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ABSTRACT OF THE THESIS

Arc-Eager Construction Provides Learning Advantage

Beyond Stack Management

by

Phillip A. Barnett

Master of Arts in Linguistics

University of California, Los Angeles, 2021

Professor Tim Hunter, Chair

Psycholinguistic research has posited arc-eager left corner parsing as a psychologically viable candidate

for the human parsing mechanism (Resnik, 1992). Using probabilistic left-corner grammars (PLCGs),

as introduced by Manning and Carpenter (1997), as a testbed, this thesis examines the probabilistic

mechanisms involved in arc-eager tree construction.1 By moving attachment decisions earlier in the

decision tree, arc-eager PLCGs gain probabilistic advantage over their arc-standard counterparts due

to recursive left-corner embeddings, tree productions of the form A → Aγ, which are abundant in

datasets like the Penn Treebank, and which many would argue have psychological reality. This ad-

vantage is fully independent of the well-documented stack management advantage seen in arc-eager

constructions of right-branching structures.

1The python module ae-plcg, which was created and used by the present investigation to model and evaluate arc-
standard and arc-eager PLCGs, can be found at https://github.com/phill-barnett/ae-plcg, along with several
fully trained and testable model parameter sets, detailed in Section 3.1 of this thesis.
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CHAPTER 1

Introduction

Many theories of syntax posit underlying hierarchical structures for sentences, often referred to as

trees. These trees recursively group constituents into larger phrases, ultimately assigning a single

grouping and tag to the entire sentence. Trees can be constructed in different orders for different

purposes. Context-free grammars (CFGs), for instance, construct a tree top-down, starting with the

root node and expanding nonterminals until all terminal leaf nodes have been enumerated.

One of the questions posited by language processing research is that of the human parsing mech-

anism; what construction order algorithm do we use to turn linear utterances into phrase-structure

trees? Many researchers have weighed in on the very specific way the brain turns sentences into hi-

erarchical structures for composing meaning (e.g., Johnson-Laird, 1983; Abney and Johnson, 1991;

Bengio et al., 2003). Early psychological perception research revealed that humans use two types of

processing when decoding and encoding their experience of the world: bottom-up, where structure

and meaning are built up from smaller components in the stimulus; and top-down, where structure

and meaning are constructed based on expectation. This gave natural rise to the consideration of both

bottom-up and top-down mechanisms within the human parsing mechanism. Human language pro-

cessing research (e.g., Resnik, 1992) has shown that the human parsing mechanism aligns closely with

a particular construction order known as left-corner, wherein bottom-up left-to-right processing of in-

put is used to generate top-down predictions about the remaining structure. This construction order

is discussed more explicitly in Section 1.4.1.

There are two main flavors of left-corner construction order: arc-standard and arc-eager. The dif-

ference between the two lies in theway they consolidate the predicted phrase types sought by the parser

and the observed phrase types the parser has already detected in the input. Arc-standard construction

fully constructs a tree before making these attachment decisions, whereas arc-eager must immediately
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make the decision as to whether a newly posited node is the goal node, or a daughter node of the same

category. Manning and Carpenter (1997) propose a language model based on arc-standard left-corner

construction order, which they term a probabilistic left-corner grammar (PLCG), which I will use as a

testbed of comparison for these two types of left-corner construction algorithms.

This work recreates and extends the architecture of the original Manning and Carpenter (1997)

paper to compare and explore the effects of arc-standard and arc-eager left-corner construction or-

der on the learned parameters of the resulting language models. Chapter 1 presents an overview of

probabilistic language models, situating PLCGs within the landscape. Chapter 2 presents a thorough

description of the arc-standard and arc-eager language models created for the present investigation,

and ensures mathematically that arc-eager PLCGs constitute a complete language model, congruent

to the original arc-standard PLCG. Finally, Chapter 3 gives a preliminary evaluation of these models

and analyzes their structure and results to determine the differences in the way they learn and generate

probabilities.

1.1 Probabilistic Language Models

Probabilistic language models date back to the 1950s work of computer scientists like Ray Solomonoff

(see Solomonoff, 1997). The terms grammar and language model are often used interchangeably. How-

ever, for the sake of clarity, I disambiguate them here as follows: a grammar is a function that takes a

string as input and returns a Boolean value based onwhether the string is a setmember of the grammar,

G :: Σ∗ → Bool, while a language model is a function from strings to probabilities,Γ :: Σ∗ → [0, 1].

A statistical language model is generally defined as a probability distribution over a string of words

given a grammar. The probability of a sentence W = (w1, ..., wn) is the product of probabilities of

each of its words w given the preceding words, as in (1.1). In principle, the probability of the next

word in an utterance is conditioned on all preceding words: P (wn |w1, ..., wn−1). However, without

some abstraction away from this notion, utterances would be assigned a probability based on the full

sentence frequency. In a corpus of 50,000 unique sentences, each sentence would be assigned a prob-

ability of 1/50000. Even worse, sentences not contained in the corpus would recieve a probability of

0. Thus, we must assume that utterances are composed of smaller chunks that have some probability
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of occuring, as well as some probability of occuring in a given structural relation to the rest of the ut-

terance. The human brain, being the great pattern-recognizer that it is, finds patterns in language and

extrapolates a mental language model from them.

P (W ) =
∏
i=1

P (wi |w1, ..., wi−1) (1.1)

1.1.1 Bias in language models

Inductive learning is the process of discovering patterns within data based on surface observations.

Mitchell (1980) points out that learning is only possible through bias about which generalizations are

possible within the training data. From this perspective, Universal Grammar can be thought of as the

notion that humans are genetically hard-wired with some sort of inductive bias pre-installed that gives

shape to the patterns they are capable of finding. When constructing a probabilistic language model,

all decisions about the way the model will learn probabilities introduce inductive bias.

As Bengio et al. (2003) point out, language models, like all models that assign probability to groups

of discrete random variables (in this case words), suffer from what is known as the curse of dimension-

ality; modeling a string of nwords given a grammar containing g words could yield up to (gn−1) free

parameters (p. 1137). As the grammar and length of utterance grows, the model parameters become

computationally unwieldy.

