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Abstract 

Dual-process accounts posit that human learning can occur as 
a consequence of both associative and propositional processes. 
This can be contrasted with single process accounts that 
suggest learning is entirely propositional. In this paper, we 
offer evidence for both associative and propositional processes 
using a within-subjects two alternative forced choice 
discrimination paradigm. Stimuli that varied concurrently 
along two dimensions were created and each participant’s 
awareness was directed toward one, facilitating rule induction 
(i.e., propositional processing) on that dimension. Performance 
on the other dimension was then used to assess associatively-
based performance. We report results that are initially 
inconsistent with both single process and dual-process 
accounts of discrimination learning. However, we then show 
how an associative network, that represents stimuli integrally, 
can predict the performance shown by participants in the 
experiment, providing evidence for a dual-process account. 

Keywords: Associative learning; Dual-Process; Single 
Process; Peak shift;  
 

Introduction 

There is an on-going debate concerning the mechanisms 

responsible for learning in humans. Some argue that it is 

accomplished by a single process that relies solely on a 

propositional system (Mitchell et al., 2009), akin to the 

explicit system 2 of the dual process theory of reasoning 

(Stanovich & Keith, 2000). Learning via this system requires 

awareness and effort, producing conscious knowledge about 

the relationship between events and/or stimuli. Others 

suggest it is best explained via two systems (dual-process 

account; McLaren et al., 1994, 2019). Dual-process theorists 

agree that learning can rely upon the propositional processes 

outlined above, but also stipulate the existence of associative 

processes that automatically respond to contingencies by 

forming links between event representations, without 

necessarily relying upon conscious knowledge or requiring 

any additional effort on the part of the subject. These 

processes are analogous to the implicit, system 1 of the dual 

process theory of reasoning (Stanovich & Keith, 2000). 

One piece of evidence in support of associative processes 

comes from the peak shift effect, first described by Hanson 

(1957). Using stimuli that varied along a dimension, Hanson 

trained pigeons to discriminate between two lights with 

wavelengths of 550nm (S+) and 560nm (S-). During testing, 

responding was greatest to 540nm, declining towards 530nm. 

The peak of responding had shifted away from (beyond) S+ 

in the direction opposite to S-. One reason for believing that 

this result is indicative of associative processes is that it can 

be easily explained by instantiations of this type of processing 

in connectionist networks (e.g. McLaren & Mackintosh, 

2002) using elemental representational assumptions.  

Peak shift has also been demonstrated in humans, although 

responding often follows the monotonic gradient, indicative 

of propositional processes (e.g., Livesey & McLaren, 2009). 

That is, as the test stimulus moves toward the ends of the 

dimension, responding increases or plateaus. For example, if 

human participants are trained to categorize two similar 

stimuli, dark blue (S+) and light blue (S-), into two separate 

categories, they will respond most accurately to the darkest 

and lightest blue they are presented with. This is because they 

are likely to infer the rule “if darker blue respond category 

one; if lighter blue respond category two”; thus, the darkest 

and lightest of stimuli are the most easily differentiated and 

can be responded to the most accurately. 

Wills and Mackintosh (1998) successfully demonstrated 

peak shift using a series of abstract icons to represent 

individual stimuli. Each stimulus was composed of a different 

number of different icons that roughly followed a Gaussian 

distribution. The authors hypothesized that the relationship 

between the icons and responding was difficult to verbalize, 

providing the conditions for associative processes, rather than 

propositional, to dominate learning. In line with this analysis, 

peak shift has been reported in humans using a variety of 

stimuli where the basis for discrimination is not easily 

articulated (e.g. McLaren & Mackintosh, 2002; Derenne, 

2019). Similarly, it has been demonstrated using other 

behavioral manipulations, such as reducing training or the 

contingency between the stimulus and outcome (Jones & 

McLaren, 1999).  

As indicated earlier, peak shift can be readily modelled by 

an associative system that represents stimuli as a set of 

elements. McLaren and Mackintosh (2002) provide one such 

model that utilizes an error correcting learning rule. In this 

model, stimuli on a dimension are represented by activation 

of overlapping units. Each stimulus is represented primarily 

by the activation of one unit corresponding to its position on 

the dimension, but also to a lesser extent by neighboring 

units. This pattern of activation follows a Gaussian gradient. 

