace the post-transition equation of state
in Sect. II from w = 1/3 (radiation) to w = 0.

Of course, it would also be necessary to identify a
mechanism for this “transition” — i.e., to identify a gen-
eral process through which vacuum energy can be con-
verted into matter, in much the same way as the pro-
cess of particle decay converted matter into radiation in
Sect. II. However, it is not difficult to identify such a
process. Let us consider the coherent state consisting of
the zero-momentum modes of a scalar field ϕ of mass
m. At early times, when the Hubble parameter is large
(with 3H ≫ 2m), this field is severely overdamped and
thus has little kinetic energy. This is therefore a situa-
tion in which the energy of the field can be considered
pure potential energy (vacuum energy), with equation-
of-state parameter w ≈ −1. However, as the universe
expands, the Hubble parameter generally drops. As a
result, the field eventually becomes underdamped (with

3H <∼ 2m) and begins to experience damped oscillations.
In general, these oscillations quickly virialize, whereupon
the energy of this field is split equally between potential
and kinetic energy. The corresponding equation-of-state
parameter is then w = 0, and the corresponding energy
density behaves as matter as far as issues pertaining to
cosmological expansion are concerned.

We thus see that the overdamped/underdamped tran-
sition at 3H(t) = 2m provides a natural mechanism for
converting vacuum energy to matter, in exactly the same
way as particle decay at t = 1/Γ provided a natural mech-
anism in Sect. II for converting matter into radiation. Of
course, near the transition time, our field has a non-zero
kinetic energy and thus has neither w = −1 nor w = 0.
Indeed, during such a transition period, the energy den-
sity of our field can be interpreted as a mixture of vacuum
energy and matter. However, our main point is that an
overdamped/underdamped transition has the net effect
of converting vacuum energy to matter. In the following
discussion, for the purpose of calculational simplicity, we
shall idealize this transition by disregarding the “tran-
sient” effects that arise near 3H(t) ≈ 2m, and instead
approximate our scalar field as having w = −1 whenever
3H(t) > 2m and w = 0 otherwise.

Given this understanding, we might attempt to gener-
ate a long-lived vacuum-energy/matter stasis by initially
assuming a tower of coherent overdamped scalar fields
ϕℓ with masses mℓ and equations of state wℓ = −1,
in complete analogy with the initial configuration in
Sect. II. We would then allow these ϕℓ states to un-
dergo successive transitions to an underdamped phase
as the falling Hubble parameter H(t) crosses the succes-
sive critical transition points 2mℓ/3. Such underdamping
transitions would then proceed down the ϕℓ tower, just as
before, and potentially establish a stasis epoch along the
way. Indeed, at any moment, the lighter fields would still
be in the overdamped phase while the heavier fields will
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have already transitioned to the underdamped phase.
This approach would clearly be the most straightfor-

ward analogue of the scenario discussed in Sect. II. Ulti-
mately, however, this approach does not work. The rea-
son is simple: such a system begins as pure vacuum en-
ergy, with a total equation-of-state parameter wtot = −1.
Such a universe therefore has a Hubble parameter which
is constant and never falls. As a result, there is no possi-
bility of any fields becoming underdamped, and likewise
no possibility of any subsequent transitions from vacuum
energy to matter. Indeed, such a system simply remains
“stuck” in its initial state, with no subsequent dynamics
at all. There is thus no way in which a true stasis can
develop in such a theory — we simply have the total ini-
tial abundances ΩΛ = 1 and ΩM = 0 in perpetuity. Of
course, this is itself a kind of degenerate “stasis”, but it
is uninteresting for our purposes.

We shall therefore need to modify this näıve pic-
ture in such a way that our system will actually evolve
away from its initial state, with ensuing cascading over-
damped/underdamped transitions that convert vacuum
energy to matter. There are several approaches we might
follow in order to achieve this:

• We could begin by positing that the initial state
of our system also includes some additional non-
vacuum-energy component. Such an additional en-
ergy component would then introduce a non-trivial
time-dependence for the Hubble parameter, and
this would in turn eventually trigger the cascading
overdamped/underdamped transitions that we re-
quire. Unfortunately, doing this requires that our
model now include extra components beyond our
initial tower of states ϕℓ. While there is nothing
wrong with this (and indeed such additional com-
ponents may ultimately be well-motivated on phe-
nomenological grounds), the introduction of such
extra components beyond our tower of ϕℓ states is
not in the spirit of our previous analysis and would
introduce arbitrary new features and parameters
into our model.

• A second option — indeed, one which is more “min-
imal” and which does not introduce new fields —
would be to deform our model slightly by imag-
ining that our overdamped ϕℓ fields actually have
a small kinetic energy (i.e., a “slow roll”) in ad-
dition to their potential energies. For algebraic
simplicity, we can incorporate this kinetic energy
into our model by imagining that each of our ϕℓ

fields has an arbitrary common fixed equation-of-
state parameter w in the range −1 < w < 0 prior
to becoming underdamped (after which we can as-
sume that each field transitions to having w = 0,
as above). For example, we might consider w to be
extremely close to (but slightly greater than) −1.
Our model would then proceed exactly as before,
with sharp overdamped/underdamped transitions
occurring when 3H(t) = 2mℓ. Indeed, in such a

model, non-zero values of the quantity w+1 would
essentially function as a “regulator” which allows
us to avoid the difficulties associated with taking
w = −1. We could then define our case of interest
— namely that with “vacuum energy” — as the
w → −1 limit of this model. Indeed, as we shall
find, the w → −1 limit is typically well-behaved
even if the precise w = −1 endpoint is not.

• Finally, we could consider the full equations of mo-
tion for the scalar fields ϕℓ without any approxi-
mations. These equations are those of a damped
driven oscillator in which the Hubble damping
terms carry a non-trivial time-dependence. Within
an arbitrary universe that has not yet reached sta-
sis, such equations of motion lack analytical solu-
tions, so this approach would necessarily be numer-
ical.

The latter two approaches have complementary
strengths and weaknesses. Within the w > −1 approach
we are positing a relatively simple behavior for the ρℓ
energy densities, and thus this model can be understood
and solved analytically. Moreover, taking w > −1 as a
regulator successfully allows us to avoid having an ini-
tial Hubble parameter which remains constant, thereby
allowing the dynamics of our system to “start” on its
own. Indeed, we shall find that this model yields results
in the w → −1 limit which match much of what we ex-
pect from a näıve treatment in which we simply allow
the vacuum-energy component to have w = −1 at the
outset but in which the dynamics is somehow “started”
in other ways. Finally, this model has the side benefit
of allowing us to study the prospects for achieving stasis
for arbitrary w. In this way we could thereby understand
how the properties of the resulting stasis, if any, depend
on w.
Unfortunately, this model, while suitable for under-

standing overall cosmological features associated with
stasis, lacks a microscopic (particle-physics) Lagrangian
description. By contrast, the full scalar-dynamics model
has a bona fide realization in terms of the physics of a
scalar field evolving in an external cosmology (i.e., sub-
ject to Hubble friction). Such a model is thus the rigor-
ous setting for the 3H = 2m transition that allows us to
convert from overdamped to underdamped behavior, or
equivalently from vacuum energy to matter. Although
this model cannot be solved analytically outside the sta-
sis regime, a numerical analysis is possible. Of course,
within this approach, the equation-of-state parameter w
for each field during the overdamped phase is not an in-
put parameter over which we have direct control, but is
instead an output of the numerical simulation. Indeed,
w may not even be constant, nor will it necessarily be
the same for each field. In a similar way, the value of w
for each field after the field becomes underdamped will
not be strictly zero, but will also continue to have a non-
trivial time-dependence. Thus, within this model it is
only an approximation to assert that the underdamped
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phase results in pure “matter”, just as it is an approxima-
tion to state that the overdamped phase is pure “vacuum
energy” with fixed w = −1.

In this paper we shall adopt the general-w model (as
described in the second bullet above), allowing w to lie
anywhere within the range −1 < w < 0. As we have
discussed, this will enable us to study the stasis phe-
nomenon analytically. This in turn will also allow us to
determine the conditions for stasis and ultimately study
the behavior of this model as w → −1. However, we shall
study the full dynamical-scalar model in Ref. [4], and we
shall find that stasis emerges within the dynamical-scalar
model as well. Indeed, our results here and in Ref. [4] will
together allow us to verify that these two models, despite
their differences, yield similar results. We shall therefore
regard both models as demonstrating that vacuum en-
ergy can be successfully introduced into the overall stasis
framework.

B. Stasis analysis for general w

As discussed above, we shall begin our analysis of a
possible vacuum-energy/matter stasis in the same way
as we did in Sect. II, specifically by assuming a flat
Friedmann-Robertson-Walker (FRW) universe contain-
ing a tower of scalar fields ϕℓ with masses mℓ, where
the indices ℓ = 0, 1, 2, ..., N − 1 are assigned in order
of increasing mass. At any time t, the fields for which
3H(t) > 2mℓ will be assumed to be overdamped with a
fixed equation-of-state parameter w which we can imag-
ine is close to (but greater than) −1. By contrast, the
fields for which 3H(t) < 2mℓ will be assumed to be
underdamped, with a fixed equation-of-state parameter
w = 0. Thus the overdamped/underdamped transition
at 3H = 2mℓ converts vacuum energy (or its close ap-
proximation) to matter and proceeds down the tower as
time advances. We shall let ρΛ and ρM denote the to-
tal energy densities of this system attributable to vac-
uum and matter respectively, while ρℓ will denote the
energy density associated with the individual scalar field
ϕℓ while it is still overdamped. We shall also let ΩΛ, ΩM ,
and Ωℓ represent the corresponding abundances.

Our analysis begins just as for matter/radiation stasis
in Sect. II. Indeed, for any energy density ρi (where
i = Λ,M, ℓ), the corresponding abundance Ωi continues
to be given by Eq. (2.1), from which Eq. (2.2) continues to
follow. However, the Friedmann “acceleration” equation
now takes the form

dH

dt
= −H2 − 4πG

3

(∑
i

ρi + 3
∑
i

pi

)

= −H2 − 4πG

3
[(1 + 3w)ρΛ + ρM ]

= − 3
2 H

2 (1 + wΩΛ) , (3.1)

or equivalently

κ =
2

1 + wΩΛ
(3.2)

where we generally identify κ through the parametriza-
tion

dH

dt
= − 3

κ
H2 . (3.3)

Substituting Eq. (3.1) into Eq. (2.2) we then obtain

dΩi

dt
=

8πG

3H2

dρi
dt

+ 3HΩi (1 + wΩΛ) , (3.4)

yielding

dΩΛ

dt
=

8πG

3H2

dρΛ
dt

+ 3HΩΛ (1 + wΩΛ)

dΩM

dt
=

8πG

3H2

dρM
dt

+ 3HΩM (1 + wΩΛ) . (3.5)

These are thus general relations for the time-evolution of
ΩΛ and ΩM in terms of dρΛ/dt and dρM/dt.
Given the relations in Eq. (3.5), our final step is to in-

sert an appropriate equation of motion for dρΛ/dt (with
the understanding that dρM/dt = −dρΛ/dt by conser-
vation of energy). It is here that we introduce the idea
that vacuum energy is converted to matter when the in-
dividual states ϕℓ become underdamped and begin os-
cillating. For each field, this is presumed to occur pre-
cisely at the time tℓ when 3H(tℓ) = 2mℓ. In this pa-
per, we shall refer to tℓ as a critical “underdamping”
time. Thus, whereas the equations of motion given in
Eq. (2.6) corresponded to the case in which the transi-
tion from matter to radiation occurred through an ex-

ponential decay term ρℓ(t) ∼ e−Γℓ(t−t(0)), we shall now
model the corresponding vacuum-energy/matter transi-
tion term as ρℓ ∼ Θ(tℓ − t) where Θ(x) denotes the
Heaviside Θ-function [for which Θ(x) = 1 for x ≥ 0 and
Θ(x) = 0 otherwise]. This enforces our expectation that
ρℓ is non-zero (and can thus be attributed to vacuum en-
ergy) only for t ≤ tℓ. Likewise, the energy density for a
fluid with equation-of-state parameter w generally scales
as a−3(1+w). The corresponding equation of motion for
each individual (vacuum) energy density ρℓ is therefore
given by

dρℓ
dt

= ρℓ
d

dt
Θ(tℓ − t)− 3(1 + w)Hρℓ

= − ρℓδ(tℓ − t)− 3(1 + w)Hρℓ , (3.6)

whereupon we see that the equation of motion for the
total vacuum-energy density ρΛ in this system is given
by

dρΛ
dt

= −
∑
ℓ

ρℓ δ(tℓ − t)− 3(1 + w)HρΛ . (3.7)

Just as in Sect. II, let us now evaluate this sum by pass-
ing to a continuum limit in which we truly have a large
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number of ϕℓ states. However, in this case it will prove
more useful to imagine that it is the spectrum of under-
damping times tℓ which is nearly continuous, merging to
form a continuous variable t̂. We can likewise view the
discrete spectrum of energy densities ρℓ and abundances
Ωℓ as continuous functions ρ(t̂) and Ω(t̂) where the states
are now indexed by the continuous t̂-variable correspond-
ing to their underdamping times. We can then convert
the ℓ-sum over states to a t̂-integral, i.e.,∑

ℓ

⇐⇒
∫

dt̂ nt̂(t̂) , (3.8)

where nt̂ ≡ |dℓ/dt̂| is the density of states per unit t̂. Of
course, this passage from the sum to the integral involves
a number of approximations whose effects are similar to
those discussed discussed in Sect. II and in Ref. [1]. In
particular, our integral approximation will be especially
valid for times t within the range

tN−1 ≪ t ≪ t0 (3.9)

where we are of course assuming t(0) < tN−1. In other
words, we are focusing on a time interval after which a
sizable number of states at the top of the tower have
already transitioned from vacuum energy to matter.

Within this integral approximation, Eq. (3.7) then be-
comes

dρΛ
dt

= −
∫

dt̂ nt̂(t̂) ρ(t̂) δ(t̂− t) − 3(1 + w)HρΛ

= − nt̂(t) ρ(t)− 3(1 + w)HρΛ . (3.10)

In a similar way we also find that

dρM
dt

= + nt̂(t) ρ(t)− 3HρM (3.11)

where the first term results from the conservation of en-
ergy that governs the process of converting vacuum en-
ergy to matter while the second term incorporates the
gravitational redshifting that is experienced by matter
under cosmological expansion. Substituting these results
into Eq. (3.5) we then find

dΩΛ

dt
= − nt̂(t) Ω(t)− 3wHΩΛ(1− ΩΛ) (3.12)

with dΩM/dt = −dΩΛ/dt. Note that ΩΛ(1 − ΩΛ) =
ΩΛΩM = ΩM (1− ΩM ).

The differential equation for ΩΛ in Eq. (3.12) is com-
pletely general, describing the time-evolution of ΩΛ and
ΩM . One necessary (but not sufficient) condition for sta-
sis is that dΩΛ/dt = 0. This then yields the constraint

nt̂(t) Ω(t) = − 3wH ΩΛ (1− ΩΛ) . (3.13)

Of course, for stasis we wish to have situations in which
Eq. (3.13) holds not only instantaneously, but also over

an extended period of time. This requires not only that
Eq. (3.13) hold instantaneously, but that both sides of
Eq. (3.13) have the same time-dependence.
However, it is straightforward to determine the time-

dependence of the Hubble parameter H during an as-
sumed period of stasis during which ΩΛ and ΩM are
fixed at stasis values ΩΛ and ΩM , respectively. Under
such conditions, we can solve Eq. (3.1) directly to find
the exact solution

H(t) =

[
2

3(1 + wΩΛ)

]
1

t
=⇒ κ =

2

1 + wΩΛ

, (3.14)

in agreement with the result in Eq. (3.2). Note that this
result holds for all ΩΛ, including ΩΛ = 1, so long as
w > −1. Indeed, for ΩΛ = 0, we verify from Eq. (3.14)
the standard result that H(t) = 2/(3t) for a matter-
dominated universe. The solution for H(t) in Eq. (3.14)
in turn implies that our underdamping times tℓ during
stasis are given by

tℓ =
κ

2mℓ
=

1

1 + wΩΛ

1

mℓ
. (3.15)

Likewise, this solution for H(t) implies that the scale
factor grows during stasis as

a(t) = a∗

(
t

t∗

)κ/3

= a∗

(
t

t∗

)2/(3+3wΩΛ)

(3.16)

with t∗ representing an arbitrary early fiducial time dur-
ing stasis, as in Sect. II, and the ‘∗’ subscript indicating
that the relevant quantity is evaluated at t = t∗. It then
follows from Eq. (3.6) that

Ωℓ(t) = Ω∗
ℓ

(
t

t∗

)2 [
a(t)

a∗

]−3(1+w)

Θ

(
κ

2mℓ
− t

)
= Ω∗

ℓ

(
t

t∗

)2−(1+w)κ

Θ

(
κ

2mℓ
− t

)
(3.17)

where we have further assumed that the fiducial time
t∗ is prior to the transition of ϕℓ from vacuum energy
to matter at tℓ. This final assumption will be discussed
further and justified in Sect. VIE.
Given the result in Eq. (3.14), we find that Eq. (3.13)

will be satisfied for an extended period of time so long as

nt̂(t) Ω(t) =

[
−wκΩΛ(1− ΩΛ)

]
1

t

=

[
2− (1 + w)κ

]
ΩΛ

1

t
. (3.18)

This result, which is the vacuum-energy/matter analogue
of Eq. (2.10), thus becomes our condition for vacuum-
energy/matter stasis within the general-w model. Of
course, as discussed in Sect. II B, this condition is ulti-
mately equivalent to the constraint that

∑
ℓ Ωℓ(t) = ΩΛ
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where Ωℓ(t) is given in Eq. (3.17), only expressed in dif-
ferential form (and in the continuum limit) in order to
expose the details of how the stasis is explicitly main-
tained. We shall demonstrate this equivalence explicitly
below.

In parallel with our analysis in Sect. II, our goal is now
to demonstrate that generic models of BSM physics that
give rise to such towers of scalar states ϕℓ experiencing
such overdamping/underdamping transitions will satisfy
the stasis constraint in Eq. (3.18) as exactly as possi-
ble over an extended time interval. For this purpose, we
can adopt the same generic parametrization that was dis-
cussed in Sect. II. Specifically, we shall imagine a tower
of scalars ϕℓ whose abundances and masses satisfy the
scaling relations in Eqs. (2.12) and (2.13) respectively.
We shall also assume that the initial production time t(0)

for these scalar fields has occurred during a period in
which none of the ϕℓ has yet become underdamped. As
a result, in complete analogy with the model in Sect. II,
we are implicitly assuming that ΩΛ = 1 during this initial
period.

Within the context of this general model, we can now
evaluate the quantities which appear on the left side of
our constraint equation in Eq. (3.18). By demanding
that Eq. (3.18) holds, we will then obtain the conditions
on our model parameters that are required for stasis. Of
course, the question of whether and how these conditions
may come to be satisfied for arbitrary initial conditions
is a separate one which requires a different (dynamical)
analysis. We shall defer such a dynamical analysis to
Sect. VII.

We begin by calculating nt̂(t). Recall that nt̂(t) is the
density of states per unit transition time t̂, evaluated for
precisely that part of the ϕℓ tower for which tℓ = t. From
Eqs. (2.13) and (3.15) we have

ℓ =

[
κ

2

1

(∆m)tℓ

]1/δ
(3.19)

where we have adopted the simplifying approximation
m0 ≪ (∆m)ℓδ. We thus find

nt̂(t) ≡
∣∣∣∣ dℓdtℓ

∣∣∣∣
tℓ=t

=
1

δ

(
κ

2∆m

)1/δ

t−1−1/δ . (3.20)

Likewise, Ω(t) is the abundance that is disappearing
from our tally of vacuum-energy abundances at time t
[i.e., the abundance Ωℓ(t) evaluated at time t and for
that value of ℓ for which tℓ = t]. However, just as in
Sect. II, we recognize that our model provides specific
scaling relations in Eq. (2.12) for the energy densities ρℓ
and corresponding abundances Ωℓ which hold only at the
production time t(0). In order to calculate Ω(t) within
the context of our model, we therefore can no longer use
Eq. (3.17), which assumed the existence of an eternal sta-
sis. Instead, we must express our abundances at time t in
terms of the corresponding abundances at t(0). To do this
we can follow our analysis from Sect. II. In particular,

from Eqs. (3.15) and (3.17) we have

Ω(t) = Ωℓ(t)

∣∣∣∣
tℓ=t

= Ω
(0)
0

(
mℓ

m0

)α

h(t(0), t∗)

(
t

t∗

)2−(1+w)κ

= Ω
(0)
0

(
κ

2m0t

)α

h(t(0), t∗)

(
t

t∗

)2−(1+w)κ

(3.21)

where h(t(0), t∗), as in Sect. II, denotes the net gravi-
tational redshift factor that accrues between the initial
production time t(0) and the fiducial time t∗ at which
our system has reached stasis. Once again, the presence
of such an h-factor will be discussed in more detail and
justified in Sect. VIE.
Putting the pieces together, we thus find that requiring

nt̂(t)Ω(t) ∼ t−1 yields the constraint

η = 2− (1 + w)κ , (3.22)

whereupon we have nt̂(t)Ω(t) = C ′t−1 with

C ′ ≡ Ω
(0)
0

δ

( m0

∆m

)1/δ ( κ

2m0t∗

)η

h(t(0), t∗) . (3.23)

We thus see that within our model specified by
Eqs. (2.12) and (2.13), stasis will emerge only if Eq. (3.22)
is satisfied. However, just as with Eq. (2.21), we may
view this not as a constraint on our original model pa-
rameters (α, δ, w) so much as a prediction for the result-
ing stasis value κ. We thus see that stasis is realized for
all η within the range

0 < η < − 2w , (3.24)

with the resulting stasis abundance ΩΛ given by

ΩΛ =
η + 2w

(2− η)w
(3.25)

and ΩM = 1 − ΩΛ. Indeed, we see that ΩΛ is always
within the range 0 < ΩΛ < 1.
The limit as w → −1 is particularly interesting. If

we were to take w = −1 directly, we would find from
Eq. (3.25) that ΩΛ|w=−1 = 0/0 is indeterminate. This
is why we introduced w, treating 1 + w as a regulator.
However, evaluating our stasis abundance ΩΛ for general
w as in Eq. (3.25) and then taking the w → −1 limit, we
find that limw→−1 ΩΛ = 1. Indeed, this limiting value for
ΩΛ is consistent with our expectation for w = −1 that
ΩΛ will never depart from its initial value if that initial
value is 1, since in that case the Hubble parameter H(t)
remains constant and there is no dynamics within this
model. We thus obtain a sensible result even as w → −1.
It is illustrative to verify that Eq. (3.22) also emerges

from the “integral” form of the stasis condition in
Eq. (3.18), namely the defining requirement

∑
ℓ Ωℓ(t) =
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ΩΛ, where the abundances Ωℓ(t) are given in Eq. (3.17).
As we shall see, the same calculational ingredients are
involved in both calculations, only slightly reshuffled. In
order to evaluate

∑
ℓ Ωℓ(t), we begin by noting that the

Heaviside Θ-functions within Eq. (3.17) imply that at
any time t there will be a maximum ℓ-value ℓmax(t) for
which the corresponding abundances Ωℓ(t) are still non-
zero and thus contributing to the total vacuum-energy
abundance ΩΛ of the system. Indeed, for any t, no val-
ues of Ωℓ(t) with ℓ > ℓmax(t) can contribute to ΩΛ. We
can therefore eliminate all of the Heaviside Θ-functions
from the Ωℓ(t) expressions within the sum by introducing
a time-dependent maximum value ℓmax(t) on the states
that should be included in the sum. We therefore have

∑
ℓ

Ωℓ(t) =

ℓmax(t)∑
ℓ=0

Ω∗
ℓ

(
t

t∗

)2−(1+w)κ

=

ℓmax(t)∑
ℓ=0

Ω∗
0

(
mℓ

m0

)α(
t

t∗

)2−(1+w)κ

≈
∫ ∞

t

dt̂ nt̂(t̂) Ω
∗
0

(
κ

2m0t̂

)α(
t

t∗

)2−(1+w)κ

=
Ω∗

0

δ

(
κ

2∆m

)1/δ (
κ

2m0

)α(
t

t∗

)2−(1+w)κ

×
∫ ∞

t

dt̂ t̂−1−η

=
Ω∗

0

δ

(
κ

2∆m

)1/δ (
κ

2m0

)α(
t

t∗

)2−(1+w)κ

× 1

η
t−η , (3.26)

where we have adopted the shorthand

Ω∗
ℓ ≡ Ωℓ(t∗) = Ω

(0)
ℓ h(t(0), t∗) (3.27)

for all ℓ (including ℓ = 0). In the first two lines of
Eq. (3.26) we have used Eqs. (2.12) and (3.15), while
in passing to the third line we have utilized the same
integral approximation discussed above in terms of the
continuous t̂-variable. Similarly, in passing to the fourth
line of Eq. (3.26) we have utilized Eq. (3.20) for the den-
sity of states per unit t̂, and in passing to the final line
we have recognized from Eq. (3.24) that η > 0. How-
ever, demanding that the final result in Eq. (3.26) be
independent of t leads to the same constraint as we ob-
tained previously in Eq. (3.22). Thus the integral form
of our stasis condition leads to the same overall scaling
constraint as we obtained through the differential form.

Thus far in our analysis of vacuum-energy/matter sta-
sis we have concentrated on the overall scaling constraint.
Indeed, as discussed in Sect. II B, we must also consider
the associated prefactor constraints (both relative and
absolute) as well as the associated logarithm-avoidance
constraint. However, it is straightforward to see that
— just as for matter/radiation stasis — the relative-
prefactor and logarithm-avoidance constraints are re-

dundant with the overall scaling constraint and there-
fore provide no new restrictions. In particular, writing∑

ℓ Ωℓ(t) = C, we find from Eq. (3.26) that C is given by
the same expression as in Eq. (3.23) except divided by
η, thereby enabling us to extract the relative-prefactor
relation

C ′ = η C = [2− (1 + w)κ] C . (3.28)

This is the vacuum-energy/matter analogue of the rela-
tion in Eq. (2.27). We thus find that our desired prefactor
relation in Eq. (3.18) will be satisfied as long as

C = ΩΛ (3.29)

or equivalently

C ′ = ηΩΛ = [2− (1 + w)κ] ΩΛ . (3.30)

Likewise, from this result we have the stasis result

nt̂(t) Ω(t) = ηΩM
1

t
, (3.31)

as required by Eq. (3.18). However, these last absolute-
prefactor constraints will naturally come into balance dy-
namically, since the attractor behavior of this solution
(which we will discuss in Sect. VII) automatically ad-
justs h(t(0), t∗) so as to ensure that C = ΩΛ. We thus see
that our model naturally gives rise to the correct prefac-
tor constraints in Eq. (3.18) as well.
As discussed in Sect. II B, we must also satisfy the

logarithm-avoidance constraint. Indeed, in the present
case this is nothing but the constraint η > 0 that enabled
us to avoid obtaining a logarithmic time-dependence
when passing to the final line of Eq. (3.26). However,
this constraint is already subsumed into our overall scal-
ing constraint, as we see from the allowed ranges in
Eq. (3.24). Moreover, we see that Eq. (3.22) is not re-
ally a constraint on the input parameters of our model so
much as a prediction for the resulting stasis value κ and
therefore ΩΛ. Thus, so long as the input parameters of
our model satisfy Eq. (3.24), a stasis state will necessarily
emerge.
It is also instructive to understand in a qualitative way

the behavior of the energy densities ρℓ during the sta-
sis epoch as the decays of our individual ϕℓ states pro-
ceed down the tower. As we have seen in Eq. (2.12),
the energy densities ϕℓ have initial values ∼ (mℓ/m0)

α

at t = t(0). In the w → −1 limit, these quantities then
remain time-independent until the time t = tℓ, defined
by the constraint 3H(tℓ) = 2mℓ, after which they scale
as ρℓ(t) ∼ t−κ. Moreover, we have seen in Eq. (3.15) that
tℓ ∼ m−1

ℓ , implying that ρℓ ∼ t−α
ℓ . Given these obser-

vations, rough sketches of two possible time-evolutions
for each ρℓ(t) during stasis appear in Fig. 2. These en-
ergy densities are sketched in blue when they correspond
to vacuum energy, and yellow when they correspond to
matter. The dividing line between these two phases is in-
dicated in red, and given our result ρℓ ∼ t−α

ℓ we see that
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FIG. 2. Two different scenarios illustrating possible behaviors for the individual energy densities ρℓ(t) (blue/orange), sketched
as functions of time, as our corresponding tower of states ϕℓ undergoes sequential transitions from an overdamped phase to
an underdamped phase at times tℓ for which 3H(tℓ) = 2mℓ. These energy densities ρℓ(t) are interpreted as corresponding to
vacuum energy (blue) or matter (orange) when the corresponding states ϕℓ are overdamped or underdamped, respectively, with
the dashed line (red) indicating the moments of transition between these two regimes. For this purposes of these sketches we
have assumed that states with greater energy densities have greater masses (i.e., α > 0). We have also chosen to sketch the
case in which w → −1 for the vacuum energy, causing the blue lines to be almost exactly horizontal. The left and right panels
show the behaviors that emerge for κ < α and κ > α, respectively. In the latter case, the energy densities “reflect” off the red
transition line, thereby giving rise to the sequential “inter-leaved” energy-density crossings that are the hallmark of the stasis
phenomenon.

this line has slope −α on this log-log plot. For simplic-
ity these sketches are drawn with equally spaced initial
values of log ϕℓ, but this property is chosen for graphical
simplicity and will play no role in our analysis.

