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Physical Preconditioning for Modeling 2D Large Periodic Arrays 

F. Capolino, D. R. Wilton, and D. R. Jackson 

Department of Electrical and Comp. Eng., University of Houston, Houston, TX 77004, USA. 
E-mail: capolino@ih.cdu, wilton@uh.cdu, djackson@uh.edu 

1. Introduction 
The number of applications for large array antennas and periodic struchires grows 

increasingly, thus accentuating the need for efficient and accurate means to analyze these 
structures. A method of moments (MOM) approach provides the required accuracy, although 
direct MOM analyses require long matrix fill and solve times as well as large amounts of 
memory to store the MOM matrices. The array's intrinsic translational symmetry along with 
asymptotic estimates of mutual coupling between array element pairs can be used to reduce 
the fil l  time. To reduce the solution time, various algorithms have been developed that use 
periodicity-induced physical properties. For example, [l],[2] use an a priori estimate of the 
fields scattered by truncated arrays, which behave as Floquet-modulated-diffracted fields [3], 
to construct global basis functions. Here, instead, we investigate diffraction effects on 
truncated periodic structures at the field operator level. A physically-based approximate 
operator inverse of the electric field integral equation (EFIE) is used either to obtain an 
accurate first estimate of element currents, or as a preconditioner for a more rigorous, iterative 
solution. To illustrate, we analyze linear arrays of cylindrical elements constituting antennas 
or periodic structures with arbitraty element geometry and excitation, though the method can 
be extended to 3D problems. We show the reduction in the matrix solution time that is 
achieved, and also discuss the physical insight into array truncation effects that the method 
provides. The MOM matrix and preconditioner, once constructed for a given array, are 
excitation independent and may be used repeatedly to obtain or analyze element current 
distributions, element tapering and scanning effects, element input impedances, active input 
impedances, clement-failure impact on the radiating system, or coupling between element 
pairs in a finite array. 

2. Formulation 
Consider a finite periodic array with ID periodicity (see figure) whose elements arc invariant 
in z with an arbitrary cross scction in the x-y plane. Consider also the virtual array formed by 
cxtending the actual array to form an infinite array. Superscripts a and v denote the actual and 
virtual array, respectively (see figure below). The standard EFIE for the actual finite array is 
written as 

Z""I" = V" ( 1) 

which provides the current I" on the actual array when solved. The moment ma.trix Z"", 
whose elements represent interactions between basis-and testing function pairs, is assumed to 
be partitioned into blocks representing interactions between pairs of array elements. Consider 
now the actual and virtual portions comprising the infinite array. For this new problem, after 
proper partitioning, thc EFIE and its inverse can be symbolically written as 
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which relates the actual and virtual array problems. The EFIE for the actual array (1) can be 
derived from (2) by requiring that the current r on the virtual array vanish. Combining the 
impedance and admittance matrices for the infinite array we derive the exact identities 

to which we give two interpretations. First, when P" is used as a preconditioner for z"" in (l), 
it regularizes the hypersingular part of 2"" since YZ"" is equal to the identity operator U plus 
a diffracted operator r"%" that contains no self interactions. Indeed, as shown in the figure 
below, when Y"z" operates on a current Z of the actual array, it produces voltage excitations 
V' = Z " I  on the virtual array which in tum produce changes in current Y""V" back on the 
actual array. Furthermore, the current Y"'2""I decays away from the array truncation as a 
diffracted current (ignoring, for simplicity, the possible presence of modes supported by the 

structure). Second, (3b) relates the admittance (matrix inverse) operator [Z""]-' for the finite 

array to the sub-block Y'" of the admittance matrix for an infinite array, with truncation 
effects represcnted by physical interactions between the actual and virtual array. 

Note that P" IS the restriction of the infinite array admittance matrix to the finite array. Away 
from the edges of the array, the term Y"PI  is small since it represents a diffractive term that 
decays away from the cdgcs. To avoid computing a matrix inverse, we therefore approximate 
[U-r""Z'"]-' =: U +P%", which, again, approaches U for currents far from the array edges. 
The invcrsc of the MOM matrix thus may be approximated as 

Further approximations may be made to any of the matrices on the RHS to simplify the 
preconditioncr. Practically, for example, it is likely that the domains and/or ranges of  these 
matrix operators must be windowed. In the following we suppose the array consists of Narray 
elemcnts. Current P and known vector P are partitioned as I"=[[I,],  IN]]^, V"=[[V,], 
. . . [ VN]IT, and the 2"" matrix is partitioned accordingly. The preconditioner need not include 
all the interactions since the significant influencc of an array element usually extends to just a 
fcw nearby elements. Thus only a few interactions need be taken into account in constructing 
the terms P" and Y%". In the next section we provide a possible algorithm to construct these 
terms, though other ways may still be advantageous. 