Imagine stimulus S+, which is represented primarily by the 
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activation of unit 6, but also by partial activation of units 5 

and 7, and weak activation of units 4 and 8. If stimulus S- is 

represented in a similar fashion with primary activation of 

unit 5, an error correcting learning rule will ensure that the 

units that differentiate S+ and S- accrue the highest excitatory 

value, and that those that are shared between the stimuli 

don’t. That is, for S+, units 7 and 8 will accrue the highest 

excitatory value. When tested along the dimension, the 

stimuli that are represented primarily by the activation of 

these units will show greater associative strength than S+, 

giving peak shift. 

Recent research, however, has provided evidence to 

support the argument that the effect can be explained entirely 

by propositional processes (Lee, Hayes, & Lovibond, 2018). 

The authors suggest that as well as a ‘linear’ rule, resulting in 

a monotonic increase (or decrease) in responding toward the 

end of the dimension, some individuals may employ a 

‘similarity’ rule, leading to peaked gradients around S+ and 

S-. Averaging of the response functions produced by these 

two different rules can lead to a peak shifted gradient. Using 

a fear conditioning paradigm, Lee et al. (2018) demonstrated 

that averaging across participants who self-reported using 

these two rules created the peak shift effect. Further research 

has provided support for this theory (e.g., Lovibond, Lee, & 

Hayes, 2019).  

The present study aims to demonstrate both associatively 

driven and rule-based responding using a within-subjects 

experimental design. To achieve this, stimuli were 

constructed that varied along two dimensions, brightness, and 

hue. Participants were pre-trained using two stimuli 

belonging to mutually exclusive categories that varied more 

obviously on one dimension compared to the other. This was 

designed to promote awareness and rule induction to the more 

obvious dimension (aware), whilst still allowing associative 

strength to be generated toward the second dimension 

(unaware), as this dimension is nevertheless predictive of 

category membership. Participants then received further 

training with two more stimuli that varied to the same degree 

on both dimensions. This allowed further hypothesis testing, 

by the participant, of any rule that may have been induced 

regarding the aware dimension, whilst providing further 

opportunity for the other, unaware dimension, to garner more 

associative strength.  

Using this design, a single process account would predict 

that, in the limiting case that participants are truly unaware 

that stimuli vary along this second dimension, they will show 

no learning toward it when tested, and thus will produce a flat 

generalization gradient that does not differ from chance. A 

dual-process account would predict that even if participants 

fail to notice the unaware dimension, associative processes 

will still apply, and associative strength will still accrue. 

When tested on stimuli that vary along this dimension, 

participants might well show peak shift. Both accounts 

predict rule-based responding to the aware dimension.  

Method 

Participants and Apparatus 

200 individuals were recruited using online recruitment 

platforms, 99 from Prolific, and 101 from the University of 

Exeter. This was sufficient according to a power analysis 

based on a small to medium effect size for peak shift. 

Participants were required to have full color vision, not have 

any reading disorders, and be a native speaker of English. All 

participants reported normal color vision. The experiment 

was created and hosted using the Gorilla Experiment Builder 

(Anwyl-Irvine et al., 2020). All participants completed the 

experiment using a desktop or laptop. However, no 

restrictions were set on browser type, screen size, or 

resolution. 

Stimuli 

All stimuli used measured 426 × 426 pixels and appeared 

individually in the center of a white screen. Two different 

types of stimuli were created and used, experimental stimuli 

and filler stimuli. The experimental stimuli comprised of 

colored squares which varied along the Hue, Saturation, and 

Value (HSV) scale (see Table 1 for their properties). Each 

stimulus was created by modifying two parameters of the 

HSV scale, hue (i.e., color) and value (i.e., brightness), to 

create stimuli that varied by equal increments along these two 

dimensions. 11 such stimulus values were created, but only 

seven were used (1, 3, 5, 6, 7, 9, and 11; see Table 1). In total, 

49 experimental stimuli were created by combining all the 

dimension values (7 × 7). Saturation remained at 50 for all 

stimuli. The 49 filler stimuli were made of an array of abstract 

icons and have been used in previous discriminative studies 

(see Wills & Mackintosh, 1998). These were used to prevent 

trial by trial comparison of the experimental stimuli. 

 

Table 1: Brightness (Value) and Color (Hue) properties of the 

stimulus values used. 

