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Numerical analysis of the temporal and spatial instabilities on an annular liquid jet
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A numerical study of the temporal and spatial instabilities appearing on the interface of an

annular liquid jet emerging from an orifice and flowing into a high pressure gas medium has

been performed using Direct Numerical Simulation. The purpose of this study is to gain a

better insight into the dominant mechanisms in the atomization of annular liquid jets during

the start-up portion of the injection. The effects on the growth rate and wavelength of

the emerging Kelvin-Helmholtz and Rayleigh-Taylor instabilities of various flow parameters

have been investigated: the Reynolds and Weber numbers; fluids properties like gas-to-

liquid density and viscosity ratios; and geometrical parameters involved in the problem such

as thickness-to-diameter ratio of the liquid sheet. The Reynolds numbers used in this study

are in the range from 3, 000 to 30, 000, and the Weber numbers are in the range of 6, 000 up

to 150, 000. The convergence rate and length of the liquid jet has been also computed and

compared for different cases. A characteristic convergence time has been proposed based

on the obtained results. Use has been made of an unsteady axisymmetric code with a

finite-volume solver of the Navier-Stokes equations for liquid streams and adjacent gas and

a level-set method for the liquid/gas interface tracking.

Two significant velocity reversals were detected on the axis of symmetry for all flow Reynolds

numbers; the one closer to the nozzle exit being attributed to the recirculation zone, and
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the one farther downstream corresponding to the annular jet collapse on the centerline. The

effects of different flow parameters on the location of these velocity reversals are studied.

The results indicate that the convergence length and time increase significantly with the gas

density and liquid viscosity and decrease with the liquid sheet thickness, while the effects of

the gas viscosity and the surface tension are not so considerable.

The range of unstable Kelvin-Helmholtz and Rayleigh-Taylor wavelengths have been also

studied. The statistical data obtained from the numerical results show that, the average

normalized wavelength of the KH instabilities decreases with the Reynolds and Weber num-

bers and the sheet thickness, and increases with the gas-to-liquid density ratio, and is in-

dependent of the viscosity ratio. The wavelength of the KH instabilities were observed to

increase in time, except for the very thin liquid sheet, where the average KH wavelength

oscillates between two values, indicating occurrence of different sheet breakup cycles. The

sheet breakup times and lengths were reported up to the second sheet breakup, and it is

shown that the later sheet breakups happen closer to the nozzle exit plane. The RT wave-

lengths tend to decrease during the start-up period of injection.

Keywords: DNS, Annular liquid jet, Kelvin-Helmholtz instability, Rayleigh-Taylor in-

stability, Finite-volume approach, Level-set method, Convergence length/rate.
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Chapter 1

Introduction

1.1 Motivation

Atomization generally refers to the disintegration of a bulk liquid material via an atom-

izer into droplets in a surrounding gas. Atomizers are utilized in spraying liquids in many

industrial and household applications. Gas-liquid two-phase jet flows are encountered in a

variety of engineering applications such as fuel injection, propulsion and combustion systems,

agricultural sprays and chemical reactors. The instability of the annular jet is of broader

interest because at its limits it represents a cylindrical liquid jet, a hollow gas jet or a plane

liquid sheet. Annular liquid jets are typically found in air-blasted and air-assisted atomizers

which are integral parts in both aircraft propulsion systems and internal combustion engines.

Annular liquid jets are known to form in various liquid spray applications. Spray formation

through the breakup of an annular liquid sheet has been found to be an efficient process

because of the increased surface area for interaction between the gas and the liquid.

The atomization processes may be classified into two major categories in terms of the relative

velocity between the liquid being atomized and the ambiance [1]. In the first category, a liquid
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at high velocity is discharged into a still or relatively slow-moving gas (air or other gases).

Notable processes in this category include, for example, pressure atomization and rotary

atomization. In the second category, a relatively slow-moving liquid is exposed to a stream

of gas at high velocity. This category includes, for example, two-fluid coaxial atomization

and whistle atomization. Either of these atomization processes could be accompanied by

a swirling flow (either the liquid itself or its surrounding gas) which would increase the

instability growth rate and contribute to faster atomization. The initial breakup process

is often referred to as primary breakup, primary disintegration, or primary atomization.

A population of larger droplets produced in the primary atomization may be unstable if

they exceed some critical flow conditions and thus may undergo further disruption into

smaller droplets. This process is usually termed secondary breakup, secondary disintegration,

or secondary atomization. Therefore, the final droplet size distribution produced in an

atomization process is determined by the liquid properties in both the primary and secondary

disintegration [1].

The unified design approach of atomizers in different fields requires the interrelations be-

tween the different spray characteristics of the atomizers with the pertinent input parameters

such as liquid fuel properties, injection conditions and atomizer geometries. This requires a

physical understanding of the flow field inside the atomizer and of the mechanism of spray

formation outside the atomizer. The modeling of the atomization process is a very challeng-

ing task as it is affected by variety of factors as the nozzle geometry, the thermo-physical

properties of the liquid, and the aerodynamic liquid-gas interaction. The success of spray

modeling depends on the correct specification of the initial droplet conditions. Therefore,

direct or indirect coupling of atomizer flow with the primary breakup and spray forma-

tion is important for the optimization of the atomizers as well as better understanding and

consequent improvement of the overall atomization process.

Liquid-fuel injection systems operate under conditions of high Weber numbers induced by
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the huge velocity of the jet and high Reynolds numbers. Our purpose is to understand the

mechanisms of jet flow under these extreme conditions which lead to the formation of small

drops and mist. The disintegration of liquid jets can be framed in terms of instabilities.

The instabilities are well known to be critical in the distortion of the liquid/gas interface

and in the process by which ligaments of liquid are torn from the jet core. Three kinds of

instabilities that can lead to break-up are capillary instability, Kelvin-Hemholtz (KH) insta-

bility, and Rayleigh-Taylor (RT) instability. These instabilities can take an axisymmetric

form. However, three-dimensional instabilities can also occur. Various parameters affecting

the liquid/gas interface instabilities at the early stages of jet injection are to be investigated

and compared in this study.

1.2 Literature review

In this part of the Thesis, first the Kelvin-Helmholtz and Rayleigh-Taylor instabilities are

introduced; then the works and contributions of the previous researchers on the field of liquid

jet instability are brought in four different approaches, which are linear analytical studies,

non-linear analysis, experimental observations and numerical studies. The assumptions made

in each section and the key findings are mentioned in the corresponding sections.

1.2.1 Capillary instability

The Plateau-Rayleigh instability, often just called the Rayleigh instability or the Capillary

instability, explains why and how a falling stream of fluid breaks up into smaller packets

with the same volume but less surface area. The Plateau-Rayleigh instability is named after

Joseph Plateau and Lord Rayleigh.

In 1873, Plateau found experimentally that a vertically falling stream of water will breakup
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Figure 1.1: Typical photograph of a liquid jet, showing the formation of main and satellite drops from
capillary instabilities.

into drops if its wavelength is greater than about 3.13 to 3.18 times the stream diameter.

Later, Rayleigh [2] showed theoretically that a vertically falling column of non-viscous liquid

with a circular cross-section should breakup into drops if the wavelength of the instabilities

on the surface of the column exceeded the circumference of the column cross-section.

Studies of capillary instability have revealed that a liquid jet is unstable for axial distur-

bances with wave numbers less than a cut-off wave number kc, but stable otherwise. For

each wavelength of an unstable disturbance one main drop and one or more usually smaller

drop(s), referred to as the satellite or spherous drop(s), are formed. Figure 1.1 shows im-

age of a typical liquid jet becoming unstable when it is subject to small perturbation. The

instabilities grow and cause the liquid jet to finally break-up into the main and satellite

droplets.

The classical study of the capillary instability of liquid jets was published in the seminal work

of Lord Rayleigh [2]. With the assumption of an inviscid liquid, he obtained an equation for

the growth rate of a given axisymmetric surface disturbance by equating the potential and

kinetic energies computed for the flow. Further, with the hypothesis that the disturbance

with the maximum growth rate would lead to the breakup of the jet, he obtained an expres-

sion for the resulting droplet size assuming that it would be of the order of the wavelength

of this disturbance. Later, Weber [3] included the effect of viscosity in his analysis of the

jet breakup based on the three-dimensional partial differential equations of hydrodynamics

of Newtonian viscous liquids. He found that the effect of the liquid viscosity is to shift the

fastest growing waves to longer wavelengths and to slow down their growth rate, without,
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however, altering the value of the cut-off wave-number.

The explanation of capillary instability begins with the existence of tiny perturbations in the

stream. These are always present, no matter how smooth the stream is. These disturbances

may be in the form of surface displacement, pressure or velocity fluctuations in the supply

system or on the jet surface, as well as fluctuations in liquid properties such as temperature,

viscosity, or surface tension coefficient. If the perturbations are resolved into sinusoidal

components, we find that some components grow with time while others decay with time.

Among those that grow with time, some grow at faster rates than the others. Whether a

component decays or grows, and how fast it grows is entirely a function of its wave-number

and the radius of the original cylindrical stream.

When a liquid/gas interface is deformed, as shown in Figure 1.2, the surface tension forces

may tend to bring it back to its equilibrium shape. The equilibrium shape of the interface is

defined based on all the forces that may act on it, including the gravitational and pressure

forces. On a flat interface, as the disturbed interface tends to move to its equilibrium shape,

a wave-like propagation appears. If the forces that are acting on the disturbed interface are

the surface tension or the capillary forces, the waves are referred to as the capillary waves.

Although a thorough understanding of how this happens requires a mathematical develop-

ment, Figure 1.2 can provide a conceptual understanding. At the trough, the radius of the

stream R1 is smaller. Hence according to the Young-Laplace equation, the pressure due to

surface tension is increased. Likewise at the peak the radius of the stream is greater and, by

Figure 1.2: Schematic of an unstable jet.
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the same reasoning, pressure due to surface tension is reduced. If this were the only effect,

we would expect that the higher pressure in the trough would squeeze liquid into the lower

pressure region in the peak. In this way we see how the wave grows in amplitude over time.

But the Young-Laplace equation is influenced by two separate radius components. In this

case one is the radius R1, already discussed, of the stream itself. The other is the radius

of curvature of the wave itself, R2. The fitted arc in the figure shows this radius at a

trough. Observe that the radius of curvature at the trough is, in fact, negative, meaning

that, according to Young-Laplace, it actually decreases the pressure in the trough. Likewise,

the radius of curvature at the peak is positive and increases the pressure in that region. The

effect of these components is opposite to the effects of the radius of the stream itself.

The two effects, in general, do not exactly cancel. One of them will have greater magnitude

than the other, depending upon wave number and the initial radius of the stream. When the

wave-number is such that the radius of curvature of the wave dominates that of the radius

of the stream, those waves will decay over time. When the effect of the radius of the stream

dominates that of the curvature of the wave, such instabilities grow exponentially with time.

Provided that the wavelength of surface deformation is long, the curvature 1/R1 >> 1/R2

at the trough. Since liquid pressure is primarily balanced by capillary pressure due to

curvature 1/R1 , a greater liquid pressure is induced by a smaller radius of the cylinder.

The positive difference in the pressures thus induces a perturbed flow from trough to the

neighboring peak. The system therefore is unstable and breakups the cylinder into droplets.

However, for deformation with small wavelength, the curvature 1/R2 >> 1/R1 at the trough.

The perturbed pressures at trough therefore decrease and it can be smaller than perturbed

pressure at the neighboring peak, leading to the flow from peak to the trough, and stabilizing

the system.
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1.2.2 Kelvin-Helmholtz instability

The instability of uniform flow of incompressible fluids in two horizontal parallel infinite

streams of different velocities and densities, is known as the Kelvin-Helmholtz (KH) insta-

bility [4]. The name is also commonly used to describe the instability of the more general case

where the variations of velocity and density are continuous and occur over a finite thickness.

The KH instability is produced by the action of pressures on the perturbed interface; the

instability is often discussed as being due to shear, but shear stresses are not the major actor

here and in any event could not be inserted into an analysis based on potential flow even

when viscosity is not neglected [4]. The formation of the instability may be described in

terms of the action of pressure in Bernoulli equation which is small where the speed is great

(at the top in Figure 1.3) and large where it is small (in troughs). An example of the KH

instability due to wind shear in the atmosphere is shown in Figure 1.4.

Figure 1.3: The speed of the fluid above is greater. The pressure is greater at crests (a) than at troughs (b).
The upper part of the interface is carried by upper fluid causing the interface to overturn [4].
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Figure 1.4: A KH instability rendered visible by clouds over Mount Duval in Australia [4].

1.2.3 Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instabilities are very important and very pervasive. They are

driven by acceleration when a liquid accelerates away from a gas or a lighter fluid. The

signature of this instability is the waves which corrugate the free surface at the instant of

acceleration. Ultimately, these waves will finger into the liquid causing it to break-up [4].

Rayleigh [2] showed that a heavy fluid over a light fluid is unstable, as common experience

dictates. He treated the stability of heavy fluid over light fluid without viscosity, and he

found that a disturbance of the flat free surface grows exponentially like exp(ωt) where

ω =

{
kg(ρ2 − ρ1
ρ1 + ρ2

}1/2

(1.1)

where ρ2 is the density of the heavy fluid, ρ1 is the density of the light fluid, g is the

acceleration due to gravity and k = 2π
λ

is the wavenumber and λ is the wavelength. The

instability described by (1.1) is catastrophic since the growth rate ω tends to infinity, at any

fixed time, no matter how small, as the wavelength tends to zero.

Nature will not allow such a singular instability; for example, neglected effects like viscosity

and surface tension will enter the physics strongly at the shortest wavelength. These effects

have been taken into account in the study of RT instability by later researchers. Surface
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Figure 1.5: RT instability: (a) the liquid in the containers at rest is stable under gravity (Rayleigh 1890) but
if the container is turned upside down as in (c) the liquid falls out. The liquid at rest in container can be
destabilized by downward acceleration of the liquid V̇ > g away from gas as in (b) and in the upside down
case the liquid can be prevented from falling out by accelerating downward with V̇ > g as in (d). If we open
up the container and accelerates the liquid downward with V̇ > g, the top surface which accelerates away
from the gas is unstable but the bottom surface which accelerates into the gas is stabilized as in (e), with
the opposite effect when the acceleration is reversed as in (f) [4].

tension eliminates the instability of the short waves; there is a finite wavelength depending

strongly on viscosity as well as surface tension for which the growth rate ω is maximum.

This is the wavelength that should occur in a real physical problem and would determine

the wavelength on the corrugated fronts of breaking drops in a high-speed air flow.

Taylor [5] extended Rayleigh’s inviscid analysis to the case where a constant acceleration of

the superposed fluids other than gravity is taken into account. Assuming a constant value

for the acceleration, Taylor showed that when two superposed fluids of different densities

are accelerated in a direction perpendicular to their interface, this surface is unstable if

the acceleration is directed from the lighter to the heavier fluid [4]. The Taylor instability

depends strongly on the value of the acceleration.

