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Abstract

Background: Congenital heart disease (CHD) is highly heritable, but the power to identify
inherited risk has been limited to analyses of common variants in small cohorts.

Methods: We performed re-imputation of four CHD cohorts (n=55,342) to the TOPMed
reference panel (freeze 5), permitting meta-analysis of 14,784,017 variants including 6,035,962
rare variants of high imputation quality as validated by whole genome sequencing.

Results: Meta-analysis identified 16 novel loci, including 12 rare variants, which displayed
moderate or large effect sizes (median odds ratio (OR) 3.02) for four separate CHD categories.
Analyses of chromatin structure link 13 of the genome-wide significant loci to key genes

in cardiac development; rs373447426 (minor allele frequency (MAF) 0.003, OR 3.37 for
Conotruncal heart disease (CTD), p=1.49E-08) is predicted to disrupt chromatin structure for two
nearby genes BDH1 and DLG1 involved in conotruncal development. A lead variant rs189203952
(MAF 0.01, OR 2.4 for left ventricular outflow tract obstruction, p=1.46e-08) is predicted to
disrupt the binding sites of four transcription factors known to participate in cardiac development
in the promoter of SPAGY. A tissue-specific model of chromatin conformation suggests that
common variant rs78256848 (MAF 0.11, OR 1.4 for CTD, p=2.6e-08) physically interacts

with NCAM1 (pppr=1.86e-27), a neural adhesion molecule acting in cardiac development.
Importantly, while each individual malformation displayed substantial heritability (observed h2
ranging from 0.26 for complex malformations to 0.37 for LVOTO) the risk for different CHD
malformations appeared to be separate, without genetic correlation measured by LD score
regression or regional colocalization.

Conclusions: We describe a set of rare noncoding variants conferring significant risk for
individual heart malformations which are linked to genes governing cardiac development. These
results illustrate that the oligogenic basis of CHD and significant heritability may be linked to
rare variants outside protein-coding regions conferring substantial risk for individual categories of
cardiac malformation.

Introduction

Congenital heart defects (CHD) comprise a heterogeneous group of malformations of

the heart and great vessels, and are the most common cause of mortality during early
childhood?. Occurring in 0.8—-1% of live births, CHD appears to be increasing in prevalence
worldwide? and survivors are at significantly increased risk of adult-onset cardiovascular
disease3#>, neuropsychiatric disease®, and cancer”’.

Circ Genom Precis Med. Author manuscript; available in PMC 2024 June 01.
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CHD is observed to be highly heritable8-12 but the power to identify inherited genetic

risk has been primarily limited to analysis of common variants in small cohorts. Familial
clustering of specific malformations indicates that up to 90% of the risk for CHD is
attributable to heritable genetic variation®® which includes common9-12 and rarel3.14
variants linked to specific CHD phenotypes. Mendelian inheritance of deleterious protein
coding variation in any individual gene accounts for less than 1% of the burden of CHD®,
and when Mendelian forms of CHD are combined they identify less than 10% of the risk for
diseasel8. Therefore, important genetic risk factors for CHD remain to be discovered.

Relative to other types of cardiovascular disease, genome wide association studies (GWAS)
of CHD have been underpowered due to the relatively small number of affected individuals
included within single studies. Here we bring together individual level data from separate
cohorts (Cordell Welcome Case Control (Cordell), Pediatric Cardiac Genomics Consortium
(PCGC), German Heart Center Munich (DHM), and UK Biobank (UKB)) totaling 4,597
cases and 50,745 controls. To identify rare inherited variants!3:14 we performed high-quality
re-imputation of data from four cohorts (n=55,342) to a large diverse reference panel,
permitting meta-analysis of 14,784,017 variants including 6,035,962 rare variants.

For detailed description of the cohorts, analytical methods, and post-GWAS analyses
please see the online supplemental material. For each cohort included in the analysis
(described below), local IRB approval was obtained and informed consent performed for
all participants as described in the primary reports. The analytic methods and summary
statistics are available to other researchers for purposes of reproducing the results or
replicating the procedure. Primary individual-level data from the UK Biobank dataset

is available to any qualified researcher (https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access) and primary individual-level data from the PCGC Cohort is available in
dbGaP (Accession: phs000571.v1.pl).