 

Position 

Stimulus Value 

1 3 5 6 7 9 11 

Value 75 65 55 50 45 35 25 

Hue 118 134 150 158 166 182 198 

 

Stimuli were denoted as varying along dimensions X 

(value; brightness) and Y (hue; color). Each stimulus will 

now be represented as a position, X,Y in that two-

dimensional space.  

Design and Procedure 

Table 2 gives the experimental design. Participants were 

required to categorize visual stimuli using either the ‘X’ key, 

or the ‘.’ (full stop) key. They were initially given feedback 

if they were incorrect and told that, from this feedback, they 

could learn the correct responses for the stimuli presented. 

Participants were not informed of the nature of the stimuli, 
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only that the correct response depended entirely upon the 

appearance of the stimuli. Finally, there was a testing phase, 

in which no feedback was given, and a questionnaire at the 

end of the experiment. 

 

Table 2: Experimental Design 

 

 Condition 

Brightness Color 

Pre-Training 3,5 vs 9,7 5,3 vs 7,9 

Further Training  5,5 vs 7,7 

   

Test Stimulus Space (1,1→ 11,11) 

 

 

Figure 1: Stimuli used during pre-training for Brightness and 

Color groups, and further training for both. 

 

Participants were divided into two groups, ‘Brightness’ and 

‘Color’, referring to which dimension was designed to be the 

"aware" one. Training was split into two stages, pre-training 

and further training; the group manipulation affected only 

pre-training. All training consisted of alternating 

presentations of the experimental and filler stimuli. In all 

training stages, participants were required to categorise one 

stimulus as belonging to the left category (‘X’ key) and the 

other as belonging to the right category (‘.’ key). For each 

participant, each side of the dimension was associated with 

the same category. Feedback after incorrect responses 

consisted of the message ‘WRONG!’ appearing in the centre 

of the screen. This was displayed for 500ms.  

Each training stage was eight blocks in length, with 12 

trials per block. Each block contained three trials each of both 

experimental stimuli and three trials each of both filler 

stimuli. Trial order within each type of stimulus was random. 

Four blocks were presented sequentially, such that 

participants were required to categorise 48 trials, after which 

they were given a break before the next 48 trials. Trial length 

was four seconds.  

During the testing stage participants were required to 

categorise all possible combinations of stimulus values 

without feedback. There were 49 of these, presented in a 

random order, interleaved with the filler stimuli. Testing 

consisted of 196 trials, presented as one block.  

Finally, participants were required to complete a 

questionnaire that was adapted from Lee, Hayes, and 

Lovibond (2018). Among other things, this aimed at 

exploring whether participants noticed any relationships 

between the stimuli and the categories they belonged to.  

The questionnaire started with a two-alternative forced-

choice (2AFC) question asking whether they thought there 

was a relationship between the coloured rectangles and the 

categories they belonged to (yes or no). If they answered yes, 

they were asked to describe that relationship. The next 2AFC 

question asked participants whether they figured out the 

relationship in the first part (the training stages) or the second 

part (the testing stage) of the study. If participants answered 

no to the first 2AFC question they moved on to a 10AFC 

question which asked them to select the rule they think best 

applied to the coloured rectangles and the categories they 

belonged to. This included two linear rules with each 

dimension stated independently “GREEN (DARK) 

rectangles were associated with one category. BLUE 

(LIGHT) rectangles were associated with the other”, two 

linear rules with both dimensions combined “DARK GREEN 

(LIGHT GREEN) rectangles were associated with one 

category. LIGHT BLUE (DARK BLUE) rectangles were 

associated with the other”, two similarity rules with each 

dimension stated independently “Rectangles of a 

PARTICULAR GREEN (PARTICULAR DARKNESS) 

were associated with one category. Rectangles of a 

PARTICULAR BLUE (PARTICULAR LIGHTNESS) were 

associated with the other”, two similarity rules with both 

dimensions combined “Rectangles of a PARTICULAR 

LIGHT GREEN (PARTICULAR DARK GREEN) were 

associated with one category. Rectangles with a 

PARTICULAR DARK BLUE (PARTICULAR LIGHT 

BLUE) were associated with the other”. Finally, there was 

another option for “NO RELATIONSHIP”. 

