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Abstract
Purpose: Real world evidence is crucial to understanding the diffusion of new 
oncologic therapies, monitoring cancer outcomes, and detecting unexpected 
toxicities. In practice, real world evidence is challenging to collect rapidly and 
comprehensively, often requiring expensive and time- consuming manual case- 
finding and annotation of clinical text. In this Review, we summarise recent de-
velopments in the use of artificial intelligence to collect and analyze real world 
evidence in oncology.
Methods: We performed a narrative review of the major current trends and re-
cent literature in artificial intelligence applications in oncology.
Results: Artificial intelligence (AI) approaches are increasingly used to efficiently 
phenotype patients and tumors at large scale. These tools also may provide novel 
biological insights and improve risk prediction through multimodal integration 
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1  |  INTRODUCTION

The daily practice of oncology is filled with uncertainty: 
the unclear real- world effectiveness of novel therapies; 
the lack of precise prognostic information relevant to in-
dividual patients; a plethora of management decisions 
for which there is no prospective evidence; and un-
known real- world treatment toxicity rates. These gaps 
have increased the value of real world evidence that rig-
orously defines patient prognosis, treatment response, 
and toxicity outside of clinical trials, and of risk predic-
tion models that can reduce diagnostic and prognostic 
uncertainty.1,2 However, much of the narrative expe-
rience of oncology exists within unstructured medical 
records such as oncologist notes, discharge summaries, 
and radiographic or pathologic reports. Critical prognos-
tic information is also embedded within complex multi-
modal datasets such as radiographic images, tumor and 
germline sequencing, germline sequencing, and histol-
ogy slides. The significant effort required for annota-
tion, curation, and interpretation of these unstructured 
data sources prevents healthcare systems from rapidly 
learning from emerging experiences with novel ther-
apies.3 There is a critical need for flexible approaches 
that capture and distill the complexities of real- world 
cancer care. Artificial intelligence (AI), which refers 
to the use of complex computer algorithms to provide 
solutions and inform decision making for unsolved 
problems, has shown significant potential in this area. 
Neural network- based AI approaches such as natural 
language processing (NLP) and deep learning (DL) are 
revolutionizing the collection and interpretation of real- 
world oncological data and are beginning to touch many 
aspects of cancer care.4,5 In this review, we highlight 
recent advances in NLP, DL, and other AI approaches 
being applied to routinely collected oncological data to 
advance our understanding of real- world cancer care 
and discover novel therapies (Figure 1).

2  |  AI APPLICATIONS IN CANCER 
SCREENING, DIAGNOSIS,  AND 
STAGING

Prospective trials have highlighted the benefits of screen-
ing for breast, colorectal, lung, cervical, and prostate can-
cer,6–8 but there is continuing controversy over which 
real- world patient subgroups benefit. There is also con-
troversy whether the small absolute survival benefits seen 
in many screening trials is outweighed by the increased 
detection of indolent disease and unnecessary workup 
leading to emotional and financial stresses.9 As a re-
sult, uptake of some screening procedures remain low; 
for example, <15% of eligible patients undergo low- dose 
computed tomography screening for lung cancer10 and 
prostate- specific antigen screening rates have declined in 
recent years due in part to concerns of overdiagnosis of 
indolent cancers.11,12 Given these challenges, there is in-
creasing interest in applying AI approaches to augment 
the interpretation of screening studies and maximize the 
potential benefits of screening while minimizing harms of 
overdiagnosis.

Screening approaches include direct visualization (cu-
taneous malignancies), radiographic evaluations (breast 
and lung malignancies), endoscopy (gastrointestinal ma-
lignancies), blood markers (prostate cancer), and tissue 
sampling (cervical cancer). Advances in image analysis 
have enabled DL approaches to contribute to the interpre-
tation of most of these screening modalities. Convolutional 
neural networks (CNNs) use a grid- like topology using lay-
ers of filters or “convolutions” to model high dimensional, 
non- linear feature spaces such as those found in medical 
imaging datasets. CNNs have shown impressive accuracy 
in multiple studies for skin cancer detection,13,14 in some 
cases outperforming human raters15,16 with positive pre-
dictive values for melanoma in the 0.80–0.90 range and 
negative predictive values in the 0.90–0.95 range.17 There 
are significant challenges in applying these algorithms 