The idea behind Rayleigh and Taylor’s instabilities are embodied in the cartoons and caption

of Figure 1.5. These experiments show the difference between the theory of Rayleigh [2] who

considered gravity g and Taylor [5] who considered the effect of the acceleration V̇ . The

accelerations destabilize the liquid-gas surfaces which accelerate away from the gas and

stabilize the liquid-gas surface which accelerate toward the gas (Figure 1.5 (e)).
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1.2.4 Linear analyses

The practical and wide applications of liquid jets led to extensive investigation of the flow of

liquid sheets and jets, which have received much attention in the literature since the classical

studies of Rayleigh. A considerable number of works on the instability of liquid sheets and

jets are available in the literature. In this part the linear analyses on liquid sheets (planar

and annular) instabilities are presented.

In the classical studies it was usual to study the instability by linearizing the nonlinear

equations around the basic uniform flow followed by analysis of normal modes proportional

to

exp(ωt+ ikx) (1.2)

where k = 2π
λ

is the wave number and ω = ωr+iωi is the complex frequency. The real part of

ω will be the growth/decay rate of the perturbations and the imaginary part will represent

the waves’ speed. It is clear that for positive ωr the perturbations will grow unstably. It is

also usual to assume that the fluids are inviscid and the amplitude of perturbations on the

liquid/gas interface are much smaller than their wave length as well as the sheet thickness

(ε << λ , ε << h).

The linear instability of a thin liquid sheet was first investigated by Squire [6] and Hagerty &

Shea [8], and both liquid and gas phases were taken as inviscid and incompressible. Squire,

Hagerty & Shea showed that there can only exist two modes of unstable waves on the two

gas/liquid interfaces for liquid sheets in a stationary gas medium, corresponding to the two

surface waves oscillating exactly in and out of phase, commonly referred to as the sinuous

(anti-symmetric) and varicose (symmetric, dilational) modes, and that the sinuous mode

is always predominant under the typical conditions for practical applications. However,

later studies have revealed that this is not generally the case. They also performed the

first experimental measurements of the wave growth and wavelength for liquid sheets under
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Figure 1.6: A schematic of the instability modes; Sinuous (left), Varicose (right).

various flow conditions, and the theoretical predictions were compared favorably with their

experimental results. A schematic of the two instability modes is illustrated in Figure 1.6.

The growth rate found by Squire [6] and Hagerty & Shea [8] are of the form:

ωr
kU0

=

{
ρ̂K

(ρ̂+K)2
− kh

We

1

ρ̂+K

}1/2

(1.3)

where U0 is the liquid sheet velocity, ρ̂ = ρg/ρl is the gas to liquid density ratio, h is the sheet

half thickness and We = ρlU0
2h/σ is the Weber number. In this equation, K = tanh(kh)

for the sinuous mode and K = Coth(kh) for the varicose mode.

Figure 1.7, adopted from Sirignano & Mehring [9], provides the growth rate for various wave

numbers for both sinuous (antisymmetric) and dilational (symmetric) waves and for different

Weber numbers and density ratios. The results also show that the varicose mode is more

unstable for density ratios near unity. It is clear that for the low Weber number case, the

growth of sinuous waves dominate the growth of varicose waves due to the higher growth

rates throughout the range of instability.

Dombrowski and Johns [7] combined a linear model for temporal instability and a sheet

breakup model for an inviscid liquid sheet in a quiescent inviscid gas to predict the ligament

and droplet sizes after breakup. The schematic of their wavy sheet is reproduced in Fig. 1.8.
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Figure 1.7: Dimensionless growth rate Im[ω/(kU0)] as function of kh for different values of We and ρ̂, for
inviscid liquid sheet [9].

The equation of motion of the neutral axis mid-way between the two gas/liquid interfaces

was obtained for a sheet moving with velocity U0 through stationary gas. The equation of

motion was obtained by considering the forces due to gas pressure, surface tension, liquid

inertia, and viscosity on an element of a sheet.

Li & Tankin [10] brought into account the effects of liquid viscosity on the liquid sheet

instability. They realized that for sheets, the surface tension always opposes the onset

and development of instability, while in liquid jets, it is destabilizing at low velocities and

stabilizing at higher relative velocities. Li & Tankin called the instabilities that are caused by

velocity difference between the gas and liquid for an inviscid liquid sheet (Squire’s equation)
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Figure 1.8: Wave instability of a thinning liquid sheet [7].

the aerodynamic instabilities [10]. They then claimed that there is a region of instability

that is induced and enhanced by liquid viscosity, which they called the viscosity-enhanced

instability. They also found that for low gas Weber numbers, the aerodynamic instability

disappears, but the viscosity-enhanced instability still exists. They also presented some

simplified relations for the cut-off (neutral) and the dominant wave number (the wave number

with maximum growth rate) for very thin liquid sheets. They found that the dominant wave

number of the viscous liquid sheet is related to its counterpart for inviscid liquid for kh << 1

through the Ohnesorg number, Oh = µl/
√
ρlhσ.

The first study on annular jet flow appears to be the one reported by Ponstein [11], who

treated swirling liquid jets and then annular jets with both surfaces free. Ponstein observed

that in non-rotating jets only axisymmetric disturbances are unstable. Crapper et al. [12]

analyzed theoretically the instability of an inviscid cylindrical liquid sheet moving in an

inviscid gas medium at rest. They found that the sinuous (anti-symmetric) disturbance mode

is the dominant mode for the variations of thickness and radius. They also demonstrated
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that the growth rate of both symmetric and antisymmetric waves increases significantly with

reduction of the radius of the sheet annulus [12].

Meyer and Weihs [13] investigated analytically the capillary instability of a stationary viscous

annular liquid jet in a moving inviscid gas stream. A critical penetration thickness was

identified to classify whether an annular jet behaves like a cylinder jet or a thin planar sheet.

When the annular jet behaves like a circular jet the axisymmetric mode was found to be the

only unstable disturbance and its growth rate was found to be independent of the thickness.

On the other hand, When the annulus thickness is less than the penetration thickness, the

jet behaves like a two-dimensional liquid sheet; the most unstable perturbations are anti-

symmetric and their growth rate increases as the sheet thickness decreases [13].

The instability of a stationary viscous annular liquid sheet with different gas velocities for

the inner and outer gas streams has been studied by Lee and Chen [14]. Two dispersion

relations corresponding to each interface were derived. However, only the cases for inviscid

liquids were examined. Effects due to ambient fluid density and ambient fluid velocity on

liquid-sheet instabilities were examined. They also found that the presence of air does not

have discernible effects on symmetric disturbances; however, it shifts the maximum growth

rate to a larger wave number for anti-symmetric disturbances [14]. The schematic of the two

instability modes for annular liquid sheets given by Lee & Chen are illustrated in Figure 1.9.

Shen and Li [15, 16] carried out a temporal instability analysis of an annular viscous liquid jet

Figure 1.9: Schematic of symmetric and antisymmetric disturbances of cylindrical liquid sheets.
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moving in an inviscid gas medium and then recovered both analytical and numerical results

of plane liquid sheets, round liquid jets and hollow gas jets found by former researchers.

They showed that curvature effects in general increase the disturbance growth rate, hence

promoting the annular sheet breakup process. They found the two instability modes on the

interfaces of annular sheet to be similar to the well known sinuous and varicose modes in the

limit of planar liquid sheet; hence, they named them para-sinuous and para-varicose modes

[15]. Liquid viscosity enhances sheet instability only at low Weber numbers and for para-

sinuous modes, which is similar to the behavior of plane liquid sheets examined by Li and

Tankin [10]. A critical Weber number was identified below which surface tension promotes

instability, whereas above this value, surface tension inhibits instability. In [16], Shen &

Li apply the linear stability theory to the study of breakup process of an annular viscous

liquid jet exposed to both inner and outer gas streams of unequal velocities. It is found

that not only the velocity difference across each interface, but also the absolute velocity

of each fluid is important for the jet instability, although the effect of absolute velocity is

secondary compared with that of relative velocity. They also realized that a high-velocity

coflowing gas inside of the annular liquid jet promotes the jet breakup process more than

the gas of equivalent velocity outside of the jet. The liquid inertia, density ratio, and high

gas velocity all contribute to better atomization performance, whereas surface tension and

liquid viscosity increase the resulting droplet size [16].

Jeandel and Dumouchel [17] studied the linear stability of an annular liquid sheet evolving

in a gaseous environment at rest, taking into account the liquid viscosity. They derived a

non-dimensional number D = Weh
Re

(Weh + h/a) based on the Reynolds and Weber numbers

and sheet thickness to radius ratio (h/a), which allows one to account for the influence of

the liquid viscosity on the linear stability of an annular liquid sheet. They found that for

D < 10−4, the viscous effects are negligible on the dominant wave-number and the maximum

growth rate of the instabilities.
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The effect of gas compressibility on the liquid sheet instability has also been investigated by

Li & Kelly [18] for inviscid liquid sheets and by Cao & Li [19] for viscous liquid sheets in two

gas streams of unequal velocities. It was shown that gas compressibility always enhances the

instability and breakup processes of liquid sheets.

Sirignano and Mehring [9] summarized the results of the linear sheet instability theory as fol-

lows: “For all density ratios, the growth rate for both sinuous and dilational waves increases

as the Weber number is increased. The maximum growth rate for the sinuous disturbances

does not significantly change with changes in the density ratio. However, the maximum

growth rate for the dilational case increases significantly as density ratio is increased. For

low-density ratios, the maximum growth rate for the sinuous case is always higher than that

for dilational waves. As ρ̂ is increased beyond a certain value, the maximum growth rate for

dilational waves eventually overcomes the value for sinuous growth. For all density ratios,

there exists a region of wave numbers, in which dilational waves are more unstable than the

sinuous ones; the latter might even be stable in that region. The disturbance wavelength

with maximum growth rate decreases as the density ratio is increased. This is true for both

sinuous and dilational waves”.

Craster et al. [20] conducted a linear stability analysis of axisymmetric compound viscous

jets (core-annular flow) using long-wave theory. An asymptotic reduction of the 1D set of

equations was performed to explore the dynamics of the fluids, and the ratio of fluid densities

was assumed to be the same as that of the viscosities. The linear study predicts that the

para-sinuous mode is the dominant one, which is in agreement with the previous works.

In the limit of small wave number (i.e. k << 1) and for a highly viscous annular liquid

compared to the core gas, Craster et al. found analytically that the inner-to-outer interfacial

amplitude ratio is approximately equal to the inner-to-outer radius ratio [20].

Ibrahim & McKinney [21] formulated a simplified mathematical model, based on body-fitted

coordinates, to study the evolution of non-swirling and swirling liquid sheets emanated from
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an annular nozzle in a quiescent surrounding medium. It was found that a non-swirling

annular sheet converges towards its centerline and assumes a bell shape as it moves down-

stream from the nozzle. They found that both the thickness and the stream-wise velocity

of the non-swirling annular sheet are reduced with an increase in mass flowrate [21]. The

introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-

cone divergence from its centreline is enhanced by an increase in liquid mass flowrate or

liquid-swirler angle [21].

Fu et al. [22] used a linear instability analysis method to investigate the breakup of a conical

liquid sheet under the combined influence of sinuous and varicose modes of disturbances

at the liquid-gas interfaces, and adopted a modified model to predict the breakup length

of the conical liquid sheet. They found that, for both modes, the maximum disturbances

growth rate and the dominant wave number increase as the pressure drop increases, while

the breakup length and breakup time decreases with the increase of the pressure drop.

Ahmad et al [23] carried out a temporal stability analysis to investigate the stability of an

axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding

co-flowing viscous gas media. They investigated in their study the effects of inertia, surface

tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid

viscosity ratio on the stability of the jet. A summary of the influence of flow and geometrical

effects on the annular liquid sheet instability found by Ahmad et al. is given in Table 1.1 .

1.2.5 Nonlinear analyses

In all the above-cited theoretical studies, linearized stability analysis has been employed.

The linear theory does not offer a means for the liquid sheet to break up, because during

the growth of the sinuous mode of disturbances predominant under practical conditions, the

two gas-liquid interfaces remain a constant distant apart. Hence, the liquid sheet breakup
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Stability Disturbance Mode of Dominant Maximum
parameter growth rate instability wave-number growth rate

Inertia Increase Para-Sinuous Increase/Decrease Increase
(at negligible/large

viscosity ratio)

Density ratio Decrease Para-Sinuous Increase Decrease
Radius ratio Decrease Para-Sinuous Decrease Decrease

(Increase in thin (Increase in thin (Increase in thin

annular sheet) annular sheet) annular sheet)

Surface tension Increase Both para-sinuous Almost constant Increase
and para-varicose

Viscosity ratio Decrease Para-sinuous Increase Decrease

Table 1.1: Summary of parametric influence on the growth rate, mode of instability, the dominant wave-
number and the maximum growth rate for axisymmetric disturbance [23].

length, which is an important parameter in the spray modeling and spray system design,

cannot be predicted based on the linear theory alone. In reality, the liquid sheet breakup

processes are nonlinear, especially near the breakup region [24].

So far, only limited studies have been carried out on the nonlinearity of the liquid sheet

breakup processes. Clark & Dombrowski [25] were the first to analyze nonlinear liquid

sheet disintegration through the perturbation expansion technique with initial disturbance

amplitude as the perturbation parameter. A solution accurate up to the second order of

the initial disturbance amplitude was obtained for the case of wavelengths relatively long

compared with the sheet thickness. It was found that sheet thinning was caused by the

growth of the harmonic wave, with maximum thinning and subsequent rupture occurring

at positions corresponding to 3/8 and 7/8 of the length of the fundamental wave [25]. The

theoretical results were also used to calculate the breakup lengths of attenuating liquid sheets

produced by fan and swirl spray nozzles, and compared with experimental measurements.

Rangel & Sirignano [26] used the vortex-sheet discretization method and computation tech-

nique to investigate the nonlinear evolution of initially small disturbances at an interface

separating two fluids of different density and velocity with effects of surface tension included.

18



The same approach was also used in a later study by Rangel & Sirignano [27] for the linear

and nonlinear instability of a finite-thickness fluid sheet in contact with two semi-infinite

streams of a different fluid. Their nonlinear calculations indicate the existence of sinuous

oscillating modes when the density ratio is of the order of 1. It was shown that sinuous

disturbances may result in the formation of ligaments interspaced at half the wavelength of

the fundamental mode [27].

Panchagnula et al. [28] have developed a nonlinear model of annular liquid sheet using

approximate one-dimensional equations derived by thin sheet approximations. They have

considered only the para-varicose disturbances and have neglected the aerodynamic effects

of the gas phase inside and outside the liquid sheet. It has been reported in the earlier

studies that the para-varicose disturbances dominate the breakup process at very low liquid

Weber numbers. In most practical atomizers, liquid Weber numbers are generally high and

the para-sinuous disturbances dominate the breakup process in this regime [28].