To address this computational problem, researchers have proposed methods for generating prob-

abilistic language models that introuduce a type of inductive bias called independence assumptions. In-

stead of conditioning each word/structure’s probability on all preceding words/structures in the sen-

tence, informational sacrifice is made as certain aspects of the preceding variables are highlighted and

others are thrown out.

The present study focuses on language models of syntactic structure. More specifically, we are

most interested in models that assign probabilities to strings based on the posited or observed phrase-

structure trees that underlie them. Within such models, the probability of a string given a grammar is

equivalent to the sum of the probabilities of all possible string-tree pairs for that sentence, as shown in

(1.2). Since only trees that yield the string will receive non-zero probability, this is equivalent to (1.3).
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However, assigning probabilities to strings is not essential to comparing construction orders. Thus,

the present study focuses only on the probabilities that such models assign to the trees themselves.

P (s |G) =
∑
t

P (s, t |G) (1.2)

=
∑

{t:yield(t)=s}

P (t |G) (1.3)

1.2 n-gram models

All statistical models use variables. The most basic approaches to modelling involve modelling only

observed variables, while more complex models make use of latent, or hidden, variables, variables that

never appear on the surface, but are posited by the model as a means of explaining the observable

structure. Language models are no exception; there are language models that only pay attention to the

surface structure of language, and there are languagemodels thatmake hypotheses about andmodel the

hidden structure of language. The most naive approach to modelling language is n-gram modelling.

These models rely purely on the observed statistical frequency of words in a training corpus given the

preceding n− 1 words.

Step Complete Configuration Context Action

0 [ ] ( ) gen the
1 [ the ] ( the ) gen catfish
2 [ the catfish ] ( catfish ) gen howls
3 [ the catfish howls ] ( howls ) gen at
4 [ the catfish howls at ] ( at ) gen midnight

Table 1.1: The complete configuration and conditioning context of a simple bigram model’s derivation
of the sentence the catfish howls at midnight.

While the actual probability of each word in the sentence is best expressed as P (wi |w1, ..., wi−1),

due to the core independence assumption of an n-gram model, the probability of a word in an n-gram

model can be expressed as P
(
wi

∣∣wi−(n−1), ..., wi−1

)
. Independence assumptions like these are es-

sential to making language models computable, and indeed, we can assume from the infinite, novel

capacity of human language, that the human mind must also be making some sort of independence
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assumptions about the structure of language. As in (1.1), sentence probabilities in n-gram models are

the product of each word’s probability. Regardless of the independence assumption made, probabili-

ties for each conditioning context must sum to 1 in order to ensure a complete language model. In an

n-gram model, this means that for any given context, whether it is composed of the preceding word,

two words, or 200 words, summing across the probabilities of all possible words for that context will

result in a sum of 1, as in (1.4).

∑
w

P
(
w
∣∣wi−(n−1), ..., wi−1

)
= 1 (1.4)

By only relying on the surface structure of the data they describe, these models intuitively fall short

of accurately modelling language when we consider longer-distance relational structures in language

data, such as reduplication or reflexive pronoun relationships. An unbounded n would be needed to

deal with the recursive nature of right- and left-branching structures, which humans tend to have little

trouble understanding or encoding. See (Manning and Schütze, 1999, Ch. 6), for a more in-depth

discussion of n-gram models.

1.3 Probabilistic context-free grammars (PCFGs)

To capture the recursive nature of language, linguists and computer scientists employ context-free

grammars (CFGs), which are simple phrase-structure grammars that describe a language with a set of

production rules. These production rules take the form A → γ where A is a nonterminal category

and γ is a tuple of terminal and/or nonterminal variables. CFGs take phrase-structure trees, like the

one in 1.1, and return a Boolean acceptability rating.

Probabilistic languagemodels known as probabilistic context-free grammars (PCFGs) can be easily

constructed from CFGs by simply assigning probabilities to each of the production rules in the gram-

mar. Deriving sentence probabilities is slightly more abstract with PCFGs as words are now formu-

lated as the result of the generative actions that produced them, rather than preceding words, as in n-

gram models. Sentence probabilities in this case are straightforwardly calculated by taking the product

of the probabilities of all generative actions needed to construct the tree (C1, ..., Cn). The probability
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Figure 1.1: The CFG tree structure representing the sentence The catfish howls at midnight.

of each of these actions should theoretically be conditioned on all previous actions,P (Ci |C1, ..., Cn),

but instead, PCFGs use a drastic independence assumption: the probability of an action depends only

on the node being expanded. PCFGs only feature one generative action, which we can call expand,

that uses CFG production rules to construct trees top-down, P (expandA → γ |A). In this way, like

n-gram models, PCFGs use only a limited construction history to determine probabilities. A more

thorough breakdown of PCFGs can be found in (Manning and Schütze, 1999, Ch. 11).

These probabilities aremost straightforwardly calculated by dividing the number of times a certain

production rule A → γ occurs within the training data by the total number of times A occurs in

the corpus. This probability can be represented as P (A → γ |A). Note the drastic independence

assumption here: the probability that A is rewritten as γ is only conditioned on the existence of A,

hence the “context-free” moniker; CFGs do not not look higher in the tree than the current node. Also

like n-gram models, all locally competing expansions also sum to 1, as in (1.5).

∑
γ

P (A → γ |A) (1.5)

1.4 Probabilistic Left-Corner Grammars (PLCGs)

1.4.1 Construction order

In the case of a PCFG, probabilities are derived from production rules used in a constituency tree.

These probabilities correspond roughly to the actions of a simple top-down or bottom-upCFG parsing
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algorithm. While a PCFG does not look at the stack contents, like an actual parser would, it constructs

the tree in the same order. In top-down CFG parsing, the parser looks first at the root category, which

can be any nonterminal category in the grammar, and then uses the rules of the grammar to rewrite this

nonterminal and its resulting nonterminals, ultimately generating the leaves of the parse tree. Bottom-

up parsing conversely starts at the leaf nodes, rewriting nodes left-to-right as complete constituents

are identified, ultimately identifying a root category for the string.