of radiographic, pathological, and genomic datasets. Custom language processing 
pipelines and large language models hold great promise for clinical prediction 
and phenotyping.
Conclusions: Despite rapid advances, continued progress in computation, gen-
eralizability, interpretability, and reliability as well as prospective validation are 
needed to integrate AI approaches into routine clinical care and real- time moni-
toring of novel therapies.
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in routine care, where confounding visual features such 
as artifact from pen markings and crusted lesions can 
cause a substantial decrement in model accuracy.18 In 
colorectal cancer screening, CNNs have been shown in 
a randomized controlled trial to decrease the endoscopic 
miss rate of adenomas by half, primarily by increasing the 
detection of flat, small, and subtle neoplastic lesions.19 
Moreover, CNNs also show promise in improving the cost- 
effectiveness of screening20 and in mitigating quality dis-
parities.21 CNNs can improve the efficiency and accuracy 
of cervical cytology, with one study showing higher speci-
ficity compared to conventional screening and lower rates 
of referral for colposcopy;22 such approaches may be espe-
cially relevant in resource- limited settings where cervical 
cancer incidence is highest.23 While AI- assisted mam-
mography interpretation holds promise for breast cancer 
detection,24 studies have yet to conclusively establish the 
benefit over expert radiographic review and large pro-
spective validation studies are needed.25 In lung cancer, a 
three- dimensional CNN termed Sybil has shown impres-
sive accuracy in detecting short- term risk of lung cancer 
from a single low- dose computed tomography scan of 

the chest, with a 1- year area under the receiver operating 
characteristic curve of 0.86–0.94 in validation sets.26 Sybil 
and similar models trained on computed tomography data 
may refine risk prediction in lung cancer screening and 
reduce false- positive rates seen in screening trials,6 partic-
ularly when combined with longitudinal clinical data and 
when incorporating repeated screens. A critical weakness 
of many imaging- based AI algorithms is the narrowness of 
training datasets, which are often drawn from European- 
centric patient populations, single medical centers, and a 
limited set of radiological scanner vendors, each of which 
can produce biased, poorly calibrated models which fail 
to generalize. As such, multi- institutional validation stud-
ies are needed to test models in the full range of scanning 
technologies and patient populations reflective of routine 
clinical care.

Many groups have studied the application of AI tech-
niques to aid interpretation of digitized pathology slides 
of tumor biopsies and cytology.27 The recent availability 
of whole slide imaging systems has produced a flood of 
histopathological imaging data which is increasingly 
used to train DL models.28 Major tasks include tumor 

F I G U R E  1  Ongoing and Potential Integrations of AI in Oncology. There is increasing efforts to combine clinicopathologic factors, social 
and existential determinants of health, and radiographic features using AI approaches to evaluate cancer therapy treatment outcomes and 
improve cancer care.
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segmentation and classification,29,30 automated char-
acterization of the tumor microenvironment (such as 
tumor- infiltrating lymphocyte density, which may predict 
responsiveness to immunotherapies),31 detection of me-
tastases in tumor draining lymph nodes,32 and prediction 
of tumor mutational status,33–35 among many others.27 
Serious challenges remain in ensuring model stability 
across disparate laboratories and preparation techniques, 
managing the massive quantity of imaging data produced 
by whole- slide scanners, and defining the clinical utility 
and cost- effectiveness of digitization efforts and AI model 
deployment. Clinical questions also remain about the 
treatment implications of highly sensitive AI algorithms. 
For example, deployment of a model that significantly in-
creases detection of micro metastases may expose patients 
to intensified therapy and over- treatment without a clearly 
defined clinical benefit. Carefully controlled prospective 
studies are therefore needed to assess the patient- centered 
benefit of incorporating model outputs into cancer staging 
and management decisions.