The primary difference between the two panels of Fig. 2
concerns the value of κ that governs the logarithmic slope
of each ρℓ(t) after t = tℓ. Indeed, the left panel of Fig. 2
corresponds to the case with κ < α, while the right panel
of Fig. 2 corresponds the case with κ > α. However, it
is immediately apparent that the change in the sign of
this inequality has a profound effect on the behavior of
the corresponding energy densities. For κ < α, the en-
ergy densities ρℓ necessarily remain in the same relative
order in which they began, with ρℓ′(t) > ρℓ(t) for all t as
long as ℓ′ > ℓ. For κ > α, by contrast, the energy den-
sities ρℓ(t) undergo successive pairwise crossings as time
evolves. Thus while the energy density associated with
the top component ℓmax = N − 1 begins as the largest,
eventually the energy density associated with ℓmax − 1
becomes the largest, then that with ℓmax − 2, and so
forth.

It is this latter behavior involving successive pairwise
energy-density crossings which underlies the stasis phe-
nomenon. This is particularly evident from the left panel
of Fig. 1, which shows the analogous situation with mat-
ter/radiation stasis. Thus, just from consideration of
these sorts of figures, we can immediately see that stasis
requires κ > α. Of course, this result is entirely consis-
tent with the full stasis condition in Eq. (3.22). Indeed,
we see from Eq. (3.2) that κ > 2, whereupon we see from
Eq. (3.22) that α < 2. Thus stasis necessarily requires
α < κ, consistent with the right panel of Fig. 2 but not
the left panel.
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FIG. 3. Vacuum-energy/matter stasis. Here the total
vacuum-energy and matter abundances, ΩΛ(t) and ΩM (t) re-
spectively, are plotted as functions of the number N of e-
folds since the initial production time t(0), taking α = 0.7,
δ = 2, and w = −0.8 as reference values. We have also taken
H(0)/mN−1 = 0.75. As we see, the system eventually evolves
into a stasis state with κ = 4, ΩΛ = 5/8, and ΩM = 3/8. This
stasis state ends only when the last component of the tower
transitions to matter. As with matter/radiation stasis, the
total number of e-folds of stasis Ns is determined by the total
number N of states in the tower. In analogy with Eq. (2.24)
for matter/radiation stasis, we expect Ns ∼ logN . Similar
stasis behavior emerges for all values of (α, δ, w) within the
ranges in Eq. (3.24), with corresponding stasis abundances
ΩΛ determined by Eq. (3.25) and ΩM = 1− ΩΛ.
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In general, these results will apply to all of the stasis
situations we shall consider in this paper. In each case,
we will require successive energy inversions proceeding
down the ϕℓ tower as time evolves. As we have seen, this
requires a very particular behavior as our energy densities
ρℓ(t) approach the red lines that indicate our transitions,
as in Fig. 2. Speaking qualitatively, we may regard our
energy densities ϕℓ(t) as either passing through these red
lines, as in the left panel of Fig. 2, or being reflected by
these red lines, as in the right panel of Fig. 2. It is the
case of reflection that induces the behavior that underlies
the stasis phenomenon.

In Fig. 3 we show the emergence of vacuum-
energy/matter stasis for a system in which we take
α = 0.7, δ = 2, and w = −0.8 as reference values. As we
see, this eventually results in a stasis with κ = 4, consis-
tent with Eq. (3.22), which in turn implies that ΩΛ = 5/8
and ΩM = 3/8.

IV. VACUUM-ENERGY/RADIATION STASIS

In Sect. III, we demonstrated that vacuum energy and
matter can be in stasis with each other. Our analy-
sis took place within a cosmology containing a tower of
scalar fields ϕℓ with masses mℓ which sequentially transi-
tion from an overdamped phase (during which their ener-
gies are identified as vacuum energy) to an underdamped
phase (during which their energies are identified as those
of matter). Indeed, these transitions occur at the times
tℓ for which 3H(tℓ) = 2mℓ.
However, such ϕℓ fields can also experience decays into

radiation, with non-zero decay widths Γℓ. Indeed, within
certain regions of parameter space, it may even happen
that the lifetimes τℓ ≡ 1/Γℓ of the components ϕℓ are all
smaller than the critical underdamping times tℓ at which
these fields would have transitioned to an underdamped
state. In such cases, we can then have decays directly
from vacuum energy to radiation.

In general, a universe composed entirely of vacuum
energy and radiation will evolve under cosmological ex-
pansion from a radiation-dominated epoch to a vacuum
energy-dominated epoch. The above decays from vac-
uum energy back to radiation can thus provide a coun-
terbalancing effect that could potentially lead to a stasis
between vacuum energy and radiation.

A. Theoretical subtleties

In order to study this phenomenon, we must first dis-
cuss several additional theoretical subtleties that arise
in modeling the transfer of energy density from vacuum
energy to radiation. The rate at which this transfer of
energy density occurs depends on the properties of the
vacuum-energy component.

For example, as discussed in Sect. III, one natural re-
alization of ρΛ in a particle-physics context is the en-

ergy density associated with one or more overdamped
scalar fields ϕℓ which are displaced from their potential
minima. The equation of motion for each such field is
ϕ̈ℓ+(3H+Γℓ)ϕ̇ℓ+∂V/∂ϕℓ = 0, where V is the scalar po-
tential and where a dot denotes a time derivative. At late
times, when 3H(t) ≪ 2mℓ and the field is well within the
underdamped regime, Γℓ is often approximated as con-
stant and identified with the proper decay width of ϕℓ in
Minkowski space [9, 10]. However, this heuristic treat-
ment of the dissipation rate is not appropriate while the
field is in the overdamped regime [11]. Rather, Γℓ must
be calculated using methodologies appropriate for ana-
lyzing the non-equilibrium dynamics of a quantum field
interacting with its environment, such as the closed-time
path (i.e., Schwinger-Keldysh) formalism (for reviews,
see, e.g., Ref. [12]) or the inference time formalism (for
reviews, see, e.g., Refs. [13, 14]). A number of subtleties
arise in these calculations as a result of the background
cosmology. For example, since there is no global time-
like Killing vector in an FRW universe, particle energy is
not manifestly conserved. A variety of processes which
are forbidden in Minkowski space — including the decay
of a field into its own quanta [15–18] — can therefore
contribute to the dissipation rate. The form which Γℓ

takes is highly model dependent and in general depends
non-trivially both on the temperature of the radiation
bath — or, equivalently, on the value of ργ — and on
the time-varying expectation value of ϕ (for reviews and
discussion, see, e.g., Refs. [19–22]).

We note that there is another natural mechanism via
which the energy density associated with an overdamped
scalar field can be transferred directly to a radiation-like
energy component with w = 1/3. This mechanism is
similar to the mechanism discussed in Sect. III for trans-
ferring energy density from vacuum energy to matter,
which involved an overdamped/underdamped transition,
but operates in scenarios in which the quadratic term
for ϕℓ in V is negligible or vanishing, and ϕℓ is instead
dominated by a higher-order polynomial Vℓ ∼ ϕ2n

ℓ with

n > 1. At early times, while 3H ≫ 2(∂2V/∂ϕ2
ℓ)

1/2 and
ϕℓ is effectively stationary, the energy density ρℓ asso-
ciated with that field scales with a like vacuum energy.
However, once 3H ≈ 2(∂2V/∂ϕ2

ℓ)
1/2, the field ϕℓ begins

oscillating around its potential minimum. The effective
equation-of-state parameter for ϕℓ during this oscillatory
phase, time-averaged over many cycles of oscillation, is
wℓ ≈ (n − 1)/(n + 1) [23]. Thus, for n = 2 — i.e., for a
quartic potential — the equation-of-state parameter for
such an oscillating scalar field is identical to that for radi-
ation. As with the overdamped/underdamped transition
discussed in Sect. III, we can obtain some insight into the
cosmological dynamics of scenarios involving such scalars
by idealizing this transition as an instantaneous one in
which ϕℓ is approximated as having w = −1 whenever
3H > 2(∂2V/∂ϕ2

ℓ)
1/2 and w = 1/3 otherwise.

For simplicity, we shall focus in what follows on the
case in which Γℓ is effectively constant and independent
of ργ . While an analysis based on this form of Γℓ does not
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have a straightforward motivation in terms of a top-down
model, it can nevertheless serve as a convenient start-
ing point for the analysis of specific models with more
complicated, time- and temperature-dependent dissipa-
tion rates. We also note that the results obtained for
this form of Γℓ in the instantaneous-decay approxima-
tion turn out to be applicable, through a straightforward
mapping, to the case of a scalar field ϕℓ with a quartic
potential whose energy density scales like that of radia-
tion once it begins oscillating [4]. Moreover, as we shall
see, the results we obtain for a constant Γℓ will provide
some mathematical insight into certain limiting cases of
the three-component cosmological system on which we
shall focus in Sect. VI.

B. Algebraic analysis

Given these understandings and assumptions, we shall
now repeat the algebraic steps in the previous sections
in order to investigate the possibility of achieving a two-
component stasis between vacuum energy and radiation.
Towards this end, our analysis will essentially be a hy-
brid of the analyses in Sects. II and III: we shall treat
the vacuum energy according to the general-w approach
of Sect. III B, assuming that each of our ϕℓ fields evolves
with a fixed equation-of-state parameter w > −1, but
we shall also assume that this vacuum energy simulta-
neously experiences an exponential decay with lifetime
τℓ ≡ Γ−1

ℓ ≪ tℓ.
Within a cosmology consisting of only vacuum energy

and radiation, the Hubble parameter evolves as

dH

dt
= − 1

2 H
2
[
4 + (3w − 1)ΩΛ

]
, (4.1)

or equivalently

κ =
6

4 + (3w − 1)ΩΛ
(4.2)

where κ continues to be defined through the parametriza-
tion in Eq. (3.3). Likewise, the vacuum-energy density
ρℓ associated with each ϕℓ field evolves as

dρℓ
dt

= − 3(1 + w)Hρℓ − Γℓρℓ , (4.3)

whereupon we find

dΩΛ

dt
= −

∑
ℓ

ΓℓΩℓ + (1− 3w)HΩΛ(1− ΩΛ) . (4.4)

Setting dΩΛ/dt = 0 and inserting the stasis Hubble pa-
rameter H(t) = κ/(3t) then yields the corresponding sta-
sis condition

∑
ℓ

ΓℓΩℓ(t) =

[(
1

3
− w

)
κΩΛ(1− ΩΛ)

]
1

t

=

[
2− (1 + w)κ

]
ΩΛ

1

t
. (4.5)

This condition for vacuum-energy/radiation stasis can
also be satisfied within the model of Eqs. (2.12) and
(2.13). In order to determine the resulting constraints on
our model parameters (α, γ, δ, w), we can follow the steps
in Sect. II. Indeed, for this purpose we adopt Sect. II
rather than Sect. III as our guide because the former
also involved an exponential decay from one energy com-
ponent to another. Repeating the steps in Sect. II, we
can convert the sum in Eq. (4.5) to an integral. More-
over, rather than introduce a continuous variable t̂ of
underdamping times as in Sect. III, we follow Sect. II
and work in terms of a continuous variable τ of decay
times τ . Assuming an eternal stasis, we then find that
our parameters must satisfy the relation

η

γ
= 2− (1 + w)κ . (4.6)

This is thus the analogue of Eqs. (2.21) and (3.22). Once
again, this is not a constraint on (α, γ, δ, w) so much as
a prediction for κ. Indeed, so long as

0 <
η

γ
<

1− 3w

2
, (4.7)

we find that the resulting value of ΩΛ during stasis is
given by

ΩΛ =
2(2η + 3wγ − γ)

(1− 3w)(η − 2γ)
. (4.8)

Note that 0 < ΩΛ < 1 so long as Eq. (4.7) is satisfied.
Interestingly, for w = −1 we find that ΩΛ = 1 for any

η and γ. This indicates that the only “stasis” that de-
velops in the w = −1 case is that with which we started,
namely a universe containing nothing but vacuum en-
ergy. However, for w > −1, we find that a non-trivial
stasis develops with ΩΛ < 1.
Following the results in Sect. II, we may also com-

pare the overall coefficients that enter into our stasis con-
straints. For this purpose, let us define C and C ′ via∑

ℓ

Ωℓ(t) = C∑
ℓ

ΓℓΩℓ(t) = C ′ t−1 (4.9)

where we have imposed the relation in Eq. (4.6). We can
explicitly evaluate the sums on the left sides of Eq. (4.9)
by converting to integrals over a continuous τ -variable, as
discussed above. We then find that C and C ′ are related
via

C ′ =
η

γ
C = [2− (1 + w)κ] C (4.10)

where

C ≡ 1

γδ

( m0

∆m

)1/δ
h(t(0), t∗)

Ω
(0)
0

(Γ0t∗)η/γ
Γ

(
η

γ

)
.

(4.11)
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These solutions for C and C ′ exactly match those in
Sect. II. As in previous cases, the attractor behavior
of the stasis solution (to be discussed in Sect. VII) then
inevitably ensures that C = ΩΛ. Indeed, this happens
in the same manner as described in Sect. II B. The
result in Eq. (4.10) then ensures that the prefactors
within Eq. (4.5) match precisely. This also ensures that
Eq. (2.30) holds for vacuum-energy/radiation stasis as
well.

Although we have treated our decay process as a bona
fide exponential decay, it will prove both instructive and
useful to repeat this calculation within the framework of
an instantaneous-decay approximation in which our ϕℓ

states decay suddenly and completely at t = τℓ = 1/Γℓ.
This is tantamount to approximating the exponential de-
cays as sharp cutoffs by replacing

e−t/τℓ → Θ(τℓ − t) . (4.12)

Implementing this substitution, we find that our cal-
culations now more closely resemble the calculations in
Sect. III (wherein the underdamping times tℓ played the
role of τℓ) rather than those in Sect. II. In this case, the
constraint equations for stasis in Eq. (4.5) are replaced
by

nτ (t) Ω(t) =

[(
1

3
− w

)
κΩΛ(1− ΩΛ)

]
1

t

=

[
2− (1 + w)κ

]
ΩΛ

1

t
. (4.13)

This condition for vacuum-energy/radiation stasis can
also be satisfied within the model of Eqs. (2.12) and
(2.13). A calculation similar to that in Eq. (3.26) tells
us that nτ (t)Ω(t) will scale as t−1, as required, only if
Eq. (4.6) is satisfied. We thus see that the instantaneous-
decay approximation leads to precisely the same scaling
relation for the (α, γ, δ, w) parameters as full exponen-
tial decay. Likewise, defining our C-coefficients via the
relations ∑

ℓ

Ωℓ(t) = C

nτ (t) Ω(t) = C ′ t−1 , (4.14)

we again obtain the relation between C and C ′ given in
Eq. (4.10), where now C is given by

C ≡ 1

γδ

( m0

∆m

)1/δ
h(t(0), t∗)

Ω
(0)
0

(Γ0t∗)η/γ
. (4.15)

The attractor behavior of the stasis solution then guar-
antees that C = ΩΛ, as before, and likewise yields
Eq. (3.31).

Thus, even within the instantaneous-decay approx-
imation, we find that stasis is achieved. This is a
rather remarkable result, demonstrating that full expo-
nential decay and the instantaneous-decay approxima-
tion are equally valid as far as stasis calculations are

concerned. Indeed, both full exponential decay and the
instantaneous-decay approximation lead to the identi-
cal scaling relation in Eq. (4.6) and the identical rel-
ative and absolute prefactor constraints in Eqs. (4.10).
(The same is also true for the logarithmic-avoidance con-
straint, which now takes the form η/γ > 0.) Indeed, the
only difference between the two formalisms for treating
the decay process is in the precise absolute value of C,
but this information is ultimately washed away due to
the attractor nature of the stasis solution. These obser-
vations thus suggest a certain robustness to the existence
of the stasis phenomenon, indicating that our conclusions
regarding the emergence of stasis are largely independent
of the precise details concerning how the decays of the ϕℓ

states are ultimately modeled.
Interestingly, we observe that the effective equation-of-

state parameter for this vacuum-energy/radiation system
during stasis is given by

⟨w⟩ = wΩΛ +
Ωγ

3
. (4.16)

Thus, when Ωγ = −3wΩΛ, our system has ⟨w⟩ = 0.
In other words, for the purposes of cosmological expan-
sion, our universe behaves as if it were effectively matter-
dominated despite the lack of an actual matter compo-
nent. Following the arguments in Ref. [1], this means that
this system can even co-exist with a “spectator” (non-
interacting) additional matter energy component with
abundance ΩM because the introduction of such an ad-
ditional spectator matter component will not disturb the
stasis value ⟨w⟩ that has already been realized for the
vacuum energy and radiation components. This then be-
comes an example of a system in which vacuum energy,
radiation, and matter can all co-exist in a stasis configu-
ration. Unfortunately, in such a system the matter must
not have any energy-transferring interactions with either
the vacuum energy or the radiation. It is for this reason
that we refer to the matter as a “spectator” component
of the total energy. Indeed, in such a system the matter
abundance ΩM remains fixed only because the vacuum
energy and radiation in their stasis configuration with
Ωγ = −3wΩΛ conspire to produce a universe whose ex-
pansion rate is effectively that of a matter-dominated
universe. As a result, ΩM neither grows nor shrinks
as a result of cosmological expansion, and thus remains
constant without receiving energy from (or losing energy
into) the other components.
In Fig. 4, we show the emergence of vacuum-

energy/radiation stasis for a system in which we take
α = 0.5, δ = 2, γ = 1, and w = −0.7 as reference values.
As we see, these lead to a stasis with κ = 10/3, implying
ΩΛ = 22/31 and Ωγ = 9/31. Indeed, as with the stases
in Sect. II and III, this is a pairwise stasis involving only
two components in which energy flows from one directly
into the other, bypassing the third completely. A similar
stasis would emerge for any parameters within the range
in Eq. (4.7).
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FIG. 4. Vacuum-energy/radiation stasis. Here we plot the
total vacuum-energy and radiation abundances, ΩΛ and Ωγ

respectively, as functions of time, taking α = 0.5, δ = 2,
γ = 1, w = −0.7, and H(0)/ΓN−1 = 20 as reference values
and working with the exponential-decay formalism. As we
see, these benchmark values lead to a stasis with κ = 10/3,
implying ΩΛ = 22/31 ≈ 0.71 and Ωγ = 9/31 ≈ 0.29. This
stasis state ends only when the last component of the tower
decays to radiation. Similar stasis behavior emerges for all
values of (α, δ, γ, w) within the range in Eq. (4.7), with cor-
responding stasis abundances ΩΛ determined by Eq. (4.8).

V. ALGEBRAIC STRUCTURE OF PAIRWISE
STASES

In general, the analyses of Sects. II, III, and IV share
an underlying algebraic structure which applies to any
“pairwise” stasis (i.e., any stasis between two energy
components). To demonstrate this, we shall maintain
full generality by assuming that our two components have
constant equation-of-state parameters (w1, w2) with cor-
responding abundances (Ω1,Ω2) such that Ω1 + Ω2 = 1.
For concreteness we shall also assume that w1 < w2. This
means that cosmological expansion will tend to convert
an Ω2-dominated universe into an Ω1-dominated uni-
verse. Thus stasis can be achieved only in the presence of
some method of converting Ω1 back into Ω2. Because this
conversion operates in a manner opposite to the natural
effects of cosmological expansion, we shall refer to such
a method of converting Ω1 back into Ω2 as a “pump”.
Given this setup, and following our previous steps, it is

straightforward to verify that our abundances Ω1,2 evolve
according to the differential equations

dΩ1

dt
= 3H(w2 − w1)Ω1Ω2 − P12

dΩ2

dt
= 3H(w1 − w2)Ω1Ω2 + P12 (5.1)

where P12 schematically denotes the pump term which

transfers abundance from Ω1 to Ω2. Because we are in-
terested in studying only the algebraic structure of the
pairwise stasis, we shall leave this pump term unspec-
ified. We verify from Eq. (5.1) that the gravitational
redshifting effects indeed tend to increase Ω1 and de-
plete Ω2 if w2 > w1. We also verify, as required, that
dΩ2/dt = −dΩ1/dt. Our condition for stasis is therefore

P12 = 3H(w2 − w1)Ω1Ω2 . (5.2)

In this system we generally have

κ =
2

1 + w1Ω1 + w2Ω2
. (5.3)

Indeed this result holds regardless of whether we are in a
stasis epoch. Thus our stasis condition takes the general
form

P12 = κ (w2 − w1) Ω1Ω2
1

t

=

[
2− (1 + w1)κ

]
Ω1

1

t
. (5.4)

This result is the (w1, w2) generalization of Eqs. (2.10),
(3.18), and (4.5). However, we now see that this con-
straint is independent of the particular realization of the
pump term P12 in terms of an underlying BSM physics
model. Indeed, as we have stressed, this result reflects the
general algebraic structure underlying all pairwise stases.
To proceed further we may assume that during stasis,

our pumps have a general time-dependence of the form

P12(t) ∼ t−1−p+2−(1+w1)κ (5.5)

where p is a general constant. Indeed, all of the pumps we
have considered in this paper have this time-dependence,
with p = η = α + 1/δ for the pump in Sect. III and
p = η/γ for the pump in Sect. II. Our pump will then
have the required 1/t time-dependence only if

p = 2− (1 + w1)κ . (5.6)

This serves as our general overall scaling constraint. This
in turn implies that during stasis our pump must gener-
ally take the form

P12 = pΩ1
1

t
. (5.7)

This is consistent with our prior results in Eqs. (2.30)
and (3.31).
Given these results, the structure of the pairwise stasis

solution is clear. In general we learn from Eq. (5.6) that

κ =
2− p

1 + w1
. (5.8)

We also observe from Eq. (5.3) that the abundance-
weighted average ⟨w⟩ of w-values during stasis, i.e.,

⟨w⟩ ≡ w1Ω1 + w2Ω2 , (5.9)
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is given by ⟨w⟩ = 2/κ− 1, or equivalently

⟨w⟩ = 2

(
1 + w1

2− p

)
− 1 . (5.10)

In conjunction with the constraint Ω1+Ω2 = 1, Eqs. (5.9)
and (5.10) then allow us to solve directly for Ω1,2, yielding

Ω1 =
2(w2 − w1)− p(1 + w2)

(2− p)(w2 − w1)
. (5.11)

This of course agrees with our previous results in
Eqs. (2.22), (3.25), and (4.8). We likewise have

Ω2 =
p(1 + w1)

(2− p)(w2 − w1)
. (5.12)

In this connection, we note that we always must have
p < 2. More specifically, for this system we have w1 <
⟨w⟩ < w2, or equivalently

2

1 + w2
< κ <

2

1 + w1
. (5.13)

This implies via Eq. (5.6) that all values of p lead to a
consistent stasis solution so long as

0 < p <
2(w2 − w1)

1 + w2
. (5.14)

We conclude with three important comments. First,
we see from the above analysis that the details of the
pump are relevant only for determining the abundance-
weighted “center” of our system in w-space, as in
Eq. (5.10). By contrast, once this w-average ⟨w⟩ is de-
termined, the two stasis abundances Ω1,2 are situated
relative to this average in a pump-independent way, as
in Eq. (5.9). Indeed, we shall more fully exploit this way
of thinking in Sect. VI F when discussing triple stasis.

Second, we note that the solution for ⟨w⟩ in Eq. (5.10)
can also be written in a form that more manifestly re-
spects the 1 ↔ 2 symmetry between our two components.
This can be done by extracting κ from the first line of
Eq. (5.4) [in conjunction with Eq. (5.7)] rather than from
Eq. (5.6). We thereby obtain the stasis solution

⟨w⟩ =
4(w2 − w1)Ω1Ω2

(1 + Ω1 − Ω2)p
− 1 . (5.15)

This, in conjunction with the constraint in Eq. (5.9), also
permits an evaluation of the stasis abundances Ω1,2.

Finally, we note that in this section we have limited our
discussion to the algebraic structure of pairwise stases —
namely the required relations between pumps and cosmo-
logical expansion. However, the critical remaining issue is
to realize such pumps in terms of actual underlying BSM
particle-physics models. For example, in Sects. II, III,
and IV we worked within the context of models involv-
ing large towers of states and demonstrated that we could
realize the pumps needed for stasis in terms of natural
particle-physics processes such as particle decays and/or
underdamping transitions. It is this success that we con-
sider to be the primary achievement of our previous anal-
yses.

VI. TRIPLE STASIS

In our previous paper [1] (and as reviewed in Sect. II),
we demonstrated that matter can exist in stasis with ra-
diation. Likewise, in Sects. III and IV, we further demon-
strated that vacuum energy can exist in stasis with mat-
ter or with radiation, respectively. Each of these configu-
rations represents a pairwise stasis between two different
types of energy components. Given this, the obvious next
question is to determine whether it is possible to have a
triple stasis in which vacuum energy, matter, and radia-
tion all co-exist in stasis with each other.
At the end of Sect. IV, we noted that this can occur in a

universe in which the matter energy component is merely
a non-interacting “spectator”. However, the question we
now wish to investigate concerns whether we can have a
true triple stasis in which all three energy components
are interacting non-trivially with each other.
Of course, in a universe that contains all three energy

components, cosmological expansion inevitably shifts the
identity of the dominant component along the chain

γ → M → Λ , (6.1)

i.e., in the direction of decreasing w. In other words,
a mixed-component universe that starts in a radiation-
dominated configuration will eventually tend to become
matter-dominated and then vacuum-dominated, simply
as a result of cosmological expansion. However, we are
now seeking to determine if this entire process can be
simultaneously counterbalanced by

underdamping transition : Λ → M

decay : M → γ . (6.2)

Indeed, as we have discussed in Sect. V, each of these
effects essentially serves as a “pump” which counterbal-
ances the natural tendencies induced by cosmological ex-
pansion by transferring energy back up towards compo-
nents with larger values of w. While we already know
that this counterbalancing can occur successfully for each
step individually, the question is to determine whether
(and to what extent) both counterbalancings can co-exist
within the same overall cosmology.
We emphasize that this is, a priori , a highly non-trivial

question. Even though a given energy component A
might come into stasis with another energy component B
in an A/B universe, and even though A might also come
into stasis with C in an A/C universe, and even though B
might come into stasis with C in a B/C universe, it does
not necessarily follow that A, B, and C can all simul-
taneously come into stasis in an A/B/C universe. This
is because each of our previous energy-transfer processes
(underdamping and decay) would now need to operate in
a universe which also contains a third energy component.
This third component affects the Hubble parameter and
thus the overall expansion rates whose effects would need
to cancel for a triple stasis.
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Phrased slightly differently, a true triple stasis can arise
only if both processes (underdamping and decay) can
occur simultaneously while embedded within a common
cosmology . Indeed, triple stasis requires that these pro-
cesses be capable of co-existing with each other within the
same cosmological setting, and this co-existence require-
ment may (and ultimately will) place new mathematical
constraints on each.

To study this, we shall proceed in several steps. We
shall begin, as in Sect. V, by studying the general al-
gebraic structure of triple stasis in a model-independent
way, deriving constraints that any simultaneous pump-
ing transitions must satisfy in order to achieve triple sta-
sis. We shall then explore the different possible config-
urations that a triple stasis may exhibit in terms of our
underlying particle-physics model involving large towers
of states with particle decays and underdamping transi-
tions. After this, we shall perform a general analysis of
triple stasis and derive the overall scaling equations that
must be satisfied in order for triple stasis to exist. In so
doing, we shall discover an additional constraint which
must be satisfied in order for the overdamping and decay
transitions to co-exist within the same cosmology.