As onemight expect, the literature is full of parsing algorithms for formal grammars that follow dif-

ferent construction orders. Among the most psychologically plausible of these algorithms is a class of

tree construction algorithms known as left-corner (LC) (Resnik, 1992). Manning and Carpenter (1997)

propose an alternative method for making a probabilistic language model using a CFG grammar that

uses left-corner construction order to override the CFG’s context-free assumption when conditioning

probabilities. They term this class of language models probabilistic left-corner grammars (PLCGs) as they

take advantage of left-corner construction order’s mixed top-down/bottom-up approach to tree con-

struction that builds phrases based on observed categories (like bottom-up) but also makes predictions,

or projections as we’ll call them, about which categories may come next based on a goal category. This

goal category effectively gives context to the CFG-style productions within the tree.

Left-Corner Construction Algorithm

• Construct the left corner1 lc of the tree bottom-up.

• Having observed lc, generate predicted nonterminals for the remaining
daughter nodes using the grammar and construct them top-down.

• Consolidate predicted and observed nonterminals.

Figure 1.2: Left-corner (LC) construction of a parse tree follows this general procedure of using the
tree’s left corner to generate predictions for the rest of the string, and ultimately consolidating pre-
dicted and observed nonterminals, which verifies that an accurate parse has been found.

The procedure in Figure 1.2 gives the general procedure for left-corner tree construction. While

the term left-corner (LC) represents a large class of tree-construction algorithms (see Demers, 1977;

Nederhof, 1993), the particular left-corner algorithm used by Manning and Carpenter (1997) is de-
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Figure 1.3: Arc-standard left-corner construction order. Each step is transformed to the next by gen-
erative LC parse operations. The complete list of actions for this construction is given in Table 1.2.
PLCGs are trained on lists of these parse operations given the state of the stack.
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signed to generate exactly one unique left-corner derivation per unique tree. An LC derivation is rep-

resented as a list of generative actions used to construct the tree. Table 1.3 highlights the difference in

construction actions that PCFGs and PLCGs condition their probabilities on.

Step Stack Context Action Rule

0 [ S ] (S, S) shift D → the
1 [ D, S ] (D, S) project NP → D N
2 [N, NP, S ] (N, N) shift N → catfish
3 [N, N, NP, S ] (N, N) attach
4 [NP, S ] (NP, S) project S → NP VP
5 [ VP, S, S ] (VP, VP) shift V → howls
6 [ V, VP, S, S ] (V, VP) project VP → V PP
7 [ PP, VP, VP, S, S ] (PP, PP) shift P → at
8 [ P, PP, VP, VP, S, S ] (P, PP) project PP → P NP
9 [NP, PP, PP, VP, VP, S, S ] (NP, NP) shift NP → midnight
10 [NP, NP, PP, PP, VP, VP, S, S ] (NP, NP) attach
11 [ PP, PP, VP, VP, S, S ] (PP, PP) attach
12 [ VP, VP, S, S ] (VP, VP) attach
13 [ S, S ] (S, S) attach

Table 1.2: The context and action pairs encountered in the arc-standard left-corner derivation of the
tree for the catfish howls at midnight, which is given in Figure 1.1. The LC tree construction in Figure
1.3 follows these actions. Note that attach does not take a rule, as it operates exclusively on the stack.

n-gram PCFG PLCG

Algorithm Left-to-right Top-down Left-corner

Actions generate expand shift
project
attach

Probability P
(
gen w1

∣∣wi−(n−1), ..., wi−1

)
P (expand A → γ |A) P (action | lc, gc)

Table 1.3: Comparison of n-gram , PCFG, and PLCG model actions and probabilistic conditioning.
Note that by using the machinery of a parser, the PLCG is able to condition on a more dynamic set of
actions.

1.4.2 The drastic independence assumption of PLCGs

As discussed in Section 1.3, PCFGs make the independence assumption that the only thing affecting

the probability of a construction action is the category of the node being constructed, the parent of the

9



current local subtree. While the independence assumption made by PLCGs is also drastic, it is vitally

different. While in principle each action should be conditioned on all of the previous actions in the

derivation, to approximate this while drastically reducing computational load, the original Manning

and Carpenter (1997) PLCG conditions each action on the partial state of a left-corner parser at the

current point in the derivation. If a parser were constructing the tree2, it would need to keep a running

list of predicted and observed nonterminals, called a stack, to keep track of the structure it generates

from the input string. The original PLCG generates a stack for each step of the construction and

conditions on the topmost symbol on the stack, which is the left-corner of the current tree, and the

topmost predicted nonterminal (e.g., S, NP, etc.) on the stack, which is the current goal category. As

stated above, the goal category is what gives a PLCG more context than a PCFG.

The PLCGs presented in this paper make the independence assumption that action probabilities

are conditioned only on their left-corner and current goal. This means that the probabilities generated

by the PLCG are dependent not only on the current category like CFGs, but also on the context of the

current subtree in the sentence. In other words, subject-NPs, where the current goal is S, and object-

NPs, where the current goal is VP, are generated using different sections of the probability space. This

is important to highlight, as it was the primary motivation behind the development of the original

Manning and Carpenter (1997) PLCG.

Action Rule Type Input string Stack

shift C →w1 w1, w2, ..., wn → w2, ..., wn [γ] →[C, γ]
project X →Y Z No Change [Y, γ] →[Z, X, γ]
attach None No Change [X, X, γ] →[γ]

Table 1.4: A formal definition for each of the actions available to an arc-standard left-corner parser.
These actions, along with the corresponding rule, make up the derivations for an AS-PLCG. Here,
terminal rules are represented by C →w, while nonterminal rules are represented by X →Y Z.