In a series of nonlinear studies, Mehring and Sirignano [29–33] have developed nonlinear

models of axisymmetric thin inviscid infinite (periodically disturbed) and semi-infinite (lo-

cally forced) annular liquid sheets in a surrounding void with non-zero gas core pressure at

zero gravity by employing a reduced dimension approach (long-wavelength approximation).

They found that there will be no Kelvin-Helmholtz instability if the ambient density is zero.

Jazayeri and Li [24] developed up to the third order nonlinear analysis of a liquid sheet

to determine the breakup length of the sheet. Their results indicate that, for an initially

sinusoidal surface disturbance, the thinning and subsequent breakup of the liquid sheet is

due to nonlinear effects with the generation of higher harmonics as well as feedback into

the fundamental. The breakup time (or length) of the liquid sheet was calculated, and the

effect of the various flow parameters was investigated. It was found that the breakup time

(or length) is reduced by an increase in the initial amplitude of disturbances, the Weber

number and the gas-to-liquid density ratio, and it becomes asymptotically insensitive to the
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variations of the Weber number and the density ratio when their values become very large. It

was also found that the breakup time (or length) is a very weak function of the wave-number

unless it is close to the cut-off wave-numbers [24]. Jazayeri & Li found that the distance

between the two interfaces vanishes near the half and full wavelength, which is different from

the conclusions reached by Clark and Dombrowski [25] who found that the sheet breakup

occurred at positions corresponding to 3/8 and 7/8 of the length of the fundamental wave.

However, the liquid sheet breaks off at half-wavelength intervals, a result consistent with

that of Clark and Dombrowski.

Nonlinear instability and breakup of an annular liquid sheet exposed to co-flowing inner and

outer gas streams was modeled by Ibrahim & Jog [34]. They also studied the effect of outer

gas swirl on sheet breakup. In their developed model a perturbation expansion method was

used with the initial magnitude of the disturbance as the perturbation parameter. In their

temporal analysis, the effect of liquid Weber number, initial disturbance amplitude, inner

and outer gas-to-liquid velocity ratios, and outer gas swirl strength on the breakup time was

investigated. Their results showed that with increasing outer gas swirl strength, the maxi-

mum disturbance growth rate increases and the most unstable circumferential wave number

increases resulting in a highly asymmetric sheet breakup with shorter breakup lengths and

thinner ligaments [34].

1.2.6 Experimental studies

The optical measurement techniques such as shadowgraph and Schlieren imaging and laser-

based techniques, e.g., Mie scattering imaging and laser-induced fluorescence produce obscure

images from the regions of high droplet density near the nozzle since the light scatters from

the surface of the droplets. The above mentioned reasons have made it a difficult, yet

interesting, task for many researchers to develop various experimental techniques to study
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the near nozzle jet instabilities.

The transient behavior of liquid injection has been the subject of numerous experimental

studies for planar liquid sheets (Crapper et al. [35], Mansour & Chigier [36]), cylindrical

liquid jets (Varga et al. [37], Marmottant & Villermaux [38], Crua et al. [39], Shoba et al.

[40]) and annular liquid sheets (Kendall [41], Carvalho & Heitor [42], Fu et al. [43], Wahono

et al. [44] and Duke et al. [45]). However, studies that only pertain to annular liquid jets

are summarized in this section.

Kendall [41] performed experiments on annular liquid jet with coflowing airstream inside the

annular sheet at relatively small velocities (1 m/s to 12 m/s). It was shown that periodic,

axisymmetric oscillations arise spontaneously within the cylindrical sheet emerging from

the nozzle and grow with such rapidity along the axial dimension that a sealing-off and

encapsulation of the core gas occurs within a few jet diameters. He also found gravity to be

unimportant to the shell formation.

Lee and Chen [14] identified three regimes for air-assisted atomization; namely, the Rayleigh,

intermittent, and atomization regimes. At low airflow rates, periodic bubble formation was

observed. This bubble-formation regime was termed the Rayleigh regime due to the similarity

between the bubble formation and the droplet formation of low-velocity liquid jets. As the

airflow rate is increased, the spacing between bubbles are decreased, and the bubble shape

is distorted. This regime was termed the intermittent regime. With further increase in the

airflow rate, small liquid drops are formed near the nozzle exit and the flow regime was

named the atomization regime. Figure 1.10 shows the typical regimes observed by Lee &

Chen in their experiments [14].

Later in 2000, Sirignano and Mehring [9] in their review of the theory of distortion and

disintegration of liquid streams, identified the operation regimes of round liquid jet breakup

into four distinct regimes, similar to what was found by Lee & Chen [14]. They identified
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Figure 1.10: Flow characteristics of annular jets (water velocity = 0.96 m/s). Rayleigh regime (a–e), Inter-
mittent regime (f–h), atomization regime (i–l) [14].

the regimes to be separated by straight lines with negative slope on the log-log plot of

We (or Oh) versus Re as illustrated in Figure 1.11. The first domain is the Rayleigh

capillary mechanism region at lower values of We and Re. Aerodynamic interaction with

the gas is not significant. Axisymmetric distortion occurs with the formation of droplets

that have a radius of the same order as the jet radius. Next is the first wind-induced

region where non-axisymmetric (sinuous) oscillations occur resulting still in droplet sizes

comparable to the jet radius. The second wind-induced region results in small droplets,

while the atomization region at the highest values of We and Re result in the smallest

droplets. As the Weber number or Ohnesorge number increases, the break-up length tends
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Figure 1.11: Modes of disintegration in dependence on liquid Reynolds and Weber numbers [9].

to decrease. The atomization regime is the domain where the break-up essentially occurs at

the orifice exit [9].

Carvalho and Heitor [42] studied the atomization process of a liquid in an axissymmetric

shear layer formed through the interaction of turbulent coaxial jets (respectively, inner and

outer jets), with and without swirl, in a model airblast prefilming atomizer. The atomization

process and spray quality was studied using different visualization techniques, namely laser

shadowgraphy and digital image acquisition. The experiments were conducted for different

liquid flow rates, Reynolds numbers ranging from 6600 to 66, 000 and 27, 300 to 92, 900 for

the inner and outer air flows, respectively, for different outer flow swirl levels, and two liquid

film thicknesses 0.2 and 0.7 mm. They found that film thickness strongly affects the time

and length scales of the break-up process for the lower range of air velocities, and that the

inner air stream is more effective on promoting atomization than the outer air flow.

Fu et al. [43] in their study, investigated experimentally the breakup characteristics of

annular liquid sheets in two co-flowing air streams, by using a backlighting technique and

a computer-controlled high-speed CCD camera. Their results indicate that transition from
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laminar to turbulent flow for the liquid sheets does not seem to affect much the breakup

length and the pattern of the resulting sprays when comparing to the effect of changing the

airflow velocities. The breakup length, defined as the distance from the nozzle exit to the

location of the sheet breakup, increases with the liquid velocity, while is shortened by the

air stream velocity [43].

Wahono et al. [44] in their experimental study, illuminated the liquid sheet with high-

powered halogen lamps, and used high-speed imaging to qualitatively visualize the structure

of the spray. Their particular interest was the evolution of the spray into a ligament structure

during the primary break-up and the role the outer air stream plays in this process. Their

observations showed that thicker and longer ligaments are formed with higher Re numbers,

which they concluded to be associated with higher liquid momentum. They also found the

Strouhal number (St) to increase with increasing gas to liquid momentum ratio.

Later on high-speed backlit photography was used by Duke et al. [45] to capture realizations

of the unstable mixing layer, and the edge velocity was derived in order to measure the

effects of parameters such as gas/liquid momentum ratio, Reynolds and Weber Number.

The peak instability frequency was observed to increase with increasing the outer gas to

liquid momentum ratio.

1.2.7 Numerical studies

Within the context of numerical studies of gas-liquid turbulent two-phase flow phenomena,

the traditional Reynolds-averaged NavierStokes (RANS) modeling approach could lead to

poor predictions of highly unsteady and complex flow phenomena involving vortical struc-

tures due to the intrinsic time- or ensemble-averaging of governing equations. Large-eddy

simulation can be used to overcome the problems associated with the averaging involved

in RANS approach but it may not be sufficient to understand the detailed mechanisms in

24



a high-speed multiphase flow, since small scales still need to be modeled. In this context,

direct numerical simulation (DNS) can be a very powerful tool that not only leads to a

better understanding of the fluid mechanics involved, but also provides useful databases

for the potential development of physical models for liquid breakup and atomization in gas

environments.

Many studies have been performed using the above mentioned numerical methods to simulate

the interface changes and turbulence in two-phase environments. These studies include

planar liquid sheet instability (Stanley et al. [46], Klein et al. [47], Klein [48], Sander &

Weigand [49]), cylindrical jet instability (Richards et al. [50], Yoon & Heister [51], Park et

al. [52], Menard et al. [53], Pan & Suga [54], Gorokhovski & Hermann [55], Lebas et al. [56],

Shinjo & Umermura [57], Chesnel et al. [58]) and swirling or non-swirling annular liquid

sheet instabilities (Ibrahim [59] and Siamas et al. [60–62]).

Two-dimensional axisymmetric numerical simulations have been carried out by Ibrahim [59]

to study the unsteady, turbulent, swirling two-phase flow field inside pressure swirl atomizers

using the volume of fluid (VOF) method. In the same study, the linear and nonlinear

asymmetric instability analyses are carried out to study the primary atomization of annular

liquid sheets and liquid jets emanating from the pressure swirl (simplex) atomizer, prefilming

airblast atomizer, and plain orifice pressure atomizer using a perturbation method with the

initial amplitude of the disturbance as the perturbation parameter. For annular liquid sheets,

he found that the breakup length is reduced by an increase in the liquid Weber number, initial

disturbance amplitude and the inner and outer gas-liquid velocity ratios (in consistent with

previous experiments). His numerical results also indicate that air swirl not only promotes

the instability of the annular liquid sheet, but also switches the dominant mode from the

axisymmetric mode to a helical mode [59].

An annular liquid jet in a compressible gas medium was examined by Siamas et al. [60]

using an Eulerian approach with mixed-fluid treatment. An adapted volume of fluid method
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combined with a continuum surface force model was used to capture the gas-liquid interface

dynamics in this research. It was identified that the liquid-to-gas density and viscosity ratios

have opposite effects on the flow field, with the reduced liquid-to-gas density ratio demot-

ing the instability and the reduced liquid-to-gas viscosity ratio promoting the instability

characteristics [60].

Siamas et al. [61, 62] used the same numerical methods mentioned above to solve a time-

dependent, compressible, swirling annular gas-liquid two-phase flow system. In [61] three-

dimensional spatial direct numerical simulation was performed with parallelization of the

code based on domain decomposition. The results showed that the flow is characterized by

a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation

zone further downstream. The swirling mechanism was known to be responsible for the

development of the central recirculation zone downstream of the nozzle, a feature which is

absent in annular gas-liquid non-swirling jet flow [61].

In [62], the dynamics of annular gas-liquid two-phase swirling jets was examined by means

of direct numerical simulation and proper orthogonal decomposition. The effects of liquid-

to-gas density ratio on the flow development was examined, and it was found that the higher

density ratio case is more vortical with larger spatial distribution of the liquid, in agreement

with linear theories. In the lower density ratio case, both the central and the geometrical

recirculation zones, which were observed in the earlier studies, were captured while only

one central recirculation zone was evident at the higher density ratio. The results also

indicated the formation of a precessing vortex core at the high density ratio, indicating that

the precessing vortex core development is dependent on the liquid-to-gas density ratio of the

two-phase flow, apart from the swirl number alone [62].
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Chapter 2

Computational modeling

In this study computational models have been used to solve the unsteady, two-dimensional

axisymmetric Navier-Stokes equations for flow of an incompressible fluid through annular

nozzle and the exiting transient jet through orifice. Use will be made of the previously

developed unsteady multidimensional code with the finite-volume solver of the Navier-Stokes

equations for liquid streams and adjacent gas, boundary-fitted gridding scheme, and level-set

method for liquid/gas interface tracking applied by Dabiri et al. [63, 64]; Dabiri [65]. We will

use the model capability to examine the annular jet flows during start-up transition, typical

of intermittent combustors, predicting jet formation and resulting axisymmetric instabilities

that can lead to stream break-up.

In this chapter the numerical methods that have been used to find solutions to the Navier-

Stokes flow in later chapters will be discussed. This includes the discretization of convection

diffusion problem, the coupling of velocity-pressure through SIMPLE algorithm and the

application of the level-set method to track the liquid-gas interface.
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2.1 Governing equations

The general form of the continuity (mass conservation) equation is:

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 (2.1)

The first two terms could be combined to make the material (Lagrangian) derivative of the

density

⇒ Dρ

Dt
+ ρ∇ · u = 0 (2.2)

Although both fluids (liquid and gas) are considered to be incompressible in this research,

one might think that since there is a density variation across the interface over time, the

general continuity equation (2.1) should be used, which takes care of the density variation

in whole domain. However, we know that the density of either zones (gas or liquid) does

not change, even though the interface location is altered over time. Therefore, from the

definition of the material derivative (time derivative of a variable following a particle), it is

concluded that the first term in Eqn. (2.2) is identically zero and the incompressible form

of the continuity equation is obtained:

∇ · u = 0 (2.3)

The equations of fluid motion are Navier-Stokes equations which in an incompressible flow

and considering the viscous and surface tension forces and neglecting the gravitational forces

have a conservative form as follows:

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · (2µD) + F (2.4)
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where D is the strain rate tensor,

D =
1

2

[
(∇u) + (∇u)T

]
(2.5)

and F is the surface tension force per unit volume

F = −σκδ(d)~n (2.6)

In the equations above, u is the velocity field, ρ and µ are the density and viscosity of

the fluid, respectively, p is the pressure field, σ is the surface tension coefficient, κ is the

surface curvature, δ(d) is the Dirac delta function and ~n is the unit vector normal to the

interface. Notice that the entire strain rate tensor has been used in the viscous diffusion

term because the viscosity varies near the interface zone, and this will introduce extra terms

in the momentum equations in each direction, which include the viscous variation effects.

This will be discussed later in this section.

2.1.1 Navier-Stokes in curvilinear orthogonal coordinates

Simulation of flow in complex geometries, such as flow through a nozzle with curved corners,

can be handled by implementing a boundary-fitted grid. The axisymmetric annular jet flow

in this research is studied using the boundary-fitted grid. In this problem, an orthogonal

grid is used to discretize the domain because orthogonality of the grid leads to many of the

terms in the metric tensor being zero which makes the calculation faster. Also, it will offer

more accuracy in the calculation of the normal fluxes.

In this study, the Laplace equation corresponding to the irrotational axisymmetric flow in the

same geometry has been solved to generate the desired bounday-fitted grid. Therefore, the

potential function and stream function of the theoretical axisymmetric potential flow are used
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as the orthogonal-coordinates system. This choice of coordinates will increase the accuracy

since the flow far from the boundaries and regions of separated flow is irrotational and thus,

closely parallel to the grid. For detailed descriptions on generation of the boundary-fitted

grid see Dabiri (2009) [65].