With these results in hand, we shall then proceed to
consider the corresponding prefactor constraints. Unlike
the situations that arose in previous sections for pairwise
stases, we shall now find that our prefactor constraints
are no longer redundant with our scaling constraints. In-
stead, we shall see that they actually supply additional
information. Finally, we shall pull all the pieces together
in a graphical, intuitive way which demonstrates how
triple stasis ultimately operates.

As might be imagined, this section is in some sense the
central core of this paper. We shall therefore attempt to
provide as many different perspectives on our results as
possible — general and specific, algebraic and intuitive.
All of these perspectives will be useful in subsequent sec-
tions when we extend the results of this section in order
to consider the attractor nature of all of our stases, when
we develop a phase-space understanding of the stasis phe-
nomenon as a whole, and when we extend our analysis
to consider various close variants of stasis.

A. Algebraic structure of triple stasis

To analyze the algebraic structure of stasis, we shall
repeat our previous steps, only now within a completely
general cosmology simultaneously comprising all three
components (vacuum energy, matter, and radiation), all
treated dynamically. Following the previous analyses, we
find in all generality that

κ ≡ 6

2 + (1 + 3w)ΩΛ +ΩM + 2Ωγ
(6.3)

where κ, as always, is related to the rate of change of the
Hubble parameter via Eq. (3.3). We then have

dΩi

dt
=

8πG

3H2

dρi
dt

+
6

κ
HΩi . (6.4)

We now must insert the equations of motion dρi/dt for
our system. In general, our system will have equations
of motion with the algebraic structure

dρΛ
dt

= − P
(ρ)
ΛM − P

(ρ)
Λγ − 3(1 + w)HρΛ

dρM
dt

= + P
(ρ)
ΛM − P

(ρ)
Mγ − 3HρM

dργ
dt

= + P
(ρ)
Λγ + P

(ρ)
Mγ − 4Hργ (6.5)

where P
(ρ)
ij denotes the “pump” term that describes the

conversion of energy density ρ from type i to type j, and
where the signs preceding these terms indicate whether
this pump is acting as a sink (−) or source (+). Inserting
this into Eq. (6.4) we obtain

dΩΛ

dt
= − PΛM − PΛγ +

6

κ
HΩΛ − 3(1 + w)HΩΛ

dΩM

dt
= PΛM − PMγ +

6

κ
HΩM − 3HΩM

dΩγ

dt
= PΛγ + PMγ +

6

κ
HΩγ − 4HΩγ

(6.6)

where

Pij(t) ≡ 8πG

3H(t)2
P

(ρ)
ij (t) . (6.7)

Thus Pij(t) denotes a pump for abundances, while P
(ρ)
ij (t)

denotes the corresponding pump for energy densities.
As a self-consistency check, we observe that dΩΛ/dt +
dΩM/dt+ dΩγ/dt indeed vanishes.
Let us now investigate the conditions under which our

system can be in an (eternal) stasis epoch. During such
a period, we must certainly have dΩΛ/dt = dΩM/dt =
dΩγ/dt = 0. This gives rise to the conditions

PΛM + PΛγ =
6

κ
HΩΛ − 3(1 + w)HΩΛ

−PΛM + PMγ =
6

κ
HΩM − 3HΩM

−PΛγ − PMγ =
6

κ
HΩγ − 4HΩγ (6.8)

where the pump terms Pij are to be evaluated during
a period of stasis. Likewise, from Eqs. (3.3) and (6.3)
we can solve for the Hubble parameter H during stasis,
obtaining

H(t) =
κ

3t
. (6.9)
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Inserting this into Eq. (6.8) we obtain

PΛM + PΛγ =
[
2− (1 + w)κ

]
ΩΛ

1

t

− PΛM + PMγ =
[
2− κ

]
ΩM

1

t

−PΛγ − PMγ =

[
2− 4κ

3

]
Ωγ

1

t
. (6.10)

These, then, are the most general conditions for a triple
stasis involving vacuum energy, matter, and radiation.
(Similar conditions can likewise be derived for any three
energy components, or even for more than three com-
ponents.) Indeed, any pump terms Pij satisfying these
equations as functions of time will lead to an extended
(eternal) stasis epoch. With κ given in Eq. (6.3) and
with ΩΛ + ΩM + Ωγ = 1 we immediately verify that
the sum of these equations vanishes, implying that only
two of these equations are truly independent of each
other, as expected. We also note that 2 − 4κ/3 < 0
for all (ΩΛ,ΩM ,Ωγ) within the ranges 0 ≤ Ωi ≤ 1 with∑

i Ωi = 1. Thus while both sides of the first equation in
Eq. (6.10) are necessarily positive, both sides of the third
equation are necessarily negative. By contrast, the sign
of both sides of the second equation ultimately depends
on whether the pumping action produces a net flow of en-
ergy into or out of matter. Of course, during stasis, the
sign of this net flow will be exactly as needed in order
to compensate for the effects of cosmological expansion,
the latter also having either a positive or negative sign
depending on the particular values of (ΩΛ,ΩM ,Ωγ).

We have already remarked that Eq. (5.4) describes the
algebraic structure of pairwise stases. From this perspec-
tive, Eq. (6.10) is the triple-stasis analogue of Eq. (5.4)
and likewise describes the algebraic structure of triple
stasis, once again in terms of general pumps but focused
on vacuum energy, matter, and radiation.

B. Surveying the possible configurations

Our job is now to construct a particle-physics model
of stasis in which the Pij pump terms are consistent with
these equations. To do this, let us return to our model
consisting of a tower of zero-mode scalar fields ϕℓ, with
ℓ = 0, 1, . . . , N − 1. However we shall now take into ac-
count not only the underdamping transition of Sect. III
but also the possibility of particle decay, as discussed in
Sects. II and IV. In general, a given field ϕℓ of mass
mℓ and decay width Γℓ will experience an underdamping
transition at the time tℓ for which 3H(tℓ) = 2mℓ, while
this same field will also decay with lifetime τℓ = 1/Γℓ.
For simplicity we shall assume that tℓ < τℓ for all ℓ —
an assumption which will be discussed in more detail be-
low — and we shall adopt the “instantaneous decay” ap-
proximation in Eq. (4.12) in which a given state ϕℓ is
presumed to decay instantaneously and fully at t = τℓ.
As discussed below Eq. (4.12), this instantaneous-decay

assumption will not be critical for any of our important
results. However, this assumption allows the decay tran-
sition to more closely resemble the underdamping transi-
tion, with each treated as occurring instantaneously and
completely at a specified time. Later in this section we
shall also consider the case with full exponential decay
and verify that our basic results remain intact.
In general, these fields ϕℓ will have time-dependent en-

ergy densities ρℓ(t). As in previous sections, we shall in-
terpret this energy density as vacuum energy for times
t < tℓ, but as matter if tℓ < t < τℓ and as radiation if

t > τℓ. We shall let ρ
(Λ)
tot (t), ρ

(M)
tot (t), and ρ

(γ)
tot(t) represent

the corresponding total energy densities of each type at
any given time t, and let ΩΛ(t), ΩM (t), and Ωγ(t) repre-
sent the corresponding total abundances.
Within a period of stasis, the underdamping time tℓ

associated with underdamping transitions is given by the
condition 3H(tℓ) = 2mℓ, or equivalently tℓ = κ/(2mℓ)
where we have used Eq. (6.9). This provides a relation
between tℓ and the corresponding mass mℓ. Likewise,
from Eq. (2.12) we see that the lifetimes τℓ are given by

τℓ =
1

Γℓ
=

1

Γ0

(
mℓ

m0

)−γ

. (6.11)

This provides a relation between τℓ and the mass mℓ.
It therefore follows that when γ ̸= 1 there is a critical
mass for which tℓ = τℓ. Indeed, letting the subscript ‘X’
denote this critical point, we find

tγ−1
X = ξ−γ Γ1−γ

0 , mγ−1
X = ξ mγ−1

0 , (6.12)

where ξ is defined in Eq. (2.14). Of course, for γ = 1,
there is no single point X at which tX = τX .
It also follows from Eqs. (3.15) and (6.11) that

τℓ
tℓ

= ξ (Γ0τℓ)
1−1/γ

(6.13)

This result holds for all values of γ. However, for
γ ̸= 1 we find that ξ = (Γ0tX)1/γ−1, whereupon we have
τℓ/tℓ = (τℓ/tX)1−1/γ .
In complete analogy with the sketch in the right panel

of Fig. 2, we may now sketch the anticipated behavior
of the energy densities ρℓ in this system as a function of
time during a potential period of triple stasis. As we shall
demonstrate, there are a number of distinct possibilities
for how these energy densities might behave. We shall
therefore begin by discussing these different possibilities.
For convenience, following the discussion in Sect. III,

we shall continue to assume for the purpose of such
energy-density sketches that w ≈ −1, so that ρℓ(t) is
approximately constant for all t < tℓ. Of course, the
critical new feature for triple stasis is the existence of
two independent transitions, the first between vacuum
energy and matter occurring at the critical underdamp-
ing time tℓ for which 3H(tℓ) = 2mℓ, and the second be-
tween matter into radiation occurring at the decay time
τℓ = 1/Γℓ. At any time tℓ, the original energy density
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ρ
(0)
ℓ which experiences the underdamping transition from

vacuum energy to matter scales as

ρ
(0)
ℓ ∼ mα

ℓ ∼ t−α
ℓ . (6.14)

On a log-log plot of energy density versus time, this un-
derdamping “3H = 2m” transition line would thus ap-
pear with slope −α, precisely as in the right panel of
Fig. 2. Likewise, at any time τℓ, the original energy den-

sity ρ
(0)
ℓ which decays from matter to radiation scales as

ρ
(0)
ℓ ∼ mα

ℓ ∼ τ
−α/γ
ℓ . (6.15)

On a log-log plot of energy density versus time, this decay
transition “t = 1/Γ” line would thus appear with slope
−α/γ.

In principle, these two transition lines govern the be-
havior of the system. However, for the purposes of our
energy-density sketches it will prove useful to introduce a
third transition line. This line is motivated by the obser-
vation that each energy density ρℓ no longer has its initial

value ρ
(0)
ℓ at the time when the corresponding ϕℓ field de-

cays because of the existence of the earlier underdamping
transition at t = tℓ which converted the corresponding ρℓ
energy density from vacuum energy to matter. As a re-
sult, by the time t = τℓ is reached, this energy density

has now fallen to ρℓ ∼ ρ
(0)
ℓ (τℓ/tℓ)

−κ because it has spent
the time interval between tℓ and τℓ behaving as matter
rather than vacuum energy. We thus have

ρℓ(τℓ) ∼ mα
ℓ

(
τℓ
tℓ

)−κ

∼ τ
−α/γ−κ(γ−1)/γ
ℓ . (6.16)

On a log-log plot of energy density versus time, this “ef-
fective decay” transition line would thus appear with
slope −α/γ−κ(γ−1)/γ. Because this line corresponds to
the actual values of the energy densities ρℓ at the times
when the corresponding states ϕℓ are decaying, it is this
third line which in some sense represents the true decay
transition, relating the energy density at the decay time
to the time at which the decay transition occurs. By con-
trast, the “τ = 1/Γ” line discussed above corresponds to
the decay line that would have been relevant if no prior
transition to matter had occurred .
Putting these observations together, we see that on a

log-log plot of energy density versus time, we now expect
to have three transition lines with different slopes:

3H = 2m line : slope =− α ,

τ = 1/Γ line : slope =− α/γ ,

effective decay line : slope =− α/γ − κ(γ − 1)/γ .

(6.17)

Of course, for γ ̸= 1, all three of these lines intersect at
the critical point X described in Eq. (6.12). By contrast,
for γ = 1, these lines are all parallel.

There is one final point that we must also consider be-
fore sketching the possible behaviors of the energy densi-
ties during triple stasis. This is the fact that the magni-
tudes of our energy densities ρℓ should continue to experi-
ence successive pairwise crossings as time evolves, just as

we observed in the right panel of Fig. 2, so that the iden-
tity of the ϕℓ component with the largest energy density
is continually changing as our transitions proceed down
the tower, just as each energy density changes from vac-
uum energy to matter to radiation. As we discussed in
relation to the right panel of Fig. 2, it is this behavior
involving successive energy-density crossings which un-
derlies the pairwise stasis phenomenon, and we expect
the same to be true for triple stasis as well. In Sect. III,
this crossing inter-leaved behavior was the result of the
energy densities ρℓ(t) “reflecting” off the transition line;
indeed, this property is ultimately what distinguished the
behavior sketched in the right panel of Fig. 2 from that
sketched in the left panel, the latter of which does not
lead to stasis. Towards this end, we shall similarly expect
a reflecting inter-leaved behavior for triple stasis. How-
ever, we now have two transition lines relative to which
such reflections could potentially occur. As a result, we
can consider situations in which our energy densities re-
flect off the first transition line, but we can alternatively
consider situations in which our energy densities pass
through the first transition line and reflect off the sec-
ond line instead.

Putting all of these ingredients together, we see that
there are in principle six different classes of possible
behaviors for the energy densities during triple stasis.
These six resulting possible behaviors correspond to tak-
ing γ > 1, γ < 1, or γ = 1, and then in each case
considering either reflection off the 3H = 2m transition
line or reflection off the effective decay line. These six re-
sulting possible behaviors are sketched in Figs. 5 through
7. Given that the slopes of the yellow (matter) and green
(radiation) ρℓ(t) lines are respectively given by −κ and
−4κ/3, we see that the condition for reflecting off the
3H = 2m transition line is simply κ > α. By contrast,
the condition for not reflecting off this line but instead re-
flecting off the effective decay line is given by ϕα < κ < α
where ϕ ≡ (1 + γ/3)−1.

As evident from Figs. 5 through 7, the behavior of our
system is highly sensitive to whether γ > 1 (as in Fig. 5),
γ < 1 (as in Fig. 6), or γ = 1 (as in Fig. 7). For γ > 1,
we find that τℓ > tℓ for all mℓ < mX . Thus the por-
tion of the tower with m < mX corresponds to a region
in which we can expect the underdamping transition to
precede the eventual decay, consistent with our original
assumptions. Indeed, as time evolves, the states in this
region each experience a transition from vacuum energy
to matter and then ultimately from matter to radiation.
Thus, within this region, we might imagine a triple stasis
emerging if m0 ≪ mN−1 < mX . By contrast, for γ < 1,
we find that τℓ > tℓ only for mℓ > mX . It is therefore
within the portion of the tower with m > mX that we
might imagine a triple stasis emerging. This is especially
true if mN−1 ≫ mX , so that a triple stasis has time to
develop within this region. As the transitions proceed
down from mN−1 and approach mX , the “matter” phase
experienced by the corresponding states prior to decay
has shorter and shorter duration until it disappears en-
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FIG. 5. Left panel: The individual energy densities ρℓ(t) for the states ϕℓ with mℓ < mX , sketched as functions of time during
a stasis epoch with γ > 1 and κ > α. Each state undergoes a transition from an overdamped phase (blue) to an underdamped
phase (yellow) at a time tℓ for which 3H(tℓ) = 2mℓ before subsequently decaying to radiation (green) at the time τℓ ≡ 1/Γℓ.
The dashed lines (red) indicate the moments of transition between these different behaviors and have slopes given in Eq. (6.17).
For the purposes of this sketch we have assumed that states with greater energy densities have greater masses (i.e., that α > 0).
We have also assumed that H(t) ∼ 1/t with a fixed constant of proportionality, as appropriate during stasis, and we have taken
w ≈ −1 so that our vacuum-energy lines are essentially horizontal. We see by considering vertical time-slices through this
figure that the identity of the state with the greatest energy density is time-dependent, with lighter and lighter states carrying
increasing shares of the total energy density as time evolves. Right panel: Same as left panel, but now sketched for κ within
the range ϕα < κ < α where ϕ ≡ (1 + γ/3)−1.
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FIG. 6. Left panel: Same as Fig. 5, but now sketched for γ < 1. Here it is the heavier portion of the tower with m > mX for
which the states experience transitions from overdamped to underdamped behavior before decaying to radiation. Right panel:
Same as left panel, but for κ within the range ϕα < κ < α where ϕ ≡ (1 + γ/3)−1.
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FIG. 7. Left panel: Same as Figs. 5 and 6, but now sketched for γ = 1. As long as ξ > 1, each component across the entire
tower experiences a transition from overdamped to underdamped behavior before decaying to radiation. Right panel: Same as
left panel, but now sketched for κ within the range 3α/4 < κ < α.
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FIG. 8. Triple stasis in action: The structure of the tower ϕℓ during a potential triple-stasis epoch. The individual states are
shown in order of increasing ℓ, just as they are at the initial time in Figs. 5 through 7, with colors determined by considering
appropriate vertical time slices through these figures as time evolves. At any moment two separate transitions are occurring at
different locations within the tower: an underdamping transition from vacuum energy (blue) to matter (yellow) occurring at a
lower location within the tower, and a decay transition from matter (yellow) to radiation (green) simultaneously occurring at
a higher location. As time evolves, both transitions work their way down the tower, with the color of a given state changing
from blue to yellow and then from yellow to green as each of the two transitions sweeps past it. For γ > 1 the decay transition
proceeds down the tower more slowly than the underdamping transition, thereby allowing the matter region of the tower to
continually increase in size. By contrast, for γ < 1 the decay transition proceeds more quickly down the tower than the
underdamping transition, ultimately catching up with it at m = mX . For γ = 1 both transitions move down the tower at the
same rate. All of this occurs within an expanding universe, thereby potentially supporting a triple-stasis epoch.

tirely at m = mX , thereby extinguishing this part of the
triple stasis. Finally, for γ = 1, no critical point X exists.
We then find that τℓ/tℓ = 2m0/(κΓ0) = ξ for all masses
mℓ. Thus in this case our entire tower could potentially
support a triple stasis if τℓ/tℓ > 1 (i.e., if ξ > 1), but
could never support a triple stasis otherwise.

Thus, to summarize, in our model of triple stasis we
shall restrict our attention to those portions of our tower
— and those times t — that satisfy the conditions

m < mX , t > tX for γ > 1

m > mX , t < tX for γ < 1

ξ > 1, any (m, t) for γ = 1 .

(6.18)

Of course, we stress that the sharp inequalities within
each of the different cases in Eq. (6.18) exist only be-
cause we have assumed the instantaneous-decay approx-
imation.

The regions of our ϕℓ towers given in Eq. (6.18) are pre-
cisely those for which tℓ < τℓ, thereby allowing a matter
phase to emerge for each ℓ. Thus, within the regions out-

lined in Eq. (6.18), we are assured that our tower simul-
taneously gives rise to vacuum energy, matter, and radi-
ation. Likewise, within the times indicated in Eq. (6.18),
there are two independent transitions occurring simul-
taneously: the damping transition from vacuum energy
to matter, and the decay transition from matter to ra-
diation. Taking vertical time-slices through the relevant
portions of Figs. 5 through 7, we then obtain the situ-
ation illustrated in Fig. 8. At any moment, the states
within the lowest portion of the tower have not yet ex-
perienced any transitions and can thus be interpreted as
contributing to vacuum energy, while the states within an
intermediate middle portion can be interpreted as mat-
ter and the states within the upper portion have already
decayed to radiation. Although the underdamping and
decay transitions at any fixed time are occurring at differ-
ent locations within the tower — the former occurring for
lighter states and the latter occurring for heavier states
— they are each independently making their way down
the tower. For γ > 1, the decay transition makes its
way down the tower more slowly than the underdamping
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transition, implying that as time evolves an increasingly
large portion of the tower behaves as matter. By con-
trast, for γ < 1 the reverse is true: the decay transition
makes its way down the tower more rapidly than the
underdamping transition, and ultimately catches up to
it when mℓ = mX (which signals the boundary of our
region of interest as far as triple stasis is concerned). Fi-
nally, for γ = 1, these transitions make their way down
the tower at exactly the same rate.

In the rest of this section we shall be interested in
situations in which both transitions are still occurring
within the relevant portions of our tower, far from any
“edge” effects either at the top or bottom of the regions of
interest indicated within Eq. (6.18). This in turn implies
that we shall focus our attention on situations in which
our states ϕℓ, ℓ = 0, 1, ..., N − 1, have a maximum mass
mN−1 satisfying

mX > mN−1 ≫ 0 for γ > 1

mN−1 ≫ mX for γ < 1

mN−1 ≫ 0 for γ = 1 .

(6.19)

Finally, before concluding this discussion, let us briefly
add further context to our assumption that tℓ < τℓ for all
ℓ. In making this assumption, we are explicitly disregard-
ing the possibility that tℓ > τℓ — i.e., that the vacuum
energy can decay directly to radiation even within the
instantaneous-decay approximation. Of course, as dis-
cussed at the beginning of Sect. IV, it is indeed possible
for vacuum energy to decay or dissipate directly to radi-
ation (or to a component that functions cosmologically
as radiation, with w = 1/3). However, for our current
purposes, such transitions are of less interest because
they would completely bypass the matter phase which
is needed in order to have a true triple stasis. Moreover,
the point X described in Eq. (6.12) signifies the critical
location within the ϕℓ tower which separates tℓ < τℓ be-
havior from tℓ > τℓ behavior. Thus, by choosing to focus
our attention on only one side of X but not the other,
we are implicitly enforcing the restriction that tℓ < τℓ so
that an intermediate matter phase appears.

These observations hold only within the instantaneous-
decay approximation. By contrast, a treatment involving
a full exponential decay (replete with exponential tails in
both directions) would continue to allow vacuum energy
to be converted directly to our w = 1/3 component even
when tℓ < τℓ. Indeed, this possibility can occasionally
be quite significant, and becomes extremely remote only
when τℓ ≫ tℓ. From Eq. (6.13), we see that the latter
situation arises only if ξ ≫ 1. Thus, while it is cer-
tainly a mathematically self-consistent choice to adopt
the instantaneous-decay approximation and restrict our
attention to ϕℓ towers for which tℓ < τℓ for all ℓ, we
expect such a treatment to match the results of a fully
physical exponential decay only when ξ ≫ 1. This issue
will be discussed in more detail later in this section and
in Sect. VIII.

Given this understanding, we shall proceed by adopt-
ing the instantaneous-decay approximation and assuming

that tℓ < τℓ for all ℓ. We shall do this with the un-
derstanding that such a model represents what we may
consider to be a faithful representation of the full expo-
nential decay within the ξ ≫ 1 regime. With this model
in hand, our goal is then to determine whether the result-
ing system can host a true triple stasis in which the total
abundances ΩΛ, ΩM , and Ωγ each remain fixed despite
cosmological expansion.

C. Overall scaling constraints

Within this system, our first step is to evaluate the
pump terms in Eq. (6.10) during a period of stasis.

This in turn requires that we determine dρ
(i)
tot/dt for

i = Λ,M, γ within this model, since the pump terms
Pij are defined through their appearance in Eq. (6.5).
In order to derive these equations, we shall proceed in
stages. First, within each of the ranges specified above
in Eqs. (6.18) and (6.19) we can approximate the corre-
sponding energy-density contributions from each ϕℓ com-
ponent during (eternal) stasis as

ρ
(Λ)
ℓ (t) = ρ∗ℓ

(
t

t∗

)−(1+w)κ

Θ(tℓ − t)

ρ
(M)
ℓ (t) = ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ(
t

tℓ

)−κ

× Θ(t− tℓ)Θ(τℓ − t)

ρ
(γ)
ℓ (t) = ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ(
τℓ
tℓ

)−κ(
t

τℓ

)−4κ/3

× Θ(t− τℓ)

(6.20)

where t∗ is a fiducial early time within our eternal stasis
prior to tℓ. Indeed, these are the relations whose w → −1
limits are sketched in Figs. 5 through 7, but we shall
keep w arbitrary for our algebraic analysis. The Heavi-
side functions within these equations capture the manner
in which the original energy density ρℓ of each ϕℓ field
is transferred between the vacuum-energy, matter, and
radiation components at times tℓ and τℓ as the universe
expands.

Of course, strictly speaking, our assumption that t∗ <
tℓ for all ℓ is inconsistent with our assumption that our
stasis is eternal. Indeed, Eq. (6.20) may be viewed as
the triple-stasis analogue of Eq. (2.11), for which simi-
lar issues arose. However, just as in Sect. II, we shall
temporarily proceed with this assumption since it will
not affect our eventual stasis constraints, deferring a for-
mal justification of our adoption of this assumption to
Sect. VIE.

Given the energy densities in Eq. (6.20), we immedi-
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ately find

dρ
(Λ)
ℓ

dt
= − ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ

δ(t− tℓ)

− 3(1 + w)Hρ
(Λ)
ℓ

dρ
(M)
ℓ

dt
= ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ

δ(t− tℓ)

−ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ(
τℓ
tℓ

)−κ

δ(t− τℓ)

− 3Hρ
(M)
ℓ

dρ
(γ)
ℓ

dt
= ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ(
τℓ
tℓ

)−κ

δ(t− τℓ)

− 4Hρ
(γ)
ℓ .

(6.21)

In order to calculate the total energy densities ρi =∑
ℓ ρ

(i)
ℓ , we now wish to sum these equations over all of

the ϕℓ states in our theory. To do this, we shall pass to
the continuum limit in which we express our ℓ-parameter
in terms of the corresponding underdamping time tℓ (as
in Sect. III) or lifetime τℓ (as in Sect. II) and then treat
tℓ or τℓ as a continuous parameter t̂ or τ respectively. In
other words, we shall replace∑

ℓ

→
∫

dt̂ nt̂(t̂) or
∑
ℓ

→
∫

dτ nτ (τ) , (6.22)

where nt̂(t̂) and nτ (τ) are respectively the densities of
states per unit t̂ and τ , evaluated at the locations within
our tower for which the underdamping time or lifetime
is given by t̂ or τ , respectively. Indeed, for each term
within Eq. (6.21), we shall choose the first option within
Eq. (6.22) if the relevant term in Eq. (6.21) contains a
δ-function involving tℓ, and the second option if the rel-
evant term contains a δ-function involving τℓ.
We shall likewise consider the energy densities ρℓ(t)

to be labeled not by the discrete variable ℓ but by the
continuous variables t̂ or τ . However, each of these en-
ergy densities itself evolves as a function of time. Thus
for each energy density we actually have two kinds of
time variables in play, one telling us which energy den-
sity we are talking about (i.e., corresponding to which ϕℓ

within the tower) and the other telling us when during
the evolution of the universe that energy density should
be evaluated. Towards this end, for absolute clarity, we
shall let ρt̂(t1; t2) denote the energy density — evaluated
at time t2 — of that particular ϕ-field which becomes
underdamped precisely at t1, and likewise let ρτ (t1; t2)
denote the energy density — evaluated at time t2 — of
that particular ϕ-field which decays at t1. We can then
replace

ρℓ(t) → ρt̂(tℓ; t) or ρℓ(t) → ρτ (τℓ; t) . (6.23)

Of course, the fiducial energy density ρ∗ℓ now becomes
either ρt̂(tℓ; t∗) or ρτ (τℓ; t∗), depending on the chosen in-
tegration variable.