Data Analysis 

Participants were excluded from the analysis if they had 

substantial missing data at test or reported a relational rule 

containing the "unaware" stimulus dimension. If participants 

did not describe a rule on the open ended question, then their 

choice from the 10AFC question was used. 96 participants 

were excluded based on this criteria. Had we included all 

participants, then the associative predictions would be 

different for those who reported a relational rule regarding 

the aware dimension, and those who reported one for the 

unaware dimension. This is because asymmetrical stimulus 

values were used during pre-training (e.g., 5,3 & 7,9) and thus 

some participants would have been trained with stimulus 

values 3, 5, 7, and 9 of the unaware dimension, whereas 

others would have only been trained with stimulus values 5 

and 7 of the unaware dimension.     

The 104 remaining participants reported a rule containing 

only the aware dimension, 50 from the color condition and 54 

from the brightness condition. Their data were analysed by 

holding one dimension constant whilst varying the stimulus 

values of the other. The stimulus values were then collapsed 

Brightness (Pre-

Training) 

Colour (Pre-

Training) 

Further 

Training 
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and averaged to create ‘Training’ (stimulus values 5 and 7), 

‘Near’ (3 and 9), and ‘Distant’ (1 and 11). The data were also 

grouped by dimension: unaware and aware. Finally, two data 

sets were created, ‘Stimulus 6’ and ‘Without 6’. Stimulus 6 

data remained constant at stimulus value 6 on one dimension, 

whilst varying across the other. Without 6 data were the 

averages for Training, Near, and Distant at stimulus values 1, 

3, 5, 7, 9, and 11 on the dimension held constant. Stimulus 6 

is located between the two training values and conveys no 

information from the dimension held constant (Without 6 

does), allowing a ‘pure’ look at the processes governing 

responding. For example, imagine a participant is unaware of 

that stimuli vary from light to dark. If we hold the color 

dimension (which would be the dimension they are aware of) 

constant at stimulus 6, a color which they cannot use to aid 

them with categorization, then responding to stimuli varying 

in brightness would be influenced solely by associative 

processes. 

The response variable for all analyses was accuracy across 

the dimension being varied. The data were analysed initially 

using a repeated measures ANOVA with dimension and 

position as within-subjects factors, and condition (color and 

brightness) and rule use (linear and similarity) as between 

subjects factors. Independent, repeated measures ANOVA’s, 

with position as a within subjects factor, were then used to 

analyse the data from the aware and unaware dimensions 

separately. Trend analyses were conducted for position. 

Paired t-tests were then run for Distant, Near, and Training 

positions for each dimension to help interpret any effects. To 

control for the multiple-comparisons problem in the initial 

four factor ANOVA, a Bonferroni correction was used. With 

four factors and 15 F values, the alpha level of this analysis 

was adjusted to p<.003. The alpha level for the individual 

ANOVAs was p<.05. Degrees of freedom of the ANOVA 

were corrected using the Huyhn-Feldt method.  

For the current study, we have not analysed the icon filler 

stimuli. Previously, discrimination training with this type of 

stimuli has resulted in peak shift (Wills & Mackintosh, 1998), 

however only when the arrangement of icons for each 

stimulus is randomised on a trial-by-trial basis, which was not 

the case here.  

Results 

Training 

Training data were divided into two blocks per training phase, 

with blocks one and two from pre-training, and blocks three 

and four from further training. Accuracy increased from 73% 

in the first block, to 88.1% in block two, then reduced to 

84.4% in the first block of the further training (block three), 

reflecting the harder discrimination required before rising to 

89.4% at the end of training. A repeated measures ANOVA 

showed a significant effect of block, F(2.3,234.6)=52.124, 

p<.001, ŋp
2=.147 confirming that learning had taken place. 

There was no significant main effect of condition, 

F(1,102)=.678, p=.412, ŋp
2=.004 and no interaction between 

condition and training block, F(2.3,234.6)=.944, p=.42, 

ŋp
2=.003. Mean accuracy was significantly above chance, 

t(103)=26.78, p<.001, ŋp
2=.206.  

Generalization Test  

Stimulus 6: Figure 2 shows the test accuracy for the stimulus 

6 data. Repeated measures ANOVA revealed a significant 

main effect of dimension, F(1,100)=54.535, p<.001, 

ŋp
2=.353, as well as a significant dimension × position 

interaction, F(2,200)=11.972, p<.001, ŋp
2=.107. There was 

no significant effect of: position, F(2.0,198.0)=2.914, 

p=.057, ŋp
2=.006; condition, F(1,100)=1.502, p=.223, 

ŋp
2=.015; or rule, F(1,100)=1.347, p =.248, ŋp

2=.013. There 

were no other significant or near significant interactions  

 

 

Figure 2: Test accuracy for the Stimulus 6 data. 