Accurate interpretation of radiographic images is crit-
ical in assigning clinical stages to cancer patients, which 
largely dictates subsequent treatments. DL models are 
rapidly being applied to baseline staging images to provide 
more accurate staging and risk stratification. DL models 
have been applied in breast cancer to improve detection 
of subclinical axillary nodal metastases on ultrasound,36 
in head and neck cancer to predict the presence of extra 
nodal extension in pre- treatment computed tomography 
scans,37 and in lung cancer to predict pathologic node pos-
itivity in the mediastinum,38 among others.39 While these 
tools can reduce the burden of labor- intensive cognitive 
tasks and improve diagnostic accuracy, it is unknown 
whether allowing clinical management to be influenced 
by the probabilistic outputs of DL models will improve 
patient- centered outcomes like quality of life or survival, 
and prospective studies are needed to more clearly define 
the benefits of these novel algorithms.

3  |  AUTOMATED EXTRACTION 
OF PATIENT AND CANCER 
CHARACTERISTICS

Once a cancer is appropriately screened, diagnosed, and 
staged, this critical information is typically transcribed 
in free- text notes from oncologists or other front- line 
providers. Additional crucial data such as performance 
status, symptoms from medical comorbidities, specific 
pathological and radiological findings, medication com-
pliance, and family history are also primarily contained 
in free- text form. While structured clinical data derived 
from electronic medical records—such as laboratory 

results, diagnosis codes, and procedures—provide impor-
tant prognostic information, much of the crucial patient 
and cancer features that dictate subsequent treatment 
are locked in unstructured text and invisible to tradi-
tional methods of analysis that require structured clinical 
data. As such, there have been major efforts to develop 
NLP approaches—both deterministic rule- based systems 
and probabilistic systems based on large language mod-
els (LLMs)—to facilitate analysis of free text and enable 
real- time case identification, patient profiling, and disease 
characterization.

Deterministic rule- based NLP systems have demon-
strated excellent performance in the extraction of targeted 
features from unstructured text in scenarios where a lim-
ited lexicon is used to describe the features of interest. The 
Leo framework has been applied successfully to extract 
pathologic stage from surgical pathology reports40 and 
the CLAMP (Clinical Language Annotation, Modeling, 
and Processing) framework for extraction of tumor size, 
stage, and biomarker results.41 Custom NLP pipelines 
engineered for extraction of specific features can include 
initial development of a lexicon reflecting the features of 
interest, followed by term expansion using computational 
methods such as word embeddings derived from statisti-
cal language models. Free- text extracted around the term 
list is then processed using standardized ontologies and 
rule- based NLP tools to produce the final feature vector. 
This process is exemplified in a recent report describing 
the development of a high- performance algorithm to ex-
tract new diagnoses of metastatic prostate cancer in the 
Veterans Affairs system based on a complex logic of ana-
tomical and diagnostic text patterns.42 Such pipelines re-
quire substantial development time and may be applicable 
only to the healthcare setting in which they were devel-
oped, with idiosyncratic note types, data structures, and 
vocabularies. There have therefore been efforts to develop 
generalizable NLP algorithms that use rule- based systems 
like cTAKES to map concepts in unstructured free text to 
large cancer ontologies.43 While promising, the results of 
these generalized systems have not been extensively vali-
dated and may not produce reliable outputs for all features.

A fundamental weakness of rule- based NLP systems is 
a lack of flexibility and context- dependence, weaknesses 
that may be overcome in the era of transformer- based 
LLM like GPT,44 LLAMA,45 and Claude46 that model se-
mantic context. While the training of massive language 
models has been limited by the dearth of large, diverse 
corpora of deidentified clinical text for training, early ef-
forts have shown remarkable results in feature extraction 
even in clinically ambiguous contexts.47,48 LLMs may 
quickly subsume previous rule- based NLP systems as a 
“one size fits all” solution for feature extraction, document 
classification, and other traditional clinical NLP tasks.48 
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Importantly, the optimal method of extracting structured 
variables from large language models is not yet clear, and 
the emerging field of prompt engineering has highlighted 
the sensitivity of generative LLM outputs to the precise 
wording and sequencing of prompts.47,49 While the ap-
plication of these models is still in its infancy, the highly 
visible success of OpenAI's ChatGPT is producing a mas-
sive acceleration of effort in this area and LLMs will find 
immediate application in feature extraction tasks across 
medicine.