1.4.3 Learning probabilities with PLCGs

Manning and Carpenter (1997) provides probabilities for left-corner derivations using their original

2As we will discuss in Chapter 2, the PLCG training process does not actually parse trees, but uses an oracle-generating
algorithm that utilizes the already-enumerated structure of a tree to straightforwardly generate the one correct derivation
without any hypothesizing/guesswork needed.
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PLCG.3 As with all phrase-structure language models, to find the probability of a string s, given a left-

corner language modelG, we must sum over the probability of each string-tree pair givenG as shown

above in (1.2), which is equivalent to (1.3). Within the Manning and Carpenter model, the probability

of an individual tree is the sum probability of all possible left-corner derivations of that tree. As there

is only one possible left-corner derivation of any given tree, by the chain rule, the probability of a tree

can be found by taking the product of the probabilities of the parser actions (C1, ..., Cm) contained in

the derivation given the action history, as in (1.6).

P (t) = P (d) =
m∏
i=1

P (Ci |C1, ..., Ci-1) (1.6)

Without diving into neural networks, it is not practical to condition each action on the entire parser

action history. To address this, Manning and Carpenter (1997) made a drastic, yet effective, assump-

tion that the only part of the history an action is conditioned on is the topmost goal category on the

parser’s stack and the topmost category on the stack overall. As we will see in Section 1.4.4, in cases

wherein the topmost goal category and the topmost category are not the same entity, this is equivalent

to conditioning on the current goal category, which we will call gc, and the most recently constructed

nonterminal category, which is the left-corner of the in-progress tree or subtree, which we will call lc.

1.4.4 Arc-standard probabilities

P (Ci = shift T → w |C1, ..., Ci−1) =


PS(T → w|gc) if ToS is predicted NT

0 otherwise
(1.7)

P (Ci = attach |C1, ..., Ci−1) =


PA(lc, gc) if ToS is observed NT

0 otherwise
(1.8)

P (Ci = project A → γ |C1, ..., Ci−1) =


(1− PA(lc, gc))PP (A → γ|lc, gc) if ToS is observed NT

0 otherwise
(1.9)

3Equations (1.6)-(1.12) are adapted from Manning and Carpenter (1997); ToS = Top of Stack.
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The probability of shifting using a certain terminal rule T → w is zero when the top of the stack

(ToS) is not a predicted nonterminal NT. Otherwise it is conditioned on the goal category and effec-

tively represents lexical frequencies dependant on the current goal context. When to shift is fully

deterministic under this formulation. Note that when the top of the stack is a predicted nonterminal,

lc = gc. So in practice shift parameters (PS(T → w|gc)) can be trained the same way as attach

(PA(lc, gc)) and project (PP (N → c|lc, gc)). These arc-standard parsing operations obey the fol-

lowing:

∑
T→w

PS(T → w|gc) = 1 (1.10)

if lc 6= gc, PA(lc, gc) = 0 (1.11)∑
{A→γ:γ=lc,...}

PP (A → γ|lc, gc) = 1 (1.12)

As we will see in Section 2.3, a PLCG is trained using a corpus of annotated parse trees, such as

the Penn Treebank. Each tree is converted to its one possible left-corner derivation, effectively a list of

parser actions. These parser actions are tallied according to the state of the stack immediately before

the action. Due to this training process, only actions that make progress toward the eventual goal

receive non-zero probability. This prevents dead end derivations and guarantees that the probability

of all possible rule projections sum to 1, as in (1.12). Since all other probabilities are complements to

each other within this system, it defines a language model.
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CHAPTER 2

Extending the PLCG

2.1 Arc-eager left-corner construction order

Note that in the fourth and sixth steps of the left-corner derivation illustrated in Figure 1.1, more sym-

bols end up on the stack due to the presence of multiple active predicted and observed nonterminals;

nonterminals are only taken off the stack once their parent tree is fully constructed. If this parser

encounters a deep right-branching structure, like a bottom-up parser, it would have to keep every un-

resolved nonterminal in the right-branching structure on the stack until the subtree was complete,

which means the parser must proceed in linear, rather than constant, time depending on the depth of

the right-branching structure.

Human sentence processing research reveals that humans have no problem comprehending and

encoding left- and right-branching structures, like those in (α) and (β), but experience processing over-

load with center-embedded structures like that in (γ). As Resnik (1992) points out, arc-standard left-

corner parsing does not accurately mirror the the processing difference observed with these different

types of nested structures. A better candidate is arc-eager left-corner construction.

(α) The coyote’s cousin’s nephew despises rattlesnakes. Left-branching

(β) These are the locusts that plagued the merchant that sold the cow that sang. Right-branching

(γ) The hawk that the buzzard that the lizard fought met was grey. Center-embedding

The final step of the left-corner parse (see Figure 1.2), consolidation of predicted and observed

nonterminals, can be performed at the very end of the construction of the tree or subtree, which is

known as arc-standard left-corner parsing, or at the earliest possible step in the parse, which is know as

13



Step Stack Context Action Rule

0 [ S ] (S, S) shiftu D → the
1 [ D, S ] (D, S) projectu NP → D N
2 [N, NP, S ] (N, N) shifta N → catfish
3 [NP, S ] (NP, S) projecta S → NP VP
4 [ VP ] (VP, VP) shiftu V → howls
5 [ V, VP ] (V, VP) projecta VP → V PP
6 [ PP ] (PP, PP) shiftu P → at
7 [ P, PP ] (P, PP) projecta PP → P NP
8 [NP ] (NP, NP) shifta NP → midnight

Table 2.1: The context and action pairs encountered in the arc-eager left-corner derivation of the tree
for the catfish howls at midnight, which is given in Figure 1.1. The arc-eager LC tree construction in
Figure 2.1 follows these actions.

arc-eager left-corner parsing. An arc-standard left-corner parser typically has access to three actions:

shift , which places the nonterminal category of the next token in the input string on top of the stack,

which becomes lc for the following parser action; project , which generates predicted nonterminals

onto the stack based on rules of type A → (γlc, ..., γm); and attach , which deletes an observed

nonterminal and its predicted counterpart if they are at the top of the stack. An arc-eager left-corner

parser, on the other hand, does not have access to attach , but instead uses shifta (shift-attach),

which is equivalent to shift immediately followed by attachwithin the arc-standard framework, and

projecta (project-attach), which is equivalent to project immediately followed by a special version of

attach that can consolidate observed-predicted pairs regardless of where they are in the stack as long

as they are adjacent. In other words, an arc-eager left-corner parser must make attachment decisions

as soon as possible, as it does not have the ability to attach once the tree has been fully constructed. I

will use shiftu (shift-unattached) and projectu (project-unattached) for the arc-eager equivalents of

shift and project .