 

Due to the non-significant main effect of condition and lack 

of any interaction between condition and dimension, 

participants from each condition were collapsed into one 

group for the individual analysis of each dimension. 

For the aware dimension, there was a significant main 

effect of position, F(1.7,185.8)=29.891, p<.001, ŋp
2=.225, as 

well as a significant linear F(1,103) = 31.438, p<.001, 

ŋp
2=.234, and quadratic trend, F(1,103) = 27.472, p<.001, 

ŋp
2=.211. Paired t-tests on Distant, Near, and Training 

showed a significant increase between Training (mean=.697, 

se=.023) and Near (mean=.865, se=.022), t(103)=6.676, 

p<.001, ŋp
2=.061, but no significant difference between Near 

(mean=.865, se=.022) and Distant (mean=.844, se=.025), 

t(103)=-1.135, p=.259, ŋp
2=.011.  

For the unaware dimension, there was a significant effect 

of position F(2,206) = 14.514, p<.001, ŋp
2=.124, and a 

significant linear trend F(1,103) = 26.248, p<.001, ŋp
2=.203. 

The proportion of correct category responding was much 

lower in the unaware dimension and a one sample t-test 

revealed the average of the responses for the Training 

(mean=.611, se=.022), t(103)=4.946, p<.001, ŋp
2=.046, and 

Near (mean=.563, se=.022), t(103)=2.928, p=.004, ŋp
2=.028, 

positions significantly differed from chance, whereas the 

average of the Distant (mean=.462, se=.026) position did not, 

t(103) = -1.508, p=.135, ŋp
2=.014. Paired t-tests revealed a 

non-significant decrease in accuracy from Training to Near, 
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t(103)=1.656, p=.101, ŋp
2=.016, and a significant decrease 

from Near to Distant, t(103)=3.750, p<.001, ŋp
2=.035.  

Without 6: Figure 3 shows the test accuracy for the without 

6 data. Repeated measures ANOVA revealed a significant 

main effect of dimension F(1,100)=78.580, p<.001, ŋp
2=.440, 

and position, F(1.9,185.1) = 30.835, p<.001, ŋp
2=.236 as well 

as a significant position × dimension interaction, F(1.7,171.3) 

= 35.974, p<.001, ŋp
2=.265. There was no significant main 

effect of: condition, F(1,100)=1.191, p=.278, ŋp
2=.012; or 

rule, F(1,100)=1.038, p=.311, ŋp
2=.01. There were no other 

significant interactions. 

Figure 3: Test accuracy for the Without 6 data. 

 

Given the non-significant main effect of condition and 

interaction between condition × dimension, participants from 

each condition were collapsed into one group for the 

individual analysis of each dimension.  

For the aware dimension, there was a significant main 

effect of position, F(1.5,153.2)=137, p<.001, ŋp
2=.571, and a 

significant linear F(1,103) = 166.62, p<.001, ŋp
2=.618, and 

quadratic trend, F(1,103) = 59.069, p<.001, ŋp
2=.364. A 

paired t-test on Distant, Near, and Training showed a 

significant increase between Training (mean=.651, se=.016) 

and Near (mean=.807, se=.021), t(103)=12.016, p<.001, 

ŋp
2=.104, and between Near (mean=.807, se=.021) and 

Distant (mean=.842, se=.022), t(103)=4.306, p <.001, 

ŋp
2=.04. 

For the unaware dimension, there was no significant effect 

of position F(2,206) = 1.219, p=.298, ŋp
2=.012.  A one sample 

t-test revealed the average of the responses for the Near 

position (mean=.523, se=.009), t(103)=2.533, p=.013, 

ŋp
2=.024, significantly differed from chance, whereas the 

means of the Training (mean=.507, se=.008), t(103)=.828, 

p=.409, ŋp
2=.008, and Distant (mean=.514, se=.011), 

t(103)=1.248, p=.215, ŋp
2=.012, positions did not. Paired t-

tests revealed a non-significant numerical increase in 

accuracy from Training to Near t(103)=1.692, p=.094, 

ŋp
2=.016, and non-significant decrease from Near to Distant, 

t(103)=.89, p=.376, ŋp
2=.009 . 