4  |  DL FOR OUTCOME AND 
TOXICITY PREDICTION

Cancer researchers have made great strides in unraveling 
the major factors affecting long- term prognosis. These 
include a refined understanding of cancer staging and 
patterns of spread,50 competing mortality prediction,51 
molecular tumor subtyping,52 and heterogenous treat-
ment effects,53 in addition to the many novel therapies and 
treatment approaches entering routine practice each year. 
While our ability to use these factors to better predict out-
comes of subgroups has improved dramatically, the clini-
cal course for individual patients has remained stubbornly 
unpredictable. There is a need for new approaches to dy-
namically predict treatment efficacy, toxicity, and non- 
cancer mortality events throughout the patient's clinical 
course, enabling early interventions for supportive care 
and better personalizing treatment selection. The conflu-
ence of increasing centralization of multimodal clinical 
data and integrative AI approaches can bring the field 
closer to realizing the dream of personalized medicine.

The advancing flood of multimodal data—radio-
graphic, genomic, pathomic, and clinical—has produced 
a flowering of AI approaches to integrate these funda-
mentally disparate data sources and identify novel con-
nections across modalities. In rectal cancer, radiomic 
features of the pre- treatment pelvic MRI were combined 
with pathomic features from tumor biopsies to improve 
prediction of pathological complete response after neo-
adjuvant therapy, outperforming radiomic or pathomic 
features alone.54 In breast cancer, whole- slide pathomic 
images and clinical variables were integrated to predict 
response to neoadjuvant chemotherapy in triple nega-
tive breast cancer through federated learning.55 This is a 
novel example of edge computing which does not require 
central pooling of data for model training and therefore 
protects data privacy while improving feasibility.55 In lung 
cancer, radiomic analysis of computerized tomography 
(CT) images could predict lung cancer EGFR genotype 
non- invasively with area under the curve (AUC) ranging 
from 0.75 to 0.81,56 and integration of radiomic, pathomic, 

and genomic features improved prediction of immuno-
therapy responses beyond unimodal measures alone.57 
Similar results have been found in serous ovarian cancer58 
and prostate cancer59 among many others.60 The optimal 
method of multimodal data fusion continues to evolve 
and can range from early fusion, in which raw features 
from each modality are fed into a single neural network 
with minimal pre- processing, to late fusion, in which sep-
arate networks are trained on each modality and then ag-
gregated for a combined prediction.60 Interpretability of 
these incredibly complex networks remains a challenge, 
though attentional heat maps can assist human observers 
in identifying the most salient features and produce new 
avenues for mechanistic research.60,61

While many model development efforts have focused 
on using baseline clinical data for prediction, incorporat-
ing longitudinal data could increase predictive accuracy 
and relevance of model predictions to on- the- fly clinical 
decision making. Bayesian machine learning (ML) meth-
ods have been developed and applied to patients with 
diffuse large B- cell lymphoma, incorporating baseline 
clinical measures and longitudinal biomarker measure-
ments to dynamically update disease progression and 
survival risks.62 Flexible longitudinal ML approaches are 
increasingly applied in other domains including Bayesian 
models for prediction of renal survival after kidney trans-
plant using longitudinal laboratory values63 and recur-
rent neural networks to predict acute kidney injury in the 
Veterans Affairs system, incorporating high- dimensional 
clinical text features.64 DL approaches have been applied 
to infer formal tumor response criteria from radiology text 
reports65,66 as well as approaches like term frequency in-
verse documentation weighting and support vector ma-
chines, which is a supervised learning model that uses 
classification and regression analysis to define optimal 
hyperplanes for data discrimination.67 Groups have also 
developed medical concept extraction approaches to infer 
therapeutic benefit from other sources including opera-
tive reports, pathology reports, and the narrative medical 
record.68