Given these substitutions, it becomes relatively
straightforward to evaluate the ℓ-summations of the
terms appearing in Eq. (6.21). For example, we find

∑
ℓ

ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ

δ(t− tℓ)

→
∫

dt̂ nt̂(t̂) ρt̂(t̂; t∗)

(
t̂

t∗

)−(1+w)κ

δ(t− t̂)

= nt̂(t) ρt̂(t; t∗)

(
t

t∗

)−(1+w)κ

. (6.24)

In a similar vein, we also have

∑
ℓ

ρ∗ℓ

(
tℓ
t∗

)−(1+w)κ(
τℓ
tℓ

)−κ

δ(t− τℓ)

=
∑
ℓ

ρ∗ℓ (ξΓ0t∗)
wκ

(
τℓ
t∗

)−κ

(Γ0τℓ)
−wκ/γ δ(t− τℓ)

→
∫

dτ nτ (τ) ρτ (τ ; t∗) (ξΓ0t∗)
wκ

(
τ

t∗

)−κ

× (Γ0τ)
−wκ/γδ(t− τ)

= (ξΓ0t∗)
wκ

(
t

t∗

)−κ

(Γ0t)
−wκ/γ nτ (t) ρτ (t; t∗)

(6.25)

where in passing to the second line we have used
Eq. (6.13).
We thus find that Eq. (6.21) takes the anticipated form

in Eq. (6.5), where can now identify the pump terms for
this model:

P
(ρ)
ΛM =

(
t

t∗

)−(1+w)κ

nt̂(t) ρt̂(t; t∗)

P
(ρ)
Λγ = 0

P
(ρ)
Mγ = (ξΓ0t∗)

wκ

(
t

t∗

)−κ

(Γ0t)
−wκ/γ

× nτ (t) ρτ (t; t∗) . (6.26)

As discussed at the end of Sect. VIB, the vanishing of

the P
(ρ)
Λγ pump is a consequence of our adoption of the

instantaneous-decay approximation and our assumption
that tℓ < τℓ for all ℓ (or equivalently that we are working
within the ξ ≫ 1 limit of a treatment based on taking a
adopting a full exponential decay). These results in turn
yield

PΛM =

(
t

t∗

)−(1+w)κ

nt̂(t) Ωt̂(t; t∗)

PΛγ = 0

PMγ = (ξΓ0t∗)
wκ

(
t

t∗

)−κ

(Γ0t)
−wκ/γ

× nτ (t) Ωτ (t; t∗) (6.27)
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where Ωt̂,τ (t1; t2) ≡ 8πG
3H(t2)2

ρt̂,τ (t1; t2).

Of course, these results make intuitive sense. Indeed,
within a period of stasis we see that

(
t

t∗

)−(1+w)κ

Ωt̂(t; t∗) = Ωt̂(t; t) , (6.28)

and this is nothing but the abundance of the field which is
becoming underdamped precisely at the time t, evaluated
at the moment of the underdamping transition. Indeed,
the disappearance of t∗ within Eq. (6.28) is consistent
with our original adoption of t∗ as a mere fiducial time
within our eternal stasis. Likewise, we find

(ξΓ0t∗)
wκ

(
t

t∗

)−κ

(Γ0t)
−wκ/γ Ωτ (t; t∗) = Ωτ (t; t) ,

(6.29)
and this is nothing but the abundance of the field which is
decaying precisely at the time t, evaluated at the moment
of decay. We can thus write our pumping terms in the
final forms

PΛM = nt̂(t) Ω
(Λ)

t̂
(t; t)

PΛγ = 0

PMγ = nτ (t) Ω
(M)
τ (t; t) (6.30)

where we have added the superscripts (Λ) and (M) as
a reminder that the associated abundances can be inter-
preted as corresponding to vacuum energy and matter,
respectively, at times t = t̂ and t = τ . Indeed, these
pumping terms describe the rates at which abundances
are being transferred between our different energy com-
ponents at the moments they pass across the underdamp-
ing and decay thresholds, respectively.

We now proceed to evaluate these pumping terms
within the framework of the model introduced in
Sect. II. In this way we shall be able to determine the
conditions under which these pumps might simultane-
ously satisfy the triple-stasis constraints in Eq. (6.10).
Recall that nt̂(t) is the density of states per unit under-
damping time t̂, evaluated for that portion of the tower
which is becoming underdamped at time t, while nτ (t) is
the density of states per unit decay time τ evaluated for
that portion of the tower that is decaying at time t. A
straightforward calculation then yields

nt̂(t) ≡
∣∣∣∣dℓdt̂
∣∣∣∣
t̂=t

=
1

δ

(
κ

2∆mt

)1/δ
1

t

nτ (t) ≡
∣∣∣∣ dℓdτ

∣∣∣∣
τ=t

=
1

γδ

( m0

∆m

)1/δ
(Γ0t)

−1/(γδ) 1

t
,

(6.31)

where we have again taken m0 ≪ (∆m)ℓδ. Similarly, we

can evaluate the abundances in Eq. (6.30), obtaining

Ω
(Λ)

t̂
(t; t) = Ω∗

0

(
κ

2m0t

)α(
t

t∗

)2−(1+w)κ

Ω(M)
τ (t; t) = Ω∗

0

(
mℓ

m0

)α(
tℓ
t∗

)2−(1+w)κ(
t

tℓ

)2−κ

= Ω∗
0 (ξΓ0t∗)

wκ

(
t

t∗

)2−κ

(Γ0t)
−α/γ−wκ/γ .

(6.32)

Given these results, we see that

PΛM =
Ω∗

0

δt

( m0

∆m

)1/δ
(ξΓ0t∗)

−η

(
t

t∗

)2−κ−(η+wκ)

PMγ =
Ω∗

0

γδt

( m0

∆m

)1/δ
(Γ0t∗)

−η/γ

×
[
ξ(Γ0t∗)

1−1/γ
]wκ

(
t

t∗

)2−κ−(η+wκ)/γ

.

(6.33)

Thus, the scaling for our first pump PΛM will be consis-
tent with the scaling t−1 required for triple stasis only
if

η = 2− (1 + w)κ . (6.34)

This is precisely the constraint that we already obtained
for the single pairwise (Λ,M) stasis in Sect. III. Likewise,
demanding that our second pump PMγ scale as t−1 yields
the constraint

η = 2γ − (γ + w)κ . (6.35)

Subtracting Eqs. (6.34) and (6.35) then yields the con-
straint

(2− κ)

(
1− 1

γ

)
= 0 . (6.36)

Indeed, this last constraint ensures that our two pumps
PΛM and PMγ are compatible with each other within the
same background cosmology.
The result in Eq. (6.36) indicates that there are two

mutually disjoint “branches” of our theory that are po-
tentially capable of yielding triple stasis: one has γ = 1
and any value of κ, while the other has κ = 2 and
any value of γ. Such branches have a common inter-
section point with γ = 1 and κ = 2. However, for rea-
sons to become clear, it will prove useful to define these
two branches to be mutually exclusive by assigning the
(γ, κ) = (1, 2) point to be a member of the first of these
branches but not the second. We thus define Branches A
and B to consist of potential stasis solutions satisfying
not only Eq. (6.34) but also the additional constraints

Branch A : γ = 1, any κ

Branch B : κ = 2, any γ ̸= 1 . (6.37)
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The (γ, κ) parameter-space domains corresponding to
these additional constraints are sketched in Fig. 9. We
shall soon find that these two branches have very differ-
ent behaviors.

g

k

2

1

Branch A

Branch B

Intersection point 
belongs to Branch A

FIG. 9. Two branches of solutions to Eqs. (6.36). These
branches are defined as in Eq. (6.37) with the convention
that the point with (γ, κ) = (1, 2) is considered to be part
of Branch A but not Branch B. With this convention the two
branches are mutually exclusive.

At this stage, we have learned that any possi-
ble triple-stasis solutions are limited to Branch A or
Branch B. Moreover, given that we have already sat-
isfied the constraint in Eq. (6.36) by limiting our atten-
tion to Branch A or Branch B, Eq. (6.34) becomes the
only additional relation that we have thus far governing
such potential triple stases. However, this relation is no
different from that in Sect. III, with any choice of input
parameters (α, δ, w) leading to a unique value of κ. Of
course, if we also choose γ = 1 we find ourselves on the
Branch A line. By contrast, leaving γ arbitrary, we find
that only those choices of (α, δ, w) that lead to κ = 2
correspond to Branch B.

In either case, however, we see that κ is uniquely deter-
mined from our choice of the initial parameters (α, δ, w).
In the previous pairwise cases which involved only two
stasis abundances, such predictions for κ (along with the
usual normalization constraint

∑
i Ωi = 1) were sufficient

to permit us to uniquely determine the corresponding
stasis abundances. However, for triple stasis, the specifi-
cation of κ only restricts us to a line of solutions for the
stasis abundances Ωi. Thus, at first glance, it would no
longer appear possible to obtain firm predictions for the
stasis abundances.

D. Prefactor constraints, log-avoidance constraints,
and the emergence of triple stasis

Fortunately, we have two further classes of constraints
at our disposal: these are the log-avoidance constraints as
well as the prefactor constraints. These general types of
constraints were discussed in some detail in Sect. II B. In
the case of the pairwise stases in Sects. II, III, and IV,

we found that these prefactor constraints were redundant
with our scaling constraints. Indeed, this redundancy is
what allowed stasis to be a self-consistent phenomenon
in such pairwise situations. However, for triple stasis, we
shall find that these prefactor constraints are no longer
redundant with our scaling constraints and therefore con-
tain further information. Indeed, we shall find that this
further information will play two roles. First, it will pro-
vide an additional condition for stasis, one which fur-
ther restricts the potential solutions that we have thus
far obtained. In particular, this additional information
will allow us to distinguish between Branches A and B
and thereby demonstrate that only one of these branches
gives rise to a full triple stasis. However, this additional
information will also allow us to determine the stasis
abundances ΩΛ,M,γ uniquely.
In order to derive these results, we follow previous sec-

tions and shift from the differential to the integral form
of our calculations and directly evaluate the abundances
ΩΛ,M,γ during stasis. In order to expose the common
algebraic structure of these calculations, we shall evalu-
ate these abundances in parallel. Our calculation begins,
as before, with Eq. (6.20). Even though this equation
gives expressions for the energy densities ρℓ(t), the corre-
sponding abundances Ωℓ(t) take precisely the same forms
except multiplied by (t/t(0))2. The Heaviside Θ-function
structure within Eq. (6.20) tells us that at any time t we
can interpret our abundance as corresponding to vacuum
energy, matter, or radiation according to

Λ : t < tℓ

M : tℓ < t < τℓ

γ : t > τℓ . (6.38)

At any time t, this in turn implies that the lower parts
of our ϕℓ tower are generally still vacuum energy while
the middle parts of our tower have already transitioned
to matter and the upper parts have already decayed to
radiation. Indeed, this configuration is consistent with
Fig. 8.

Our goal, of course, is to sum over the contributions
from each relevant part of the tower in order to obtain
our total abundances ΩΛ,M,γ . In order to perform these
sums in a parallel fashion, we shall express each state at
level ℓ in terms of its decay lifetime τℓ and then treat
these decay lifetimes as forming a continuous parameter
τ . We can thus rewrite

mℓ/m0 → (Γ0τ)
−1/γ

tℓ → (Γ0τ)
1/γ

/(ξΓ0) (6.39)

where in the last line we have made use of Eq. (6.13).
Finally, at any moment t, we can calculate the critical
τ -values that demarcate the boundaries between the re-
gions of the ϕℓ tower corresponding to vacuum energy,
matter, and radiation. Indeed, the boundary between
vacuum energy and matter occurs where t = tℓ, while
that between matter and radiation occurs where t = τℓ.
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We thus have

Λ : (ξΓ0t)
γτ0 < τ < τ0

M : t < τ < (ξΓ0t)
γτ0

γ : τN−1 < τ < t (6.40)

where τ0 ≡ 1/Γ0. Note that strictly speaking, our range
of τ -values stretches from τN−1 (the smallest value, cor-
responding to the top state ϕN−1 within the tower) all
the way to τ0 (the largest value, corresponding to the
bottom state ϕ0 within the tower). In previous sections,
we have noted that we are ultimately interested in times
t for which τN−1 ≪ t ≪ τ0, so that we are far from any
“edge” effects. We therefore made the approximations
τN−1 ≈ 0 and τ0 ≈ ∞. However, in order to be ab-
solutely rigorous, we have retained these precise values
within our integration limits for ΩΛ and Ωγ in Eq. (6.40).

Given these ingredients, our calculation of the total
abundances ΩΛ,M,γ is relatively straightforward. Just as
in previous sections, we shall no longer assume an eternal
stasis, but instead recognize that stasis will only begin at
times t ≫ t(0) where t(0) is the production time for our
ϕℓ states. We shall also now seek to evaluate these abun-

dances in terms of their values Ω
(0)
Λ,M,γ at t(0) rather than

at a fiducial time t∗ during an eternal stasis. Towards
this end, we shall again introduce an h-function h(t(0), t∗)
which describes the evolution of the abundances due to
gravitational redshifting between t(0) and t∗. We shall
further assume that our abundances all share this com-
mon factor even though there are now three abundances
in play, rather than only two. At first glance, the pres-
ence of three abundances would seem to allow room for
a second h-factor, even while demanding that the sum
of the abundances remain at 1. However, as we shall
demonstrate in Sect. VIE, our assumption of a common
h-function across all three abundances is indeed appropri-
ate for our stasis calculations. We shall therefore proceed
with only one h-function, deferring further discussion of
this issue to Sect. VIE.

In the continuum limit with τ chosen as our continu-
ous variable, each of these abundances can be ultimately
expressed in the form

Ωi =

∫
dτ nτ (τ) Ω

(i)
τ (τ ; t) (6.41)

for i = Λ,M, γ. Here nτ (τ) is the density of states per
unit τ , while Ωi(τ ; t) represents the contribution to the
abundance Ωi, evaluated at time t, from the field which
decays at time τ . Of course, in each case the integral will
be delimited according to Eq. (6.40).

The density of states nτ (τ) is given in Eq. (6.31). Like-

wise, the abundances Ω
(i)
τ (τ ; t) follow readily from the

energy densities in Eq. (6.20) upon making the substitu-

tions listed in Eqs. (6.13) and (6.39):

Ω(Λ)
τ (τ ; t) = Ωτ (τ ; t

(0))h(t(0), t∗)

(
t

t∗

)2−(1+w)κ

×Θ

(
(Γ0τ)

1/γ

ξΓ0
− t

)
Ω(M)

τ (τ ; t) = Ωτ (τ ; t
(0))h(t(0), t∗)

(
t

t∗

)2−κ

×
[
(Γ0τ)

1/γ

ξΓ0t∗

]−wκ

Θ

(
t− (Γ0τ)

1/γ

ξΓ0

)
×Θ(τ − t)

Ω(γ)
τ (τ ; t) = Ωτ (τ ; t

(0))h(t(0), t∗)

(
t

t∗

)2−κ

×
[
(Γ0τ)

1/γ

ξΓ0t∗

]−wκ (
t

τ

)−κ/3

×Θ(t− τ) . (6.42)

However, we know that Ωτ (τ ; t
(0)) = Ω

(0)
0 (Γ0τ)

−α/γ .

[This is the continuum limit of the relation Ω
(0)
ℓ =

Ω
(0)
0 (mℓ/m0)

α.] It therefore follows that we can write
all three stasis abundances in the compact form

ΩΛ = A(t)

∫ τ0

τ0(ξΓ0t)γ
dτ (Γ0τ)

−1−η/γ

ΩM = A(t) (ξΓ0t)
wκ

×
∫ τ0(ξΓ0t)

γ

t

dτ (Γ0τ)
−1−(η+wκ)/γ

Ωγ = A(t) (ξΓ0t)
wκ (Γ0t)

−κ/3

×
∫ t

τN−1

dτ (Γ0τ)
−1−(η+wκ)/γ+κ/3 ,

(6.43)

where each integral is delimited according to Eq. (6.40)
and where the common t-dependent prefactor in each ex-
pression is

A(t) ≡ Ω
(0)
0 Γ0

γδ

( m0

∆m

)1/δ
h(t(0), t∗)

(
t

t∗

)2−(1+w)κ

.

(6.44)
Our first interest is in the t-dependence of each expres-

sion within Eq. (6.43). This in turn depends in part on
the exponent of τ in the corresponding integrand. Since
we are evaluating these total abundances during an epoch
of triple stasis — i.e., at a time both well after the heav-
iest ϕ-field decays and well before the lightest ϕ-field be-
gins to oscillate — it follows that τN−1 ≪ t ≪ t̂0 = τ0/ξ.
Thus, to a very good approximation, we find that ΩΛ has
the t-scaling behavior

ΩΛ ∼


t2−(1+w)κ η < 0

t2−(1+w)κ log (ξΓ0t) η = 0

t2−(1+w)κ−η η > 0 .

(6.45)
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Likewise, we find that ΩM has the t-scaling behavior

ΩM ∼


t2−κ

[
t−(η+wκ)/γ

− τ
−(η+wκ)/γ
0

(ξΓ0t)η+wκ

]
η + wκ ̸= 0

t2−κ log
[
ξ(Γ0t)

1−1/γ
]

η + wκ = 0 .

(6.46)
Finally, we find that Ωγ scales with time according to

Ωγ ∼


t2−κ−(η+wκ)/γ η + wκ < κγ/3

t2−4κ/3 log

(
t

τN−1

)
η + wκ = κγ/3

t2−4κ/3 η + wκ > κγ/3 .

(6.47)
Given these scaling behaviors, we now seek to deter-

mine the conditions under which all three of these abun-
dances will be independent of time. It will prove simplest
to begin by considering ΩM . Close inspection of our re-
sults for ΩM in Eq. (6.46) indicates that ΩM will be a
constant only if

η = 2− (1 + w)κ and γ = 1 . (6.48)

Indeed, the upper line of Eq. (6.46) will be a constant
only if we additionally impose the requirement that κ ̸= 2
(so that the relevant condition for that case applies), but
the lower line applies if κ = 2 and also yields a constant
so long as γ = 1. We thus find that any value of κ is
allowed in Eq. (6.48).

With Eq. (6.48) in hand, let us now consider our results
for Ωγ in Eq. (6.47). From Eq. (6.47), we learn that the
logarithmic case can never yield a constant, while the
lower case within Eq. (6.47) is fundamentally inconsis-
tent with Eq. (6.48). By contrast, the upper case within
Eq. (6.47) yields a constant so long as

κ > 3/2 . (6.49)

However, this relation is not a surprise: any system con-
sisting of a non-trivial mixture of vacuum energy, matter,
and radiation must have κ > 3/2 simply because radia-
tion alone has κ = 3/2 while matter and vacuum energy
necessarily have κ-values that are larger than 3/2. In-
deed, this constraint is always satisfied (essentially by
construction). It therefore does not represent an addi-
tional constraint that needs to be imposed on our system,
and we need not consider it further.

Finally, we must demand that ΩΛ also be a constant.
From our results for ΩΛ in Eq. (6.45) we immediately
observe that the middle line can never yield a constant
(thanks to the logarithm), while the top line is fundamen-
tally inconsistent with the first relation in Eq. (6.48) since
the power of t is consistent with Eq. (6.48) only if η = 0,
while the relevant condition for that case requires η < 0.
Indeed, the only case within Eq. (6.45) for which ΩΛ can
be a constant is that on the final line, whereupon we ob-
tain another condition for constant abundances, namely

η > 0 . (6.50)

However, this relation is entirely subsumed within the
first relation in Eq. (6.48). To see this, we recognize that
a universe consisting only of vacuum energy within the
general-w model would have κ = 2/(1+w), while matter-
or radiation-dominated universes would necessarily have
smaller κ-values, namely κ = 2 or κ = 3/2 respectively.
Thus, by construction, triple stasis can only give rise to
universes satisfying κ < 2/(1 + w), whereupon the first
relation in Eq. (6.48) immediately yields Eq. (6.50). Thus
Eq. (6.50) — like Eq. (6.49) — does not provide an ad-
ditional constraint on our system and can henceforth be
disregarded.
We thus conclude that the conditions for triple stasis

are simply those listed in Eqs. (6.48). Indeed, because
our analysis has followed the integral form of our con-
straints and has therefore involved evaluating the abun-
dances ΩΛ,M,γ directly, these are the complete set of con-
straints needed for triple stasis. From this observation we
learn several important things:

• The scaling relation in Eq. (6.34) that emerged
from the differential form of our constraints now
appears within the integral form as well, as the first
constraint within Eq. (6.48).

• The additional constraint that we now have within
Eq. (6.48), namely γ = 1, can be identified as a
log-avoidance constraint . We shall discuss this ad-
ditional constraint below.

• Finally, we have not yet examined our prefactor
constraints. However, we already see that any such
prefactor constraints cannot possibly be needed as
preconditions for stasis, since stasis has already
been assured through the above constraints alone.
Indeed, as we shall see, our prefactor constraints
will serve another purpose entirely, ultimately al-
lowing us to solve for the abundances ΩΛ,M,γ dur-
ing stasis.

In Sect. VIC, we found that the requirements of triple
stasis — as obtained through the differential form of our
constraints — led uniquely to two “branches” of potential
solutions. These branches were indicated in Eq. (6.37)
and sketched in Fig. 9. However, comparing with our
current constraints obtained via the integral form of our
stasis relations, we now see that Branch B violates the
γ = 1 constraint and thus does not lead to triple stasis. It
is easy to see what is going wrong within Branch B. Re-
call that Branch B is defined by the overall scaling con-
straint in Eq. (6.34) along with the extra conditions
κ = 2 and γ ̸= 1. Under these circumstances, we find
from Eqs. (6.45) and (6.47) that both ΩΛ and Ωγ nomi-
nally continue to remain constant. However we find from
Eq. (6.46) that ΩM now accrues a nominally logarith-
mic time dependence. It is for this reason that we may
regard γ = 1 as a logarithm-avoidance constraint. In-
deed, this nominal logarithmic time dependence for ΩM

emerges for all points along Branch B (with the under-
standing that the case with κ = 2 and γ = 1 belongs
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to Branch A). Thus, we conclude that Branch B fails to
yield a true triple stasis.

In this context, one important comment is in order
— one which explains the word “nominally” which we
have used above. Even though we occasionally ob-
tain what look like logarithmic time dependences within
Eqs. (6.45), (6.46), and (6.47), this does not imply that
our corresponding abundances actually exhibit time de-
pendences which are precisely logarithmic. This is be-
cause the derivation leading to these equations assumed
the existence of an eternal stasis. Indeed, this was the
underpinning of Eq. (6.20) with which we started our
calculations. For example, within Eq. (6.20) we implic-
itly assumed that our FRW scale factor a evolves as a
fixed power of time, yet such behavior emerges only if
the corresponding κ is a constant. Thus the results in
Eqs. (6.45), (6.46), and (6.47) are absolutely trustwor-
thy only in situations in which all three abundances are
constants.

By contrast, in order to determine the true time de-
pendence of our abundances in situations in which these
abundances vary with time, we would ultimately need
a more general derivation in which such initial sta-
sis assumptions are not made. This has the potential
to deform our results away from those obtained from
Eqs. (6.45), (6.46), and (6.47) above. Indeed, the fastest
way to see that deformations are needed in such cases
is to recognize from the above analysis that Branch B
appears to lead to only one abundance (specifically ΩM )
which has a non-zero time dependence, yet this cannot
be consistent with our overall normalization constraint∑

i Ωi = 1. Thus even ΩΛ and Ωγ must accrue a sup-
pressed time dependence as well. However, even if the ac-
tual time dependences that emerge within such an anal-
ysis are not precisely logarithmic, they will continue to
be non-vanishing. Thus our conclusion that Branch B
does not lead to stasis remains unchanged. The resulting
time dependences are nevertheless likely to be highly sup-
pressed compared with our usual ΛCDM expectations.

These observations are relevant for understanding the
properties of Branch B. Because Branch B involves
abundances which are not truly static, it may therefore
seem that Branch B is uninteresting. However, although
Branch B does not lead to stasis, it does lead to a new
phenomenon: abundances which evolve unexpectedly
slowly as functions of time. Indeed, although Branch B
fails to satisfy the γ = 1 constraint in Eq. (6.48), it
does satisfy our overall scaling constraint and thus gives
rise to abundances exhibiting extremely suppressed time-
evolutions. This in and of itself is also an interesting new
feature which does not emerge in the standard ΛCDM
cosmologies but which may nevertheless have important
phenomenological implications. We shall refer to this
phenomenon involving abundances with extremely sup-
pressed time dependences as a quasi-stasis. We shall re-
turn to this issue in Sect. IX.

By contrast, Branch A satisfies all of our stasis con-
straints, even when κ = 2, by virtue of the fact that

γ = 1 along the full length of Branch A. Thus Branch A
exhibits a full triple stasis, thereby verifying that triple
stasis is possible! Even though the case with κ = 2 corre-
sponds to the logarithmic case within Eq. (6.46), the fact
that γ = 1 assures us that the argument of the logarithm
is itself time-independent. Thus the stasis behavior is
preserved even in this case.
Now that we have determined the conditions for (eter-

nal) stasis in Eq. (6.48), we can proceed to evaluate the
corresponding stasis abundances ΩΛ, ΩM , and Ωγ . In-
deed, from the bottom line of Eq. (6.45), both lines of
Eq. (6.46), and the top line of Eq. (6.47) we find

ΩΛ =
Ω

(0)
0

δη

( m0

∆m

)1/δ
h(t(0), t∗) (ξΓ0t∗)

−η

ΩM =
Ω

(0)
0

δ

( m0

∆m

)1/δ
h(t(0), t∗) ξ

wκ (Γ0t∗)
−η

X−1

Ωγ =
Ω

(0)
0

(4κ/3− 2)δ

( m0

∆m

)1/δ
h(t(0), t∗) ξ

wκ (Γ0t∗)
−η

(6.51)

where the quantity X within ΩM is given by

X ≡


2− κ

1− ξκ−2
κ ̸= 2

(log ξ)
−1

κ = 2 .
(6.52)

Note that L’Hôpital’s Rule guarantees that X is contin-
uous across η + wκ = 0.
Likewise, from Eq. (6.33), we find that our pumps dur-

ing stasis take the form

PΛM =
Ω

(0)
0

δ

( m0

∆m

)1/δ
h(t(0), t∗) (ξΓ0t∗)

−η 1

t

PMγ =
Ω

(0)
0

δ

( m0

∆m

)1/δ
h(t(0), t∗) ξ

wκ (Γ0t∗)
−η 1

t
.

(6.53)

For η + wκ = 0 (i.e., for κ = 2), we thus immediately
observe that

PΛM = PMγ . (6.54)

This case will be discussed extensively below. However
in all other cases we find that our pumps are unequal.
It is now straightforward to derive the relative pref-

actor constraints for triple stasis. Following the same
path as in previous sections (but bypassing the C- and
C ′-coefficients since our only interest is in the relative
prefactor constraints), we can simply write our pumps
in Eq. (6.53) directly in terms of our abundances in
Eq. (6.51):

PΛM = ηΩΛ
1

t

PMγ = XΩM
1

t
=

(
4κ

3
− 2

)
Ωγ

1

t
, (6.55)
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where the second expression for PMΛ follows from the
relation

XΩM =

(
4κ

3
− 2

)
Ωγ (6.56)

which emerges from a direct comparison between the final
two lines in Eq. (6.51). Happily, the results in Eq. (6.55)
immediately satisfy the first and third pump constraints
in Eq. (6.10), providing further evidence that our model
successfully yields stasis. Indeed, these are the con-
straints governing the independent flows of energy den-
sity out of ΩΛ and into Ωγ , respectively. However, just
as in previous sections, we learn nothing new from these
two relative prefactor constraints.

There is, however, another prefactor constraint — one
which is non-trivial. This is the middle constraint in
Eq. (6.10) which links the two pumps PΛM and PMγ to
each other and thereby ensures that they are compatible
with each other within a single cosmology in which the
sum of all three abundances is restricted to remain at 1.
[Alternatively, as discussed below Eq. (6.10), this con-
straint is not new if we impose the relation in Eq. (6.3),
which likewise ensures that our cosmology simultaneously
includes all three energy components.] Comparing our re-
sults in Eq. (6.55) with the middle equation in Eq. (6.10)
we obtain the additional constraint

ηΩΛ = (X + κ− 2)ΩM . (6.57)

Taking this constraint together with Eq. (6.56) and the
constraint that

∑
i Ωi = 1, we then find that our relative

prefactor constraints can be satisfied only if our stasis
abundances are given by

Ωi = ri
/∑

j rj (6.58)

where

rΛ = (4κ− 6)(X + κ− 2)

rM = (4κ− 6) η

rγ = 3ηX . (6.59)

Of course, we know from Eq. (6.34) that

κ =
2− η

1 + w
. (6.60)

With Eq. (6.60) inserted into Eq. (6.59), we therefore find
that our final stasis abundances in Eq. (6.58) can be writ-
ten directly in terms of the input variables (α, γ, δ, w).
Indeed, only for these values of our three abundances is
the middle pump equation in Eq. (6.33) consistent with
the other two [or equivalently is the value of κ in these
constraint equations consistent with its original definition
in Eq. (6.3)].