We studied four individual phenotypes: Conotruncal heart disease (CTD), left ventricular
outflow tract obstruction (LVOTQ), atrial septal defects (ASD), and other forms of
complex heart malformations including transposition of the great arteries and related
developmental malposition of the outflow tracts (Complex) [Table S.1]. The analysis was
augmented by high quality re-imputation of common and rare variants from the TOPMed
reference panel (Freeze 5)17. After evaluating available approaches for logistic regression
for phenotypes with high heritability in small cohorts without related individuals [Figures
S.1 and S.11], we employed PLINKZ2 to perform logistic regression upon variants filtering
to include rare alleles imputed to high quality with a minor allele count (MAC) of 20 or
greater [Supplemental Methods]. Subsequently we performed meta-analysis of three cohorts
for each phenotype which was well powered for discovery of common variants in all
phenotypes and rare variants for the CTD, LVOTO and ASD phenotypes [Table S.11]. We
validated the quality of rare-variant imputation using existing whole genome sequencing
data, observing excellent sensitivity of 98.4% [Table S.111].

Circ Genom Precis Med. Author manuscript; available in PMC 2024 June 01.
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For each of the four CHD classes, the meta-analysis identified primarily rare variants with
moderate or large effect sizes (median odds ratio (OR) 3.02 and median allele frequency
0.008 across 16 lead variants) in addition to a previously described common risk locus at
4p16 for ASD [Figure 1]. Overall, there was little heterogeneity (Cochrane’s Q > 0.01)

for each lead variants across studies [Table 1, Table S.1V], and diagnostic analyses of each
component GWAS suggested an expected distribution of effect size estimates arising from
either study or phenotype!8 [Figure S.111]. Six of the 16 observed rare variants were without
local linkage partners [Figures S.IV-S.VII].

Overall, we observe many identified loci to display genomic interactions with genes
involved in cardiac development across a variety of different embryonic cell types and
transitional cell states [Figure 2, Table S.V, Figures S.VI11-S.XV1]. Among the lead and
closely linked variants in strong linkage disequilibrium (LD) there were notable findings.
For ASD, rs17608766 (MAF 0.14, OR 1.4, p=3.1e-08) is located in the 3" UTR of
GOSRZ, a SNAP receptor in the cis-Golgi. We have previously found that this variant

is predicted to disrupt a KLF4 binding motif in an enhancer element predicted in the
activity-by-contact (ABC) model to regulate the promoter of GOSRZin heart ventricle tissue
and endothelial cells!®. A lead CTD variant rs373447426 (MAF 0.005, OR 3.4, p=1.5e-08)
resides in an intron of RUBCN and based on the Akita tool for computational analysis of
chromatin conformation20 the alternate allele is predicted to change genomic interactions
at two relevant loci across a large region [Fig 2A]. The alternate allele, a deletion of

A at 3:197,690,545, is predicted to increase contact at this locus with the promoter of

DL G1which encodes membrane-associated protein involved in cardiac development in
mice?L. Simultaneously this variant also disrupts contact with the promoter of BDHI;
duplications of BDHI have been previously associated with CTDs?2:23, For the LVOTO
phenotype, a lead variant rs189203952 (MAF 0.01, OR 2.4, p=1.46e-08) is predicted

to disrupt the motifs of four transcription factor binding sites known to participate in
cardiac development?4-27 and is located in a region of open chromatin 250 bp distal to the
promoter of SPAGY, a cytoskeletal adaptor protein and mediator of jun-kinase signaling?8
[Fig 2B]. Three-dimensional chromatin data from mesodermal-related tissue suggests that
rs78256848, which confers risk for CTD (MAF 0.11, OR 1.4, p=2.6e-08), physically
interacts with NCAM1 (pppr=1.86e-27), a neural adhesion molecule recently recognized
to play a role in aspects of cardiac development?® [Fig S.VI]. Re-analysis of the genomic-
context surrounding the 4p16 risk locus for ASD10 reveals that the lead variant rs1510798
(MAF 0.23, OR 1.36, p=4.6e-09) is linked with two variants predicted to disrupt motifs
for AP-2 or NFAT factors in an enhancer active in mesendodermal precursors differentiated
from human embryonic stem cells30:31 [Fig 2C]. This enhancer is predicted by the ABC
model to regulate both S7.X18, another SNAP receptor in the ¢/s-Golgi that shares protein-
protein interaction partners with GOSR2 (STXS5, according to STRINGdb), and MSXZ, a
transcription factor that regulates second heart field and endocardial cushion development32
[Fig 2C, Table S.VI].