The momentum equation for an incompressible flow with constant properties is

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ µ∇2u + F (2.7)

In order to solve the momentum equation with the finite-volume method, each component

of the equation should be written in the form of a convection-diffusion equation of a scalar

field as follows

∂(ρϕ)

∂t
+∇ · (ρuϕ) = Γ∇2ϕ+ S (2.8)

In cartesian coordinates, the jth component of the momentum equation is already in the

form of a convection-diffusion equation for ϕ = uj, with −∇p acting as the source term, S,

and dynamic viscosity µ as the diffusion coefficient, Γ.

In a curvilinear coordinate system (x1, x2, x3), due to dependency of the base unit vectors

on position, additional terms come into the equation. Considering the jth component of the

momentum equation, we have

[
∂ρu

∂t

]
· êj + [∇ · (ρuu)] · êj = [−∇p] · êj +

[
µ∇2u

]
· êj + [F] · êj (2.9)

where êj is the unit vector in j-direction. Each term of the equation can be rewritten as

[
∂ρu

∂t

]
· êj =

∂ρuj
∂t

(2.10)

[∇ · (ρuu)] · êj = ∇ · (ρuuj) + ρUj (2.11)
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[−∇p] · êj = − 1

hj

∂p

∂xj
(2.12)

[
∇2u

]
· êj = ∇2uj +Bj (2.13)

[F] · êj = Fj (2.14)

where Uj is

Uj =
3∑

k=1

uk
hkhj

(
uj
∂hj
∂xk
− uk

∂hk
∂xj

)
(2.15)

and for j = 1, B1 is

B1 =
1

h1h2h3

[
∂

∂x1

(
h3
h1
u2
∂h1
x2

+
h2
h1
u3
∂h1
∂x3

)

− ∂

∂x2

(
h3
h2
u2
∂h2
x1

)
− ∂

∂x3

(
h2
h3
u3
∂h3
x1

)]

+
G12

h1h2

∂h1
∂x2

+
G13

h1h3

∂h1
∂x3
− G22

h1h2

∂h2
∂x1
− G33

h1h3

∂h3
∂x1

(2.16)

and here, G = ∇u. Fj in equation (2.14) is the jth component of the capillary forces.

Therefore, equation (2.9) can be rewritten as

∂(ρuj)

∂t
+∇ · (ρuuj) = Γ∇2uj + S (2.17)

where the source term is

S = − 1

hj

∂p

∂xj
− ρUj + µBj + Fj (2.18)

In the above formulation hjs are the scale factors for the orthogonal curvilinear coordinate

(x1, x2, x3) [66].
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2.1.2 Finite-Volume formulation for variable properties

The viscous stress term in the Navier-Stokes equations for an incompressible flow with vari-

able properties in the cartesian coordinates can be written as follows

[
∇ · (µ(∇u +∇uT ))

]
=

=
∂

∂x

[
2µ
∂u

∂x

]
+

∂

∂y

[
µ
(∂u
∂y

+
∂v

∂x

)]
+

∂

∂z

[
µ
(∂u
∂z

+
∂w

∂x

)]

= ∇ · (µ∇u) +
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂z

(
µ
∂w

∂x

)

= ∇ · (µ∇u) + µ∇ · u +
∂µ

∂x

∂u

∂x
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
(2.19)

The second term is zero due to incompressibility of the fluid. If we write the momentum

equation in the following form, the last three terms should be included in the source term S.

∂(ρu)

∂t
+∇ · (ρuu) = ∇ · (µ∇u) + S (2.20)

2.2 Numerical methods

A finite-volume discretization on a staggered grid has been considered in this study. The con-

servation equations come from the balance in the flux going in and coming out of the control

volume. Therefore, accurate calculation of these fluxes is of great importance. Third-order

accurate QUICK scheme has been used for spatial discretization and the Crank-Nicolson

scheme has been used for time-marching treatment in this research. SIMPLE algorithm has

been used for velocity-pressure coupling. In this section these algorithms will be discussed

briefly.
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2.2.1 QUICK discretization

The Quadratic Upwind Interpolation for Convective Kinetics (QUICK) was first introduced

by Leonard [67]. The method is based on a three-point upstream-weighted quadratic inter-

polation technique for cell face values on a staggered grid. Leonard [67] has shown that this

scheme has a better accuracy than central difference scheme while retains the transportive-

ness property of the upwind scheme. The face value of the scalar quantity φ is obtained from

a quadratic function passing through two bracketing nodes (on each side of the face) and a

node on the upstream side (Figure. 2.1).

Figure 2.1: Quadratic profiles used in QUICK scheme

A uniform grid spacing is used here for simplicity but the concept can be easily extended

to nonuniform grids. The value of φ at the interface of the cell is calculated by fitting a

quadratic polynomial to three consecutive nodes: the two nodes located at either side of the

surface and another node on the upstream side. For example, when uw > 0 and ue > 0 a

quadratic fit through WW , W and P is used to evaluate φw, and a further quadratic fit

through W , P and E to calculate φe. It can be shown that for a uniform grid the value of φ

at the cell face between two bracketing nodes i and i− 1 and upstream node i− 2 is given

by the following formula [67]:

φface =
6

8
φi−1 +

3

8
φi −

1

8
φi−2 (2.21)
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Using this formula the value of the scalar φ at the west cell face can be written as:

φw =


6
8
φW + 3

8
φP − 1

8
φWW for uw > 0

6
8
φP + 3

8
φW − 1

8
φE for uw < 0

(2.22)

and a similar relation for the east cell face value φe.

There have been several papers addressing the practical implementation of the QUICK

scheme, but among them Hayase et al. [68] presented a consistent formulation of QUICK

scheme which is more stable and also fast converging which will be used here. In this

formulation, the interpolated values of the scalar function are rearranged as

φw =


φW + 1

8
[3φP − 2φW − φWW ] for uw > 0

φP + 1
8
[3φW − 2φP − φE] for uw < 0

(2.23)

and

φe =


φP + 1

8
[3φE − 2φP − φW ] for ue > 0

φE + 1
8
[3φP − 2φE − φEE] for ue < 0

(2.24)

The terms in the brackets are treated as source terms using the values from previous iteration.

Hence, the values of φ at interface are given as an upwind estimation plus a corrective

source term. The advantage of this approach is that the main coefficients in the discretized

equation are positive and satisfy the requirements for conservativeness, boundedness and

transportiveness. The QUICK scheme is third order accurate.

2.2.2 SIMPLE algorithm

The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. The

algorithm was originally put forward by Patankar and Spalding [69] and is essentially a guess-
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and-correct procedure for the calculation of pressure on the staggered grid arrangement.

To initiate the SIMPLE calculation process a pressure field p∗ is guessed. Discretized mo-

mentum equations are solved using the guessed pressure field to yield velocity components

u∗ and v∗. Then a pressure correction equation which represents the continuity equation is

solved to give the pressure correction variable p′. Once the pressure correction field is known,

the correct pressure field and velocity components are obtained.

The SIMPLE algorithm gives a method of calculating pressure and velocities. The method

is iterative, and when other scalars are coupled to the momentum equations the calculation

needs to be done sequentially. The sequence of operations in a CFD procedure which employs

the SIMPLE algorithm is given in Figure 2.2. The equations that need to be solved in each

step are also shown here.

2.3 Interface tracking approach

Tracking the interface between two phases and modeling its physics such as surface tension

is of great importance in studying multiphase flows. Several methods have been developed

to handle the difficulties in interfacial modeling. The surface marker method or the front-

tracking method explicitly tracks the position of the interface by updating the position of

marker points on it. For example, Tryggvason and Unverdi [71] and Glimm et al. [72]

used this method to study Rayleigh-Taylor instabilities. Popinet and Zaleski [73] did an

accurate balance of surface tension forces on a finite volume method by explicit tracking of

the interface. The method was applied only for two-dimensional calculations because of the

geometrical complexity appearing in the three-dimensional calculation. The drawback of the

front-tracking method is the difficulty in capturing the topological changes in the phases,

such as breakup or coalescence of liquid drops and specially in three-dimensional calculations
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Figure 2.2: The SIMPLE algorithm flow chart [70].

[65].

In the limit of inviscid flow, the interface could be modeled as a vortex sheet with zero

thickness. Rangel and Sirignano [27] performed a nonlinear analysis of temporal instability

of a liquid sheet using this idea. From the momentum equation on sides of the interface and
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a balance of interfacial forces, they derived an equation for the evolution of circulation on

the interface for a case with density discontinuity and surface tension. The velocity field is

also found by the Savart law from the vorticity [65].

Volume of Fluid (VOF) is another method developed to treat the multiphase flows. In this

method, a scalar parameter in each discretized cell is defined as the volume fraction of cell

filled with one of the phases. This scalar is updated in time by considering the convection

from and to neighboring cells. A review of different methods of interface tracking and surface

tension modeling is done by Scardovelli and Zaleski [74].

In this work, the level-set method is employed to track the interface and model its physics.

The level-set method has been developed by Osher and coworkers (see Zhao et al. [75],

Sussman et al. [76], and Osher et al. [77]). In this method, the interface between two phases

is defined as the zero level set of a scalar function called level-set function and denoted by

θ here. The level-set function is defined over the whole computational domain as a signed

distance function from the interface, i.e., it has positive values on one side of the interface

(gas phase), and negative values on the other side (liquid phase) and the magnitude of the

level-set at each point in the computational domain is equal to the distance from that point

to the interface.

2.3.1 Level-set method

The level-set function θ is defined as a smooth distance function allowing us to give the

interface a thickness fixed in time. Density, viscosity and surface tension all depend on the

level set function being a distance function. In this algorithm, the interface Γ is the zero

level set of θ,

Γ = {x | θ(x, t) = 0}
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We take θ < 0 in the liquid region and θ > 0 in the gas region. Therefore we have

θ(x, t)


> 0 if x ∈ the gas

= 0 if x ∈ Γ

< 0 if x ∈ the liquid

(2.25)

By virtue of the boundary conditions u is continuous across the interface. Since the interface

moves with the fluid particles, the evolution of θ is then given by

∂θ

∂t
+ u · ∇θ = 0 (2.26)

Equation (2.26) is called the Level-set equation. It is obvious that, if the initial distribution

of the level-set is a signed distance function, after a finite time of being convected by a

nonuniform velocity field, it will not remain a distance function. Therefore, we need to re-

initialize the level-set function in such a way that it will be a distance function (with property

of |∇θ| = 1) without changing the zero level-set (position of the interface). Suppose θ0(x) is

the level-set distribution after some time step and is not exactly a distance function. This can

be re-initialized to a distance function by solving the following partial differential equation

(Sussman et. al. [76]):

∂d

∂τ
= sign(θ)(1− |∇d|) (2.27)

with initial condition

d(x, 0) = θ0(x)

where τ is a psuedo time. The steady solutions of Equation (2.27) are distance functions with

property |∇d| = 1. Furthermore, since sign(0) = 0, then d(x, t) has the same zero level-set

as θ(x). Therefore, we simply solve Equation (2.27) to steady state and then replace θ(x)

by d(x, τsteady).
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The 5th order accurate Weighted Essential Non-Oscillatory (WENO) scheme of Jiang &

Peng [78] has been used in this research to solve the re-initialization equation (2.27) in every

iteration.

For the multiphase flow, if we define the Ωl and Ωg to be the domain occupied by liquid and

gas, respectively, we can write the Navier-Stokes equations in each of the domains as,

ρl
Dul
Dt

= −∇pl + 2µl∇ ·Dl , ∇ · ul = 0 , x ∈ Ωl (2.28)

ρg
Dug
Dt

= −∇pg + 2µg∇ ·Dg , ∇ · ug = 0 , x ∈ Ωg (2.29)

where D is the strain rate tensor and subscripts g and l denote the gas and liquid phase,

respectively. The boundary conditions on the liquid-gas interface are:

(2µlDl − 2µgDg) · n = (pl − pg − σκ)n and ul = ug , x ∈ Γ (2.30)

where Γ is the liquid-gas interface, n is the normal unit vector on the interface towards the

gas phase, κ = ∇ ·n is the curvature of the interface and σ is the surface tension coefficient.

The unit normal on the interface n, drawn from the liquid into the gas, and the curvature

of the interface κ can easily be expressed in terms of θ(x, t):

~n =
∇θ
|∇θ|

∣∣∣∣
θ=0

and κ = ∇ · ~n = ∇ ·
(
∇θ
|∇θ|

)∣∣∣∣
θ=0

(2.31)

Expanding equation (2.31) in Cartesian coordinates leads to the following equation for the

curvature of the interface in a 2-D problem (x, y):

κ = −
θ2yθxx − 2θxθyθxy + θ2xθyy

(θ2x + θ2y)
3/2

(2.32)

The governing equations for the fluid velocity (Eqns. 2.28 & 2.29) along with their boundary
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condition (Eqn. 2.30) can be written as a single equation containing both liquid and gas

properties in the whole domain, Ω = Ωl ∪ Ωg,

ρ(θ)
Du

Dt
= −∇p+∇ · (2µ(θ)D)− σκ(θ)δ(θ)~n (2.33)

Since the density and viscosity are constant in each fluid, they then take on two different

values depending on the sign of θ, and we can write

ρ(θ) = ρl + (ρg − ρl)H(θ) (2.34)

and

µ(θ) = µl + (µg − µl)H(θ) (2.35)

where H(θ) is the Heaviside function given by

H(θ) =


0 if θ < 0

1
2

if θ = 0

1 if θ > 0

(2.36)

The subscripts g and l in equations (2.34) and (2.35) refer to gas and liquid, respectively.

Therefore, the incompressible flow of a liquid-gas mixture could be treated as an incompress-

ible flow of a variable density fluid with surface tension modeled as a body force per unit

volume.

2.3.2 Interface thickness

In order to solve Equation (2.33) numerically we must modify it slightly due to the sharp

changes in ρ and µ across the interface front and also due to the numerical difficulties
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presented by the Dirac delta function δ(θ) contained in the surface tension force F. To

alleviate these problems we shall give the interface a fixed thickness that is proportional to

the spatial mesh size. This allows us to replace ρ(θ) and µ(θ) by a smoothed density and

viscosity which we denote as ρε(θ) and µε(θ) and is given by

ρε(θ) = ρl + (ρg − ρl)Hε(θ) (2.37)

and

µε(θ) = µl + (µg − µl)Hε(θ) (2.38)

with smoothed Heaviside function

Hε(θ) =


0 if θ < −ε

1
2
( θ+ε

ε
) + 1

2π
sin(πθ

ε
) if |θ| ≤ ε

1 if θ > ε

(2.39)

where ε represents the half thickness of the interface and has the value of 1.5∆x where ∆x

is the cell size. The plot illustrating the variation of Hε(θ) across the three interface cells

is given in Figure 2.3. This Heaviside function corresponds to a Delta function that can be

used to evaluate the force caused by the surface tension:

δε(θ) =
dHε

dθ
=


1
2ε

[
1 + cos(πθ

ε
)
]

if |θ| ≤ ε

0 otherwise

(2.40)

The variation of the modified Delta function across the interface cells is plotted in Figure 2.4.