The above analysis, which employed the
instantaneous-decay approximation, may be refined
in a straightforward manner in order to account for

the full exponential nature of the ϕℓ decays. Af-
ter making the replacements Θ(τ − t) → e−t/τ and
Θ(t − τ) → 1 − e−t/τ in Eqs. (6.20) and (6.42), we find
that Eq. (6.55) still holds, but with the expression for X
in Eq. (6.52) replaced by

X ≡ Γ(3− κ, ξ−1)

Γ(2− κ, ξ−1)
. (6.61)

Here Γ(a, z) denotes the upper incomplete gamma func-
tion, with the usual domain of the argument a extended
to include all non-positive real values:

Γ(a, z) ≡
∫ ∞

z

dy ya−1e−y . (6.62)

It therefore follows that the stasis abundances Ωi have
the same forms as in Eqs. (6.58) and (6.59), but with X
defined in Eq. (6.61).
We emphasize once again that the model of triple stasis

that we have presented in this section represents a com-
plete and self-consistent picture of the underlying dynam-
ics only when certain conditions are satisfied. In partic-
ular, since we are neglecting the direct transfer of energy
density from vacuum energy to radiation, this model is
valid only within the regime wherein this transfer of en-
ergy density has a negligible effect on the cosmological
dynamics. Thus, in what follows, we shall restrict our
attention to regions of our parameter space wherein the
ratio τℓ/tℓ is sufficiently large for all ϕℓ that only a neg-
ligible fraction of the comoving number density of each
particle species would have decayed at times t < tℓ. In
other words, we shall require that

1− e−Γℓtℓ < ϵdec , (6.63)

for all ϕℓ, where ϵdec is an arbitrary small number. How-
ever, since triple stasis requires that γ = 1, Eq. (6.13)
implies that Γℓtℓ = ξ−1 for all ϕℓ. Thus, the condition in
Eq. (6.63) is tantamount to imposing an lower bound on
ξ of the form

ξ > ξmin ≡ −1

log(1− ϵdec)
. (6.64)

In what follows, we shall take ϵdec = 0.05, which yields
ξmin ≈ 19.5. That said, we note that since no energy
density is transferred to radiation by the decay of each
ϕℓ at times t < τℓ in the instantaneous-decay approxima-
tion, our analysis is formally valid in this approximation
for all ξ > 1.
In Fig. 10, we illustrate the emergence of triple sta-

sis along Branch A. In each panel of Fig. 10, we plot
the three abundances ΩΛ, ΩM , and Ωγ as functions of
the number of e-folds since the original production time
within the framework of a full exponential decay. These
three cases correspond to sections of Branch A with
κ > 2, κ = 2, and κ < 2 respectively. In all cases we
find that a triple stasis is reached, with the stasis abun-
dances precisely matching the predictions in Eqs. (6.58)
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FIG. 10. Triple stasis! The abundances ΩΛ (solid dark blue curves), ΩM (solid cyan curves), and Ωγ (solid magenta curves),

plotted as functions of the numberN of e-folds of cosmic expansion since the production time t(0). In each case these abundances
approach and then remain fixed at the corresponding stasis values (dotted lines) predicted in Eqs. (6.58) and (6.59), with X
given in Eq. (6.61). These curves are calculated for reference values α = 2/3 (left panel), 1 (middle panel), and 1.1 (right
panel), holding δ = 3, γ = 1, and w = −2/3 fixed across all panels. The full exponential nature of the decay process was taken
into account in modeling the transition of energy density from matter to radiation. These choices lead to stasis values κ = 3,
2, and 1.7, respectively, and we have adjusted Γ0/m0 in each case in order to hold ξ = 20 fixed for all panels. These figures
confirm that we can achieve triple stasis for κ > 2, κ = 2, and κ < 2, respectively, and that it takes less time to achieve triple
stasis as κ increases.

and (6.59) with X given in Eq. (6.61). This then pro-
vides numerical confirmation of the existence of triple
stasis. We also note that it takes longer to reach triple
stasis as κ is decreased.

In Fig. 11, we illustrate how the expressions for the
stasis abundances ΩΛ, ΩM , and Ωγ in Eqs. (6.58) and
(6.59) depend on our model parameters η, w, and ξ. In
the panels appearing along the top row of the figure, we
plot these abundances as functions of η for three different
values of w, with ξ fixed. We note that since ξ depends
on κ, and hence on η, the ratio m0/Γ0 also varies with η
in each panel such that ξ remains constant within each
panel. The results shown in the left, middle, and right
panels of this row correspond to the choices w = −0.9,
w = −0.7, and w = −0.35, respectively, and in all three
panels we have taken ξ = 20 — a value which exceeds
ξmin for our chosen value of ϵdec. The solid curves in each
panel indicate the values of ΩΛ (blue), ΩM (cyan), and
Ωγ (magenta) obtained using the form forX in Eq. (6.61)
corresponding to full exponential decay, while the dashed
curves indicate the corresponding abundances obtained
using the form for X in Eq. (6.52) corresponding to the
instantaneous-decay approximation. The gray region on
the right side of each of these panels is excluded by the
constraint 0 < η ≤ (1 − 3w)/2, which follows from the
constraint κ > 3/2 in Eq. (6.49).

From these panels we observe that the universe during
stasis is effectively vacuum-energy dominated in the η →
0 limit, with ΩΛ → 1 and ΩM ,Ωγ → 0. Indeed, this holds
true regardless of the value of w. However, as η increases,
we see that Ωγ rises monotonically and reaches unity at
the point at which η reaches its maximum value, while
ΩΛ falls monotonically to zero over the same interval.
By contrast, ΩM initially increases with η, reaching a
maximum (the value of which depends non-trivially on η,

w, and ξ), and then falling to zero as η increases toward
its maximum value. Thus, in each case, we see that our
triple stasis as a function of η interpolates between a
fully vacuum-energy dominated universe and a radiation-
dominated one.

In the panels along the bottom row of Fig. 11, we in-
stead plot ΩΛ, ΩM , and Ωγ as functions of ξ for different
values of η, with w held fixed. The results in the left,
middle, and right panels of this row correspond to the
choices η = 1.0, η = 1.3, and η = 1.5, respectively, and
for all three panels we have taken w = −0.7. The gray
region on the left side of each of these three panels indi-
cates the region wherein ξ < ξmin, which lies outside our
regime of validity.

We observe from these panels that the behavior of
the abundances in the ξ → ∞ limit depends on the
relationship between η and w. For η < 2w, as illus-
trated in the left and middle panels, Ωγ → 0 and the
triple stasis reduces to a pairwise stasis involving vac-
uum energy and matter alone in both the exponential-
decay treatment and the instantaneous-decay approxi-
mation. By contrast, for η > 2w, as illustrated in the
right panel, ΩΛ → 0 and the triple stasis reduces to a
pairwise stasis involving matter and radiation alone in
both the exponential-decay model and the instantaneous-
decay approximation. In the opposite limit, as ξ becomes
small, the exponential-decay treatment becomes increas-
ingly unreliable, since the direct transfer of vacuum-
energy to radiation, which we are neglecting, becomes
important when ξ < ξmin. However, the instantaneous-
decay approximation is formally valid for all ξ < 1. In
this approximation, ΩM → 0 in the ξ → 1 limit irre-
spective of the relationship between η and w. Thus, in
this limit, the triple stasis reduces to a pairwise stasis
involving vacuum energy and radiation.
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FIG. 11. Top panels: The stasis abundances ΩΛ (blue), ΩM (cyan), and Ωγ (magenta), plotted as functions of η for different
values of w with ξ held fixed. The solid curves are calculated assuming full exponential decay, while the dashed curves are
calculated within the instantaneous-decay approximation. The gray region on the right side of each panel is excluded by the
constraint 0 < η ≤ (1− 3w)/2, which follows from the constraint κ > 3/2 in Eq. (6.49). Bottom panels: The stasis abundances
ΩΛ (blue), ΩM (cyan), and Ωγ (magenta), plotted as functions of ξ for different values of η with w held fixed. The gray regions
on the left sides of these panels correspond to ξ < ξmin and are thus outside our regime of validity. In the instantaneous-decay
approximation, we see that ΩM → 0 as ξ → 0 irrespective of the value of η, whereupon our triple stasis reduces to a pairwise
stasis involving vacuum energy and radiation. By contrast, the behavior of the abundances as ξ → ∞ limit depends on the
relationship between η and w. For η < 2w, as illustrated in the left and middle panels, Ωγ → 0 and the triple stasis reduces to
a pairwise stasis involving vacuum energy and matter. By contrast, for η > 2w, as illustrated in the right panel, ΩΛ → 0 and
the triple stasis reduces to a pairwise stasis involving matter and radiation.

It is also instructive to “look under the hood” and ex-
amine how these triple stasis configurations are realized
in terms of the behaviors of the abundances Ωℓ(t) of the
individual constituents within the towers. In Fig. 12,
we have chosen a triple stasis corresponding to the in-
put parameters (α, γ, δ, w) = (1, 1, 5,−0.7) and plotted
the total abundances ΩΛ (thick dark-blue solid line), ΩM

(thick cyan solid line), and Ωγ (thick magenta solid line)
as functions of the number N of e-folds since the ini-
tial production time. We have also plotted the individ-
ual abundances Ωℓ(t) corresponding to the uppermost
states within the tower that give rise to this stasis over
the time interval shown. These latter abundances are
shown as thin lines as they transition between vacuum
energy (blue), then matter (cyan), and ultimately radi-
ation (magenta). The underdamping transition between
the vacuum-energy and matter phases occurs along the

upper dashed black line, while the instantaneous-decay
transition between the matter and radiation phases oc-
curs along the lower dashed black line.

This figure can be viewed as an explicit numerical real-
ization of the left panel of Fig. 7 except that it is plotted
for individual abundances Ωℓ(t) rather than individual
energy densities ρℓ(t). Indeed, for each line this change
from energy density to abundance introduces an extra
overall factor of H2 (which scales as t2 during stasis),
thereby tilting all slopes upward relative to those shown
in Fig. 7. However, this figure also includes the ini-
tial transient behavior of our system as it evolves from
the production time t(0) into stasis. The red transition
lines in Fig. 7 correspond to the dashed black lines here,
asymptotically becoming parallel once stasis is reached.
This figure can also be viewed as a triple-stasis analogue
of the left panel of Fig. 1.
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FIG. 12. Triple stasis “under the hood”, illustrating how the individual abundances Ωℓ(t) conspire to bring our system into
— and then sustain — triple stasis. Working within the framework of the instantaneous-decay approximation and choosing
(α, γ, δ, w) = (1, 1, 5,−0.7) in order to highlight critical features, we plot the three total abundances ΩΛ (thick dark-blue solid
line), ΩM (thick cyan solid line), and Ωγ (thick magenta solid line) as functions of the number N of e-folds since the initial
production time. We also plot the individual abundances Ωℓ(t) (thin lines) as they evolve in time, starting as vacuum energy
(dark blue) before transitioning to matter (cyan) and eventually to radiation (magenta). For the sake of graphical clarity we
have only shown every 20th individual abundance Ωℓ(t), starting from the top of the tower, and adjusted Γ0/m0 such that
ξ = 300. The underdamping transition between the vacuum-energy and matter phases occurs along the upper dashed black
line, while the instantaneous-decay transition between the matter and radiation phases occurs along the lower dashed black line.
This figure can be viewed as an explicit numerical realization of Fig. 7 except that it is plotted for individual abundances Ωℓ(t)
rather than individual energy densities ρℓ(t) and also includes the initial transient behavior of our system as it evolves from

the production time t(0) into stasis. The red transition lines in Fig. 7 correspond to the dashed black lines here, asymptotically
becoming parallel once stasis is reached. This figure can also be viewed as a triple-stasis analogue of the left panel of Fig. 1.

As we see from Fig. 12, each abundance begins im-
mediately after production with a horizontal slope, as
appropriate for a highly vacuum-energy-dominated uni-
verse. However, these curves all begin to curve upwards
as increasing amounts of matter are produced near the
top of the tower, thereby affecting the Hubble parame-
ter for the overall cosmology. However, this behavior is
part of the overall transition to stasis. Indeed, we see
that within several e-folds our abundances begin to ex-
hibit the “cross-hatched” behavior that is the hallmark
of stasis, with the identity of the most abundant state
continually shifting down the tower as time evolves. The
fact that these abundances “reflect” off the underdamp-
ing transition line rather than the effective decay line (not
shown) allows us to identify this figure as the analogue of
the left panel, rather than the right panel, within Fig. 7.
This is consistent with the fact that Fig. 7 was evaluated

numerically for parameters corresponding to κ = 8/3,
whereupon we see that indeed κ > α.

E. More about h-factors

At long last, we are now in a position to circle back and
address one of the assumptions with which we started
in Sect. VIC, namely our assumption discussed below
Eq. (6.20) that t∗ < tℓ for all ℓ, where t∗ is a fiducial
time during stasis. Strictly speaking, such an assumption
cannot hold throughout our tower: since tℓ gets smaller
and smaller as we proceed up the tower, we must in-
evitably reach a point at which tℓ becomes less than t∗.
The states above this point therefore violate our assump-
tion. Yet this assumption has been made at many points
throughout this paper — not only below Eq. (6.20), but
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also in Sect. III [see below Eq. (3.17)] and implicitly in
Sects. II and IV. Although this issue has been relevant
in each of these earlier cases, it is within the case of triple
stasis that this issue becomes the most critical. It is for
this reason that we have deferred this discussion until
now.

There is another related concern that might also seem
to cast doubt on our previous analyses. If we were to go
back to Eq. (6.20) and describe the time-evolution of the

individual constituent energy densities ρ
(Λ,M,γ)
ℓ since the

initial production time t(0) — as needed in order to make
contact with the scaling relations in Eq. (2.12) that define
our BSM model — we might attempt to follow our results
from previous sections such as those in Eq. (2.15) and
write these energy densities in terms of an appropriate
h(t(0), t∗) function which describes the net (a priori un-
known) gravitational redshifting that occurs between t(0)

and t∗. However, as we proceed toward the heavier states
in the tower, both tℓ and τℓ become increasingly small.
As a result, it is possible to reach a point at which the
relative ordering between t∗ and tℓ, and potentially even
between t∗ and τℓ, will change. However, if either tℓ or
τℓ becomes smaller than t∗, then the corresponding field
will already begin to behave as matter or radiation be-
fore reaching stasis. This means that the time-evolution
of such a field will be different than it would have been
for fields with tℓ larger than t∗, since the latter fields will
behave as vacuum energy all the way until reaching sta-
sis. It is therefore possible that a single undetermined
h-function may not be sufficient to describe all the states
in our tower prior to reaching stasis.

This argument can also be phrased in terms of the to-
tal abundances ΩΛ,M,γ . Within our pairwise stasis anal-
yses only one h-function was needed because there was
only one independent total abundance whose behavior
we needed to describe between t(0) and t∗. Indeed, the
second abundance was not an independent degree of free-
dom because the sum of our two abundances was fixed at
1. However, for a triple stasis, we now have three total
abundances which must sum to 1, implying that there
could be two independent h-functions describing our to-
tal abundances.

The presence of multiple h-functions is exceedingly
dangerous for the analysis we have been performing. In
this paper we have been deriving not only overall scaling
constraints and log-avoidance constraints, but also rela-
tive prefactor constraints. For example, in the case of
triple stasis, such relative prefactor constraints are none
other than the relations in Eq. (6.55) which express our
pumps directly in terms of our abundances, thereby by-
passing all of the leading coefficients that are common
to the pumps and the abundances. When there is only
a single h-function, it cancels from both sides of these
relative prefactor constraints. This unknown h-function
will therefore not affect the nature of such constraints.
However, with multiple h-functions, it is possible that
different h-functions will appear on each side of our rel-
ative prefactor constraints. Such h-functions would no

longer cancel, thereby bringing our previous results into
doubt.

These are all serious concerns. However, we will now
demonstrate that none of these worries are ultimately
realized. In particular, we will explain why we can indeed
assume that t∗ < tℓ in our analysis, and why only a single
h-function is relevant for calculations of stasis quantities
such as the stasis abundances Ωi. It therefore follows
that all of our previous results remain valid.

To understand why only a single h-function is relevant
— and likewise to understand why we may assume t∗ < tℓ
in our analysis — let us go back to Eq. (6.20) and attempt
to write our different energy densities ρℓ(t) in terms of

the initial energy densities ρ
(Λ,M,γ)
ℓ (t) at the production

time t = t(0). We know, of course, that tℓ < τℓ, and like-
wise we know that vacuum energy, matter, and radiation
respectively correspond to t < tℓ, tℓ < t < τℓ, and t > τℓ.
We also seek to be describing these energy densities dur-
ing stasis, and therefore we know t > t∗. However, since
different parts of the tower will have different relative
orderings of t∗, tℓ, and τℓ, we will make no assumption
regarding this ordering. We then find that there are only
six different potential orderings of the relevant timescales
in our model:

Λ : t(0) < t∗ < t < tℓ < τℓ

M1 : t(0) < t∗ < tℓ < t < τℓ

M2 : t(0) < tℓ < t∗ < t < τℓ

γ1 : t(0) < t∗ < tℓ < τℓ < t

γ2 : t(0) < tℓ < t∗ < τℓ < t

γ3 : t(0) < tℓ < τℓ < t∗ < t . (6.65)

Given these orderings, we can then write down the cor-
responding energy densities ρℓ at time t in terms of their

values ρ
(0)
ℓ at t(0). Each takes the general form

ρℓ(t) = ρ
(0)
ℓ · Gℓ(t) · Heaviside (6.66)

where ‘Heaviside’ denotes the specific Θ-function com-
binations in Eq. (6.20) for vacuum energy, matter, and
radiation, and where Gℓ(t) are the net gravitational red-
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shift factors given by

G
(Λ)
ℓ (t) = hΛ(t

(0), t∗)

(
t

t∗

)−(1+w)κ

G
(M1)
ℓ (t) = hΛ(t

(0), t∗)

(
tℓ
t∗

)−(1+w)κ(
t

tℓ

)−κ

G
(M2)
ℓ (t) = hΛ(t

(0), tℓ)hM (tℓ, t∗)

(
t

t∗

)−κ

G
(γ1)
ℓ (t) = hΛ(t

(0), t∗)

(
tℓ
t∗

)−(1+w)κ(
τℓ
tℓ

)−κ(
t

τℓ

)−4κ/3

G
(γ2)
ℓ (t) = hΛ(t

(0), tℓ)hM (tℓ, t∗)

(
τℓ
t∗

)−κ(
t

τℓ

)−4κ/3

G
(γ3)
ℓ (t) = hΛ(t

(0), tℓ)hM (tℓ, τℓ)hγ(τℓ, t∗)

(
t

t∗

)−4κ/3

.

(6.67)

Here hΛ, hM , and hγ represent the unknown but distinct
gravitational redshift factors that are accrued by vacuum
energy, matter, and radiation prior to stasis (i.e., prior
to t∗). It is the appearance of all three redshift factors in
these expressions which is our primary concern. In gen-
eral, all three redshift factors will propagate throughout
our subsequent calculations, potentially leading to the
difficulties discussed above.

It is important to note that all of these difficulties arise
only for cases in which tℓ > t∗. If it were possible to
impose the constraint that t∗ < tℓ, then cases M2, γ2,
and γ3 in Eq. (6.65) would be eliminated, and multi-
ple h-factors would no longer arise — even in situations
in which vacuum energy, matter, and radiation are all
present. Moreover, the only remaining redshift factor
would be hΛ(t

(0), t∗), and this is entirely ℓ-independent .
It would therefore be possible to form a coherent ℓ-sum,
thereby yielding a single h-factor for total abundances
such as ΩΛ, ΩM , and Ωγ .
The issue, then, boils down to a simple question: what

justifies the assumption that t∗ < tℓ? We have already
seen that there can exist states at the top of the tower
for which this assumption is not true. What, then, would
justify disregarding these states in our analysis?

To analyze this issue, let us return to Fig. 12 and con-
sider the behavior of the individual abundances at some
time t deep within stasis. For example, such a time t
is indicated as the right-most vertical orange/red dashed
line in Fig. 13. At the time t, it is clear that only the
states with significant abundances can possibly be im-
portant players in continuing to produce the stasis phe-
nomenon. By contrast, states whose abundances at time
t have fallen below some chosen cutoff value can no longer
play a significant role in supporting the stasis at time t.
We have indicated such a cutoff as corresponding to the
horizontal orange/red line in Fig. 13, and states whose
abundances at time t have fallen below this cutoff have
been colored in gray. Such states simply do not matter
for the purposes of analyzing the stasis phenomenon at
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FIG. 13. A version of Fig. 12 illustrating that at any suffi-
ciently late time t during triple stasis it is possible to choose
an earlier fiducial time t∗ — also during triple stasis — such
that all states ϕℓ with significant abundances Ωℓ at time t are
still overdamped at t∗. Thus, when studying the properties of
stasis at any sufficiently late time t during triple stasis, it is
a legitimate approximation to assume that all relevant states
ϕℓ have tℓ > t∗, with all other states from Fig. 12 disregarded
and hence shown in gray.

time t. However, tracing the remaining (colored) states
backwards in Fig. 13, we see that there is a lower limit
to the times tℓ at which such states all became under-
damped. Thus, so long as this lower limit is still within
the stasis epoch, we can identify this lower limit as t∗.
We thus have a situation in which t∗ < tℓ for all of the
states which will ultimately play a role in supporting sta-
sis at time t — i.e., the states whose abundances exceed
a critical cutoff value at time t. Indeed, the deeper into
the stasis epoch we go (i.e., the larger t becomes), the
larger the corresponding fiducial time t∗ can be for which
we may safely assume t∗ < tℓ for all relevant states.

This argument can also be understood in the forward
direction, starting with our entire tower at the produc-
tion time. As we have discussed above, it is generally
the heavier states within the tower which are most in
danger of becoming underdamped (or potentially even
decaying) prior to our system entering stasis, thereby vi-
olating our assumption that t∗ < tℓ. However, for suffi-
ciently late times t during stasis, we need no longer con-
sider the contributions from such heavier states, since
their abundances at time t will have dropped below a
critical relevance cutoff. In other words, such states can
be viewed as “turning gray” within the conventions of
Fig. 13, with increasingly many states becoming gray as
the time t evolves. We can then safely ignore the contri-
butions from such states when discussing analyzing stasis
at time t. Since stasis persists over many e-folds, we are
free to choose t sufficiently large so that t∗ — which is
smaller than all of the relevant tℓ — is itself within stasis.
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We can then freely assume that t∗ < tℓ for all relevant ℓ.

We have already noted at numerous points in this pa-
per that one critical property of stasis is that the identity
of the most-abundant state at any given time t itself pro-
gresses down the tower as t increases. Each state “gets its
day” supporting the stasis before yielding its dominant
role to the next state in the tower and subsequently di-
minishing into irrelevance as time proceeds. In this sense,
old age does indeed each generation waste. But this is
how the stasis state continues to be supported, extended
across a cold pastoral landscape of many e-folds, with
the abundances ΩΛ,M,γ remaining fixed as if carved in
marble.

Of course, as evident in Figs. 12 and 13, the heav-
iest states in the tower play a critical role in shaping
the initial transient behavior that occurs between t(0)

and t∗. These states thus play an important in role in
guiding the system towards stasis. However, as we have
seen, these states cease to play a role within the sta-
sis itself. The same interpretation may be given to the
different h-functions in Eq. (6.67). Clearly they are rel-
evant for describing the initial transient behavior of our
system. However, the further into stasis our system gets,
the smaller the influence of the initial behavior encap-
sulated within hγ and then hM . Ultimately we reach a
time t beyond which only the single h-function hΛ re-
mains to play a role. Thus only hΛ is ultimately needed
for describing the stasis state, as discussed above. In-
deed, taking t∗ < tℓ and the ability to eliminate hM and
hγ from our stasis calculations go hand in hand.

We thus conclude that it is legitimate to assume t∗ < tℓ
for all relevant ℓ, whereupon we may disregard all but
the single h-function hΛ(t

(0), t∗). Moreover, this single
h-function will cancel from all relative prefactor con-
straints. We thus conclude that all of the triple-stasis
results we have derived thus far remain valid.

Having discussed the h-factors that are relevant for
individual abundances Ωℓ, let us turn to the h-factors
that are relevant for the total abundances ΩΛ, ΩM , and
Ωγ during stasis. However, as we have seen, the fact
that we can now restrict our contributing states to those
satisfying t∗ < tℓ during stasis means that our individual
abundances during stasis depend only on hΛ(t

(0), t∗), and
this quantity is ℓ-independent. This factor can therefore
be pulled out of any ℓ-sum, whereupon we see that the
corresponding total abundances during stasis will also
share this same h-factor. We thus see that the h(t(0), t∗)
function that has appeared throughout this section for
our abundances and pumps during stasis is nothing but
hΛ(t

(0), t∗).

That said, it is also interesting to consider the man-
ner in which our total abundances transition from their
initial values at t(0) towards their ultimate stasis values.
Of course, throughout this paper we have described the
net effects of this pre-stasis process on our total abun-
dances through a single h-factor which we have denoted
h(t(0), t∗). By extending from t(0) all the way to t∗, this
factor in principle encapsulates the all of this initial tran-

sient behavior. However, we have not examined the ac-
tual time-dependence associated with this transient be-
havior — i.e., the time-dependence of our abundances
ΩΛ,M,γ(t) as they evolve towards their stasis values. In-
deed, this evolution is of interest since it corresponds to
the initial curvatures in the plots of the total abundances
in Figs. 1, 3, 4, 10, and 12.
Ultimately, this behavior can also be written in terms

of the hΛ, hM , and hγ functions we have discussed above.
For this analysis we shall content ourselves with under-
standing the basic algebraic structural elements associ-
ated with this behavior. Once again evaluating ΩΛ,M,γ(t)
as functions of t — but now without the assumption of
stasis — we obtain

ΩΛ(t) =

∫
dτ nτ (τ) Ω

(0)
0 (Γ0τ)

−1/γ
hΛ(t

(0), t)

ΩM (t) =

∫
dτ nτ (τ) Ω

(0)
0 (Γ0τ)

−1/γ
hΛ

(
t(0), f(τ)

)
× hM (f(τ), t)

Ωγ(t) =

∫
dτ nτ (τ) Ω

(0)
0 (Γ0τ)

−1/γ
hΛ

(
t(0), f(τ)

)
× hM (f(τ), τ) hγ(τ, t) . (6.68)

where these τ -integrals have limits that follow the general
structure

Λ :

∫ τ0

f−1(t)

, M :

∫ f−1(t)

t

, γ :

∫ t

τN−1

. (6.69)

In these equations, f(τ) denotes the underdamping time
[i.e., the time t̂ at which 3H(t̂) = 2m] for that part of
the tower which decays at time τ , while f−1(t) denotes
the inverse of this function. If we were in a stasis con-
figuration, we would have H(t) = κ/(3t), whereupon we
would identify

f(τ) =
(Γ0τ)

1/γ

ξΓ0
⇐⇒ f−1(t) =

(ξΓ0t)
γ

Γ0
. (6.70)

The limits in Eq. (6.69) would then be nothing other than
those in Eq. (6.40). However, since we are not assuming
stasis for this calculation, we can no longer assert that
H(t) = κ/(3t). Thus the identifications in Eq. (6.70) will
no longer hold. The function f(τ) will nevertheless de-
pend on the values of the abundances ΩΛ(t) themselves,
thereby creating a highly non-linear system of equations.
The overall algebraic structure indicated in Eqs. (6.68)

and (6.69) is valid for all times t. Indeed, given this
general structure, we thus see that it is the integrals of
products of our hΛ,M,γ functions which are responsible
for producing the initial curvatures for the total abun-
dances plotted in our figures.
One feature which is worthy of note from this structure

is that the hΛ, hM , and hγ functions are not independent
of each other. Instead, they must be related in such a
way that ΩΛ(t) +ΩM (t) +Ωγ(t) = 1 for all t. Of course,
the overall value of this sum of abundances is determined



41

by the choice of Ω
(0)
0 at the initial time. However, what

is remarkable is that once this value is set, this sum of
abundances remains fixed as a function of t.