To further assess the biological relevance to human cardiac morphogenesis of the variants
and genes identified, we examined the expression of identified genes in relevant tissues
from previously published single-cell RNAseq data from developing human heart33. Three
identified Conotruncal genes (NCAM1, MSC, and DLG1) were observed to be clearly

Circ Genom Precis Med. Author manuscript; available in PMC 2024 June 01.
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expressed in mesenchymal cells in the pulmonary valve and MSC expression was observed
specifically in fibroblasts in the pulmonary outflow tract [Figure S.XVII]. Genes identified
in meta-analysis of ASD were observed to be expressed in Endothelial cells in the left
atrium (CALM1, SEMA6D, GOSR?2), cardiac fibroblasts in the left atrium (FBLNS),
proepicardial origin cells in the left atrium (CALM1, SEMAG6D, FBLN5), and proepicardial
origin cells in the right atrium (SEMAG6D) [Figure S.XVIII]. Analysis of the aortic valve and
aorta for LVOTO genes revealed that SPAG9 was strongly expressed in Aortic fibroblasts
along with mesenchymal and valvular interstitial cells in the aortic valve [Figure S.XIX].
Together the single-cell data provides additional evidence reinforcing a role for the identified
genes in specific anatomical forms of CHD.

For each of the four CHD meta-analyses, which were limited to unrelated individuals,

we also estimated both the observed scale and liability scale heritability using LD

score regression34. Despite relatively small sample sizes, reliable estimates of substantial
heritability and total liability were obtained for all four phenotypes [Table S.VI], with
observed scale heritability of LVOTO (heritability h2 4ps =0.371, standard error (se)
0.0845), CTD (h2qps =0.3384, se 0.0794), ASD (h2qps =0.3265, se 0.1425), and Complex
malformations (h2,,5=0.2629, se 0.2198). Liability scale heritability was high for both
LVOTO (h2),=0.47, se 0.11) and ASD (h2,,=0.6183, se 0.27). We also estimated genetic
correlations between the CHD phenotypes and cardiac comorbidities3, which are common
in long-term survivors of CHDs. Importantly, none of the CHD phenotypes displayed
significant genetic correlations with one another [Table S.VII.A]. Apart from a mild
positive genetic correlation between CTD and coronary artery disease (rg 0.423, p=0.0001),
there was a notable absence of genetic correlation for any of the CHD phenotypes with

38 cardiovascular diseases and phenotypes including arrhythmia and heart failure [Table
S.VIIL.B].

With discovered loci across all four CHD phenotypes below the allele frequency thresholds
included in LDSC, we additionally performed Bayesian multi-colocalization analyses®® to
specifically and systematically analyze the relationship of uncommon and rare variants
between the studies at discovered loci. Regional colocalization analysis confirmed a

notable absence of overlap between phenotypes within local linkage structures across
1-megabase regions surrounding the lead variants detected by the four meta-analyses

[Table S.VI1I1]. Overall, the absence of common large-scale genetic correlation and local
rare-variant colocalization may suggest largely distinct genetic architectures for different
CHD malformations, which are not shared with other forms of cardiovascular phenotypes or
disease.

Discussion

In summary, these findings support a set of oligogenic genetic architectures unique to
different CHD phenotypes, which include risk centered around uncommon or rare genetic
variation with larger effect sizes. While the approach to our meta-analysis is limited by
sample size and the use of external controls from the UK Biobank for the PCGC GWAS,
our estimates of heritability derived from LDSC are greater than many common forms

of cardiovascular disease and consistent with longstanding clinical and epidemiological

Circ Genom Precis Med. Author manuscript; available in PMC 2024 June 01.
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observations of familial recurrence of cardiac malformations8-36. Notably, these heritability
estimates are computed from population-based linkage structures of common genetic
variation, which omits the heritability contributed by rare variants reported here and

may therefore be conservative underestimates. The absence of regional colocalization
between CHD phenotypes at discovered loci further suggests that the genetic risk for one
malformation may not confer similar risk for other malformations.

Recent studies of population isolates have identified rare inherited coding variants
underlying CHD1416:37 'while our analysis revealed noncoding variants which are

often more difficult to interpret. The analysis of noncoding variation impacting cardiac
malformations is further complicated by developmental timing: genetic effects are likely
to be exerted in a brief window of three weeks during human embryonic development.
These transitional cell types and intermediate tissues of cardiogenesis3® may not have
corresponding or analogous eQTL or chromatin conformation data derived from adult
tissues39. The genomic consequences for specific variants, suggested by analyses of
chromatin structure from early cardiac development, models of three-dimensional genomic
conformations, and the dynamic relationship of enhancer-chromatin interactions are centered
around genes experimentally related to cardiovascular development. For a number of

our findings, analyses of single-cell data from human heart support the expression of

the identified genes in tissues and cell-types directly relevant to the specific cardiac
malformations. Together, these findings are consistent with a presumed mechanism
disrupting formation of the heart.