LLMs trained on clinical text have also been proposed 
as general- purpose prediction engines that can quickly 
produce best- in- class risk predictions for virtually any 
clinical outcome.69 Well- trained LLMs appear to produce 
large improvements in prediction accuracy over traditional 
ML approaches using structured clinical features (such as 
diagnosis codes and laboratory values) alone.69 Important 
questions remain about the optimal model size, the need 
for a single foundational model versus multiple smaller 
models fine- tuned for distinct prediction tasks, model ar-
chitecture, pre- training method, and need for site- specific 
fine- tuning of model parameters at individual hospitals in 
a network. Operationalized LLMs will also likely require 
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periodic re- tuning and vocabulary expansions to accom-
modate shifts in medical terminology usage and new drug 
names or procedures. Finally, LLM prediction models will 
likely benefit from incorporation of orthogonal datasets 
not directly present in the electronic medical record, such 
as three- dimensional radiographic images and genomic 
sequencing data. The optimal architecture for incorporat-
ing LLM predictions with other multimodal datasets re-
mains unknown.

Even successful cancer therapies can have lifelong 
toxicities, some of which can be functionally devastat-
ing. Unfortunately, many acute and long- term toxicities 
therapies remain largely unpredictable despite our in-
creasing reliance on genomically- tailored therapies, im-
munotherapy, and precision radiotherapy. This problem 
is likely more acute in real- world settings compared to 
clinical trials, as patients enrolled on clinical trials are 
well known to have more extensive support networks 
and fewer medical comorbidities, which can improve 
treatment tolerance.70 AI approaches are increasingly 
used to fill the knowledge gap by describing real- world, 
longitudinal patient experiences, such as capturing pain, 
fatigue, and other patient- reported side effects from the 
medical record.71–73 A challenge with many NLP ap-
proaches is the need to generate a lexicon of terms for 
a given toxicity; however, the use of weak labeling and 
large standardized ontologies may help overcome this 
challenge.74,75 Cancer patients can discontinue therapy 
due to symptom burden in a specific domain as well as 
the overall perception of diminished quality of life, and 
traditional NLP models have shown success in defining 
the clinical rationale for treatment discontinuation.76 
NLP monitoring of Twitter can even provide insight into 
real- world drug tolerance.77,78 These studies highlight 
that AI approaches may be able to monitor a variety of 
data sources to enable early warning of clinicians when 
patients are developing toxicities as well as aid in post- 
approval surveillance for cancer treatments.

5  |  AI INTEGRATION INTO 
ROUTINE PRACTICE

There are emerging performance frameworks developed 
with the Food and Drug Administration (FDA) for im-
plementation of AI as a medical device,79 and AI is in-
creasingly integrated into routine workflows in multiple 
specialties such as aiding radiologist interpretation and 
assisting in adaptive radiotherapy planning.80 AI systems 
can even generate preliminary treatment recommenda-
tions, though these remain rudimentary and have yet to 
inform routine clinical practice.81 While the burgeoning 
AI literature is replete with model- building exercises and 

impressive performance on test datasets, prospective vali-
dation of prediction algorithms in randomized controlled 
trials has been scarce. One recent trial in radiation oncol-
ogy showed that an ML model predicting unplanned ED 
visits or hospitalizations could help direct intensive clini-
cal monitoring during radiation and reduce acute care vis-
its.82 Importantly, this trial did not randomize patients to 
ML- directed care versus usual care, but rather used ML 
to identify patients at risk of acute care visits who were 
then randomized to usual care versus intensive monitor-
ing. Another recent trial used a stepped- wedge design to 
evaluate the impact of an ML algorithm to identify pa-
tients at high risk of death within 6 months, whose pro-
viders were then prompted to consider initiating a serious 
illness conversation with the patient.83 This strategy led to 
an increase in serious illness conversations and reduction 
in end- of- life systemic therapy administration.83 ML tools 
have been developed to identify patients eligible for en-
rollment on clinical trials of new cancer therapies84,85 and 
to explore inefficiencies in restrictive clinical trial enroll-
ment criteria relative to real- world populations.86 Despite 
these efforts, prospective validation of ML models and rig-
orous testing of their impact on clinical care remain disap-
pointingly rare.