In order to see how this feat is ultimately accomplished,
we note that the variable t appears within Eq. (6.68) in
only two sets of locations. The first set of locations con-
sists of those within the limits of integration that deter-
mine the boundaries between the integration domains for
ΩΛ and ΩM , and between ΩM and Ωγ , as indicated in
Eq. (6.69). By contrast, the second set of locations con-
sists of those within the final h-factors that appear within
the integrands for each of the three total abundances in
Eq. (6.68). The appearance of t within the first set of
locations tells us that t determines the partition of the
total τ -range τN−1 ≤ τ ≤ τ0 into the individual ranges
corresponding to Λ, M , and γ. Indeed, as t increases, the
range of τ corresponding to Λ decreases, while that cor-
responding to γ increases. This is consistent with Fig. 8.
Thus, different portions of the τ -range pass directly from
one type of energy component to another. However, this
passing of abundance between the individual components
Ωi(t) does not affect the total abundance

∑
i Ωi(t). By

contrast, it is the appearance of t within the second set
of locations — i.e., within the different integrands within
Eq. (6.68), each with its own unique time-dependence —
that can potentially affect the value of

∑
i Ωi. Indeed,

since the time t appears within hΛ function for ΩΛ(t),
within the hM function for ΩM (t), and within the hγ

function for Ωγ(t), the cancellation of these time depen-
dences for the sum

∑
i Ωi(t) implies a relation between

these three h-functions.
These assertions can be made mathematically explicit

by considering the time-derivatives of the total abun-
dances in Eq. (6.68). Considering dΩγ(t)/dt first, we
find

dΩγ(t)

dt
= nτ (t) Ω

(0)
0 (Γ0t)

−1/γ
hΛ

(
t(0), f(t)

)
× hM (f(t), t) hγ(t, t)

+

∫ t

τN−1

dτ nτ (τ) Ω
(0)
0 (Γ0τ)

−1/γ

× hΛ

(
t(0), f(τ)

)
× hM (f(τ), τ)

d

dt
hγ(τ, t) ,

(6.71)

where the first term [top two lines of Eq. (6.71)] comes
from differentiating the factor of t within the integra-
tion limit, while the second term [remaining three lines
of Eq. (6.71)] comes from differentiating the factor of t
in the integrand. Note that hγ(t, t) = 1 in the second
line of Eq. (6.71). As a result, hγ completely disappears
from the first term of Eq. (6.71) — a feature which al-
lows us to identify the remaining h-factor structure as
appropriate for a matter abundance rather than a radi-
ation abundance. Indeed, taken together, this first term

is nothing but nτ (t)Ω
(M)
τ (t; t), and this product in turn

is nothing but our pump PMγ in Eq. (6.30). Eq. (6.71)
thus takes the relatively simple form

dΩγ(t)

dt
= PMγ(t) +

∫ t

τN−1

dτ nτ (τ)
d

dt
Ω(γ)

τ (τ ; t) .

(6.72)
This result of course makes perfect intuitive sense, assert-
ing that the total rate of change for the total radiation
abundance Ωγ has two contributions: one from the abun-
dance being pumped into radiation through ϕℓ decays,
and the second from the natural Hubble scaling associ-
ated with this abundance itself. We stress that this result
holds in complete generality, and does not assume a sta-
sis of any sort. We also remark that it is not surprising
that one of our pumps has made an appearance in this
calculation. Eq. (6.68) essentially represents the integral
form for our analysis, while taking the time-derivative has
thrown us into the differential form in which our pumps
make an appearance. As we see, this remains true even
if we are not in a stasis epoch.
Proceeding similarly for dΩΛ(t)/dt, we find

dΩΛ(t)

dt
= − df−1(t)

dt
nτ

(
f−1(t)

)
Ω

(0)
0

×
[
Γ0f

−1(t)
]−1/γ

hΛ

(
t(0), t

)
+

∫ τ0

f−1(t)

dτ nτ (τ) Ω
(0)
0 (Γ0τ)

−1/γ

× d

dt
hΛ(t

(0), t). (6.73)

However, as discussed below Eq. (6.69), f(τ) is essentially
t̂ (the continuous variable associated with underdamping
times rather than decay times). We can then identify

df−1(t)

dt
nτ = nt̂ (6.74)

whereupon we see that the first term in Eq. (6.73) is
nothing but the product of two factors:

• the density of states per unit t̂ evaluated for the
part of the tower with τ -value f−1(t); and

• the vacuum-energy abundance evaluated at the
time t for the part of the tower with τ -value f−1(t).

However, the first of these factors is nothing but the den-
sity of states per unit t̂ for that part of the tower with
t̂-value t, previously denoted nt̂(t). Likewise, the second
factor is nothing but the vacuum-energy abundance eval-
uated at the time t for that part of the tower with t̂-value

t, previously denoted Ω
(Λ)

t̂
(t; t). Upon comparison with

Eq. (6.30), we then see that the product of these two
factors is nothing but the pump PΛM (t). We thus have

dΩΛ(t)

dt
= − PΛM (t)

+

∫ τ0

f−1(t)

dτ nτ (τ)
d

dt
Ω(Λ)

τ (τ ; t) . (6.75)
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Likewise, for dΩM (t)/dt, we have

dΩM (t)

dt
= PΛM (t)− PMγ(t)

+

∫ f−1(t)

t

dτ nτ (τ)
d

dt
Ω(M)

τ (τ ; t) . (6.76)

Collecting our results in Eqs. (6.72), (6.75), and (6.76),
we thus find∑

i

dΩi(t)

dt
=

∫ τ0

f−1(t)

dτ nτ (τ)
d

dt
Ω(Λ)

τ (τ ; t)

+

∫ f−1(t)

t

dτ nτ (τ)
d

dt
Ω(M)

τ (τ ; t)

+

∫ t

τN−1

dτ nτ (τ)
d

dt
Ω(γ)

τ (τ ; t) .

(6.77)

Interestingly, all of the pump terms have cancelled within
this sum. As anticipated above, this reflects the fact that
the pump terms describe the redistributions of energy
density between the different energy components within
our system, but do not affect the total energy density of
the system itself. Only the Hubble redshifting effects can
do that.

The statement that
∑

i Ωi(t) is a constant then boils
down to the constraint that

∑
i dΩi(t)/dt = 0. We thus

find that the three terms on the right side of Eq. (6.77)
must cancel directly amongst themselves, i.e.,

0 =

∫ τ0

f−1(t)

dτ nτ (τ)
d

dt
Ω(Λ)

τ (τ ; t)

+

∫ f−1(t)

t

dτ nτ (τ)
d

dt
Ω(M)

τ (τ ; t)

+

∫ t

τN−1

dτ nτ (τ)
d

dt
Ω(γ)

τ (τ ; t) . (6.78)

This is then a constraint on the three h-functions which
appear within these three integrands and which help to
determine the time-derivatives therein. As noted above,
these h-functions also help to determine the value of
f−1(τ) which appears within the limits associated with
two of these integrals. This is therefore a complicated
system of equations which does not have an obvious an-
alytical solution. These results are nevertheless the un-
derpinnings of the initial curvatures in the plots of the
total abundances in Figs. 1, 3, 4, 10, and 12.

The terms in Eq. (6.78) all reflect the time-
dependences that come from cosmological redshifting ef-
fects. Their cancellation when summed across all three
abundances implies that while one abundance has a pos-
itive time-derivative under gravitational redshifting, an-
other must have a negative time-derivative. Indeed,
this feature is readily apparent within the figures pre-
viously cited. That said, we stress that the cancella-
tion of gravitational redshifting factors across all abun-
dances has nothing whatsoever to do with stasis. Indeed,

while Eq. (6.78) implies a cancellation between redshift
factors across different abundances, stasis is a cancella-
tion between the redshift factor and the corresponding
pump within each abundance individually. Indeed, this is
what is required in order to have each derivative dΩΛ/dt,
dΩM/dt, and dΩγ/dt vanish independently.
As we have stressed, the results in Eqs. (6.72), (6.75),

and (6.76) are completely general and make no assump-
tion of stasis. However, it is easy to see what becomes
of these results if we make the further assumption that
we are within a stasis epoch. Within a stasis epoch,
we know that the vacuum-energy, matter, and radiation
abundances have gravitational redshift factors that scale
as

hΛ(t∗, t) ∼
(

t

t∗

)2−(1+w)κ

hM (t∗, t) ∼
(

t

t∗

)2−κ

hΛ(t∗, t) ∼
(

t

t∗

)2−4κ/3

. (6.79)

where t∗, as always, is any time within stasis prior
to t. Since these h-functions are the only places that
carry an explicit t-dependence within the abundances

Ω
(Λ,M,γ)
τ (τ ; t) that appear within the integrands of the

τ -integrals on the right sides of Eqs. (6.72), (6.75), and
(6.76), we immediately find upon taking the t-derivatives
of these expressions that

d

dt
Ω(Λ)

τ (τ ; t) =
[
2− (1 + w)κ

]
Ω(Λ)

τ (τ ; t)
1

t
d

dt
Ω(M)

τ (τ ; t) =
[
2− κ

]
Ω(M)

τ (τ ; t)
1

t
d

dt
Ω(γ)

τ (τ ; t) =
[
2− 4κ/3

]
Ω(γ)

τ (τ ; t)
1

t
. (6.80)

Performing the τ -integrals in Eqs. (6.72), (6.75), and
(6.76) and then setting dΩi(t)/dt = 0 for each i = Λ,M, γ
then yields precisely the pump equations in Eq. (6.10)
with which we started, thereby providing a critical cross-
check on our results. Indeed, Eqs. (6.72), (6.75), and
(6.76) may be taken as the more general underpinning
behind Eq. (6.10), one which does not assume stasis but
which yields Eq. (6.10) as a special case. On the other
hand, our results within Eqs. (6.72), (6.75), and (6.76)
assume an instantaneous decay from matter to radiation
(and likewise assume that PΛγ = 0), while the result in
Eq. (6.10) is more general and in principle also allows for
the possibility of a direct energy transfer from vacuum
energy to radiation.

F. Pumps, seesaws, and energy flows

Finally, in order to understand these triple-stasis so-
lutions along Branch A more intuitively, let us consider
the flows of energy density that they imply.
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We shall begin by analyzing the case with κ = 2, since
this case turns out to have the greatest symmetry and
simplicity. With κ = 2, Eq. (6.34) reduces to the con-
straint η = −2w, which implies that η < 2. Since δ > 0,
this means we must have α < 2, and thus α < κ. This
then corresponds to the left panel of Fig. 7, but not the
right panel.

Given the result in Eq. (6.3), we learn that the con-
straint κ = 2 restricts our corresponding stasis abun-
dances to lie along a line of solutions for which

ΩΛ = − 1

3w
Ωγ (6.81)

with ΩM = 1 − ΩΛ − Ωγ . Indeed, it is only the specific
choices of (α, δ, w, ξ) that distinguish between the differ-
ent abundance solutions along this line. For example, as
w → −1, a particularly symmetric distribution of abun-
dances satisfying these constraints is (ΩΛ,ΩM ,Ωγ) =
(1/6, 1/3, 1/2). Indeed, this is the three-component ana-
logue of matter/radiation equality in the sense that ΩM

now carries 1/3 of the total abundance while the other
two abundances collectively carry 2/3.
Finally, given the constraints in Eqs. (6.10), we see

that our pump terms PΛM and PMγ for κ = 2 become
equal during triple stasis and are given by

PΛM = PMγ = − 2wΩΛ
1

t
=

2

3
Ωγ

1

t
. (6.82)

It turns out that this κ = 2 stasis solution can be visu-
alized in a particularly useful and compelling way. The
κ = 2 constraint means that the corresponding triple-
stasis universe must be effectively matter dominated, i.e.,
with an effective abundance-weighted equation-of-state
parameter

⟨w⟩ ≡
∑

i=Λ,M,γ

wiΩi = 0 (6.83)

where wΛ = w, wM = 0, and wγ = 1/3. Indeed, this con-
straint is nothing but the result in Eq. (6.81). However,
we may also view Eq. (6.83) as the condition for a “bal-
ancing” along a w-seesaw , as illustrated in Fig. 14, with
the fulcrum position ⟨w⟩ = w△ identified as w△ = 0. We
emphasize in this context that having κ = 2 does not
mean that all of the abundance is in the matter com-
ponent — it just means that the radiation abundance
must be three times (or more precisely −3w times) the
vacuum-energy abundance, so that the seesaw balances.
Whatever abundance is left over is thus the matter abun-
dance. Of course, this matter abundance sits immedi-
ately above the fulcrum, so any common rescaling of
the vacuum-energy and radiation abundances continues
to maintain the seesaw balance. This then provides a
seesaw-based explanation for the existence of a line of
triple-stasis solutions, all of which are balanced around
the fulcrum at w△ = 0 with the individual values of
(α, δ, w, ξ) selecting between them.

In this connection, we recall from the end of
Sect. IV that we previously had a case of vacuum-
energy/radiation abundance which allowed for a specta-
tor matter abundance. That universe was also required
to be effectively matter-dominated. The special case in
Sect. IV can thus be interpreted as a variant of the cur-
rent triple-stasis phenomenon – a variant in which the
two equal pumps PΛM and PMγ are merged into a sin-
gle pump PΛγ which bypasses ΩM completely, thereby
rendering ΩM a mere spectator abundance.
The manner in which this triple-stasis solution works is

thus clear, and is illustrated in Fig. 14. Because the uni-
verse is matter-dominated, the total matter abundance
ΩM does not feel any tendency to evolve in either direc-
tion (rise or fall) under cosmological expansion. Given
this, the triple-stasis solution then operates through the
following balancing act:

• Vacuum-energy abundance ΩΛ: In a matter-
dominated universe ΩΛ wants to rise due to cos-
mological expansion (as indicated through the pink
arrows in Fig. 14). However, the pump PΛM con-
tinually drains away this excess so that ΩΛ stays
fixed.

• Radiation abundance Ωγ : Conversely, in a matter-
dominated universe the radiation abundance Ωγ

wants to fall due to cosmological expansion. How-
ever, here the pump PMγ keeps sourcing a fresh
supply so that Ωγ also stays fixed.

• Matter abundance ΩM : Finally, it is through the
central matter abundance ΩM that the “collision”
between these two pairwise pumps occurs. How-
ever, with κ = 2 this collision is non-problematic:
the universe is effectively matter-dominated, and
thus the matter abundance sits directly atop the
fulcrum at w△ = 0. In this case there is no ten-
dency for the matter abundance to rise or fall,
which is consistent with the fact that the pumps
into and out of ΩM exactly cancel.

Note that this is a true triple stasis, with each energy
component experiencing interactions with others and ex-
periencing sources and/or sinks. Moreover, it is remark-
able that this solution balances correctly and that our
simple scalar model actually realizes it — especially given
that one of the pumps results from the transition from an
overdamped to underdamped phase while the other pump
involves decay, which is a completely different underly-
ing process! Moreover, even though this solution may
seem trivially balanced, with equal pumps into and out of
the “central” matter component ΩM , we must remember
that our physical realization of this triple stasis is actu-
ally highly non-trivial, with both pumps operating as the
associated transitions make their way down the ϕℓ tower
(as illustrated in Fig. 8). Finally, we did not need to cre-
ate a contorted model with arbitrary interactions in order
to realize this stasis — literally any coherent state of bo-
son zero modes (such as naturally arise in axion physics)
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FIG. 14. The “seesaw” structure of triple stasis with κ = 2 along Branch A in which the abundances of the different energy
components along the w-axis are balanced around a “fulcrum” located at ⟨w⟩ = w△ = 0. The location of the fulcrum
corresponds to a κ = 2 universe which is effectively matter-dominated. The pumps PΛM and PMγ (shown schematically
in blue) transfer energy from vacuum energy to matter and from matter to radiation, respectively. These pumps exactly
compensate for the effects of cosmological expansion wherein the effects due to gravitational redshifting (shown schematically
in pink) either increase or decrease the relative abundances of these different components according to their distances from the
fulcrum at w△ = 0. Changing the value of w for the vacuum energy component (shown schematically in green) corresponds
to “sliding” the position of the corresponding abundance along the w-seesaw. This abundance is then rescaled according to
Eq. (6.81) in order to maintain the balancing of the w-seesaw. However, this increased abundance experiences a weakened
gravitational redshifting and thus the delicate balancing inherent in triple stasis is maintained.

will necessarily experience not only a transition from an
overdamped to an underdamped regime but also an even-
tual decay. Moreover, we will naturally obtain a tower of
such states if this boson is higher-dimensional, with the
different ϕℓ fields identified as different KK modes.
This seesaw picture also enables us to understand

intuitively why this triple-stasis solution works for all
−1 < w < 0. Towards this end, let us imagine sliding ΩΛ

along the seesaw from w = −1 to w > −1, as illustrated
in Fig. 14, while keeping ΩM and Ωγ fixed. Under these

assumptions, we see from Eq. (6.81) that ΩΛ grows by a
factor of w−1:

ΩΛ = 3Ωγ → Ω
′
Λ = − 3

w
Ωγ . (6.84)

This too is illustrated in Fig. 14. However, following
Eq. (6.82) and given that κ remains fixed at κ = 2 even
as w shifts, we see that the total pump rate PΛM is un-
changed:

PΛM = 2ΩΛ
1

t
→ P ′

ΛM = −2wΩ
′
Λ

1

t
= PΛM . (6.85)

Thus PΛM remains equal to PMγ . Moreover, although

the shift in w causes the abundance ΩΛ to increase, it
also causes the rate of increase per unit abundance due

to cosmological expansion (as indicated by the wide pink
arrows in Fig. 14) to decrease. Thus the net rate at which
ΩΛ would tend to increase under cosmological expansion
alone is unchanged. This too is consistent with our ob-
servation that the pump PΛM is unchanged.

We now turn our attention to Branch A cases with
κ ̸= 2. These situations correspond to Fig. 7. Indeed, one
important feature of Branch A when κ ̸= 2 is that we can
now in principle have stasis configurations with 3α/4 <
κ < α, as illustrated in the right panel of Fig. 7. As an ex-
istence proof of such a possibility, let us consider the case
with w = −0.99 and (ΩΛ,ΩM ,Ωγ) = (0.05, 0.1, 0.85).
This configuration corresponds to κ ≈ 1.621, whereupon
we see that 2 − (1 + w)κ ≈ 1.984. This in turn implies
that α could potentially be as large as 1.984, thereby
exceeding κ while nevertheless ensuring that 3α/4 < κ.
This configuration therefore meets the conditions needed
in order to realize the stasis behavior in the right panel
of Fig. 7.

Because we are no longer restricting our attention to
κ = 2, our resulting stasis need not be effectively matter-
dominated. This means that during stasis all three of
our energy components (vacuum energy, natter, and ra-
diation) can experience gravitational redshifts, implying
that our two pumps PΛM and PMγ will no longer gener-
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FIG. 15. Same as Fig. 14, except for stasis solutions with κ ̸= 2. Upper panel : In this case κ < 2, implying that w△ > 0.
This causes ΩM to tend to increase under the effects of cosmological expansion, which implies that stasis is achieved only for
PΛM < PMγ . This inequality of the pumps is consistent with the fact that ΩΛ/Ωγ must be smaller than it was in Fig. 14 in
order to achieve a balanced “seesaw”. Lower panel : The same situation, but for κ > 2. In this case the signs of all inequalities
are reversed, with PΛM > PMγ and ΩΛ/Ωγ now larger than it was in Fig. 14.

ally be equal. We must nevertheless continue to have a
balancing as illustrated in Fig. 14. However, the fulcrum
need no longer be located at w△ = 0.

In general, for any system with Hubble expansion coef-
ficient κ, it is straightforward to determine the equation-
of-state parameter that a fluid must have in order that

its abundance neither rise nor fall as a result of cosmolog-
ical expansion. This defines the corresponding fulcrum
location w△, and indeed one finds

w△ ≡ 2

κ
− 1 . (6.86)

For a universe consisting of only matter, radiation, and
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vacuum energy (the latter with equation-of-state param-
eter w), we then find that Eq. (6.3) can be rewritten in
the form

⟨w⟩ = wΩΛ +Ωγ/3 = w△ . (6.87)

This is the generalization of Eq. (6.83) with arbitrary
w△, and tells us that our seesaw must indeed be balanced
around w△. In particular we see that w△ ≥ w, with the

inequality saturated only when ΩΛ = 1 and ΩM = Ωγ =
0.

Given these results, the stasis constraint in Eq. (6.34)
then tells us that

w△ =
2w + η

2− η
(6.88)

or, equivalently, that

w△ + 1 =

(
2

2− η

)
(w + 1) . (6.89)

We thus see that η and w determine the fulcrum loca-
tion w△ and thereby determine the line along which the
corresponding abundances lie, while these same variables
— with the addition of ξ — determine the precise loca-
tions along this line for the final stasis abundances. Thus
while ξ is not required in order to determine the fulcrum
location w△, it is needed for determining the absolute
magnitudes of the specific abundances around this point.
The corresponding energy flows for κ ̸= 2 can be il-

lustrated as in Fig. 15. In general, the results depend
on whether κ < 2 or κ > 2. In the first case (corre-
sponding to the upper panel in Fig. 15), we illustrate the
situation for κ < 2. In this case w△ > 0, which implies
that ΩM will generally tend to increase under the effects
of cosmological expansion. Stasis is then achieved only
for PΛM < PMγ , which is consistent with the fact that
ΩΛ/Ωγ must be smaller than it was in Fig. 14 in order
to achieve a balanced seesaw. The lower panel of Fig. 15
illustrates the opposite situation with κ > 2.

VII. STASIS AS A GLOBAL ATTRACTOR

In this section we study the extent to which the dif-
ferent forms of cosmic stasis that we have examined in
the previous sections are local or global attractors. As
we shall see, the stasis solutions for the pairwise (two-
component) systems which we considered in Sects. II
through V are all global attractors. Moreover, we shall
demonstrate that the triple stasis considered in Sect. VI
is a global attractor as well.

A. Pairwise stases

We first analyze the attractor behavior of the pairwise
stases discussed in Sects. II, III, and IV. In each case

we shall begin by demonstrating that the corresponding
stasis is a local attractor. With these results in hand, we
shall then proceed to demonstrate that these attractors
are all in fact global.
Broadly speaking, in particle-physics realizations of

stasis which involve towers of states, the physical condi-
tion which determines the time t at which each individ-
ual such state effectively transitions from one equation
of state to another can generally be classified into one of
two overall categories:

• Class I: transitions for which this transition time is
intrinsic to the particle in the sense that it depends
on the time t in the cosmological background frame
alone and is essentially independent of the expan-
sion history. Examples of transitions within this
class include the decay transitions which underpin
the matter/radiation and vacuum-energy/radiation
stases discussed in Sects. II and IV, respectively. In
these realizations of stasis, the intrinsic timescale
for these transitions — e.g., the proper lifetime τℓ
of the particle ϕℓ at each level — was assumed to
scale across the tower as a function of mass accord-
ing to a power law of the form τℓ = τ0(mℓ/m0)

−γ .
Passing to the continuuum limit, we thus have

τ = τ0

(
m

m0

)−γ

. (7.1)

• Class II: transitions for which the transition time
is extrinsic to the particle in the sense that the
transition is triggered when the temperature, criti-
cal density, or expansion rate of the universe drops
below some threshold value. For transitions within
this second class, the time t at which the transi-
tion takes place does depend on the expansion his-
tory of the universe through the Hubble parame-
ter H(t). Examples of transitions within this class
include the transition from overdamped to under-
damped oscillation which underpins the vacuum-
energy/matter stasis discussed in Sect. III. In this
realization of stasis, the transition of the particle
species of mass mℓ is triggered at a time tℓ when
3H(tℓ) = 2mℓ. Phrased slightly differently, this
transition for each ϕℓ is triggered when the Hub-
ble parameter H(t) drops below the critical thresh-

old scale Ĥℓ = 2mℓ/3, with the corresponding
time tℓ determined implicitly through the condition
H(tℓ) = Ĥℓ. For complete generality, we shall fo-

cus in what follows on the case in which Ĥℓ scales
across the tower according to a power law of the
form Ĥℓ = Ĥ0(mℓ/m0)

γ̂ where γ̂ is a general scal-
ing exponent. In the continuum limit this becomes

Ĥ = Ĥ0

(
m

m0

)γ̂

. (7.2)

Thus Ĥ, like τ , is a continuous variable that spec-
ifies a particular part of our ϕ-tower, namely that
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part which has a Class II transition occurring when
H(t) = Ĥ. Since H(t) decreases monotonically
with t in a flat universe, and since we are primarily
interested in situations in which Ĥ increases with
m, we shall henceforth restrict our attention to the
regime in which γ̂ > 0. Indeed, as we have seen,
an overdamped/underdamped transition of the sort
discussed in Sect. III obeys a scaling relation of this
form with γ̂ = 1 and Ĥ0 = 2m0/3.

When the universe is already deeply in stasis, the dis-
tinction between these two classes of transitions is not
terribly important. Indeed, since H ≈ κ/(3t) within sta-
sis, we can obtain a direct expression for the underdamp-
ing transition time tℓ, namely tℓ = κ/(2mℓ), as we have
used throughout this paper. However, if we now wish to
extend our analysis to situations in which the universe
is not already in stasis, whether a transition is intrinsic
or extrinsic matters. Thus, by rephrasing our transition
times in terms of critical values Ĥ of the Hubble param-
eter, we can extend our analysis beyond stasis and allow
the transition times t̂ to be determined implicitly.
In what follows, we shall examine these two classes of

transitions in turn. For each class, we shall concentrate
on two-component systems with abundances Ω1,2 and
corresponding equation-of-state parameters w1,2 with
−1 < w1 < w2 < 1, as in Sect. V. Within this gen-
eral framework, we shall derive the coupled equations of
motion for the Hubble parameter and for the abundance
Ω1 of the component with the smaller equation-of-state
parameter w1. We shall then demonstrate analytically
that the stasis solution to these equations of motion in
each case is a local attractor for all possible such com-
binations of w1 and w2. Finally, we shall demonstrate
that these stasis solutions are also global attractors for
the cases of physical interest discussed in Sects. II, III,
and IV.

1. Local attractor behavior: Class I transitions

In general, for any pairwise stasis involving two com-
ponents with equation-of-state parameters w1 and w2,
where w1 < w2, the equation of motion for Ω1 is given by
Eq. (5.1). For a stasis of this sort involving Class I transi-
tions, the pump term in this expression, evaluated in the

continuum limit, takes the form P12 = nτ (t)Ω
(1)
τ (t; t),

with nτ (t) given by Eq. (6.31). However, since we are
not assuming stasis, the expression for Ω(1)(t; t) is given
by

Ω(1)
τ (τ ; t) = Ω

(0)
0 (Γ0τ)

−α/γ h1(t
(0), t)Θ(τ − t) (7.3)

with τ = t. We caution that while the ‘(1)’ superscript

on Ω
(1)
τ (τ ; t) — just like the ‘1’ subscript on h1(t

(0), t) —
indicates the energy component with equation-of-state

parameter w1, the ‘(0)’ superscript on Ω
(0)
0 continues to

indicate the value at the initial production time t(0). It

therefore follows that

P12 =
Ω

(0)
0 Γ0

γδ

( m0

∆m

)1/δ
(Γ0t)

−1−η/γ h1(t
(0), t) .

(7.4)

Moreover, the total abundance Ω1 of the component with
equation-of-state parameter w1, evaluated in the contin-
uum limit, is given for t ≪ τ0 by

Ω1 =

∫ τ0

τN−1

dτ nτ (τ) Ω
(1)
τ (τ ; t)

≈ Ω
(0)
0

ηδ

( m0

∆m

)1/δ
(Γ0t)

−η/γ h1(t
(0), t) . (7.5)

Comparing this expression to the expression for P12 in
Eq. (7.4), we obtain

P12 =
η

γ
Ω1

1

t
. (7.6)

Interestingly, this result reduces to to our result in
Eq. (2.30) during stasis. However, we now see that this
result applies even without the assumption of stasis. We
thus find that the time-evolution of Ω1 andH is described
by the system of equations

dΩ1

dt
= − pΩ1

1

t
+ 3H(w2 − w1)Ω1(1− Ω1)

dH

dt
= − 3

2
H2
[
1 + w2 + (w1 − w2)Ω1

]
. (7.7)

We may recast these equations in a more revealing form
by parametrizing the expansion rate of the universe in
terms of the quantity

H(t) ≡ H(t)

(
3t

κ

)
(7.8)

which represents the ratio of the Hubble parameter H(t)
at any given time t to the value which it would have at
that time if the universe were in stasis. In particular, we
find that

dΩ1

d log t
= − pΩ1 + κ(w2 − w1)HΩ1(1− Ω1)

dH
d log t

= H− κ

2
H2
[
1 + w2 + (w1 − w2)Ω1

]
. (7.9)

Taking dΩ1/d log t = dH/d log t = 0, we find that indeed
the only equilibrium solution for this system with non-
vanishing Ω1 is the stasis solution in which H = 1 and in
which Ω1 = Ω1, with Ω1 given by Eq. (5.11).
In order to determine whether or not this stasis solu-

tion is a local attractor, we evaluate the eigenvalues of the
Jacobian matrix for the system of equations in Eq. (7.9).
Using the fact that κ is given by Eq. (5.3) during a gen-
eral pairwise stasis, we can eliminate κ in favor of Ω1.
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These eigenvalues can then be written in the form

λ± = −1

2

1 + w2 − (w1 − w2)Ω1

1 + w2 + (w1 − w2)Ω1

∓
√

1− 4(w2 − w1)(1 + 2w1 − w2)Ω1

[1 + w2 + (w1 − w2)Ω1]2

 .