3. Construction of the Preconditioner from the Infinite Array Solution 
If thc array is formcd by N array elements, the matrix P" is formed of N sub-blocks, though in 
practicc we use a smaller number 2E+1 of sub-blocks, accounting only for the interactions 
between the nearest E array dements to the left and right of an element. The matrix r"' has 
infinite dimension, howcvcr, we approximate the virtual array using only F elements nearest 
the array edges. In practice, we may choose F=E so that all the sub-blocks of r"' replicate 
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those of P"; E and F can be as small as two or three. Analogous arguments hold for the 
evaluation of Z"", which reuses previously evaluated blocks of 2". A key feature of the 
approach is the fact that matrices P" and P" can be evaluated from the solution of the infinite 
array problem as follows. We denote by [z"(a)] the Ne X Ne element MOM matrix for a unit 
cell of the infinite array problem with progressive interelement phase shift a; [P(a)] is its 
inverse. Furthermore, [Y,Y denotes the elcment-to-element mutual coupling admittance 
matrices between two array elements of the infinite array, n cells apart. Matrices [Y"(a)] and 
[ Y,,"] are related by the Fourier series transform pair 

Equation Solved 
z""P =v" 

y ' p a F = y v "  E=O 
E=l 
E=2 
E=3 
E=4 
E=5 

E=IO 

which is used to evaluate [Y,,"] once [?-(a)] is computed for the infinite array. Note that 
[?-(a)] is periodic in a with period 2n, and that, unlike the impedance matrices, [Y,,"]+[Y,], 
i.e. the element mutual admittance matrices for infinite and finite arrays are not the same. We 
summarize the computation of P" and Y" as follows: (a) Determine the active impedance 
matrix [z"(a)] for a unit cell of the infinite array problem for 0 2 a 5 2 7 ~ .  This is a small 
array of size N,xN,. (b) Then, compute [?-(a)] by inverting [z"(a)]. (c) Compute [Y,"] for all 
required n (blocks for larger n do not require significantly longer computation time:$) using 
(5b). (d) Construct P" as the block-Toeplitz matrix having [Y,-] as the nth block from the 
diagonal. r"' is constructed using the same matrix sub-blocks [Y."]. 

4. Numerical Examples 
In the following examples, the current on each array element is evaluated by first solving the 
standard EFIE PI" = P without preconditioning, then using the two simple preconditioners 
YZ"" I" = P" P and f P  I" = f P, in which the preconditioning matrices P" and y a r e  
defined in Sec. 2 and Eq. (4), respectively, and computed as outlined above. 
Example 1 - Array of 31 Cylinders. The test array is an array of 31 conducting cylinders 

illuminated by a normally incident TE, plane wave as shown in the figure. The array period is 
d=l.3m; the radius of the cylinders is OSm, and the frequency is 100MHz. 

CN Iterations 
45 41 

IO8 25 
380 20 
78 13 
56 10 

6 41 
30 6 
20 - 3 

In the Table, the spectral condition number (CN) and the number of BiCGstab iterations 
needed to solve the lincar system with a relative error less than are reported for the EFIE 
PI" =V, and for various forms of its preconditioned counterpart, Y " P P  = Y", in which 
P" is constructed using different numbers E of sub-blocks. Note that the number of iterations 
decreases with increasing E, but no significant improvement occurs for E >4. 
Example 2 - Array of 10 Thick Open Cavities. An array of I O  thick open conducting 
cavities is illuminated by a perpendicular TE, plane wave at,PISOMHz, which is far from 
cavity internal resonance frequencies. As depictcd in the figure below, each array element is 
finely discretized, with a total of I15 elements on the inner and outer surfaces and 1 demcnt 
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on each end face, for a total of 232 subelements on cach array element. Note the small CN of 
the preconditioned EFIE, and the dramatic rcduction in the number of iterations with P" as a 
nreconditioner 

d 

Equation Solved pl5OMHz) I CN I Iterations 
pap VI I 7 6 Y S l  64Y 

Further improvement is obtained using the preconditioned equation (U-Y"'Z'")P= YV' (see 
identity (3a)) since the replacement of Yz"" by U-Y'Z" eliminates the computation of the 
self interactions; effectively, we analytically extract thc identity matrix U from YT'. In a 
second test for this array of cavitics, plane wave excitation was replaced by single elenlent 
excitation using a voltage generator placed on top of the 41h element. Again, the system was 
solved in only two iterations using the previously computed matrices Tu and P". 
Example 3 - Inverse, Approximated by Preconditioner. The two prcconditioners P" and 
are used here to approximate the inverse matrix [Z'"]-'. Currents dircctly evaluated as I" 
=P"V', or as I" = P V', without solving a linear systcm, arc compared with thc "exact" 
solution provided by the EFIE z""P =v" solved numerically. The two previous gcomctries arc 
investigated for plane wave illumination (with unity magnetic field), and comparison is made 
with a current sample on each array elemcnt (one very sensitivc to edge effects). In the first 
example (array of 3 1 cylinders), wc sample the current on the right-most part of the cylinders. 
Both approximations I" =P"V' and I" = YP V' providc good results. Note that the current 
stabilizes away from the edge where cdge effects arc negligible (in this example no guided 
modes are excited by the truncation). In the second example (array of I O  cavities) we plot 
current samples on the top-most point of each clement. Again both approximations P =P"V 
and I" = P P provide good results. In both geometries, use of the simple preconditioner Y"' , 
which contains low-order diffraction effects, provides good results, while thc more elaborate 
preconditioner P slightly improves the current estimate. It is expected that arrays that support 
guided modes (surface waves) would require the more elaborate P to accurately estimate 
mode reflection at the edges. 
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