It should be noticed that introduction of the modified Heaviside and Delta functions, allows

the density and viscosity to vary smoothly across the interface cells, and is not in consistent

with our earlier assumption that the density is constant within each liquid or gas zone. This

might result in some minor errors which are negligible in this context.
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Figure 2.3: The smoothed Heaviside function variation across the interface
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Figure 2.4: The modified Delta function variation across the interface
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2.4 Computational domain

The computational domain and the grid system that consists of an annular nozzle initially full

of liquid and a gas chamber initially filled with quiescent gas is demonstrated in Figure 2.5.

The computational gird consists of an orthogonal curvilinear coordinate system based on

potential flow solutions in the nozzle and a Cartesian coordinate system in the external flow

(gas zone).

A non-uniform mesh has been used with more grid points clustered inside the nozzle and

near the nozzle exit and coarsened with increasing downstream distance and radial position.

There are 1, 140 and 410 mesh points in the x and r-direction, with 16, 000 mesh points lying

inside the nozzle (400 × 40) and 303, 400 nodes in the external gas chamber (740 × 410).

The finest grid cells are at the nozzle exit and they are kept uniform for some distance

downstream of the nozzle exit plane. The dimensions of these cells are ∆x = ∆r = 1.5 µm.

A time step of ∆t = 10 ns (0.01 µs) is chosen for the time marching computations.

As is shown in Figure 2.5, the outer nozzle diameter is indicated by D while the inner

diameter will be shown by d. The domain size and all other length scales will be represented

Figure 2.5: Physical domain and orthogonal grid for annular nozzle and gas chamber for full jet (flow from
left to right).
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Fluid Properties Liquid (Kerosene) Gas (air)

Dynamic viscosity, µ (kg/m.s) 2.7× 10−3 1.8× 10−5

Density, ρ (kg/m3) 804 38.4 (at 30 atm)
Surface tension coefficient, σ (N/m) 0.028 –
Maximum jet velocity, U (m/s) 100 –

Table 2.1: Fluid properties

with respect to the outer nozzle diameter in this report and, as has been illustrated in the

figure, the length of the rectangular domain downstream of the nozzle exit plane is 6D

whereas its height from the centerline is twice the diameter. The nozzle outer diameter

is chosen to be D = 500 µm (R = 250 µm) in this research, and the inner diameter

will be obtained based on the inner to outer diameter ratio (d/D). The length of the

horizontal part of the nozzle channel before reaching the nozzle exit plane is equal to the

nozzle diameter L/D = 1. Further discussion about the domain size and the reason for

choosing the mentioned values will be presented in the code verification section.

The flow properties are summarized in Table 2.1. Kerosene (paraffin) is used in this research

as the injected liquid, and air at high pressure (30 atm) is considered as the surrounding

gas. The highest velocity that the liquid jet can reach at the nozzle exit is considered to be

100 m/s. It should be noted that the tabulated values are only for the base case; for other

cases with different Reynolds and Weber numbers, the liquid properties will be derived from

the corresponding dimensionless parameter. The gas density and viscosity might also vary

according to the density and viscosity ratios, respectively, based on the values that will be

calculated for the liquid phase.
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Figure 2.6: Geometry of the computational domain and its boundaries.

2.5 Boundary and initial conditions

The boundaries of the computational domain, which are to be described in this section, are

shown in Figure 2.6. The initial conditions are zero velocity and zero pressure everywhere

(in both gas and liquid zones); and the initial position of the interface between the liquid

and the gas phase is a semi-circle at the nozzle exit, as is shown in Figure 2.6.

The plenum pressure upstream in the nozzle (at Π1) is set to increase exponentially over a

μ

Figure 2.7: Variation of the upstream nozzle pressure with time.
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period of 100 µs until a prescribed maximum pressure (4 MPa) is reached. The plenum

pressure drives the flow and the mass flux; the exit velocity of the jet increase with the

plenum pressure. At the end of start-up process, the maximum jet velocity reaches 100 m/s

(based on a simple calculation from the Bernouli’s relation U =
√

2p/ρl). The upstream

boundary (Π1) is then time dependent and its variation in time is given in Figure 2.7.

Π2 and Π3 in Figure 2.6 are the inner and outer sides of the nozzle walls, respectively, and

Π4 is the vertical wall of the gas chamber, where no-slip condition is imposed on all of

these boundaries. Π6 is the axis of symmetry of the geometry and symmetric condition is

applied at that centerline. For Π5 boundary a constant zero pressure is prescribed, and for

the downstream boundary Π7 zero material derivative of the fluid velocities is considered.

A summary of the boundary conditions mentioned above are presented mathematically in

Table 2.2. In this report the axial velocity component (in x-direction) will be defined as u

and the radial velocity component as v.

Boundary Condition formulation

Π1 time dependent upstream pressure p = 4× 106 tanh(3× 104t)
Π2 wall u = 0, v = 0
Π3 wall u = 0, v = 0
Π4 wall u = 0, v = 0
Π5 constant pressure p = 0
Π6 axis of symmetry ∂

∂r
= 0, v = 0

Π7 zero material derivative downstream D
Dt

= 0

Table 2.2: Boundary conditions

2.6 Dimensional analysis

The main purpose of this study is to investigate the growth rate of instabilities on the

liquid/gas interface and the dominant wave length corresponding to that maximum growth

rate. The most important parameters that effect the instability growth rate ω could be
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written as,

ω = f(ρl, ρg, µl, µg, d (or h), D, λ (or k), U, σ) (2.41)

where ρ and µ are the density and viscosity, respectively; and the subscripts l and g stand

for liquid and gas phase, respectively. d is the inner diameter of the nozzle annulus, h is the

annular liquid sheet thickness and D is the outer diameter of the nozzle. λ is the wave length

of the instabilities on the liquid/gas interface, k = 2π/λ is the instabilities wave-number, U

is the maximum jet velocity at nozzle exit and σ is the surface tension coefficient. Using

dimensionless parameters, Equation (2.41) can be reduced to the following form

ω

kU
= Φ

(ρg
ρl
,
µg
µl
,
d

D
(or

h

D
),
λ

D
(or kh),

ρlUdh
µl

,
ρlU

2dh
σ

)
(2.42)

where in this equation dh is the hydraulic diameter of the annular jet. For an annular jet

the hydraulic diameter would be twice the sheet thickness, dh = 2h = D − d. The last two

dimensionless parameters in (2.42) are the Reynolds number and the Weber number (based

on the liquid properties), respectively.

It is also useful to write Equation (2.33) in dimensionless form. The following dimensionless

variables are used for non-dimensionalization:

x∗ =
x

dh
, u∗ =

u

U
, t∗ =

tU

dh

p∗ =
p

ρlU2
, ρ∗ =

ρ

ρl
, µ∗ =

µ

µl
(2.43)

where the asterisks denote dimensionless variables. Substitution of these variables into Equa-

tion (2.33) and dropping the asterisks we obtain

∂u

∂t
+ u · ∇u = − ∇p

ρ(θ)
+

1

ρ(θ)

(
1

Re
∇ · (2µ(θ)D)− 1

We
κ(θ)δ(θ)~n

)
(2.44)
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The density and viscosity now become

ρ(θ) = η + (1− η)H(θ) and µ(θ) = ζ + (1− ζ)H(θ) (2.45)

where H(θ) in here is the heaviside function as introduced earlier. The dimensionless groups

used in Eqns. (2.44 & 2.45) are the density ratio,

η =
ρl
ρg

(2.46)

the viscosity ratio,

ζ =
µl
µg

(2.47)

the Reynolds number,

Re =
ρlUdh
µl

(2.48)

and the Weber number,

We =
ρlU

2dh
σ

(2.49)

In order to keep the convention in this research, the gas to liquid density and viscosity

ratios will be used, which are the reciprocal of η and ζ as defined above. So, the important

dimensionless parameters that are to be analyzed in this research are:

Re =
ρlUdh
µl

, We =
ρlU

2dh
σ

, ρ̂ =
ρg
ρl
, µ̂ =

µg
µl
, d̂ =

d

D
(2.50)

It should be noted that the Froude number Fr = U/
√
gdh in our study is of order of O(103),

which means that the gravitational forces are negligible compared to the inertial effects; i.e.

the gravity can be neglected in our computations.

The range of dimensionless parameters and the cases that are analyzed in this study are

written in Table 2.3. In this table, the first column values for each dimensionless parameter
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Parameter Case Values

Re 3, 000 15,000 30, 000
We 30,000 6, 000 150, 000
ρ̂ 0.05 0.1 0.9
µ̂ 0.0066 0.0001 0.05

d̂ 0.8 0.9 0.7

Table 2.3: Dimensionless parameters’ range

correspond to the fluid properties that were given in Table 2.1 for liquid Kerosene and air

as gas. The boldface values however, are the base values for each parameter that are held

constant in each case, while the rest of the parameters are varied.

As can be seen from Table 2.3, a wide range of values have been chosen for each parameter

to clearly show the effect of all important properties. The Reynolds number ranges from

3, 000 which is almost in transient regime up to 30, 000 which is highly turbulent. The

Weber number varies from 6, 000 indicating a very large surface tension, up to 150, 000

which corresponds to a very low surface tension case. The density ratio comprises three

different orders of magnitude from a very high density difference (ρ̂ = 0.05) to a value of

ρ̂ = 0.9 indicating an almost like-density liquid and gas. The same story goes on for viscosity

ratio; the chosen values include a highly viscous gas (µ̂ = 0.05) and an almost inviscid gas

with very low viscosity ratio. The diameter ratio contains a very thin liquid sheet (d̂ = 0.9)

resembling an almost planar sheet and a relatively thick liquid sheet with a thickness equal

to 0.3 of the outer annulus radius.

As mentioned earlier, t∗ = Ut/D is considered as the dimensionless time in this section. Jar-

rahbashi and Sirignano in [79] found a new dimensionless time for evolution and breakup of

cylindrical liquid jet instabilities based on the gas density and liquid viscosity tlg = µlt/ρgD
2,

where D in their case was the liquid jet diameter. It was claimed that this dimensionless

time is capable of predicting the dimensional time at which certain flow instabilities, e.g.,

lobe formations, occur at the interface for different gas densities [79]. The validity of such di-
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mensionless time for the annular liquid jet case (and/or possible modifications for the current

geometry) will be investigated in later sections, where the effects of density and viscosity, as

well as sheet thickness, are discussed.

2.7 Code verification

The accuracy of the QUICK scheme and SIMPLE algorithm, the implementation of curvi-

linear coordinates and the level-set formulation have been checked previously for a series of

benchmark problems; i.e. cavity flow, flow past a sphere, oscillating drop, and falling drop

problems [65]. The code has proven to be accurate and valid in all of the above-mentioned

problems. The independency of the numerical results on the grid size and computational do-

main are evaluated in this section. A valid numerical solution should not depend on neither

the size of the mesh nor the domain size.

2.7.1 Grid independency

Figure 2.8 shows the effects of grid resolution on the size of detached ligaments and insta-

bilities on the interface of liquid and gas for mesh sizes equal to 1, 1.5, and 2 µm at 40 µs

after the start of injection. It appears in all cases that most of the protrusions on the liquid

surface are produced near the tip of the liquid jet as a result of impact of the curled cap on

the main stem of the jet. The high velocity difference between the liquid and the stationary

gas assist the instabilities to grow and form thin elongated ligaments. The ligaments stretch

upstream and when the inertia forces dominate the capillary forces, the ligaments are rup-

tured and two-dimensional “droplets” are formed. The ligaments formed on the inner side

of the annulus are more stretched than the ones on the outer surface.

These pictures show that a coarse grid produces thicker ligaments and larger droplets when
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Figure 2.8: Impact of grid-resolution at 40 µs, Re = 3, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8;
∆x = ∆r = 1 µm (left), ∆x = ∆r = 1.5 µm (center), ∆x = ∆r = 2 µm (right).

detached from the jet core. The coarse grid system is also unable to show the elongation of

the ligaments effectively, and the liquid segments tear before becoming thin enough. This is

clearly shown on the inner side of the liquid sheet, where thicker and less stretched ligaments

with more detached large droplets are seen compared to the finer mesh systems (the right

tab).

Other than the size of the detached ligaments, the first two cases (i.e., 1 and 1.5 µm) show
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Figure 2.9: Comparison between the axial velocity profiles of the three grid resolutions at 40 µs and x∗ = 1;
Re = 3, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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similar behavior in terms of the jet velocity, jet penetration and interface instability; however

the ligaments of the 2 µm-case detach from the interface before they curl at the back of the

jet head as was observed in the first two cases. The comparison between the axial velocity

profile of the three grids at x∗ = 1 and t = 40 µs is given in Figure 2.9. As can be seen in this

figure, the first two cases match almost closely; the coarser grid however, predicts a velocity

which is considerably off the correct value. It can also be observed from Figure 2.8 that the

coarser mesh results in smaller penetration than the two other cases. In the 2 µm-case the jet

cap has not reached x∗ = 1.5 yet, while at the same time the two finer meshes show that the

jet has penetrated beyond x∗ = 1.5. In other words, the 2 µm resolution seams insufficient

to capture the jet penetration behavior during start-up. Therefore, the grid resolution on

which the level-set function has been solved coupled with Navier-Stokes equations dictates

the break-up length and diameter of the ruptured segments of the liquid jet. The interface

thickness based on which the liquid and gas properties have been defined equals to three

mesh sizes, i.e., 4.5 µm for 1.5 µm grid resolution. The hydrodynamic stabilities can be

predicted well by computation; However, the prediction of the breakup of ligaments and

droplets will have quantitative inaccuracies. The grid system with ∆x = ∆r = 1.5 µm at

the nozzle exit is used for this study.

2.7.2 Domain size independency

After checking the grid resolution and finding the proper grid size which doesn’t affect the

numerical results, it is important to check whether the results are independent of the size

of the domain or not. If the domain is too small, the downstream boundary conditions may

affect the computational results and even the code might not be able to converge to any

solutions that satisfy both the flow field conditions and the imposed boundary conditions.

On the other hand, if the domain size is too big, too much computational effort is wasted

in order to solve the flow field at regions that are not of our interest. A good domain is the
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Figure 2.10: Impact of the size of computational domain; 8D length and 3D height (left), 6D length and
2D height (center), 4D length and 1.5D height (right); t = 40 µs, Re = 15, 000, We = 30, 000, ρ̂ = 0.05,

µ̂ = 0.0066, d̂ = 0.8.

one that doesn’t affect the results, while being the least costly in terms of the CPU time.

The independency of the solution on the size of the computational domain (the gas chamber

length and height) has been investigated in this section. Three different domain sizes have

been considered for this purpose; A large domain 8D downstream of the nozzle exit and 3D

height from the axis of symmetry, a medium domain with 6D length and 2D height, and a

small domain with the downstream boundary at 4D and 1.5D height. The number of mesh

points in both axial and radial directions have been changed accordingly, keeping the mesh

size the same ∆x = ∆r = 1.5 µm for all of the cases. The results of liquid/gas interface

35 µs after the start-up of injection are compared for the three domains in Figure 2.10.