(7.10)

For all possible combinations of Ω1, w1, and w2 within
the ranges 0 < Ω1 ≤ 1 and −1 < w1 < w2 < 1, both of
these eigenvalues are real and negative. Thus, we con-
clude that for any combination of w1 and w2 which satis-
fies these conditions, the stasis solution is a local attrac-
tor.

This general result is applicable to any pairwise sta-
sis involving a Class I pump. For example, this result
implies that the stasis solution that we obtained for the
matter/radiation system in Sect. II is a local attractor.
Indeed, for this realization of stasis we have w1 = 0 and
w2 = 1/3, whereupon we see that Eq. (7.10) reduces to

λ± = − 1

2

4 + ΩM

4− ΩM

∓
√
1− 8ΩM

(4− ΩM )2

 . (7.11)

Likewise, our results also imply that the stasis solution
that we obtained for the vacuum-energy/radiation sys-
tem in Sect. IV is a local attractor. For this realization
of stasis, we have w1 = w and w2 = 1/3, whereupon we
see that Eq. (7.10) reduces to

λ± = − 1

2

4− (3w − 1)ΩΛ

4 + (3w − 1)ΩΛ

∓
√

1− 8(1− 9w2)ΩΛ

[4 + (3w − 1)ΩΛ]2

 . (7.12)

2. Local attractor behavior: Class II transitions

For a pairwise stasis involving Class II transitions, as

discussed above, the contribution Ω
(1)
ℓ from each ϕℓ to

the overall abundance Ω1 associated with the component
with equation-of-state parameter w1 is transferred to the
component with equation-of-state parameter w2 when H
drops below a particular threshold Ĥ. In the approxima-
tion that this transition occurs sharply at the time t at
which H(t) = Ĥ, this contribution takes the form

Ω
(1)
ℓ (t) = Ω

(0)
ℓ h1(t

(0), t)Θ
(
H(t)− Ĥℓ

)
, (7.13)

For a universe involving only two components, with Ω1+
Ω2 = 1, the time-derivative of this expression may be

written in the form

dΩ
(1)
ℓ

dt
= Ω

(0)
ℓ h1(t

(0), t) δ(H − Ĥ)
dH

dt

+ 3HΩ
(1)
ℓ (w2 − w1)(1− Ω1) . (7.14)

The rate of change of the total abundance Ω1 is sim-
ply the direct sum of the individual contributions in
Eq. (7.14). In order to evaluate this sum, we shall pass
to the continuum limit in which we express ℓ in terms
of the corresponding transition scale Ĥℓ and then treat
Ĥ as a continuous parameter. In other words, we shall
replace ∑

ℓ

→
∫

dĤ nĤ(Ĥ) , (7.15)

where nĤ(Ĥ) denotes the density of states within the

tower per unit Ĥ, evaluated at the location within the
tower for which the transition scale is Ĥ. For a scaling
relation between Ĥ and m of the form given in Eq. (7.2),
this density of states takes the form

nĤ(Ĥ) ≡
∣∣∣∣ dℓdĤ

∣∣∣∣ =
1

γ̂δĤ0

( m0

∆m

)1/δ ( Ĥ

Ĥ0

)1/(γ̂δ)−1

.

(7.16)
In analogy with the quantities Ωτ (τ ; t) and Ωt̂(t̂; t) that

we defined in Sect. VI, we shall find it convenient to de-
fine ΩĤ(Ĥ; t) to represent the abundance — evaluated
at time t — of that particular ϕ-field whose transition
threshold is Ĥ. For a scaling relation between Ĥ and m
of the form given in Eq. (7.2), this abundance is given by

Ω
(1)

Ĥ
(Ĥ; t) = Ω

(0)
0

(
Ĥ

H0

)α/γ̂

h1(t
(0), t)Θ

(
H(t)− Ĥ

)
.

(7.17)
The rate of change of the total abundance Ω1, evalu-

ated in the continuum limit, is

dΩ1

dt
=

∫ ĤN−1

Ĥ0

dĤ
dΩ

(1)

Ĥ
(Ĥ; t)

dt
, (7.18)

which yields an expression of the general form given in
Eq. (5.1). However, we see from Eq. (7.14) that the pump
term P12 for a Class II transition is in general given by

P12 = nĤ(H) Ω
(1)

Ĥ
(H; t)

dH

dt
, (7.19)

For the particular set of transitions we are considering

here, with nĤ(Ĥ) and Ω
(1)

Ĥ
(Ĥ; t) given by Eqs. (7.16)

and (7.17), respectively, we have

P12 =
3H0Ω

(0)
0

κγ̂δ

( m0

∆m

)1/δ ( H

H0

)1+η/γ̂

h1(t
(0), t) ,

(7.20)
with κ given by Eq. (5.3).
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The total abundance of the component with equation-
of-state parameter w1 in this case, evaluated in the con-
tinuum limit, is

Ω1 =

∫ Ĥ0

ĤN−1

dĤ nĤ(Ĥ) Ω
(1)

Ĥ
(Ĥ; t) . (7.21)

Explicit integration yields

Ω1 =
Ω

(0)
0

γ̂δ

( m0

∆m

)1/δ
H

−η/γ̂
0 h1(t

(0), t)

∫ H(t)

Ĥ0

dĤĤη/γ̂−1

≈ Ω
(0)
0

δη

( m0

∆m

)1/δ ( H

H0

)η/γ̂

h1(t
(0), t) , (7.22)

where in going from the first to the second line we have
used the fact that H ≫ Ĥ0 at times well before the
energy density associated with the lightest tower state
is transferred to the energy component with equation-of-
state parameter w2. Comparing this expression to the
expression for P12 in Eq. (7.20), we observe that

P12 =
η

γ̂
Ω1

(
3

κ
H

)
. (7.23)

For γ̂ = 1, we find that this result reduces to Eq. (3.31)
during stasis. However, we now see that Eq. (7.23) holds
even without the assumption of stasis. Moreover, com-
paring this result to the stasis expectation in Eq. (5.7),
we observe that p = η/γ̂ for a Class II transition of this
sort with arbitrary γ̂ > 0.

It follows from the result in Eq. (7.23) that the time-
evolution of Ω1 and H in this case is described by the
equations

dΩ1

d log t
= − κ

2
pHΩ1

[
1 + w2 + (w1 − w2)Ω1

]
+ κ(w2 − w1)HΩ1(1− Ω1)

dH
d log t

= H− κ

2
H2
[
1 + w2 + (w1 − w2)Ω1

]
. (7.24)

The only equilibrium solution for this system with non-
vanishing Ω1 is the stasis solution in which H = 1 and
in which Ω1 = Ω1, where Ω1 given by Eq. (5.11) with
p = η/γ̂.
Using Eq. (3.14) in order to eliminate κ in favor of Ω1,

we find that the eigenvalues of the Jacobian matrix in
this case are

λ+ =
2(1 + w1)(w1 − w2)Ω1

[1 + w2 + (w1 − w2)Ω1]2

λ− = − 1 . (7.25)

For all possible combinations of Ω1, w1, and w2 within
the ranges 0 < Ω1 ≤ 1 and −1 < w1 < w2 < 1, both of
these eigenvalues are real and negative. Thus, we con-
clude that for any combination of w1 and w2 which satis-
fies these conditions, the stasis solution is a local attrac-
tor.

This general result is applicable to any pairwise sta-
sis involving a Class II pump. For example, it implies
that the stasis solution that we obtained for the vacuum-
energy/matter system that we examined in Sect. IV is
a local attractor. Indeed, for this realization of stasis,
wherein an energy component with equation-of-state pa-
rameter w1 = w transfers its energy density to an en-
ergy component with w2 = 0 via a transition from over-
damped to underdamped oscillation, Eq. (7.25) reduces
to

λ+ =
2w(1 + w)ΩΛ

(1 + wΩΛ)2

λ− = − 1 . (7.26)

3. Global attractor behavior

We have thus far demonstrated that each of our pair-
wise stasis solutions is a local attractor. In order to as-
sess whether these solutions are also global attractors,
we map the trajectories along which the system evolves
in the (Ω1,H)-plane for different initial combinations of
Ω1 and H, where in each case Ω1 once again repre-
sents the abundance of the cosmological energy compo-
nent with the smaller equation-of-state parameter. In
Fig. 16, the left panel shows a number of such trajec-
tories for the matter/radiation system obtained by tak-
ing w1 = 0 and w2 = 1/3 in Eq. (7.9). The middle
panel shows trajectories for the vacuum-energy/matter
system obtained by taking w1 = w = −0.8 and w2 = 0
in Eq. (7.24). The right panel shows trajectories for
the vacuum-energy/radiation system obtained by taking
w1 = w = −0.8 and w2 = 1/3 in Eqs. (7.9). The point
within the (Ω1,H)-plane which corresponds to the stasis
solution in each panel is indicated with a red dot. The
value of p in each case is chosen such that Ω1 = 0.5.
In all three panels of Fig. 16, we see that our trajec-

tories ultimately flow toward the stasis solution. Indeed,
this remains true even if we consider other values of Ωi,
other values of w (when relevant), and even regions of
the (Ω1,H) plane with values of H beyond those shown.
We therefore conclude that the stasis solution is not only
a local attractor for all three kinds of pairwise stasis we
have considered here, but a global attractor as well.
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FIG. 16. Attractor behavior for Mγ stasis (left panel), ΛM stasis (middle panel), and Λγ stasis (right panel). Shown in
each case are the trajectories (blue curves) within the (Ω1,H)-plane, where Ω1 in each case represents the abundance of the
cosmological energy component with the smaller equation-of-state parameter. These trajectories correspond respectively to
the dynamical system described in Eq. (7.9) with w1 = 0 and w2 = 1/3, the dynamical system described in Eq. (7.24) with
w1 = w = −0.8 and w2 = 0, and the dynamical system described in Eq. (7.9) with w1 = w = −0.8 and w2 = 1/3. The red dot
in each case indicates the corresponding attractor stasis solution. We have chosen p in each case such that Ω1 = 0.5, and we
have used the instantaneous-decay approximation in obtaining the results shown in the left and right panels. We emphasize
that while we have taken w = −0.8 for each pairwise stasis involving vacuum energy, similar results are obtained for other
values of w.

B. Triple stasis

We now turn to consider whether the triple-stasis so-
lution which emerged from the three-component system
in Sect. VI is likewise an attractor. The analysis in this
case is significantly more complicated than it is for the
two-component systems that we considered in the pre-
vious subsection — not merely because this system in-
volves a larger number of dependent variables, but also
because the coupled equations which describe the time-
evolution of these variables are not differential equations,
but rather integro-differential equations. As a result, we
cannot determine whether the triple-stasis solution is a
local attractor analytically using the methods we em-
ployed when analyzing our two-component systems.

For this reason, we instead investigate the attractor be-
havior of our triple-stasis system numerically by varying
the initial conditions for the system at t(0). In Fig. 17,
we illustrate the effect on the abundances of varying the
ratio H(tN−1)/H

(0) where tN−1 is the time at which
the heaviest field in the ensemble becomes underdamped
and begins oscillating and where H(0) is the Hubble pa-
rameter at the initial production time t(0). The abun-
dances ΩΛ, ΩM , and Ωγ are plotted in the left, mid-
dle, and right panels of the figure, respectively, as func-
tions of the number N of e-folds of expansion since t(0).
The different curves appearing in each panel correspond
to different values of H(tN−1)/H

(0) within the range
0.01 ≤ H(0)/H(tN−1) ≤ 1. The dotted horizontal line in
each panel indicates the stasis value given in Eq. (6.58)
for the corresponding abundance. In each case we have

taken Ω
(0)
Λ = 1 and Ω

(0)
M = Ω

(0)
γ = 0.

For all values of H(tN−1)/H
(0), we observe that ΩΛ,

ΩM , and Ωγ all evolve toward their stasis values. Thus,

we may conclude that the emergence of a triple stasis is
not predicated on a particular choice of H(tN−1)/H

(0).
We also note that it takes the universe longer to set-
tle into its asymptotic stasis state for some values of
H(tN−1)/H

(0) than it does for others.

One might also ask whether the emergence of a stasis

epoch depends sensitively on the initial values Ω
(0)
Λ , Ω

(0)
M ,

and Ω
(0)
γ of our three abundances. However, given the

assumptions inherent in our model, we do not have the
freedom to vary these three abundances arbitrarily. In-
deed, our model comprises only the ϕℓ fields and one or
more effectively massless fields which behave as radiation
throughout the entirety of the stasis epoch. Likewise, the
individual masses and abundances of the ϕℓ fields are as-
sumed to scale across the tower according to the relations
in Eqs. (2.12) and (2.13), respectively. Given these as-
sumptions, it is not possible to adjust the relationship

between Ω
(0)
Λ and Ω

(0)
M arbitrarily without introducing

additional spectator fields which behave as either matter
or vacuum energy. That said, we do have the freedom to

adjust Ω
(0)
γ arbitrarily, provided that we compensate for

this adjustment by shifting the values of both Ω
(0)
Λ and

Ω
(0)
M such that Ω

(0)
Λ +Ω

(0)
M +Ω

(0)
γ = 1 and the appropriate

relationship between Ω
(0)
Λ and Ω

(0)
M is maintained. Thus,

in what follows, we shall continue to take Ω
(0)
M = 0 and

focus on the effect of varying Ω
(0)
Λ and Ω

(0)
γ .

In Fig. 18 we illustrate the effect on the abundances

that emerges upon varying Ω
(0)
Λ and Ω

(0)
γ subject to the

constraints that Ω
(0)
γ = 1 − Ω

(0)
Λ and Ω

(0)
M = 0. As in

Fig. 17, the three abundances ΩΛ(t), ΩM (t), and Ωγ(t)
are plotted as functions of N in the left, middle, and
right panels, respectively. In each panel, the dotted hor-
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FIG. 17. The abundances of vacuum energy (left panel), matter (center panel), and radiation (right panel) in a three-component
system exhibiting a triple-stasis solution, plotted as functions of the number N of e-folds of cosmological expansion since the
initial production time t(0). The different curves in each panel correspond to different values of the ratio H(tN−1)/H

(0), where
tN−1 denotes the time at which the heaviest of the ϕℓ fields becomes underdamped and begins oscillating. These results were
calculated within the full exponential-decay framework and correspond to the parameter choices α = 0.95, δ = 4, w = −0.7,
ξ = 20, and ∆m/m0 = 1. For all values of H(tN−1)/H

(0), we observe that ΩΛ(t), ΩM (t), and Ωγ(t) all evolve toward their
stasis values. We also note that it takes longer for the universe to settle into its asymptotic stasis state for some values of
H(tN−1)/H

(0) than for others.
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FIG. 18. Same as Fig. 17, except that the different curves now correspond to different values for the initial vacuum-energy

and radiation abundances Ω
(0)
Λ and Ω

(0)
γ = 1 − Ω

(0)
Λ , with Ω

(0)
M = 0 held fixed. These results were calculated within the full

exponential-decay framework and correspond to the parameter choices α = 0.95, δ = 4, w = −0.7, ξ = 20, ∆m/m0 = 1, and

3H(0)/(2mN−1) = 1. For all values of Ω
(0)
Λ and Ω

(0)
γ , we see that ΩΛ(t), ΩM (t), and Ωγ(t) all ultimately evolve toward their

stasis values, with the universe taking longer to settle into its asymptotic stasis state for some values of Ω
(0)
Λ and Ω

(0)
γ than for

others.

izontal line once again indicates the stasis value given in
Eqs. (6.58) and (6.59) for the corresponding abundance.

In each case, we observe that ΩΛ(t), ΩM (t), and Ωγ(t)
all evolve toward their stasis values. Thus, we may fur-
ther conclude that the emergence of triple stasis is not
predicated on the universe being fully vacuum-energy
dominated at the initial time t(0), much less devoid of
radiation. Indeed, we see that stasis emerges regardless
of the admixture of vacuum energy and radiation at the
initial time. However, we also observe that it takes the
universe longer to settle into its asymptotic stasis state
for some admixtures than others.

Taken together, the empirical results shown in Figs. 17
and 18 strongly suggest that our triple-stasis solution in

Sect. VI is not only a local attractor but also a global
attractor, pulling our system towards the stasis state for
a wide range of dynamical parameters and initial config-
urations.

VIII. A PHASE DIAGRAM FOR STASIS

It is interesting to synthesize the results of this paper
thus far by investigating how our different forms of stasis
relate to each other. Collecting our results from Sects. II,
III, IV, and VI, we see that our different stases have the
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constraint equations

Mγ Stasis :
η

γ
= 2− κ

ΛM Stasis : η = 2− (1 + w)κ

Λγ Stasis :
η

γ
= 2− (1 + w)κ

Triple Stasis : η = 2− (1 + w)κ , γ = 1

(8.1)

Note that in the case of triple stasis, we are restricting
our attention to Branch A because Branch B does not
yield a full stasis.

The constraint equations in Eq. (8.1) are all very sim-
ilar to each other. Indeed, if we temporarily disregard
the absence of the w-term within the constraint for Mγ
stasis, we see that these equations all become identical if
γ = 1.
There are also other commonalities between these dif-

ferent forms of stasis. In general, a matter-dominated
universe has κ = 2 while a radiation-dominated uni-
verse has κ = 3/2. By contrast, within the context of
our general-w model for vacuum energy, a universe dom-
inated by vacuum energy has κ = 2/(1+w). It therefore
follows that our different mixed-component stases have
restricted ranges for κ given by

Mγ Stasis : 3/2 < κ < 2

ΛM Stasis : 2 < κ < 2/(1 + w)

Λγ Stasis : 3/2 < κ < 2/(1 + w)

Triple Stasis : 3/2 < κ < 2/(1 + w) . (8.2)

However, substituting these results into the correspond-
ing equations in Eq. (8.1) we find in each case that

η > 0 . (8.3)

Of course, this condition has already been stated
throughout this paper on the basis of other consistency
constraints [see, e.g., Eqs. (2.23), (3.24), (4.7), and
(6.50)]. However, the condition in Eq. (8.3) is yet an-
other commonality between our different forms of stasis.

The fact that all of our stases have the same basic con-
straints on their fundamental parameters suggests that
they all populate different limiting regions of a common
“phase space”. We shall now demonstrate that this ex-
pectation is correct.

To do this, let us begin by considering the largest and
most comprehensive of our stases, namely the triple sta-
sis of Sect. VI. In Fig. 19, we display the phase diagram
for triple stasis within the (w△, ξ)-plane for several differ-
ent values of w. The results in the top panel correspond
to the choice w = −0.7, while the results shown in the
three of panels at the bottom of the figure correspond
to the choices w = −0.9 (left panel), w = −0.5 (middle
panel), and w = −0.25 (right panel). The color of each
point within each panel has been assigned according to
the abundance-map palette shown on the far right, with

the relative levels of blue, green, and red indicating the
values of the stasis abundances ΩΛ, ΩM , and Ωγ , respec-
tively. The gray region on the left side of each panel
is physically inaccessible, since self-consistency requires
w△ > w. Likewise the shaded region with ξ < ξmin lies
outside our regime of validity for ϵdec = 0.05. The dashed
black vertical line with w△ = 0 corresponds to universes
with κ = 2, as shown in Fig. 14. Points to the right
of this line correspond to universes with κ < 2, whereas
points to the left correspond to universes with κ > 2.
Such universes respectively correspond to the situations
illustrated in the upper and lower panels of Fig. 15.
The points within the Regions I through IV in each

panel of Fig. 19 exhibit triple stases with ΩΛ > ΩM > Ωγ ,

with ΩM > ΩΛ > Ωγ , with ΩM > Ωγ > ΩΛ, or with

Ωγ > ΩM > ΩΛ, respectively. By contrast, along the
edges of this plane, our triple-stasis solutions reduce to
simpler stasis solutions: either to a pairwise ΛM stasis
(as discussed in Sect. III and shown along the upper edge
with w△ < 0), or to a pairwise Mγ stasis (as discussed in
Sect. II and shown along the upper edge with w△ > 0),
or to universes with only vacuum energy (as shown along
the left edge), radiation (as shown along the right edge),
or matter (as indicated at the top point with w△ = 0).
All universes along the vertical w△ = 0 line are effec-
tively matter-dominated (as illustrated in Fig. 14), with
counterbalancing abundances of vacuum energy and ra-
diation; however, as we move up this line towards greater
values of ξ, these other abundances maintain their ratio
but shrink to zero, leaving behind a universe consisting
only of matter as ξ → ∞. Thus, as anticipated, we see
that this figure encapsulates and illustrates the relation-
ships between the different versions of stasis discussed in
this paper.
As we remarked at the beginning of this section, the

constraint equation for Mγ stasis in Eq. (8.1) is slightly
different from the others in that it does not depend on
w. This, of course, makes sense since w is the equation-
of-state parameter for the vacuum energy, and Mγ stasis
does not involve vacuum energy. However, at a purely
algebraic level, we observe that the form of the Mγ con-
straint equation does match the others but has an “ef-
fective” w = 0. Requiring w = 0 in turn implies that
w△ ≥ 0, and we see from Fig. 19 that this is indeed
precisely the region to which the Mγ stasis is restricted.
Finally, we note that each of the phase diagrams shown

in Fig. 19 exhibits a “triple point” — i.e., a point at
which the abundances of vacuum energy, matter, and
radiation are equal during stasis. The location of this
triple point in each panel is indicated by a star. Indeed,
we observe that regardless of the form of X, the condi-
tions under which the expressions for ΩΛ, ΩM , and Ωγ

in Eqs. (6.58) and (6.59) coincide are

w△ =
1 + 3w

9
, X =

4− 6w

10 + 3w
. (8.4)

The latter condition can be solved for any given form of
X in order to obtain the value of ξ at the triple point.
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FIG. 19. “Phase diagrams” for triple stasis within the (w△, ξ)-plane for w = −0.7 (top panel) and for w = −0.9, w = −0.5, and
w = −0.25 (corresponding to the three panels along the lower row). Working within the full exponential-decay framework, we
have assigned the color of each point within the (w△, ξ)-plane according to the abundance-map palette shown on the top right,
with the relative levels of blue, green, and red indicating the values of the stasis abundances ΩΛ, ΩM , and Ωγ , respectively.
The gray region on the left side of each panel is physically inaccessible, since self-consistency requires w△ > w. Likewise the
shaded region with ξ < ξmin lies outside our regime of validity for ϵdec = 0.05. The dashed black vertical line with w△ = 0
corresponds to universes with κ = 2, as shown in Fig. 14, while points to the left (respectively right) of this line correspond
to universes with κ > 2 (respectively κ < 2), as shown in the upper (respectively lower) panel of Fig. 15. The points within
Regions I through IV exhibit triple stases with ΩΛ > ΩM > Ωγ , ΩM > ΩΛ > Ωγ , ΩM > Ωγ > ΩΛ, and Ωγ > ΩM > ΩΛ,
respectively. By contrast, along the edges of this plane, our triple-stasis solutions reduce to simpler stasis solutions: either to
a pairwise ΛM stasis (as discussed in Sect. III and shown along the upper edge with w△ < 0), or to a pairwise Mγ stasis (as
discussed in Sect. II and shown along the upper edge with w△ > 0), or to universes with only vacuum energy (as shown along
the left edge), radiation (as shown along the right edge), or matter (as indicated at the top point with w△ = 0). All universes
along the vertical w△ = 0 line are effectively matter-dominated (as illustrated in Fig. 14), with counterbalancing abundances
of vacuum energy and radiation; however, as we move up this line towards greater values of ξ, these other abundances maintain
their ratio but shrink to zero, leaving behind a universe consisting only of matter as ξ → ∞. The star represents the location
of the “triple point” at which ΩΛ = ΩM = Ωγ . This figure therefore encapsulates and illustrates the relationships between the
different versions of stasis discussed in this paper.



54

This value of ξ increases monotonically with w, as can
be seen by comparing the results shown in the different
panels of Fig. 19, and can become as large as ξ ∼ O(50)
as w approaches zero for both the form of X in Eq. (6.52)
and the form of X in Eq. (6.61).

IX. BEYOND STASIS

In addition to the stasis phenomenon discussed in pre-
vious sections, there are also variants of this phenomenon
in which only some — but not all — of the features as-
sociated with stasis are retained. Depending on which
features are retained, we can obtain a variety of scenarios
which may be exceedingly interesting in their own rights
on both theoretical and phenomenological grounds. In
general, it is critical to study such variants because there
exist many real-world effects which may push our sys-
tem beyond some of the assumptions we have made when
constructing our above models of stasis. Understanding
how robust the stasis phenomenon is when faced with
such perturbations is therefore of profound importance
for understanding the emergence of stasis within realistic
models of physics.

A. Quasi-stasis

Stasis, of course, refers to an epoch in which our abun-
dances remain absolutely fixed as functions of time. How-
ever, it is possible to obtain a quasi-stasis situation in
which our abundances do experience a non-zero time-
dependence, but in which this time-dependence is ex-
tremely suppressed. Within such scenarios, all of the
leading power-law growth that would appear in the usual
cosmology is still absent — just as in ordinary stasis —
but a weak, quasi-logarithmic time-dependence remains.
Depending on the rate of change associated with this
residual time-evolution, such quasi-stasis solutions may
effectively serve as (and in fact be phenomenologically
indistinguishable from) true stasis solutions over relevant
cosmological timescales.

It is easy to see how such a quasi-stasis might arise.
As we have seen, each of our pairwise stases is essentially
unavoidable: for any choices of fundamental scaling ex-
ponents (α, γ, δ, w) within the specified ranges, our sys-
tem necessarily evolves into a stasis configuration, with
the relevant stasis abundances remaining absolutely con-
stant as functions of time. Indeed, only the values of
these stasis abundances depend on our underlying pa-
rameter choices.

For triple stasis, by contrast, a new possibility opens
up. Because an additional constraint equation arises —
in particular, that in Eq. (6.36) which is needed in order
to ensure that our two pumps are compatible with each
other — not every choice of (α, γ, δ, w) leads to a success-
ful triple stasis. Indeed, as we have seen in Sect. VI, only

those choices which place our system along Branch A in
Fig. 9 lead to a full, triple stasis.

This observation implies that it is possible to choose
values for (α, γ, δ, w) [or equivalently for (γ, κ)] for which
we do not obtain a triple stasis along Branch A. Amongst
these, however, there are two classes of special cases that
are worthy of note. Such special cases yield situations
in which our abundances do not remain constant, but
evolve exceedingly slowly. (Indeed, this slow evolution
replaces the stasis phenomenon itself, and exists inde-
pendently of any features related to the approach to sta-
sis.) The first class of such solutions consists of those
lying along Branch B in Fig. 9. Indeed, we recall from
Sect. VI that these solutions satisfy both of our scal-
ing constraints in Eqs. (6.34) and (6.35), but simply fail
to satisfy the second constraint in Eq. (6.48) that en-
sures that these solutions avoid a logarithmic instabil-
ity. By contrast, the second class consists of solutions
which do not lie along either Branch A or Branch B, but
whose underlying parameters place it relatively close to
Branch A. In such cases, our system does not satisfy our
overall scaling relations. However, our system does sat-
isfy these relations approximately , and therefore we once
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FIG. 20. Stasis versus quasi-stasis: the abundances ΩΛ (blue),
ΩM (cyan), and Ωγ (magenta), plotted as functions of N for a
true stasis (solid lines) and two nearby quasi-stases, one with
γ = 0.95 (dashed lines) and the other with γ = 1.05 (dotted
lines). All curves are evaluated within the framework of an
exponential decay for the matter-radiation transition, with
(α, δ, w) = (1, 2,−0.8) taken as benchmark values. Corre-
sponding curves for all other quasi-stases with 0.95 < γ < 1.05
and the same (α, δ, w) benchmark values lie within the shaded
bands. In each case we see that variations in γ induce devi-
ations from true stasis, but in each case the abundances Ωi

nevertheless remain relatively constrained to lie near these
stasis values, with time-evolutions that continue to be signif-
icantly suppressed. The closer γ is to unity, the more closely
the Ωi curves trace the true stasis values.
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again expect a highly suppressed time-evolution for the
abundances. This situation might easily arise, for exam-
ple, if our system originally lay along Branch A at tree
level — and thus had γ = 1 at tree level — but then
radiative corrections altered the scaling relations for our
decay widths in such a way as to introduce a small cor-
rection for γ, pushing the effective value of this exponent
slightly away from γ = 1.
This quasi-stasis phenomenon is illustrated in Fig. 20.