General Discussion 

The results from the experiment were not entirely consistent 

with either dual or single-process theories. For the aware 

dimension, participants’ gradient of accuracy was roughly 

monotonic, peaking and plateauing at the Near and Training 

positions for Stimulus 6, and monotonically increasing for the 

Without 6 data. This is consistent with previous literature 

(Lee et al., 2018; Livesey & McLaren, 2009). For the 

unaware dimension, a larger difference was seen between the 

Stimulus 6 and Without 6 data. For Stimulus 6 responses, 

accuracy monotonically decreased. For the Without 6 data, 

there was a numerical peak shift, with a marginally 

significant increase in accuracy between the Training and 

Near positions, and a non-significant decrease to the Distant 

position.  

Aware dimension 

Propositional Analysis: It is very likely that responding 

along the aware dimension was driven by rule use and, hence, 

propositional processes. This dimension was classified as 

such by looking at participants’ answers to the question 

“describe the relationship between the [colored squares] and 

the categories they belonged to”. Therefore, we can be certain 

that participants perceived the differences between the 

stimuli along this dimension, which would naturally lead to 

rule induction. Similarly, accuracy was consistently higher to 

this dimension compared to the unaware dimension, in line 

with previous research (e.g., Livesey & McLaren, 2009). 

Contrary to the findings in Lee et al. (2018), we found no 

significant effect of the particular rule identified by the 

participant, or interaction between rule and dimension, 

indicating that participants’ gradients of responding were not 

different depending on whether they employed a linear 

(n=89) or similarity rule (n=15). This may be due to the 

different demands of the task we employed. We used a two 

alternative forced choice (2AFC) categorization task, 

compared to Lee and colleagues who measured expectancy 

ratings for a hypothetical or real shock. In our 2AFC task, a 

similarity rule would result in participants making obviously 

incorrect decisions to certain stimuli. For instance, if a 

participant is presented with a blue that is obviously different 

to the blue they were trained with, it is still unlikely that they 

would report it as belonging to the green category; whereas a 

low expectancy of shock to any stimulus that is not S+ is 

plausible whatever side of the dimension the stimulus lies on. 

Unaware Dimension 

Propositional Analysis: The gradient of responding along 

the unaware dimension was dependent upon whether the 

stimulus conveyed category information from the aware 

dimension or not. That is, the gradient differed for the 

averages at the Stimulus 6 position and Without 6. However, 

simply looking at the accuracy of responding toward this 

dimension provides problems for a single-process account. If 

we are to assume that participants were not aware of this 

dimension, then the increased accuracy to the Training and 

Near positions for Stimulus 6, and the Near position for 

Without 6, are difficult to explain on a single process account 

that assumes learning cannot occur outside of awareness. 

Although it could be argued that participants were somewhat 
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aware of this dimension and simply lacked the confidence to 

report this when asked, we then gave them ample opportunity 

to state that the stimuli varied in more than one way by 

providing them with a list of several pre-specified 

relationships. Furthermore, of the 96 participants that were 

excluded for stating the ‘incorrect’ rule, 28 reported a 

relational rule toward both dimensions, demonstrating that it 

was possible for participants to do this. Therefore, it is 

reasonable to conclude that they had learned about a 

dimension they were unaware of.  

It is also possible that some of those included in the final 

analysis noticed both dimensions but based their decisions 

only, or mainly on one. This type of strategy might result in 

different responding to Stimulus 6 and Without 6 for the 

unaware dimension, as Stimulus 6 has no information from 

the aware dimension, and thus must be responded to solely 

on the basis of what has been learned about that dimension. 

With that in mind, participants responding to the Stimulus 6 

stimuli could be argued to be consistent with a similarity rule, 

as accuracy was highest to the Training stimuli. However, as 

we have already mentioned, such a rule is, in some sense, 

irrational in a 2AFC categorization task, and if participants 

had noticed the difference between Training stimuli, it seems 

reasonable to suggest that they would have verbalized this 

difference and used it to aid in categorization. Such a rule 

would also, in itself, predict no differences between the 

Stimulus 6 and Without 6 data. In both, the Training stimulus 

values are still the most similar to the actual training stimuli 

and, thus we would have no reason to expect a difference in 

the gradients.  