As an illustration, when parsing a simple sentence like Bill walked, an arc-standard left-corner

parser would shift Bill onto the stack as an NP and then project S → NP, VP, resulting in the follow-

ing stack configuration: [VP, S, S]. By contrast, after shifting, an arc-eager left-corner parser would

projecta using S → NP, VP, deciding immediately that the observed S generated by the projection is

indeed the S it is looking for, leaving just a predicted VP on the stack: [VP].
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AS-PLCG AE-PLCG

Algorithm arc-standard arc-eager

Actions shift shiftu
project projectu
attach shifta

projecta

Table 2.2: Comparison of the arc-standard and arc-eager conceptions of a PLCG. Formal definitions
for arc-standard actions are given in Table 1.4; arc-eager actions are given in Table 2.3.

Action Rule Type Input string Stack

shiftu C →w1 w1, w2, ..., wn → w2, ..., wn [γ] →[C, γ]
projectu X →Y Z No Change [Y, γ] →[Z, X, γ]
shifta C →w1 w1, w2, ..., wn → w2, ..., wn [C, γ] →[γ]

projecta X →Y Z No Change [Y, X, γ] →[Z, γ]

Table 2.3: A formal definition for each of the actions available to an arc-eager left-corner parser. These
actions, along with the corresponding rule, make up the derivations for an AE-PLCG. Here, terminal
rules are represented by C →w, while nonterminal rules are represented by X →Y Z.

2.2 Deriving probabilities from an arc-eager PLCG

In Section 1.4.4, we saw thatwhen selecting its next action, an arc-standard left-corner parsermust first

decide deterministically between shift and ( attach ∨ project ), and then probabilistically between

attach and project . An arc-eager parser, on the other hand, first chooses deterministically between

( shiftu ∨ shifta ) and ( projectu ∨ projecta ), and then probabilistically between its remaining

options. The shiftu / shifta probability PSM of an action is only activated when the top of the stack

is a predicted nonterminal. Otherwise, the projectu / projecta probability PPC is activated. Thus,

probabilities for shiftu and shifta are complimentary (2.1), as are probabilities for projectu and

projecta (2.2).

∀gc ∈ G
∑
T→w

(PSM(shiftu T → w|gc) + PSM(shifta T → w|gc)) = 1 (2.1)

∀(lc, gc) ∈ G
∑
A→γ

(PPC(projectu A → γ|lc, gc) + PPC(projecta A → γ|lc, gc)) = 1 (2.2)
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Notice that that division between shiftu / shifta and projectu / projecta also divides which

types of CFG rules are used in each action. Terminal generation is fully handled by shiftu and shifta

while projectu and projecta only use nonterminal rules. This creates an apparent symmetry in

the system. Unlike the arc-standard configuration, which features a rule-defying attach , all of the

actions in an arc-eager parser can be abstracted to action A → γ. It also means that each action is

dependant on its rule-mate. To derive the rule-specific probability of an action, you must compute the

probability mass occupied by the general action given the current gc, as well as the probability of the

rule-specific action within its pairwise probability space (PSM or PPC ).

P (Ci = shiftu T → w |C1, ..., Ci-1) =


PSM (shiftu T → w|gc) if ToS is NT

0 otherwise
(2.3)

P (Ci = shifta T → w |C1, ..., Ci-1) =


PSM (shifta T → w|gc) if ToS is NT

0 otherwise
(2.4)

P (Ci = projectu A → γ |C1, ..., Ci-1) =


PPC(projectu A → γ|lc, gc) if ToS is NT

0 otherwise
(2.5)

P (Ci = projecta A → γ |C1, ..., Ci-1) =


PPC(projecta A → γ|lc, gc) if ToS is NT

0 otherwise
(2.6)

Since within each action pair, the probability of the grammar’s rules given any (lc, gc) pair still

sums to one due to the training process, as in (2.1) and (2.2), and all other probabilities are complements

of each other, the arc-eager version of a PLCG also defines a language model.

The attach / project probability space split is removed as each of the arc-eager actions is con-

structive, rather than solely consoliditory like attach . The deterministic choice between a shift

-like action and a project -like action nonetheless ensures that all probabilities will sum to 1.
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2.3 Construction and evaluation of models

I constructed two models for training PLCGs1: an arc-standard version AS-PLCG that recreates the

essential components of the original PLCG (Manning and Carpenter, 1997) and an arc-eager version

AE-PLCG that is computationally identical to AS-PLCG with the exception of the function used to

generate training oracles, which are effectively lists of actions, derivations of the trees in the corpus.

I will use AS-PLCG and AE-PLCG to refer to the training algorithms I used to train arc-standard

and arc-eager PLCGs. Trained models, complete with grammars and probabilities, will recieve an

extension like -F, which I will use to refer to models trained on the full Penn Treebank (AS-PLCG-F

and AE-PLCG-F).

Both training algorithms followed the same basic procedure, which is shown in Figure 2.2. This

training algorithm is an operationalization of the probabilistic derivations in Section 2.2.

PLCG Training Procedure

• A corpus of annotated constituency trees are passed into the model as training
input, one tree at a time.

• For each tree, a list of actions is generated constituting the one correct
arc-standard or arc-eager LC derivation.

• Each action is tallied according to the current left-corner lc and goal category
gc.

• The counts are normalized across the model by dividing each action’s count by
the total number of actions observed in the same (lc, gc) context.

Figure 2.2: The generalized training algorithm for both AS-PLCG and AE-PLCG.

All of the models I constructed use Sections 02-24 of the Penn Treebank (PTB) as training data.

As trees were fed into the model, nodes underwent some light processing to improve generalizability.