The unstable structures at the interface for the large and medium computational domains

demonstrated in figure 2.10 show similarities in terms of wavelengths and shape of ligaments.

The smallest domain however, does not predict the interface shape and position well enough.

It could be concluded that the results for any domain larger than the medium domain

(6D × 2D) are independent of the size of the domain, and thus, this domain is chosen for

the computations in this research.
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Chapter 3

Results and discussion

The axysymmetric CFD code mentioned in the previous section has been developed to

simulate the flow of a liquid sheet through an annular orifice and the gas chamber during

start-up period of injection. The effects on the growth rate and wavelength of the emerging

Kelvin-Helmholtz and Rayleigh-Taylor instabilities of various flow parameters are discussed

in this section; the Reynolds and Weber number; gas to liquid density and viscosity ratios;

and inner to outer liquid sheet diameter ratio. The reasons for the observed differences

between the analyzed cases are also investigated in this chapter.

In the following sections, the effects of each of the dimensionless parameters, mentioned

above, are discussed. The base parameter values that are used throughout the research were

introduced in Table 2.3. The cases that are considered for study are also mentioned in the

same table.

In order for the reported results to be consistent with other flow geometries, the dimensions

are normalized by their characteristic values. The normalized parameters are then denoted

with an asterisk. The velocity is normalized by the maximum velocity at the nozzle exit

(U0 = 100 m/s); i.e. u∗ = u/U0. The lengths are normalized by the outer diameter of
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the annular nozzle; e.g. r∗ = r/D. Time is also normalized by the characteristic velocity,

mentioned above, and the hydraulic diameter which is twice the sheet thickness (dh = 2h),

so that t∗ = U0t/dh.

3.1 Reynolds number effects

In this section the effects of the liquid viscosity, through the Reynolds number, on the flow

conditions are investigated. Three different cases with Reynolds numbers of 3, 000, 15, 000

and 30, 000 are analyzed here. The range of the Reynolds numbers that have been chosen

for this analysis include a weak turbulent flow (beginning of the turbulent regime), a very

intense turbulent flow and a case with moderate turbulence. It should be noted that the

Reynolds numbers in this section are varied through the liquid viscosity, while the gas to

liquid viscosity ratio are kept constant. The rest of the dimensionless parameters are also

held constant at their base values.

In the subsequent sections, the Reynolds number effects on the velocity profile of the flow

and its dependent features, like the recirculation zone, are studied first. Next, the effects on

the penetration and convergence rate and length of the annular jet are investigated. At the

end, the variation of the observed instabilities’ wavelengths based on the Reynolds number

are reported and the results are compared with the results from linear analysis. It should

be noted though, that our 2D axisymmetric analysis does not properly capture transition to

turbulence, as turbulence is a three-dimensional phenomenon. A three-dimensional numeri-

cal study with very fine mesh and time step is required to see the real turbulent flow and its

corresponding 3D instabilities (azimuthal instabilities in this case), which cannot be seen in

the current simulation.
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3.1.1 Effects on the flow

The axial velocity profile of the liquid jet at the nozzle exit at different instances of time

are given in Figure 3.1 for two different Reynolds numbers of 3, 000 and 30, 000. As can be

seen from the profiles, the rate of growth of the maximum velocity at the nozzle is almost

the same for both cases. Both reach a maximum value of 55 m/s at their centerline just

25 µs after the start of the injection, and this value increased to 80 m/s, 10 µs later. The

diffusion of the momentum is, however, higher for the case with higher Reynolds number;

which causes a flatter profile at the middle and with steeper gradients at the edges, for the

higher Reynolds number case. This results in a higher shear stress at the walls of the nozzle

as well as the liquid/gas interface for higher Reynolds. It could be concluded from what

is seen in Figure 3.1 that stronger vortices, and hence, more Kelvin-Helmholtz instabilities

should be expected at the interface of the liquid with higher Reynolds number, as will be

shown later.

The numerical resolution must be sufficient to capture these vortex structures development

Figure 3.1: Axial velocity profiles at the nozzle exit for different Reynolds numbers at different instances of
time. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; Re = 3, 000 (left), Re = 30, 000 (right).
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Figure 3.2: Flow streamlines at the upstream nozzle, showing the generation of the recirculation zone at the
curved corner. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; Re = 3, 000 (left), Re = 30, 000 (right).

since these vortices produce the fingers that break-up and form the spray. For a finger

that, in three dimensions, has a location of minimum cross-sectional area in the liquid, the

capillary action can cause this neck to shrink and cause breaking. The presence of capillary

stress in the model will allow this to happen.

As the Re number increases, the flow separates from the nozzle at the upstream curved

corner and generates a recirculation zone at that region since the fluid cannot make a sharp

turn at that corner. This fact is shown and compared for the two Reynolds numbers cases,

in Figure 3.2. As is illustrated in this figure, the separation does not occur for the case with

Re = 3, 000, but it occurs at higher Re numbers and grows larger with increasing the Re

number. Figure 3.3 shows the axial velocity profile at the recirculation zone (x∗ = −0.7)

at t∗ = 35 for the three cases. As can be seen from this figure, the separation happens at

Re = 15, 000, too; however, its intensity is lower than Re = 30, 000 case.

The recirculation zone may extend throughout the orifice channel. This phenomenon known

as hydraulic flip entrains air into the orifice and fills the recirculating zone. One way to

avoid hydraulic flip is to increase the length of the nozzle channel or to reduce the curvature
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Figure 3.3: The axial velocity profile for different Re, at the recirculation region at the nozzle corner
x∗ = −0.7 at t = 35 µs. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

of the corner. The nozzle length for this research has been chosen to be equal to the nozzle

diameter to make sure that such phenomenon does not happen for the cases that we are

considering. The effects of cavitation and flow recirculation on jet instability have been

explained by Dabiri [65].

Figure 3.4 shows the radial variation of axial velocity with time at different distances down-

stream of the nozzle exit for Re = 3000 and 30, 000. The velocity profiles of the both cases

are almost similar up to t∗ = 25 at all the distances downstream of the nozzle exit (compare

the solid and the dashed lines for all the plots). During the start-up the axial velocity in

liquid phase increases at the centerline of the liquid sheet while the pressure is building up at

the exit of the nozzle. The maximum value of the velocity happens almost at the centerline

of the liquid sheet (at r∗ ' 0.45 for Re = 3000 and r∗ ' 0.4 for Re = 30, 000) between

t∗ = 30 and 35, at a distance half a diameter downstream of the nozzle exit (top two plots

in Figure 3.4). Farther from the centerline, the velocity decreases. The maximum velocity

at the centerline of the sheet is almost 70 m/s at t∗ = 35 and x∗ = 0.5. Notice that in the
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Figure 3.4: The axial velocity profile variation over time at different distances downstream of the nozzle exit.
We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8. (a) Re = 3, 000; (b) Re = 30, 000.
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meantime, the maximum velocity at the nozzle exit, as was given in Figure 3.1, was 80 m/s;

which shows that the sheet centerline velocity is decreasing as it moves downstream.

On the other hand, at the liquid/gas interfaces (r∗ ' 0.5 and 0.4 for Re = 3000, and

r∗ ' 0.45 and 0.35 for Re = 30, 000) the gas flow appears to experience vortical motion

very close to the interface. The deviations seen on the graph at t∗ = 30 and 35 close to the

interface (sharp kinks) explains the effects of these vortical structures. The nonlinear waves

resulting from hydrodynamic instability form vortex structures that affect the shear layer

near the interface.

As can be seen from the top plots of Figure 3.4, at x∗ = 0.5 and t∗ = 35, the axial velocity is

negative and the fluid is moving upstream at the axis of symmetry (r∗ = 0); which indicates

the existence a recirculation zone at that position. The intensity of this recirculation zone

is larger for the higher Re case, as can be seen from its greater negative velocity.

At a further downstream distance x∗ = 1 (center plots in Figure 3.4), the flow remains

similar for a longer period of time (up to t∗ = 30) before the liquid jet reaches that position.

At t∗ = 35, however, the profiles completely differ. For the lower Re case (the left tab)

the liquid sheet has not reached the axis of symmetry, and has the maximum velocity at

the center of the sheet and decreasing radially outward. The entrainment of the gas flow

on both sides of the interface can also be seen in this figure; positive velocities near the

liquid interface (r∗ ' 0.45 and 0.35) and negative values at radial positions farther from the

interface. In the higher Re case (the right tab) at t∗ = 35 and x∗ = 1, however, liquid sheet

only entrains the gas at its outer interface, and the velocity increases monotonically towards

the axis of symmetry. At this instant the liquid sheet has hit the axis of symmetry at a

position upstream of this point, and thus the fluids downstream are pushed by the liquid on

the axis. At x∗ = 1.5 the velocity profiles are the same since the liquid jet has net passed

this location so far, in neither of the cases. The velocity magnitudes are slightly greater for

the higher Reynolds case, which is due to the liquid jet pushing the gas downstream, as was
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discussed earlier.

Figure 3.5 illustrates the velocity profile at the axis of symmetry for different instances of

time, for all Reynolds cases. As it can be seen, at t∗ = 25 all of the cases demonstrate

a similar behavior; with a recirculation zone at about x∗ = 0.6 (the solid line). As time

elapses, the length of the recirculation bubble increases and it becomes stronger (the dashed

line). At later times (the dash-dot and the dotted lines), the profiles show more complexity

Figure 3.5: The velocity profile on the axis of symmetry at different instances of time for different Re
numbers. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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(oscillations on the negative side), which is due to the occurrence of more recirculating

regions and smaller eddies in the region near the axis of symmetry. As can be seen from

the figure, the smaller eddies appear sooner for the higher Reynolds case. This behavior is

observed at t∗ = 35, 40 and 45 for Re = 30, 000, 15, 000 and 3, 000, respectively.

Later in time, the velocity profiles shows two significant velocity reversals along the Center-

line. The first one occurs very close to the nozzle exit and is due to the recirculation zone,

which its length increases with decreasing the Reynolds number (x∗ = 0.2 for Re = 30, 000,

x∗ = 0.5 for Re = 15, 000 and x∗ = 0.7 for Re = 3, 000). The second velocity reversal which

occurs further downstream, corresponds exactly to the locations where the collapse of the

annular jet takes place (x∗ ≈ 0.8–1.5), and could be a good indication of the convergence

length of the annular jet. The large peak after the second velocity reversal in all the cases is

associated with the liquid jet pushing forward the downstream gas after its collapse on the

axis of symmetry. Further downstream, the velocity decreases smoothly, until it reaches zero

velocity indicating quiescent far-field gas. The existence of two significant velocity reversals

were also reported by Siamas et al. [60].

The unpredictable behavior of the velocity profile along the centerline and near the nozzle

exit, clearly shows the importance of the knowledge of vortex dynamics in the study of

annular jet instabilities like this. The formation of the vortical structures is mainly associated

with the development of the KH instabilities, which occurs when velocity shear is present

within a continuous fluid or when there is sufficient velocity difference across the interface

between the two fluids. Figure 3.6 shows the liquid/gas interface (the zero level-set) at

t∗ = 35 for Re = 30, 000. The blue color in this figure represents the liquid, and the white

region is the gas. A schematic of the eddies and streams are also demonstrated by arrows

in this figure. The size of the arrows and their direction, represent the size and direction of

the real eddies.

As can be seen in Figure 3.6, the recirculation zone on the inner side of the annular jet,
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Figure 3.6: Liquid/gas interface at t∗ = 35, and a schematic of the eddy structures. Re = 30, 000, We =

30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

actually consists of numerous large and small eddies with different directions and intensities.

This figure can give a better insight into the understanding of the velocity profile along the

centerline for Re = 30, 000 at t∗ = 35, which was given in Figure 3.5 (the dash-dotted line

on the bottom plot). The three stagnation points on the centerline, corresponding to the

velocity reversal points on the plot, are indicated by the star symbols in Figure 3.6. The

large arrow to the right of the last stagnation point, corresponds to the largest peak on the

figure, and the arrows pointing towards its left indicate the negative velocity (trough) of the

profile on the left of the last reversal point. Figure 3.6 clearly shows the entrainment of the

gas by the liquid jet on the inner and outer surface of the annulus. The appearance of the

KH instabilities on the main stem of the liquid jet, as a result of the large velocity difference

across the interface and its consequent vortices, are also shown on this figure.

The thickness of the smallest ligaments and the diameter of the corresponding pinched-off
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drops in Figure 3.6 is in order of 4–6 µm, which comparing to our mesh size 1.5 µm ×

1.5 µm, shows that there are enough mesh points in each of the liquid elements to describe

their interface curvatures sufficiently enough. The effects of the mesh size on the ligaments

thickness was discussed previously, and will be discussed later on, when the study of the

wavelength of the instabilities are presented.

3.1.2 Penetration/convergence rate

Ibrahim & McKinney [21] described that, without a strong enough swirl for the inertia forces

to overcome the opposing surface tension, the annular jet converges towards the centerline.

The annular jet exhibits formation of a “bell shape” near the nozzle exit plane. This shape

occurs because, upon emerging from the nozzle exit, the jet has the tendency to converge

continuously towards the centerline. The annular jet collapses into a “solid” round jet further

downstream of the computational domain and it spreads in the cross-streamwise direction

when the collapse is taking place. The collapse also increases the tendency of liquid breakup.

The formation of the “bell-shaped” annular sheet can be seen in Figure 3.6.

The length and rate of the annular sheet collapse is an important characteristic of the annular

jet injection. A shorter and faster convergence towards the centerline corresponds to faster

atomization and shorter jet breakup length. In this section, the effects of the flow Reynolds

number on the convergence rate and length of the annular sheet are discussed. Another

pertinent parameter in this regard is the penetration rate of the liquid jet, which is also

compared for different Re cases.

Predictions of the dimensionless radius of the annular sheet with the axial distance from the

nozzle exit for different Re cases is presented in Figure 3.7. The lines show the trajectories

of the mid-point of the liquid sheet core, that have been traced from the injection plane to

the location where the jet collapse takes place.
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Figure 3.7: Axial variation of the dimensionless radius for different Re numbers (the main plot); comparison
between the convergence lengths of different Re cases (the inner plot). We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066,

d̂ = 0.8.

From Figure 3.7 it is evident that, as the Reynolds number is decreased, the convergence

length of the annular sheet increases, producing a more elongated bell with larger radius

but smaller curvature. The convergence length (Lc) for Re = 3000 is 1.8 times the nozzle

diameter, while it is almost equal to the nozzle diameter for Re = 30, 000. A shorter “bell

shape” at higher Reynolds corresponds to a larger downstream spreading, which is expected

as they both correspond to a stronger mixing of the annular jet with its ambient environment.