These findings are not without limitations. While we included only variants with high-
quality imputation and made careful choices in our analytical schema to control error,

our study of CHD remains underpowered relative to much larger studies of continuous
cardiovascular traits that included rare variants?®4%, Our analysis included data from three
separate centers and meta-analysis demonstrated variant effects concordant between cohorts,
however external replication of our findings in newly gathered and carefully phenotyped
cohorts of people affected with CHD is necessary to better understand the generalizability of
the reported associations and improve the power to detect rare genetic variation associated
with cardiac malformations. The findings might further be supported by identity-by-state
analyses of rare-variant containing haplotypes which are not feasible given the limitations
of the included cohort studies. Many of the loci require further investigation to confirm the
transcriptional and genomic mechanisms suggested by /n silico analyses to relate variants

to specific genes, a number of which have not been previously implicated in cardiac
development*2. Additionally, although our initial assessment of the expression of these
genes in human cardiac tissue is encouraging, not all of the CHD phenotypes tested are
represented in this single-cell dataset, and not all genes show clear expression patterns,
while some of our genes are likely also expressed in other parts of the developing heart.

We acknowledge that further experimental work is necessary to validate and dissect the
mechanism by which these genetic loci disrupt cardiac development and contribute to the
risk of CHD.

The findings reported here may have important implications for both CHD research and
clinical practice. Both research and clinical genetic testing for CHD have primarily focused

Circ Genom Precis Med. Author manuscript; available in PMC 2024 June 01.
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upon finding deleterious protein coding variation in genes related to cardiac development—
all of the variants reported here are suggested by /n sifico analyses to be linked to cardiac
developmental genes which may indicate the need for new approaches in modeling the
mechanism of action for regulatory genetic variation in cardiac development. From a clinical
perspective, the discovered non-coding genetic variation would not be detected by panel
genetic testing of coding regions for a small number of genes previously implicated in

CHD. The high heritability observed for these four CHD malformations could suggest that
polygenic scoring may contribute to understanding the origins for different forms of CHD*3.

Overall, these data, particularly the significant risk associated with uncommon and rare
genetic variants now accessible by high-quality imputation, may have implications for other
heritable pediatric diseases and anatomical malformations for which discovery of genetic
risk has remained elusive. In summary, alongside with de novo coding variationl® and copy
number variants23, these results suggest the genetic architecture of CHD appears to include
a substantial heritable proportion of rare variants largely specific to individual cardiac
malformations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plots and component variants for meta-analysis of four congenital heart disease

phenotypes. For each lead genetic variant, rsID and coordinate:variant identifiers are
provided on the Manhattan plot. Comparing studies, allele frequencies are generally
consistent despite genotyping on different platforms, and there is remarkable consistency in
the direction and magnitude of risk estimates derived from each independent study. Detailed
local linkage patterns for each hit are displayed in LocusZoom plots in figures S.1V through
S.VII. All coordinates are from the GRCh38 genome build.
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Figure2.

Key variants are predicted to disrupt genomic context proximal to genes related to cardiac
development. Panel A. Predicted contact frequencies of the 1 megabase region surrounding
variant rs373447426 (MAF 0.005, OR 3.4 for CTD, p=1.5e-08) for the reference (bottom
left) and alternate (top right) alleles with the genes running down the diagonal. The
structural similarity index for the alternate variant relative to the reference variant drops by
0.21 evidenced by regions of increased and decreased genomic contact noted directly with
arrows. Regions with predicted gain and loss of genome contact are annotated with dashed
lines within which sit the affected genes, DLGI and BDH1, respectively and the variant is
annotated with a red line. In the heatmap, red denotes greater physical proximity between
two regions than expected given the genomic distance and blue represents the opposite. Axes
are genomic coordinates marked by 448 bins of 2048 bp. Panel B. Analysis of rs189203952
(MAF 0.01, OR 2.4 LVOTO, p=1.46e-08) shows significant disruption to four transcription
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factor binding sites (Table S.VIX) within a region of open chromatin in the promoter of
SPAGY which is shared by smooth muscle cells, heart ventricle, developmental cardiac
muscle, mesendoderm and human embryonic stem cells. Panel C. The activity-by-contact
model reveals a long-range interaction between two variants rs10937878 and rs4689909
which are tightly linked (R? 0.935) to the lead variant rs1510798 (MAF 0.23, OR 1.36 ASD,
p=4.6e-09) in a region of open chromatin in mesendoderm and embryonic stem cells and
disrupts the binding sites of two transcription factors well known to play a role in cardiac
development NFATC4 and TFAP2B, with an interaction approximately 300kbp upstream to
the promoter of STXI8.
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