Specifically, all leaf nodes (words) were made lowercase to avoid encoding capitalization differences

1The python module ae-plcg, which was created and used by the present investigation to model and evaluate arc-
standard and arc-eager PLCGs, can be found at https://github.com/phill-barnett/ae-plcg, along with several
fully trained and testable model parameter sets, detailed in Section 3.1 of this thesis.
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into the model parameters, nonterminal nodes that have numbered indices (such as NP-SUBJ-9)2 were

stripped of their indices to collocate their probabilities, and each tree’s empty root note was given a

universal label root. This light processing was applied to all of the models presented here. The AS and

AE models that go no further are labeled AS-PLCG-F and AE-PLCG-F. all of the AS-PLCG models

learn using the same algorithm, and the same can be said for all AE-PLCG models. The rest of the

models differ from AS-PLCG-F and AE-PLCG-F only in the way the training data is pre-processed

before training.

Parameters Log-Likelihood ∆LL AIC ∆AIC

AS-PLCG-F 116596 -7001030 14235252
AE-PLCG-F 118696 -6964005 37025 14165401 69851

Table 2.4: Preliminary evaluation results for AS- and AE-PLCG-F, our baseline models, comparing
model parameters, log-likelood calculation for full training corpus, and an Akaike Information Crite-
rion (AIC) score calculated from these two numbers. The arc-eagermodel assigns a significantly higher
LL at the cost of 2100 additional parameters. The AIC calculation suggests this tradeoff is worth it;
the AE model is better at fitting the observed data.

To compare the AE and AS models, I found the maximum-likelihood values for each of the model

parameters using the relative-frequency estimation procedure described in Figure 2.2 and then calcu-

lated the maximum likelihood of the models by estimating the log probability of the full PTB corpus

of trees, which gives us the Log-Likelihood estimates in Table 2.4. As you can see in Table 2.4, the AE-

PLCG assigns a significantly higher probability to the full corpus, but does so at the cost of 2100 addi-

tional parameters. These additional parameters are the result of the AE model using shifta / projecta

in addition to shiftu / projectu in contexts where the AS model uses only shift / project. Any time

we add more parameters to a model, it is likely to fit the data better, but at the risk of over-fitting.

The Akaike Information Criterion (AIC) offers a crude estimation of the Kullback-Liebler discrepancy

between a model and the underlying model that theoretically generates the data (Akaike, 1973, 1974).

Each model’s AIC score is calculated using the formula AIC = 2k − 2l, where k is the number of

parameters and l is the maximum log-likelihood. The high AIC scores for AS- and AE-PLCG suggest

a large divergence from this theoretical underlying model, which is bound to happen when using a

2Internal nodes are numbered for various reasons in the Penn Treebank.
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data set with so many data points3. Nonetheless, the difference in AIC values for the two models is

vastly different, which leads to an easy conclusion. When comparing model AIC scores, the lowest

AIC score AICmin is assigned to the best fitting model. A difference in AIC scores of less than 2 sug-

gests support for both models, while a difference of more than 10 suggests essentially no support for

the higher scoring model. Since ∆ AIC is far greater than 10, we can conclude that AE-PLCG-F has a

significant advantage over AS-PLCG-F. The next chapter includes an investigation into the source of

this AE advantage.

3In this case, each action in each derivation in the corpus is a data point, so there are millions of data points per model.
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CHAPTER 3

Discussion & Conclusions

The only difference between arc-standard and arc-eager left-corner constructions is that arc-eager

collapses its consoliditory attach operations into its constructive operations shifta and projecta .

This effectively forces an arc-eager construction to make these attach decisions earlier in the deriva-

tion. So before diving any deeper, we can conclude that the AE advantage seen in Table 2.4 must

somehow arise from this difference. Resnik (1992) points out that arc-eager left-corner parsing is a

more likely candidate for the human parsing mechanism due to its handling of stack depth. Specifi-

cally, arc-standard LC parsing is vulnerable to unbounded stack size when processing right-branching

structures. Because arc-standard parsers wait until a tree is complete before attaching its root to its

goal, as they traverse a right-branching structure, the goal category gets buried deeper and deeper on

the stack, covered up by each new subtree’s goal category and daughter nodes. Arc-eager parsers do

not have this problem, as they consolidate predicted and observed nonterminals on-the-fly. Compare

Tables 1.2 and 2.1 for an illustration of this difference. Manning and Carpenter (1997), along with

their arc-standard PLCG, also propose a PLCG that uses an arc-eager-like system to resolve this AS

deficiency for the sake of conditioning on stack size, but do not train or evaluate such a system. The

motivation behind not training or evaluating this system may have been motivated in part due to a

parsing problem that this difference creates for AE construction: as an AE parser reaches these at-

tach decision points earlier, the parsing decision tree features earlier branching points, which can

explode the size of the decision space used for parsing. When conducting a beam search, where only

the nmost probable parses are kept in memory, this can lead to an over-abundance of possible parses,

making low-probability options less likely to be retained, which is particularly problematic for rarer

constructions.

So the question posed by the results of the baseline comparison above is not whether AE is a more
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likely candidate for the human parsing mechanism–it definitely is–but whether the advantage demon-

strated here is the result of resolving the stack depth problem from AS, or if it spawns from some other

source from within the arc-eager architecture. If the bounded stack size in the AE model were re-

sponsible for its advantage in the present evaluation, we would expect right-branching structures to

create a larger advantage for the AE model, since right-branching structures are where AE holds this

stack depth advantage. But when you think about it, the PLCG models presented here do not really

care about stack size, as they are only conditioned on the topmost symbols of the stack. And in fact,

looking at the conditioning contexts for a steps 5-9 in Table 1.2 and steps 4-8 in Table 2.1, we see that

the two models, despite having wildly different stack depths, have access to the same stack information

throughout the right-branching structure. So, due to the independence assumptions of PLCGs, col-

lapsing the stack to only its topmost symbol or symbols, this handling of stack depth cannot contribute

to the probabilistic advantage of the AE-PLCG.