The inner plot in Figure 3.7 shows the normalized convergence length (L∗c) versus the

Reynolds number. As indicated, the convergence length decreases with increasing the

Reynolds number; however, it becomes almost independent of the Re number, at very high

Reynolds. This means that it is not possible to decrease the convergence length continu-

ously to any desired value by just increasing the Re number. The results indicate that the

minimum convergence length that could be reached with this geometry is almost equal to

65



the nozzle diameter; i.e. L∗c = 1.

The comparison between the convergence rate of the annular sheets for different Reynolds

numbers is given in Figure 3.8. Each symbol in this figure, indicates the radial distance of the

tip of the liquid jet from the axis of symmetry at its corresponding dimensionless time. The

results indicate a behavior similar to the convergence length; i.e. the higher Reynolds case

converges faster than the lower Re cases. The jet with Re = 3000 collapses on the centerline

at t∗ = 46 while the case with Re = 30, 000 converges after t∗ = 35, and the convergence

rate becomes less dependent on the Reynolds number, as the Re number increases. In other

words, the convergence rate decreases more rapidly with Re at lower Reynolds numbers.

The axial penetration of the annular liquid jet over time is compared in Figure 3.9 for

different Reynolds numbers. As the figure shows, all of the Reynolds cases have a similar

axial penetration rate before their collapse on the centerline; which means, they have all

Figure 3.8: Variation of the dimensionless radius of the annular jet tip versus dimensionless time, for different
Re numbers (the main plot); comparison between the convergence rate of different Re cases (the inner plot).

We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Figure 3.9: Axial penetration of the annular jet versus dimensionless time, for different Re numbers. We =
30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

reached the same axial distance from the nozzle exit, at the same time. For instance, the

time required for all of the cases to penetrate one diameter in the axial direction is t∗ = 35.

However, these results should not be misinterpreted, as this does not mean that the length of

the liquid sheets are the same for all cases. As was indicated in Figures 3.7 and 3.8, the case

with higher Re converges faster, and thus, at the same time instant, the tip of its jet is closer

to the axis of symmetry than the lower Re jets. This means that, the length of the annular

sheet in larger for the higher Re cases; however, the length difference between the high Re

case and the lower Re case is contributed to the radial growth (convergence), keeping the

axial penetrations the same for all cases. The reason is that, the higher Reynolds number

jet has more momentum relative to various drag effects; so, it penetrates farther (both

radially and axially) and produces a longer jet at comparable instants of time. For the lower

Reynolds number case this lack of momentum leads to a shorter liquid jet at different stages

of injection.
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3.1.3 Instability analysis

Figure 3.10 compares the evolution of the annular jets at different instances of time for

Re = 3000 and Re = 30, 000 cases. This figure illustrates the formation of a mushroom-

shaped cap (2D) as the jet develops along the chamber while the pressure drops and the

jet exit velocity increases during the first 25 µs from the start of injection. The mushroom-

shaped cap grows in volume and vortices at the interface roll back and entrain air into the

rear side of the cap as was seen before. This figure also illustrates the effects of liquid

viscosity on the jet development for the same exit velocity at the nozzle exit at comparable

instants of time. The viscosity of the liquid in (a) is 10 times that of (b). The discrepancies

between the unstable structures at the liquid/gas interface on the cap shown in Figure 3.10

(a) and (b) are significant.

Figure 3.10 shows that the mushroom-shaped cap deforms after 30 µs from the start of

injection and well-known KH and RT inabilities appear on the liquid/gas interface. Unlike

the primary KH wavelengths, RT waves are directing normal to the direction of the flow and

have smaller wavelengths compared to the primary KH wavelengths. For lower Re numbers,

shown in 3.10(a), the RT wavelengths are significantly larger compared to case (b). This is

consistent with the fact that viscosity has stabilizing effects for shorter wavelengths if surface

tension is constant.

By comparing the two columns in Figure 3.10, it can be seen that the instabilities occur

much sooner, and grow much faster, for the higher Re jet. The RT instabilities emerge at

t∗ = 25 for Re = 30, 000, while only a few instabilities appear at the back of jet cap at

t∗ = 30 for lower Reynolds case. High Re number jet is associated with longer and thinner

ligaments with RT wavelengths appearing at the rear side of the cap. In other words, the

front of the jet decelerates due to the drag forces acting on it. So, the lighter fluid is then

accelerating into the heavier fluid, which according to the RT theory would be stabilizing
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Figure 3.10: Jet development at t∗ = 25 (top), t∗ = 30 (middle) and t∗ = 35 (bottom). We = 30, 000,

ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; (a) Re = 3000, (b) Re = 30, 000.

on the front side of the jet cap and destabilizing on the rear side of the jet cap. However,

due to the stabilizing effects of viscosity, we did not detect RT waves at the back of the cap

for case (a) at t∗ = 30. As time elapses, longer RT wavelengths compared to case (b) seat

at the back of the jet cap. Effects of viscosity on the wavelength and growth rate of the

instabilities on the annular jet interface are analyzed in this section.

69



Guidance from the linear theory

Although the research to be discussed uses the complete Navier-Stokes equations to solve the

annular jet injection and accounts for the nonlinear behavior and couplings between different

instability mechanisms, it is useful to examine the predictions of the linear theory especially

in terms of unstable wavelengths and the dominant wavelengths with the maximum growth

rates.

There are four physical phenomena which contribute to the hydrodynamic instability: (1)

acceleration tangent to the interface, i.e., Rayleigh-Taylor (RT) instability; (2) inertial differ-

ence across the shear layer at the jet interface, i.e., Kelvin-Helmholtz instability; (3) capillary

effects; and (4) viscous effects. These four effects are ordered above so that, in the dispersion

relation for the growth rate obtained for viscous potential flow (and not therefore for shear

flow) discussed by Joseph et al. [4], the four related terms appear proportional to wave num-

ber to the first, second, third, and fourth power, respectively. So, viscous effects dominate

at very short wavelengths while gravity (acceleration) effects dominate at very long wave-

lengths and surface tension has stabilizing effects on shorter wavelengths. If an acceleration

much larger than gravitational acceleration is applied, which is the situation in our transient

jet, short wavelength can be experienced. The acceleration term is destabilizing (stabilizing)

when the heavier (lighter) fluid accelerates into the lighter (heavier) fluid [5].

Joseph et al. [4] studied the stability of stratified gas-liquid flow in a horizontal rectangular

channel using viscous potential flow. The analysis led to an explicit dispersion relation in

which the effects of surface tension and viscosity on the normal stress are not neglected but

the effect of shear stresses is neglected. In their analysis, a gas layer of thickness hg with

uniform velocity (Ug) is considered over a liquid layer of half thickness hl with uniform flow

(Ul); the two-layer Newtonian incompressible fluids are immiscible. The pressure has been

considered to have an equilibrium distribution due to the gravity. The Kelvin-Helmholtz
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instability is considered of small disturbances to the undisturbed state. The discontinuous

prescription of data in the study of Kelvin-Helmholtz instability is a viscous potential flow

solution of the Navier-Stokes, in which no-slip conditions at the walls and no-slip and con-

tinuity of shear stress across the gas liquid interface are neglected. The following general

dispersion equation can be obtained from Joseph et al. [4].

ωr =
1

A

{
−B ± (D2

r +D2
i )

1/4
cos

(
1

2
tan−1(

Di

Dr

)

)}
(3.1)

where

A = ρl coth(khl) + ρg coth(khg)

B = k2[µl coth(khl) + µg coth(khg)]

Dr = ρlρg(Ug − Ul)2k2 coth(khl) coth(khg) + k4[µl coth(khl) + µg coth(khg)]

− [ρl coth(khl) + ρg coth(khg)][(ρl − ρg)gk + σk3]

Di = 2k3(ρgµl − ρlµg)(Ug − Ul) coth(khl) coth(khg)

In the equation above, ωr is the temporal growth rate, µl, µg, ρl, and ρg are the viscosity and

density and the indices l and g refer to liquid and gas, respectively. σ is the surface tension

coefficient, k is the wave number, g is the gravitational acceleration that can be replaced by

the acceleration of the light fluid into the heavy liquid since this acceleration is considerably

greater than gravitational acceleration, as discussed in the previous section. If ωr (the real

part of the complex frequency) is negative, then the interface is stable. In our case, the gas

velocity Ug is zero and the thickness of the gas layer hg is much greater than the liquid sheet

thickness, thus hg →∞, and coth(khg) = 1.

Joseph et al. [4] show that, if both the top and bottom are far away hg → ∞, hl → ∞,

and if ρ̂ = µ̂, so that Di becomes zero (ρgµl = ρlµg), the dispersion relation reduces to the
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simplest compact form given below:

ωr =
−k2(µg + µl)

(ρg + ρl)
±
[
k4(µg + µl)

2

(ρg + ρl)2
− σk3

(ρg + ρl)
+
ρgρlk

2(Ug − Ul)2

(ρg + ρl)2
− (ρl − ρg)gk

(ρg + ρl)

]1/2
(3.2)

Figure 3.11 shows a plot of the growth rate versus wavelength based on Equation (3.1) by

Joseph et al. [4] for three Reynolds numbers that are considered in this study. The same

dimensionless parameters mentioned in Table 2.1 have been used in this plot. Positive values

indicate the instability region while negative values (λ < 0.4 µm) imply stability. Clearly,

at sub-micron wavelengths, where viscosity and capillary effects dominate, we find stable

behavior.

The dispersion relation reflected in (3.1) accounts for both Kelvin-Helmholtz and Rayleigh-

Taylor instabilities. Figure 3.11 clearly shows that instabilities are expected in the wave-

length range that are found in our simulations, i.e. O(1–100µm). As shown for our sub-

millimeter, super-micron wavelength range of interest, unlike the gravity viscosity and surface

λ

Figure 3.11: Linear growth rate as a function of wavelength based on VPF instability analysis of Joseph et
al. [4]. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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tension are very important. As can be seen in this figure, the maximum instability growth

rate moves towards smaller wavelengths, as Re number increases, and we should expect to

see smaller wavelengths at higher Reynolds numbers. The range of unstable wavelengths,

however, is not affected by the viscosity variation. It should be emphasized that the given

plot is based on the linear theory, which does not take into account the effects of shear

stress, and is not able to give very accurate information about the dominant wavelength

with maximum instability growth rate. However, it gives a proper guidance about the range

of the instabilities and their behavior with respect to viscosity variation.

Computational results

The prediction of the small-scale wavelengths is of great importance. According to Varga et

al. [37], the scale of the primary mean droplet sizes during the atomization process are close

to the most unstable RT wavelength. The most interesting unstable structures, especially

the secondary instability occurs after the mushroom-shaped cap develops during the first

40 µs after the start of injection.

The break-up of the ligaments, that emerge as the instabilities grow, produce a range of

small-scale drops. Observation of this phenomenon in computational simulations is very

much dependent on the grid resolution. As discussed earlier, a coarse grid produces thicker

ligaments and larger droplets when detached from the jet core. If we were considering

secondary atomization models these larger droplets would turn into smaller droplets later in

time. This dependence on the numerical grid resolution has been reported by Gorokhovski

& Hermann [55].

In order for the reported wavelengths and two-dimensional drop diameters to be accurate,

the grid resolution should be sufficiently high. In other words, the size of the grid cells

should be smaller than the smallest drops that we are supposed to observe in the annular
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Figure 3.12: The grid resolution check in capturing the smallest drops.Re = 3000, We = 30, 000, ρ̂ = 0.05,
µ̂ = 0.0066, d̂ = 0.8.

jet flow. Figure 3.12 illustrates the grid resolution around some droplets (3D rings) that are

ruptured from a ligament that protrudes from the main jet core, for a typical Re = 3000

case, at t∗ = 41. As the figure shows, there are at least 12–15 grid cells inside the smallest

droplets, which enables the computational code to predict the droplets interface position and

its surface curvature with sufficient precision. The grid system that has been used for this

computational simulation is able to capture the droplets with diameters larger than about

4 µm; which is sufficient for capturing the drop sizes that are observed in the experiments

for this kind of flow.

Figure 3.13 graphs the unstable structures at the jet interface at different instances of time

after the injection (35–40 µs) for Re = 3000 (Fig. 3.13(a)) and Re = 30, 000 (Fig. 3.13(b,c)).

These three figures show the instabilities on the main liquid sheet core and regions close to

the jet tip; i.e. on the back of the mushroom-shaped cap. This figure indicates how different

types of instabilities at the jet interface have been differentiated in this study. The vertical
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Figure 3.13: Unstable structures at the liquid interface at different time instants, indicating primary (KH)
and secondary (RT) wavelengths on the main liquid sheet stem and close to the head part of the jet.

We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; Re = 3000 (a), Re = 30, 000 (b,c). (horizontal and vertical
tick marks indicate secondary and primary instability wavelengths, respectively.)

tick marks in this figure show the primary KH wavelengths while the horizontal tick marks

indicate the RT secondary wavelengths on top of the primary KH wavelengths and also at

the back of the jet cap.

As Figure 3.13 illustrates, the wavelength of both KH and RT instabilities are larger for
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Re = 3000 (a) compared to the higher Re case (b,c), indicating the stabilizing effect of the

liquid viscosity for shorter wavelengths. The higher Re case corresponds to thinner ligaments

and smaller droplets, while the ligaments are thicker and longer for the lower Re case, with

the same surface tension (We number). The number of unstable waves and the detached

ligaments resulting from them are also more discernible for Re = 30, 000 compared to the

lower Re jet.

The range of unstable KH and shorter RT wavelengths during the early stages of injection

has been demonstrated in Figure 3.14 for the three Re numbers. The wavelength in these

Figure 3.14: Dimensionless KH and RT wavelength spectrum during start-up vs. time; the error bars corre-
spond to 5% and h = 50 µm. We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; Re = 3000 (a), Re = 15, 000 (b),
Re = 30, 000 (c).
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plots, has been normalized by the liquid sheet thickness h = 50 µm, so that it could be more

conveniently compared to the cases with different sheet thicknesses, as will be analyzed in

the future sections.

What could be seen in all of the plots in Figure 3.14 is that, in all cases, the RT instabilities

are observed earlier than the first seen KH instabilities. It is also clear that instabilities

occur much sooner for high Re jets compared to the lower ones. At t∗ = 30 for Re = 3000

jet and t∗ = 20 for the two higher Re cases, secondary instability wavelengths in the range

of 0.2–0.5 sheet thickness are detected at the back of the jet cap. 5 µs later, KH waves in

the range of 0.6–1.0 sheet thickness appear at the interface due to the shear instability at

the liquid sheet main stem. Later in time, KH waves continue to develop at the upstream

interface further and air is entrained between the interfacial protrusions. As the liquid jet

develops with time, drag causes the relative velocity between the liquid and air to decrease,

and consequently, the primary KH wavelengths increase to more than 1.5h and 2h for the

highest and lowest Re cases, respectively. This is consistent with the linear KH theory; with

negligible gravity, the decrease of the relative velocity between the liquid and gas causes an

increase in the most unstable KH wavelength.