In this figure, we plot the abundances ΩΛ (blue), ΩM

(cyan), and Ωγ (magenta) as functions of N for a true
stasis (solid lines), a quasi-stasis with γ = 0.95 (dashed
lines) and a quasi-stasis with γ = 1.05 (dotted lines).
Working within the framework of an exponential de-
cay for the matter-radiation transition, we have taken
(α, γ, δ, w) = (1, 1, 2,−0.8) for the true stasis. Corre-
sponding curves for all quasi-stases with 0.95 < γ < 1.05
for the same choices of these other parameters lie en-
tirely within the shaded bands delimited by the dashed
and dotted curves. Indeed, the closer γ is to unity, the
more closely the Ωi curves track those obtained for a
true stasis. These results illustrate that stasis is robust
against departures from the γ = 1 criterion, and that
the universe indeed experiences a period of approximate
stasis even when γ is not exactly unity.

B. Oscillatory stasis and braiding

In our discussions of stasis, we have implicitly assumed
that ∆m — the characteristic mass spacing between the
states in our ϕℓ towers — is sufficiently small that the
continuum limit we have employed, e.g., in Eqs. (2.17)
and (3.8) remains a valid approximation across the en-
tire tower. However, it is also interesting to consider
what happens when ∆m is larger and discretization ef-
fects become important. For concreteness, in what fol-
lows we shall focus on the case of a matter/radiation sta-
sis, though we emphasize that similar phenomena arise
in the other realizations of stasis that we have discussed
in this paper as well.

As a general rule of thumb, discretization effects be-
come important in a matter/radiation stasis of the sort
discussed in Sect. II when the timescale associate with the
depletion of the abundance of a particular state ϕn within
the tower — i.e., its lifetime τn — is short in comparison
with the characteristic time interval τn−1 − τn between
the lifetimes of successively decaying states within the
tower at time t = τn. This the characteristic time inter-
val between the lifetimes of successively decaying states
in the tower is essentially the reciprocal of the density of
states nτ (τn) per unit lifetime, evaluated at τ = τn. In
general, this density of states is given by

nτ (τ) =
1

γδ

( m0

∆m

)1/δ
(Γ0τ)

−1/γ
[
(Γ0τ)

−1/γ−1
]1/δ−1 1

τ
,

(9.1)
which reduces to the approximate result in Eq. (6.31) in
the regime in which τ ≪ τ0. Thus, we expect discretiza-

tion effects to become important when n−1
τ (τ) ≳ τ , or in

other words, when

γδ

(
∆m

m0

)1/δ

(Γ0τ)
1/γ
[
(Γ0τ)

−1/γ−1
]1−1/δ

≳ 1 . (9.2)

In general, the quantity on the left side of Eq. (9.2)
depends non-trivially on τ . Thus, depending on the val-
ues of δ, γ, Γ0, and the ratio ∆m/m0, it is possible that
discretization effects will be evident only within certain
ranges of τ . Indeed, for sufficently small τ ≪ Γ−1

0 , the
condition in Eq. (9.2) reduces to

γδ

(
∆m

m0

)1/δ

(Γ0τ)
1/γδ ≳ 1 . (9.3)

This implies that discretization effects typically become
increasingly important at late times. More specifically,
they become important at timescales τ ≳ τdisc, where we
have defined

τdisc ≡ Γ−1
0 (γδ)−γδ

(
∆m

m0

)−γ

. (9.4)

Since we are assuming that γ > 0, we observe that
τdisc decreases as ∆m increases. Thus, as the charac-
teristic scale of the mass splittings between the tower
states increases, discretization effects become important
at earlier and earlier times. Indeed, in situations in which
τN−1 ≳ τdisc, these effects are important throughout
the entire time interval during which which the tower
states are decaying. Conversely, in situations in which
τ0 ≪ τdisc, the effects are nominally negligible through-
out this entire time interval and the universe effectively
remains in a true stasis. We may therefore determine a
rough threshold for ∆m above which above which dis-
cretization effects become important prior to the end of
stasis by setting τdisc → τ0 in Eq. (9.4). This threshold
is

(∆m)∗ ≡ (γδ)−δm0 . (9.5)

In reality, however, we emphasize that discretization ef-
fects always come into play at times t ∼ τ0, when the
longest-lived states in the tower are decaying and second
term in the square brackets in Eq. (9.2) can no longer be
neglected. Indeed, such discretization effects are evident
during the last few e-folds of the matter/radiation stasis
illustrated in the left panel of Fig. 1.
In Fig. 21, we illustrate the impact that these dis-

cretization effects have on the evolution of the abun-
dances ΩM and Ωγ , as well as on the expansion rate.
In the left panel, we plot these abundances (solid curves)
as functions of time for the parameter choices α ≈ 1.13,
δ = 4, γ = 9, and ΩM = 3/4. The corresponding con-
stant abundances ΩM and Ωγ which would be obtained
for a true stasis with the same values of α, δ, and γ
are indicated by the dotted horizontal lines. In the mid-
dle panel, we show the corresponding abundance curves
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FIG. 21. Pairwise oscillatory stasis involving matter and radiation. In the left panel, we plot ΩM (solid cyan curve) and Ωγ

(solid magenta curve) as functions of time for the parameter choices α ≈ 1.13, δ = 4, γ = 9, which imply ΩM = 3/4 and
Ωγ = 1/4. The dotted horizontal cyan and magenta lines respectively indicate the corresponding constant abundances ΩM and
Ωγ which would be obtained for a true stasis with the same values of α, δ, and γ. In the middle panel we show the abundance
curves obtained for the parameter choices α ≈ 2.32, δ = 4, γ = 9, which imply ΩM = Ωγ = 1/2. These parameter choices
exemplify the special case in which ΩM = Ωγ and in which the abundances ΩM and Ωγ exhibit a “braiding” phenomenon,
mutually oscillating around the same central value. In the right panel, we plot as a function of time the ratio of the scale factor
a(t) to the corresponding value a(t) ∼ tκ/3 that the scale factor would have in a true stasis for the same parameter choices as
in the middle panel. We emphasize that similar oscillatory phenomena can also arise for the other realizations of stasis that we
have considered in this paper.

for the parameter choices α ≈ 2.32, δ = 4, γ = 9, and
ΩM = 1/2.

We see from the left and middle panels of Fig. 21 that
the net impact of discretization effects on the abundances
of our cosmological components is to give rise to an
quasi-oscillatory behavior wherein ΩM and Ωγ both vary
around fixed central values — values which correspond to
the respective stasis values ΩM and Ωγ . We shall refer to
the variant of stasis wherein this phenomenon is manifest
as “oscillatory” stasis in what follows. The results shown
in the left panel Fig. 21 are representative of the more
general case in which these central values are different.
By contrast, the results shown in the middle panel exem-
plify the special case in which ΩM = Ωγ = 1/2, with the
abundance curves exhibiting a “braiding” phenomenon
in which they mutually oscillate around the same central
value. The results shown in both panels also illustrate
that the effective period Tosc(t) of the “oscillations” in
an oscillatory stasis is in general not constant. Indeed,
at any given time t, this effective period is simply the time
interval Tosc(t) ∼ n−1

τ (t) between the decays of successive
tower states, and nτ (t) is in general time-dependent.

The variation of the abundances during a period of
oscillatory stasis implies that κ is also not constant dur-
ing such a period; rather, κ experiences a quasi-periodic
oscillation as the universe expands. This behavior is il-
lustrated in the right panel of Fig. 21, where we plot the
ratio of the scale factor a(t) during a period of oscilla-
tory stasis to the corresponding value a(t) ∼ tκ/3 which
would be obtained during a period of true stasis for the
same parameter choices as in the middle panel. This be-
havior implies that as the universe expands, its average
rate of growth remains consistent with a fixed time- and
stasis-averaged value of ⟨w⟩. However, the universe “re-

verberates” as it expands, with pulsing periods of faster
and slower expansion.
The results shown in Fig. 21 also indicate that oscil-

latory stasis, when it arises, can potentially persist for
a significant number of e-folds of cosmic expansion. In
situations in which ∆m ≳ (∆m)∗, the expression for Ns

in Eq. (2.24) represents the total number of e-folds of ex-
pansion associated with both true stasis and oscillatory
stasis. For τN−1 ≳ τdisc, as discussed above, true stasis
is never achieved and the number of e-folds Nosc of oscil-
latory stasis is given by Eq. (2.24) as well. By contrast,
for τN−1 ≲ τdisc ≲ τ0, oscillatory stasis begins roughly
when t ∼ τdisc and ends when the last state in the tower
decays. Thus, we have

Nosc ≈ log

(
a(τ0)

a(τdisc)

)
. (9.6)

Approximating a(τ0) and a(τdisc) with their correspond-

ing time-averaged values a ∼ τ
κ/3
0 and a ∼ τ

κ/3
disc , and

using Eq. (2.9) in order to express κ in terms of the con-
stant matter abundance ΩM that would be obtained for
a true stasis with the same values of α, γ, and δ, we find
that

Nosc ≈ 2γ

4− ΩM

log

(
∆m

(∆m)∗

)
. (9.7)

Once again, we emphasize that while this approximate
expression for Nosc decreases to zero continuously as
∆m → (∆m)∗, discretization effects in fact always come
into play at times t ∼ τ0.
The quasi-oscillatory behavior we have described here

may have observable consequences. For example, this be-
havior could potentially affect the growth of both scalar
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and tensor perturbations in the early universe in distinc-
tive ways. One particularly interesting possibility is that
resonance effects could arise as a consequence of these
oscillations. While Tosc(t) is in general time-dependent
during oscillatory stasis, an alignment of this timescale
with other relevant timescales even during a single cy-
cle of “oscillation” could potentially have consequential
effects. Indeed, such single-cycle resonances are know
to have a significant impact on cosmological dynamics
in other contexts (see, e.g., Ref. [24]), and it is certainly
conceivable that they could have observable consequences
in the context of oscillatory stasis as well. We leave the
investigation of such possibilities for future work.

C. Stasis unrealized

Finally, there is another unique behavior which is po-
tentially associated with stasis but which does not result
in a stasis configuration. Depending on the underlying
model parameters, it may happen that our system begins
heading toward a stasis configuration as the result of the
attractor behavior associated with stasis, but never fully
reaches this destination because our level-by-level tran-
sitions reach the bottom of the tower before the stasis is
fully realized. This can then result in abundances whose
time-evolution begins to slow over many e-folds (as ap-
propriate for the approach to stasis), but then grow again
as another post-stasis dynamics comes into play. This
phenomenon may also have important phenomenological
implications, and represents one of the few ways in which
a pairwise stasis may ultimately be avoided.

X. DISCUSSION AND CONCLUSIONS

Cosmic stasis — a phenomenon in which the abun-
dances of multiple cosmological energy components re-
main effectively constant across extended cosmological
eras despite cosmological expansion — arises naturally
in many extensions of the Standard Model. In Ref. [1],
for example, it was shown that a pairwise stasis involving
matter and radiation can arise from the decays of a tower
of unstable particles with a broad spectrum of lifetimes
and cosmological abundances. In this paper, we have
extended this prior analysis and demonstrated that cos-
mic stasis is a more general phenomenon which can also
arise in the presence of other cosmological energy com-
ponents with other equations of state. These include, as
we have seen, cosmological systems involving vacuum en-
ergy. In such cases, the transition from overdamped to
underdamped oscillation of a homogeneous scalar field
provides a natural mechanism for the transfer of energy
from vacuum energy to matter, thereby allowing a tower
of such scalar fields with a broad spectrum of masses to
give rise to a pairwise stasis involving vacuum energy and
matter. We have also shown that a direct transfer of en-
ergy density from vacuum energy to radiation can, under

certain conditions, give rise to a pairwise stasis involving
vacuum energy and radiation. Moreover, we have shown
that it is even possible for a triple stasis to arise in which
the abundances of vacuum energy, matter, and radiation
all simultaneously remain constant despite cosmic expan-
sion. Indeed, this last result is highly non-trivial and does
not emerge simply as the result of the existence of the pre-
vious pairwise stases. We further demonstrated that all
of these types of stasis are dynamical attractors within
their corresponding cosmological systems. Thus, as long
as these systems satisfy the basic conditions under which
stasis can develop, all of these systems will ultimately
flow toward the stasis state, irrespective of their initial
conditions.

As indicated above, one of the keys to our analy-
sis in this paper has been the use of the overdamp-
ing/underdamping transition as a means of transferring
energy density from vacuum energy — or more gener-
ally from a cosmological energy component with an effec-
tively constant equation-of-state parameter −1 < w < 0
— to matter. This in and of itself represents a signif-
icant broadening of the scope of cosmological scenar-
ios which give rise to stasis to include those involving
higher-dimensional axion or axion-like fields [25, 26] as
well as scenarios involving realizations of the string axi-
verse [27]. However, it is conceivable that a stasis epoch
could naturally arise in other BSM scenarios as well.
These might include, for example, cosmologies involving
a kination component with w = 1, other cosmological
energy components with w > 1/3, or even a cosmological
energy component with a time-varying equation-of-state
parameter w(t). Moreover, it is also conceivable that sta-
sis could arise in cosmologies involving spatial curvature
(w = −1/3), cosmic strings (w = −1/3), or domain walls
(w = −2/3). Such cosmologies can also involve other en-
ergy components with effectively constant equation-of-
state parameters within the range −1 < w < 0, such
as we have considered in this paper, but which transfer
their energy density to other cosmological components
via different mechanisms. In order for this to occur, our
analysis indicates that the pump terms associated with
these mechanisms would need to exhibit an appropriate
P ∼ 1/t scaling behavior during stasis. In some cases
this may be non-trivial, especially if we further demand
that such pump emerge naturally within the context of
BSM physics.

Given the possibility that cosmological energy com-
ponents beyond vacuum energy, matter, and radiation
could conceivably have constituted a significant fraction
of the total energy density of the universe at early times,
another obvious extension of our analysis would be to
investigate whether and under what conditions a sta-
sis epoch involving more than three components might
arise. What additional conditions would then have to be
satisfied? In order to answer this question, history can
be our guide. For each of the pairwise-stasis scenarios
that we examined in Sects. II, III, and IV, the system of
equations that we obtained for our stasis abundances was
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over-constrained. However, since some of these equations
happened to be redundant, we were nevertheless able to
obtain self-consistent solutions for these abundances. By
contrast, for the triple-stasis scenario that we examined
in Sect. VI, no such redundancies arose within the corre-
sponding system of equations. We were therefore able to
obtain a series of constraints that led to unique solutions
for our stasis abundances.

Given this pattern, it is natural to expect that a
quadruple stasis would lead to an under-constrained sys-
tem of constraints. We would then expect to find not
a unique set of stasis abundances but rather a line of
possible solutions. In such cases, the particular stasis
abundances towards which the system evolves would pre-
sumably depend on initial conditions. We would likewise
expect this pattern of increasingly under-constrained so-
lutions for the stasis abundances to continue as we in-
troduce additional energy components into the mix. Of
course, these observations are predicated on the manner
in which additional pumps for energy transfer are intro-
duced as the number of additional energy components is
increased.

In this connection, we note [in complete analogy with
the discussion below Eq. (4.16)] that another way of in-
troducing a fourth energy component would be to estab-
lish a triple stasis between three of the components and
then ensure that the fourth component functions as a
mere spectator — i.e., that it have an equation-of-state
parameter which exactly matches the stasis average ⟨w⟩
determined by other three, and that it experience no en-
ergy transfers with the other components and thereby
remain inert. As a result, the dynamics of the underly-
ing triple stasis would not be disturbed, and we would
once again expect to obtain a line of potential solutions
for the four stasis abundances in which the abundance
of the fourth component is arbitrary and the abundances
of the other three decrease to compensate but remain in
the same ratios as they had prior to the introduction of
the fourth component.

From a model-building perspective, the realizations of
stasis that we have discussed in this paper all involve
towers comprising large numbers of individual states.
However, as we have repeatedly emphasized, such towers
arise naturally in many extensions of the SM. For exam-
ple, scenarios involving additional, compactified space-
time dimensions naturally give rise to towers of Kaluza-
Klein (KK) resonances. Other examples of towers of
states which emerge naturally in BSM scenarios include
the towers of closed-string resonances which appear in
Type I string theories and the towers of hadron-like
resonances which appear in theories involving confining
hidden-sector gauge groups.

Within the context of such BSM scenarios, there is of-
ten a straightforward relationship between the properties
of the stasis epoch and the parameters of the underlying
particle-physics model which gives rise to it. For exam-
ple, in realizations of stasis in which the ϕℓ fields are the
KK resonances associated with an extra spacetime di-

mension of radius R, the massesmℓ of the KK states span
the range from R−1 to some fundamental cutoff scale µ
such as the string or GUT scale. In such realizations
of stasis, the range of lifetimes for the ϕℓ fields — and
therefore the duration of the stasis epoch — depends cru-
cially on the hierarchy between R−1 and µ. As a result,
in situations in which the stasis state has ⟨w⟩ < −1/3
(causing the universe to undergo accelerated expansion
during stasis), the size of the comoving horizon today
would in a very real sense be the manifestation of this
hierarchy of energy scales. Indeed, within such scenar-
ios, the large number of e-folds of expansion experienced
by our universe across its history might actually be the
manifestation of a hierarchy in the size of an otherwise
unseen compactified dimension!

In all of our stasis realizations involving the decays of
the ϕℓ states, the resulting cosmological dynamics is es-
sentially determined by the corresponding massesmℓ and
decay widths Γℓ. Moreover, we have assumed that for all
ϕℓ these widths are dominated by decays to effectively
massless particles outside the tower which behave like
radiation throughout the stasis epoch. However, within
certain realizations of such stases there may be multiple

states ϕ
(j)
ℓ at each level ℓ — states which share the same

mass mℓ and decay width Γℓ. At tree level, the result-
ing cosmological dynamics will be largely independent of
the manner in which each energy density ρℓ for each ℓ
might be partitioned among such degenerate states. In-
deed, at tree level such a collection of degenerate states
essentially functions as a single state whose total energy
density ρℓ is the sum of the contributions from its con-
stituents. At loop level, however, the cosmological dy-
namics is in general sensitive to such degeneracies. For
example, the renormalization of the masses mℓ and cou-
plings which give rise to each Γℓ would depend on these
degeneracies since all of these states can run indepen-
dently within the loops. Thus the scaling of the decay
widths would ultimately depend on such degeneracies.

Moreover, in situations in which the ϕ
(j)
ℓ states de-

cay to the same species of radiation particle at tree level,
loop-level diagrams will generically give rise to decay pro-
cesses in which heavier ϕℓ states decay into lighter ϕℓ′

states with mℓ′ < mℓ. For decay processes in which the
resulting daughter particles are significantly lighter than
the parents, these daughters will be produced with signif-
icant boosts as seen within the cosmological background
frame. These boosts will therefore result in non-trivial
phase-space distributions for the lighter ϕℓ′ particles.
The presence of potentially significant velocities for these
states can also increase their corresponding equation-of-
state parameters from wℓ = 0 (consistent with our orig-
inal assumption of cold matter) to anywhere within the
range 0 < wℓ < 1/3. These phase-space distributions
will also thereafter evolve non-trivially during the stasis
epoch due to cosmological redshifting effects [28]. Thus,
if loop-level effects are significant, they could in principle
have a non-negligible effect on the cosmological dynamics
involved in establishing and sustaining stasis.
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Issues regarding the degeneracies of states at each mass
level may be particularly relevant for string-theoretic re-
alizations of stasis. In general, perturbative string-theory
spectra contain many kinds of states, including not only
KK states (and winding states if the string is closed) but
also string oscillator states. All of these states come in
infinite towers. For example, the infinite towers of oscil-
lator states have masses which scale as α′m2

ℓ ∼ ℓ where

α′ is the Regge slope, or equivalently
√
α′mℓ ∼ ℓδ with

δ = 1/2. However, at each level ℓ the number nℓ of os-

cillator states grows exponentially : nℓ ∼ e
√
ℓ ∼ e

√
α′mℓ .

This can have a number of interesting consequences. For
example, in string theory these states will generally have
different spins (even though they share the same mass);
they will therefore couple differently to lighter states and
potentially have different decay widths. Second, this
growth in the number of states at each mass level ul-
timately leads to the famous Hagedorn phenomenon [29]
wherein various thermodynamic quantities experience di-
vergences at a critical temperature Tc — a temperature
beyond which the theory is believed to transition to a dif-
ferent phase with different underlying degrees of freedom.
It may therefore be these new degrees of freedom that
are relevant for understanding the dynamical properties
of the early universe, at least for T > Tc. But even when
T < Tc, there remains the issue of how the total abun-
dances Ωℓ might scale as functions of ℓ across the tower,
given that the densities of oscillator states are growing
exponentially. This issue was studied in some detail for
one cosmological production mechanism in Ref. [7], but
many other production mechanisms are possible. Indeed,
like all predictions of abundances Ωℓ across our tower,
this is ultimately a model-dependent question which de-
pends on the particular production mechanism envis-
aged. We also emphasize that in general, string oscillator
states have mass splittings ∆m on the order of the string
scale. Such states can therefore potentially support a sta-
sis at intermediate energy scales below the Planck scale
only within the context of low-scale string theories, with
Mstring ≡ 1/

√
α′ ≪ MPlanck.

Of course, even if the string scale is situated near the
Planck scale (implying that the excited oscillator states
are therefore near the Planck scale as well), large-volume
compactifications can lead to KK towers populating in-
termediate scales. Such KK states can therefore support
a stasis at intermediate scales, even though they emerge
in a string context. Indeed, within such string theories,
these KK states will likely be the only part of the per-
turbative string spectrum whose towers are lighter than
the string scale. Moreover, their degeneracies will not
experience exponential growth.

It is not only the abundances and decay widths of our
states that might be affected by model-specific concerns;
the same may also be true of their masses. For exam-
ple, throughout this paper we have assumed that the
fields ϕℓ have masses which scale according to Eq. (2.13).
However, interactions of these fields with other fields in
the theory may lead to radiative corrections for these

masses. For KK towers stemming from a single large flat
extra dimension, such radiative corrections were studied
in Refs. [30, 31]. In some cases, it was found [31] that
the overall scaling structure of these KK masses is actu-
ally preserved under such one-loop radiative corrections
— indeed, in these cases the radiative corrections can
simply be bundled into “renormalizations” of the over-
all parameters m0 and ∆m without changing the form
of Eq. (2.13). By contrast, in other cases, the one-loop
radiative corrections were found to distort these scaling
relations altogether. In either case, however, one gener-
ally finds that these radiative corrections are exceedingly
small.

Moreover, in particle-physics realizations of stasis in
which the ϕℓ are coherently oscillating scalar fields, ef-
fects of this sort can affect not only the masses of these
fields but also other aspects of the scalar potential [32].
Indeed, at points in field space where the ϕℓ fields are
significantly displaced from their vacua, loop corrections
can have significant impacts on the shape of the potential.
For example, these impacts have been studied within the
context of large-field inflation models, where the resulting
modification of the potential can in turn lead to modified
predictions for inflationary observables [33–39]. One in-
triguing possibility that can arise in certain situations as
a result of such corrections is that coherent oscillations
of the ϕℓ fields can in fact behave at early times like mat-
ter or radiation — or potentially even like a perfect fluid
with w > 1/3. Thus, in realizations of stasis involving
fields of this sort, there might exist mechanisms which
transfer energy density from matter or radiation to vac-
uum energy, rather than the other way around. We leave
the investigation of such possibilities for future work.

The existence of an early period of stasis throughout
the cosmological timeline can have a number of phe-
nomenological consequences. Indeed, the modification
of the expansion history alone relative to that of the
standard cosmology can affect the evolution of density
perturbations, the spectrum of gravitational waves, and
predictions for cosmic-microwave-background (CMB) ob-
servables. Moreover, such a modification can also have
an impact on a variety of out-of-equilibrium processes,
including those which play a crucial role in the produc-
tion of dark matter or the generation of a baryon asym-
metry in many BSM scenarios. Indeed, many of these
possibilities were discussed in detail in Ref. [1] within
the context of cosmologies involving an epoch of pair-
wise matter/radiation stasis. However, since these effects
arise generically in any cosmological scenario involving a
non-standard expansion history, they also pertain to cos-
mologies involving the alternative types of stasis that we
have examined in this paper.

One of the main motivations for this paper was to show
that an epoch of cosmic stasis can in principle arise in sit-
uations in which the vacuum-energy abundance is non-
negligible. This prompts the question as to whether such
a stasis epoch could potentially give rise to a period of
cosmic inflation [40–44] with a duration sufficient to ad-
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dress the horizon and flatness problems. In typical infla-
tionary scenarios, the extraordinary degree of large-scale
homogeneity and isotropy that we observe in our universe
is attributed to an epoch of rapid cosmological expansion
wherein the energy density is dominated by a perfect fluid
with equation-of-state parameter w < −1/3. However,
such a period of rapid expansion could also be the result
of an epoch of cosmic stasis in which a tower of states
which behave like vacuum energy coexists with matter
and/or radiation, provided that ⟨w⟩ < −1/3. Moreover,
since such a stasis epoch concludes when the last of these
vacuum-energy states transfers its energy to matter or ra-
diation, a graceful exit from inflation occurs naturally in
this context.

In these respects, inflationary stasis scenarios of this
sort have a great deal in common with so-called warm-
inflation scenarios [45–47] in which radiation is produced
throughout the inflationary epoch due to dissipative ef-
fects and in which thermal fluctuations, rather than
quantum fluctuations, represent the dominant contribu-
tion to primordial density perturbations [48, 49]. In-
deed, during the slow-roll phase of warm inflation —
as in a vacuum-energy/radiation stasis — Ωγ remains
approximately constant due to a transfer of energy den-
sity from vacuum energy to radiation which counteracts
the effect of cosmic expansion [21, 22]. However, there
are also fundamental differences between these scenar-
ios. In warm inflation, the vacuum-energy component
vastly dominates the energy density of the universe dur-
ing the slow-roll phase, and H therefore remains approx-
imately constant. While vacuum energy is continually
being transferred to radiation during this phase, it is not
transferred at a rate that is sufficiently large in order
to have a significant impact on ΩΛ. Thus, the back-
reaction of ργ on H plays no essential role and can be
neglected. By contrast, during an epoch of vacuum-
energy/radiation stasis, ΩΛ and Ωγ during inflation can
both be non-negligible — and indeed even O(1) — and
the back-reaction of ργ on H is incorporated fully, with
H inversely proportional to t.

Of course, whether a given stasis scenario of this sort
constitutes a viable model of inflation ultimately depends
on whether the spectrum of scalar and tensor perturba-
tions that it yields are consistent with observation (for a
recent review, see, e.g., Ref. [50, 51]) — and in particular
with the properties of the CMB. The evolution of these
perturbation spectra during an epoch of inflationary sta-
sis would be highly non-trivial, with significant roles po-
tentially played not only by the quantum fluctuations of
each individual ϕℓ field which contributes to ΩΛ, but also
by thermal fluctuations within the radiation bath. More-
over, the collective behavior of the ϕℓ fields and the value
of ⟨w⟩ to which they dynamically give rise during stasis
would affect the manner in which both scalar and ten-
sor perturbations evolve. Investigating the perturbation
spectra which can arise in inflationary stasis scenarios
— spectra which may exhibit not only distinctive fea-
tures at high frequencies but also characteristic patterns

of non-Gaussianities — is the subject of ongoing work.

ACKNOWLEDGMENTS

We are happy to thank J. Kost for discussions. The
research activities of KRD are supported in part by
the U.S. Department of Energy under Grant DE-FG02-
13ER41976 / DE-SC0009913, and also by the U.S. Na-
tional Science Foundation through its employee IR/D
program. The work of LH is supported in part by the
U.K. Science and Technology Facilities Council (STFC)
under Grant ST/P001246/1. The work of FH is sup-
ported in part by the Israel Science Foundation grant
1784/20, and by MINERVA grant 714123. The work of
TMPT is supported in part by the U.S. National Sci-
ence Foundation under Grants PHY-1915005 and PHY-
2210283. The research activities of BT are supported
in part by the U.S. National Science Foundation un-
der Grants PHY-2014104 and PHY-2310622. LH also
acknowledges the hospitality and support provided by
the Institut Pascal at Université Paris-Saclay during
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