This leads one to believe that the advantage, despite being something of a computational disadvan-

tage for parsing, must arise from the earlier attachment decisions made by AE. But not all of these early

decisions could be significantly advantageous. For instance, terminal productions, which are always

unary, result in an immediate attach action for non-left-corners once the node is shifted and result in

no attach action whatsoever for left corners. Because these attachment decisions are automatic and

immediate in AS, both models will effectively behave the same way when constructing these nodes.

I posit that the arc-eager advantage detected herein lies primarily in the actions taken by eachmodel

given a context of the shape ( X, X ). An AS-PLCG encounters this type of conditioning context in two

situations. One is where a left-corner X has been constructed bottom-up and the goal category is also

X. This occurs any time a left-corner matches its parent node, wherein the AS-PLCG will choose to

project . I will call these recursive left-corners for simplicity. The other situation that creates this

context for AS-PLCG is the result of a non-left-corner being fully constructed (see Table 1.2 steps 3

and 10-13). At this point in the derivation, the AS-PLCG will attach, eliminating both the observed

and predicted X from the stack. In contrast, the AE-PLCG will only encounter this recursive left cor-

ner ( X, X ) conditioning context in the first of these two scenarios because an AE derivation removes

the predicted nonterminal from the stack using projecta . Thus, when an AS-PLCG encounters a

recursive left-corner, it must project , but that project probability is competing with the attach

22



probability of that same context, which it has likely seenmanymore times, whereas the AE-PLCGmust

use projectu , which does not compete with another action type for probability mass1. So for any left-

corner that appears frequently as a non-left-corner in the training data, the project probabilities for

these recursive left-corner situations will be very low and, conversely, for any non-left-corner that ap-

pears frequently as a recursive left-corner, the attach probability will be significantly lower. Without

recursive left-corner productions, attach probabilities would always equal 1 and would amount to a

bookkeeping step without harming the probability of the construction.

Parameters Log-Likelihood ∆LL AIC ∆AIC

AS-PLCG-F 116596 -7001030 14235252
AE-PLCG-F 118696 -6964005 37025 14165401 69851
AS-PLCG-D 35048 -2961900 5993897
AE-PLCG-D 37148 -2924875 37025 5924046 69851
AS-PLCG-UC 117530 -6979550 14194161
AE-PLCG-UC 119618 -6942527 37024 14124289 69872
AS-PLCG-BR 185086 -6367714 13105600
AE-PLCG-BR 186863 -6338194 29520 13050115 55486
AS-PLCG-BL 116930 -6999096 14232052
AE-PLCG-BL 119030 -6962071 37025 14162201 69851
AS-PLCG-RX 37026 -991945 2057942
AE-PLCG-RX 37026 -991945 0 2057942 0

Table 3.1: Preliminary evaluation results for AS- and AE-PLCG given varied training data comparing
model parameters, maximum log-likelood, and an Akaike Information Criterion (AIC) score calculated
from these two numbers. Descriptions of the training data variations are given at the beginning of
Section 3.1.

3.1 Training Variants of AS- and AE-PLCG

To test the hypothesis that recursive left-corners are themain source of disadvantage for the AS-PLCG,

I trained AS- and AE-PLCG in various ways by pre-processing the PTB before feeding it to the models.

The evaluation results for all of these training variants are given in Table 3.1.2 In PLCG-D, the models

1In this case, projectu must only compete with other projectu actions that use different production rules

2Trained model parameters for each of these variants are available at https://github.com/phill-barnett/
ae-plcg/tree/main/dfiles. Model parameters are stored as JSON files, which can be easily loaded using the lcg()
object from the ae-plcg python module.
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were fed a delexicalized version of the PTB by replacing all leaf nodeswithw. In PLCG-UC, themodels

were fed a version of PTB wherein unary productions were collapsed. PLCG-BR and PLCG-BL result

from feeding the models a binarized version of the PTB, BR using right-factored binarization and

BL using left-factored binarization. See Figure 3.1 for a more formal elaboration of the binarization

process. Finally, in PLCG-RX, the models were fed a much smaller version of the PTB wherein trees

featuring recursive left-corner productions were removed from the training data.

The delexicalized and unary-collapsed versions of the twomodels do not show a significant change

in the difference between AS and AE. As predicted, due to the deterministic nature of the actions

needed for these constructions, there is no difference in the way AS and AE handle these structures.

This is true down to the tree level. Further close analysis of action-by-action probabilities, like the

probabilities shown in 3.2, reveals that for the vast majority of AE actions, the corresponding action

in the AS model has the exact same probability. Examining action-by-action probabilities reveals that

in the event a shifta and its corresponding shift do not have the same probability, the difference is

made up in a corresponding attach . The only places the two models ever diverge are unary produc-

tions3, which tend to be relatively small differences, and more significantly, at project points. Most of

the time, the AE model is rewarded for making the earlier decision between projectu and projecta

as it has been conditioned on the most likely scenario for each context. Specifically, the largest points

of difference come from contexts of shape (X,X), because these are the contexts where the AS model

must decide between attach and project . In the Penn Treebank, the vast majority of these contexts

have a strong tendency to attach , which leads the AS model to a rather low probability in instances

where this is not the case. If the opposite were true, if most of these contexts led to a project , the AE

model would still have the advantage as the AS model would be penalized in the instances where the

opposite was true.

Notice that the left-binarized training corpus affects no change in the difference between AS- and

AE-PLCG, while the right-binarized data results in a significant decrease in the AE advantage seen in

the baseline models. When constructing the unbinarized tree in Figure 3.1, both models construct the

3It is quite curious that the UC models do not significantly impact the difference between AS and AE. Taken with the
results from the RX variants, this is a strong indication that the attach probabilities used in resolving unary productions
are affected by recursive left-corner productions elsewhere, but do not contribute to a difference in the models themselves.
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Context Action Rule Prob. Log Prob. Cum. Log Prob.