Associative Analysis: We initially suggested that associative 

processes would predict a peak-shifted gradient for both the 

Stimulus 6 and Without 6 data. This was not supported by the 

experimental data. However, the initial prediction assumed 

that the stimuli would be perceived as varying along two 

separable dimensions. Dimensions are separable if they are 

able to be perceived independently of one another, and 

therefore do not interact (Soto, Quintana, Pérez-Acosta, 

Ponce, & Vogel, 2015). However, it is not unreasonable to 

suggest that the two dimensions we used for our stimuli, 

brightness and hue, are not perceived independently and 

therefore are best represented as integral dimensions. Indeed, 

brightness and saturation are generally agreed to be integral 

dimensions, so it is likely that hue and brightness are also 

(e.g., Nosofsky, 1987; Soto et al., 2015). 

To test the impact this would have on our associative 

predictions, we modified the connectionist network that was 

used to validate our initial associative predictions (that peak 

shift would occur to stimuli varying along the unaware 

dimension). This earlier network represented stimuli as 

varying along two separable dimensions, with 10 inputs units 

for each dimension. The new network represented the stimuli 

on an 11 × 11 matrix (representing the stimulus space). An 

activation function was used that peaked at the cell 

representing the stimulus (e.g., cell 5,5; 7,7; etc.) and varied 

in a Gaussian manner as a function of each neighboring cell’s 

Euclidean distance from the peak. Figure 4 shows the 

networks output of the unaware dimension (black lines), 

compared against the experimental data from the unaware 

dimension (yellow lines). It appears that when an associative 

network is trained with stimuli that are arguably more 

representative of those which were used in the present 

experiment, the output does not significantly differ from the 

experimental data (all p>.05).  

 

Figure 4: Graph showing simulation (S; black lines) of a 

connectionist network compared against experimental data 

(E; yellow lines).  Output for the unaware dimension.  

 

The model predicts a clear difference between the Stimulus 

6 and Without 6 data. Similarly, the model predicts the 

monotonically decreasing accuracy for Stimulus 6 data, and 

numerically peak shifted accuracy for the Without 6 data. 

Looking more closely, the model also predicts the greater 

decline in accuracy from Near to Distant stimulus positions 

for the Stimulus 6 data, as well as the greater increase in 

accuracy from the Training to Near positions of the Without 

6 data. That is, where the experimental data has shown a 

greater change in accuracy between stimulus positions, the 

model has also. However, it has predicted numerically higher 

accuracy for all stimulus positions except the Stimulus 6 

Training position but note that we did not try to formally fit 

the model to the data. Equally, we are not suggesting that 

associative learning is in some way tied to integral stimulus 

representation in our model, dual-process accounts imply this 

can occur with separable dimensions as well; but we have 

shown that an associative network can still successfully 

model these results with only a slight modification to the way 

stimuli are represented. 

We have already discussed whether a similarity rule similar 

to that envisaged by Lee et al. (2018) could explain 

responding to the Stimulus 6 stimuli and concluded that this 

type of rule does not seem a good fit in this type of 

experiment. A similarity rule might be reasonable however, 

if it was to involve what is, essentially, an associative process. 

For example, in Nosofsky’s (1986) Generalized Context 

Model, categories are learned by tagging stored exemplars, 

against which new stimuli are compared using a similarity 

function. This rather different type of similarity "rule" could 

predict the function assumed by Lee et al. (2018) and would 
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also overcome the limitation Lee et al.’s similarity rule faces 

with regards to rule induction in 2AFC categorization tasks. 

It may be that the verbal similarity rule reported by 

participants is their intuitive explanation of the associative 

processes just outlined. Of course, it could be argued that this 

is still a rule, as it certainly can have a propositional 

component. The participants make a judgement of similarity, 

and then use that as the basis for their decision. But that 

process is most easily captured by the kind of link-based 

computation that associative models excel at. And it also 

allows for the influence of the other category on this 

judgement, more plausibly explaining the somewhat peak-

shifted gradients typically seen in people who classify 

themselves as employing this type of rule. It may be that, 

here, we have an instance of the associative in the service of 

the propositional that more accurately captures the true nature 

of cognition than either considered on their own. 

To conclude, we have provided evidence for both 

associative and propositional processes using a within- 

subjects design. Participants responding was dependent upon 

whether they had inferred a relational rule to aid with 

categorization. When stimuli varied along a dimension for 

which they had inferred a rule, the gradient of responding was 

clearly indicative of propositional processes. For stimuli that 

varied along a dimension to which no rule had been inferred, 

the gradient of responding could be successfully modelled 

using an associative network that represented stimuli 

integrally, providing support for a dual-process account. 
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