Recent advances in DL have significantly impacted ra-
diation oncology, particularly in the automatic generation 
of organ- at- risk (OAR) and target contours on computed 
tomography radiation planning scans. These algorithms, 
primarily based on CNNs, have shown remarkable accu-
racy and efficiency in delineating OARs and tumor targets 
and have rapidly entered routine clinical practice.87 A note-
worthy development is the integration of 3D CNNs, which 
better capture the spatial relationships in volumetric data, 
leading to improved contour accuracy compared to tra-
ditional approaches.88 Generative adversarial networks 
(GANs) have been employed to augment training data-
sets and to perform data normalization, enhancing model 
robustness across different imaging modalities and pro-
tocols.89 AI applications in radiation treatment planning 
have also advanced notably. These models expedite the 
treatment planning process by automating dose distribu-
tion predictions and beam angle and intensity selections, 
tasks that are traditionally manual and time- consuming.90 
However, challenges such as ensuring model generaliz-
ability across different patient demographics and smooth 
integration into existing clinical workflows persist.

Technical challenges in training and validating complex 
ML models can also hinder performance and deployment 
efforts. ML models generally require many thousands 
of training examples to perform adequately, and perfor-
mance should then be tested on large, preferably external 
validation datasets derived from an entirely different pop-
ulation than the training data to prove generalizability.91 
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Well- powered training data and external validation data-
sets may not be practically available for some prediction 
problems. Further, while external validation has typically 
been held as the gold- standard in testing model perfor-
mance, future models may be increasing trained and 
deployed in only one hospital or healthcare system,69 sug-
gesting that rigorous, repeated internal validation may 
be more important than external generalizability.92 Some 
argue that there is no such thing as a truly validated pre-
diction model due to the constant performance drift over 
time and practice settings that requires periodic model up-
dating.93 Technical aspects of the model training process 
can also affect performance and generalizability such as 
choosing among multiple architectures, tuning hyper pa-
rameters, and guarding against overfitting with methods 
such as cross- validation. AI implementation efforts need 
well- designed governance structures to provide oversight 
on these issues while also being flexible enough to rapidly 
identify, test, and deploy technical advancements in this 
fast- moving field.

A core challenge to implementing models remains 
physician and patient trust in model outputs. Both phy-
sicians and patients have interests in understanding the 
underlying principles of clinically deployed AI algo-
rithms.94,95 While approaches like Local Interpretable 
Model- Agnostic Explanations (LIME),96 Shapley additive 
explanation (SHAP),97 and many others98 provide frame-
works for explainable AI,99 there remain deep limitations 
to these approaches.100 Further undermining trust is the 
well- documented biases apparent in models that have 
not been trained on appropriately diverse data sources, 
including racial biases.101 Equity must be a conscious 
design principle and training on diverse patient popula-
tions should be a requirement before model deployment. 
Finally, clinical care requires robust models that can be 
applied in diverse healthcare environments and which are 
temporally stable and continuously monitored.102 Thus, 
advances in reliability, stability, portability, adaptability, 
and equity are needed as AI continues to integrate into 
oncology practice.

6  |  CONCLUSION

Cancer impacts more than 20 million new individuals 
each year. Understanding and integrating the totality of 
cancer experiences is needed to make improvements in 
cancer care, but the unstructured nature of the medical 
record has made large- scale data integration highly re-
source intensive under classical methods. AI approaches 
are filling this gap and have already revolutionized the 
collection, analysis, and interpretation of routinely col-
lected unstructured health data. This includes tools 

aiding in patient selection for cancer screening, interpret-
ing radiographic studies, accurately staging new cancer 
patients, profiling patients using unstructured medical 
text, predicting treatment response and toxicity, gener-
ating novel connections between disparate data modali-
ties, and directing clinical trial enrollment, among others. 
While there is great excitement surrounding these tools, 
their integration into routine care has been hampered by 
a relative lack of high- quality prospective validation stud-
ies and randomized clinical trial to prove the benefit of 
AI- assisted care. There are also ongoing concerns regard-
ing the reliability, generalizability, accuracy, equity, and 
temporal stability of deployed prediction models. Despite 
the challenges, these methods hold incredible promise for 
improving the care of patients with cancer.
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