Arc-Standard Actions

( ROOT, ROOT ) shift DT →w 0.23 -1.47 -1.47
( DT, ROOT ) project NP-SBJ →DT NN 0.24 -1.44 -2.91
( NN, NN ) shift NN →w 1 0 -2.91
( NN, NN ) attach 1 0 -2.91

( NP-SBJ, ROOT ) project S →NP-SBJ VP . 0.76 -0.27 -3.18
( VP, VP ) shift VBZ →w 0.15 -1.92 -5.1
( VBZ, VP ) project VP →VBZ PP 0 -6.13 -11.23
( PP, PP ) shift IN →w 0.88 -0.12 -11.35
( IN, PP ) project PP →IN NP 0.89 -0.12 -11.47
( NP, NP ) shift NN →w 0.11 -2.22 -13.69
( NN, NP ) project NP →NN 0.62 -0.48 -14.17
( NP, NP ) attach 0.73 -0.32 -14.49
( PP, PP ) attach 1 0 -14.49
( VP, VP ) attach 0.97 -0.03 -14.52

( ., . ) shift . →w 1 0 -14.52
( ., . ) attach 1 0 -14.52

( S, ROOT ) project ROOT →S 0.94 -0.06 -14.58
( ROOT, ROOT ) attach 1 0 -14.58

Arc-Eager Actions

(ROOT, ROOT) shiftu DT →w 0.23 -1.47 -1.47
(DT, ROOT) projectu NP-SBJ →DT NN 0.24 -1.44 -2.91
(NN, NN) shifta NN →w 1 0 -2.91

(NP-SBJ, ROOT) projectu S →NP-SBJ VP . 0.76 -0.27 -3.18
(VP, VP) shiftu VBZ →w 0.15 -1.92 -5.1
(VBZ, VP) projecta VP →VBZ PP 0 -6.13 -11.23
(PP, PP) shiftu IN →w 0.88 -0.12 -11.35
(IN, PP) projecta PP →IN NP 0.88 -0.12 -11.47
(NP, NP) shiftu NN →w 0.11 -2.22 -13.7
(NN, NP) projecta NP →NN 0.41 -0.89 -14.59

(., .) shifta (., w) 1 0 -14.59
(S, ROOT) projecta ROOT →S 0.94 -0.06 -14.65

Table 3.2: Action-by-action probabilities as calculated by AS-PLCG-D and AE-PLCG-D for our run-
ning example, the catfish howls at midnight. Some slight changes were made to make the tree conform
with PTB standards, including the re-labeling of nodes and addition of a ROOT and period phrase.
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Unbinarized

A

ABC

CB

A

Right-binarized

A

CAAB

BA

Left-binarized

Figure 3.1: Demonstration of right- and left-factorization. Notice that in subtrees with recursive left
corners, both binarization directions preserve this embedding. The key difference here is that right-
binarization repositions B as a left-corner, while left-binarization creates a new left corner AAB , which
never results in a ( AAB , AAB ) conditioning context.

left-embedded A bottom up, resulting in the context ( A, A ). AS-PLCG then uses project A →A B C

to predict the remaining daughters. Because the nested A is a left-corner, and therefore constructed

bottom-up, it is not later attached. B and C, however, come on to the stack as predicted nonterminals,

and therefore must be attached once they are fully constructed. AS attach actions always occur in

the context ( X, X ), which happens to be the same conditioning context we see once a recursive left-

corner is constructed. If X never occurs in a recursive left-corner position, the AS model will always

attach in the context (X, X), which means P
(
attach

∣∣X,X
)
= 1. However, whenever it does occur

in a recursive left-corner position, X takes probability mass away from P
(
attach

∣∣X,X
)
in favor of

a project rule.

Left-binarization, as in PLCG-BL, results in no change in the difference between AS and AE, be-

cause all recursive left-corner and attach relationships are maintained. Using Figure 3.1 as illus-

tration, while AAB is created and serves as a left-corner, it will never occur in a recursive left-corner

position (as it will always be daughter to A), nor will it ever occur outside of a left-corner position,

meaning that the project probabilities associated with the node never have to compete with attach

probabilities. Right-binarization, as in PLCG-BR, results in a decreased disadvantage for AS, as you

can see in Table 3.1. The reason for this has nothing to do with A still being nested under A. Rather,

notice that in left-binarization, the non-left-corner position of B and C is maintained. However, in the

right-binarized tree, B is now a left-corner, which means it will no longer be attached, so the context

( B, B ) recieves one less tally for attach . Thus, if B occurs elsewhere in the corpus as a recursive

left corner,which is now more likely due to the binarization itself, the project probabilities in that

instance will share less of their probability mass with attach, leading to higher probabilities for the
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derivation.

The PLCG-RX variants of the models were created as a final verification of this source of differ-

ence. All trees containing a recursive left-corner were left out of the training data. Thus, AS-PLCG

will only encounter ( X, X ) contexts when it needs to attach , and AE-PLCG will never encounter

this type of context at all. Thus for a given tree, AS shift actions will have equivalent corresponding

AE shiftu or shifta actions, and project will have equivalent corresponding projectu or projecta

actions and all attach actions will have a probability 1, leading both models to the same probability,

as well as the same number of parameters4. As Table 3.1 shows, the RX models confirm the hypothesis

as there is no longer any difference whatsoever between AS and AE.

3.2 Conclusion

This paper presents a comparison of arc-standard and arc-eager left-corner constuction order using

PLCGs as a testbed. We can conclusively see that the learning advantage AE-PLCG has over an AS-

PLCG does not come from arc-eager construction order’s finite stack size advantage, but rather from

instances where a tree’s parent node and left-corner are the same category. Future work should look

toward connecting this to the psychological reality of the human parsing mechanism. There are many

instances in the corpus where the AE model’s probabilities strongly lean toward connecting or pro-

jecting, but the derivation calls for the opposite, resulting in a lower arc-eager probability. If humans

experience processing difficulty in these cases, it would suggest that this advantage is based on linguis-

tic reality, whereas a lack of processing difficulty in these cases could suggest the advantage observed

here is simply an artifact of the model architecture.

4But Phill, you say, if AS-PLCG runs into a lot more contexts than AE-PLCG, of the form ( X, X ) how does it not
have more parameters? Well, because these contexts are no longer decision points. They are fully deterministic points of
attach . When the models are trained on the RX data, attach is effectively reduced to a bookkeeping step that makes up
the difference in the models at no probabilistic cost.
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