The secondary wavelengths associated with the longer KH waves also increase to 0.6h–0.8h

compared to their smaller values (0.2–0.5h) at earlier time instants. The acceleration of the

surface decreases as the relative velocity decreases, which explains the increase in secondary

wavelengths. The drag forces acting on the liquid are also stronger at the beginning of the

injection, which corresponds to higher jet acceleration and high shear stress at the liquid/gas

interface leading to small wavelength KH and secondary instabilities at the earlier stages. As

the jet develops, the acceleration of the liquid jet and the drag forces decrease; thus, longer

wavelengths appear at the interface.

Secondary instability with smaller wavelengths compared to KH waves, first appear on the

back of the jet cap and later at the interface. In addition, it can be concluded from the plots
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Figure 3.15: Dimensionless KH and RT wavelength spectrum during start-up vs. the Re number. h = 50 µm,
We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

in Figure 3.14 and Figure 3.13, that the deformation of the jet starts from the head part and

is convected upstream toward the orifice. This transmission of the disturbances from the jet

tip in the opposite direction of the liquid jet flow has been also indicated by Jarrahbashi and

Sirignano [79] and Shinjo and Umemura [57].

Figure 3.15 illustrates the dimensionless KH and RT wavelength spectrum versus the Re

number. As is obvious from the figure, both KH and RT wavelengths increase by decreasing

the Re number; the reason being that the higher viscosity at lower Re numbers, dampens the

smaller instability wavelengths. The range of the RT and KH instabilities, that have been

detected during the first 40 µs of the injection, are between 10–35 µm and 30–110 µm, re-

spectively. These results are in accordance with the linear theory results, that were discussed

at the beginning of this section, as well as the experimental observations.

The computational results also indicate that for comparable wavelengths, the amplitude of

the KH instabilities on the outer liquid interface are larger than the inner surface, which

shows that the outer surface is more unstable with higher growth rates. This is consistent

with the linear analysis results of Shen & Li [15], who reported that the ratio of the inner
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to outer wave amplitudes for the same wavelength is always less than one, and approaches

one asymptotically, as the annulus radius goes to infinity; i.e. planar sheet. The complete

stages of the jet evolution for the three Reynolds cases are given in appendix A.

3.2 Weber number effects

The effects of surface tension on the growth of the instabilities on the liquid/gas interface

and size of the corresponding liquid elements and pinched-off droplets are analyzed in this

section. The surface tension in this study is varied through the Weber number, keeping the

rest of the dimensionless parameters, as well as the Re number, constant. The variation

in the penetration and convergence rate and distance due to the surface tension are also

discussed here. The We numbers that are considered in this study are 6000, 30,000 and

150,000, which correspond to an interface with very high surface tension, a moderate surface

tension (Kerosene and air), and a very low surface tension, respectively.

3.2.1 Effects on penetration/convergence rate

Figure 3.16 shows the axial variation of the dimensionless radius of the liquid sheet mid-

line, for different We numbers. In the sub-plot of the same figure, the variation of the

dimensionless convergence length L∗c versus the We number is given. As can be seen from

these figures, the convergence length of the annular sheet decreases slightly, by increasing

the We number. The variation in the convergence length is less than 0.1D (from L∗c ≈

1.25 to L∗c ≈ 1.15) from the lowest to highest Weber number cases. This shows the less

significant effect of theWe number, compared to the Re number (Fig. 3.7), on the liquid sheet

convergence length. However, the wiggles in the main liquid stream increases drastically, as

the We number increases. This could mean that the instabilities incline more towards
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Figure 3.16: Axial variation of the dimensionless radius for different We numbers (the main plot); comparison
between the convergence lengths of different We cases (the sub-figure). Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066,

d̂ = 0.8.

the para-sinuous mode as the We number increases. However, in such transient numerical

simulation, one cannot claim such conclusion for sure, because the main liquid sheet is also

under the influence of the ligaments and drops that collapse on the main stem after their

breakup. As the We number increases (the surface tension decreases), the number of such

incidents increase, as the number of broken-off droplets increases. The impact of these

pinched-off drops and liquid elements on the liquid sheet causes deviation in the liquid sheet

trajectory from its pre-owned path; i.e. the observed wiggles.

The effects of the surface tension on the convergence rate of the liquid sheet annulus is

illustrated in Figure 3.17. The main plot shows the variation of the dimensionless radius of

a point on the annular jet tip over dimensionless time. Similar to the convergence length,

the convergence rate is also not affected by the We number, significantly. The sub-plot of

Fig. 3.17 shows that all of the cases converge after 36.5–37.5 µs from the start of injection;
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the dimensionless convergence time t∗c decreasing with We number, slightly.

The axial penetration of the annular liquid jet over time is demonstrated in Figure 3.18, for

different We numbers. Like the Re number, the We number does not change the liquid jet’s

axial penetration rate. As can be seen in the figure, all of the cases follow the same behavior

through time. This figure along with Fig. 3.17 indicate that the effects of the Weber number

on the jet penetration (both axial and radial) are negligible. All of the We cases produce

the same length of jet at comparable time instants.

3.2.2 Effects on the instabilities

Figure 3.19 shows the instabilities growth rate as a function of wavelength for different

We numbers, based on the linear Viscous Potential Flow theory of Joseph et al. [4]. As

Figure 3.17: Variation of the dimensionless radius of the annular jet tip versus dimensionless time, for
different We numbers (the main plot); comparison between the convergence rate of different Re cases (the

sub-plot). Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Figure 3.18: Axial penetration of the annular jet versus dimensionless time, for different We numbers.
Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

can be seen from this figure, unlike the Re number (viscosity), the We number (surface

tension) changes the range of unstable wavelengths. As the surface tension decreases, both

the neutral wavelength (the smallest unstable wavelength) and the dominant wavelength (the

wavelength with the maximum growth rate) decrease. Based on the linear theory, the waves

with wavelength greater than 0.1 µm, 0.4 µm and 2 µm are unstable for We = 150, 000,

30, 000 and 6000, respectively.

Figure 3.19 also indicates that the maximum growth rate also increases with the We number.

Based on the viscous potential flow analysis, the surface tension has stabilizing effects for

high jet velocity and high Re numbers [4]. Qualitatively, by decreasing the surface tension,

we should expect for thinner ligaments to form and small wavelengths to appear at the rear

side of the jet cap and strong KH and RT waves to appear on the liquid/gas interface, which

will eventually breakup into more small liquid rings, as is shown in Figure 3.20.

Figure 3.20 shows the effect of surface tension on the shape of liquid jet surface (zero level-
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Figure 3.19: Linear growth rate as a function of wavelength based on VPF instability analysis of Joseph et
al. [4]. Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.

set) in different instances of time after the injection. The surface tension in the left column

of Fig. 3.20 (a) is 25 times the surface tension of the right column (b). As can be seen from

the figure, both cases demonstrate similar behavior in terms of radial/axial penetration and

size of the jet. The size of the ligaments and the amount of pinched-off rings (2D drops),

however, vary drastically. The higher instabilities for the higher We case are obvious from

the early stages of injection t∗ = 25. At this time instant, the mushroom-shaped cap has

formed and grown in both cases. The higher We jet shows lots of small scale instabilities

(RT instabilities) on the back of its cap, which produce thin ligaments and small droplets

broken-up from them. In the lower We jet, however, the edge of the cap has stretched and

curved back without any breakup, and a few larger waves have emerged on the back of its

cap. The broken-up rings and ligaments, in the higher We case, collide on the main jet stem;

these impacts trigger more instabilities on the surface of the liquid jet, later in time.

At t∗ = 30 the mushroom-shaped cap deforms and this deformation continues up to t∗ = 35.

At the meantime, more instabilities appear and grow on the back of the cap, as well as on the
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Figure 3.20: Jet development at t∗ = 25 (top), t∗ = 30 (middle) and t∗ = 35 (bottom). Re = 15, 000,

ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; (a) We = 6000, (b) We = 150, 000.
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liquid sheet. The surrounding gas is entrained behind the jet cap, on both top and bottom

sides, while vortices are shed from the edge of the curved cap. As the vortices grow larger,

they catapult rings, which are pinched-off from the surface of the higher We jet, and stretch

back the liquid ligaments, in the lower We jet. This phenomenon will be discussed in more

detail, later in this section.

The normalized wavelength (λ/h) spectrum of unstable KH and RT instabilities during the

start-up period of injection have been plotted in Figure 3.21 for the three We cases. The RT

instabilities at the back of the jet cap are more pronounced at the early stages of injection

Figure 3.21: Dimensionless KH and RT wavelength spectrum during start-up vs. time; the error bars corre-
spond to 5% and h = 50 µm. Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; We = 6000 (a), We = 30, 000
(b), We = 150, 000 (c).
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t∗ = 20–25. The instabilities occur sooner in the higher We jets, compared to the lower We

ones (compare t∗ = 20 in Fig. 3.21c with t∗ = 25 in Fig. 3.21a). The plots in Fig. 3.21 indicate

that, in all the cases, the average wavelength of the distinguished RT instabilities decrease

with time, while the average wavelength of the observed unstable KH waves increase.

The set of all of the observed KH and RT instabilities’ wavelengths, for each We number,

are illustrated in Figure 3.22, on a semi-log plot. As this figure demonstrates, the overall

wavelength of both KH and RT instabilities decrease with increasing the We number. The

range of the KH instabilities is 0.6h–1.5h for We = 6000, 0.5h–1.5h for We = 30, 000 and

0.4h–0.8h for We = 150, 000. For the shorter RT instabilities, the smallest distinguished

wavelength is 0.2h (10 µm), 0.1h (5 µm), and 0.06h (3 µm) for We = 6000, 30,000 and

150,000, respectively. It should be mentioned that in all of the waves (instabilities), that

have been considered in this report, it has been tried to exclude the waves that have appeared

or have been influenced by the collision of broken-up rings and ligaments on the liquid jet

stem.

Figure 3.22: Dimensionless KH and RT wavelength spectrum during start-up vs. the We number. h = 50 µm,
Re = 15, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8; (the plot is in semi-log scale).
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3.2.3 Droplet ejection mechanism

Figure 3.23 shows the mechanism that ejects the liquid rings (2D droplets) from the back of

the liquid jet cap during the start-up period of injection. As could be seen in this figure, the

gas that has been entrained on the back of the liquid jet cap, creates a recirculation zone

with a series of smaller vortices, on both inner and outer sides of the jet (only the outer

surface vortices are shown in this figure). The small disturbances on the liquid/gas interface

grow into Kelvin-Helmholtz waves, and the wave crest forms a thin liquid film that flaps as

the wave grows radially outward. The film breaks up into rings which are eventually thrown

into the gas stream at large angles. A similar phenomenon happens on the liquid sheet stem

and the vortex mechanism is responsible for ejecting the rings and ligaments in the upstream

direction from the crest of the KH waves. The interaction between the vortices and the KH

waves on the back of the jet cap and the jet stem are shown in Figure 3.24 for We = 6000

at t∗ = 32.5.

The vortex catapult mechanism was also reported by Jerome et al. [80]; however, they

Figure 3.23: A schematic of the vortex catapult mechanism on the back of the liquid jet cap.
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examined such mechanism in a planar two-phase mixing layer. A recirculation region grows

downstream of the wave and leads to vortex shedding similar to the wake of a backward-

facing step. The ejection mechanism results from the interaction between the liquid film and

the vortex shedding sequence: a recirculation zone appears in the wake of the wave (stage 1

in Fig. 3.23) and a liquid film emerges from the wave crest (stage 2); the recirculation region

detaches into a vortex and the gas flow over the wave momentarily reattaches due to the

departure of the vortex (stage 3); this reattached flow pushes the liquid film down; by now,

a new recirculation vortex is being created in the wake of the wave, just where the liquid

film is now located; the liquid film is blown up from below by the newly formed recirculation

vortex in a manner similar to a bag-breakup event; the resulting droplets are catapulted by

the recirculation vortex [80].

Figure 3.25 shows the velocity vectors near the liquid jet interface region, and the vortices

Figure 3.24: Velocity vectors close to the liquid jet interface, showing the droplet ejection mechanism.
Re = 15, 000, We = 6000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Figure 3.25: Velocity vectors close to the liquid jet interface, showing the droplet ejection mechanism at two
time instants. Re = 15, 000, We = 150, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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that are shed at the back of the jet cap, for We = 150, 000, at two time instants. At high Re

jets, like the ones in this study, the RT effects also assist the KH instabilities to grow on the

back of the jet, and intensify the droplet ejection mechanism. As the We number increases,

the vortices overcome the surface tension forces that tend to keep the liquid ligaments/drops

attached to the liquid main body. As a result, vortices are detached more easily from the

wakes of KH and RT instabilities. This is shown in Figure 3.25 at t∗ = 31. The detached

vortices on the back of the jet cap (and on the liquid sheet stem) catapult the rings and

smaller ligaments radially outward (and axially upstream).

As time elapses, the instabilities grow, while their wavelengths decrease, on the back of the

jet. The bottom picture in Figure 3.25 shows the shed vortices and the rings that are carried

outward and thrown into the surrounding gas by them, at t∗ = 35.5. In a flow where most of

the momentum is in the axial direction, it is surprising to observe these large ejection angles

in the radial direction. The interaction between the vortex shedding and the opposing liquid

film forces (viscose and surface tension forces) determines whether a liquid ring is detached

and catapulted into the gas or a liquid ligament is stretched upstream without breaking up.

The complete development stages of the annular jet are presented in Appendix B, for the

two We cases.

3.3 Density ratio effects

The importance of the density ratio in an annular liquid jet flow and the growth of the

instabilities on the liquid/gas interface are discussed in this section. The density ratio, in

this study, has been defined as the ratio of the gas density over the liquid density ρ̂ = ρg/ρl.

Hence, an increase in the density ratio corresponds to a decrease in the difference between the

gas and liquid densities. Some studies in the literature might prefer to define this parameter

as the reciprocal of what is used here.
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Three different density ratios have been studied in this research; ρ̂ = 0.05, 0.1 and 0.9. The

first value corresponds to the ratio of high pressure air density to liquid Kerosene density.

The last chosen value represents an almost like-density liquid and gas case. The complete

steps of the jet development process for theses cases are given in Appendix C.

3.3.1 Jet penetration and convergence

Figure 3.26 shows the difference between the liquid/gas interfaces of a jet with ρ̂ = 0.1

(a) and ρ̂ = 0.05 (b) at three different times after the start of the injection. As the figure

demonstrates, both jets show a similar overall behavior in the sense of position of the interface

in time. However, the case with lower density ratio has higher penetration (axial growth)

and convergence (radial growth) at comparable times. The bottom sub-figures in Fig. 3.26

clearly show that the jet with ρ̂ = 0.1 (left) has just collapsed on the centerline, while the

lower density ratio jet (right) has converged at an earlier time and is growing along the

centerline. In terms of the instabilities and ligaments’ sizes, the jet with lower density ratio

demonstrates more instabilities, with thinner liquid ligaments and more pinched-off liquid

drops. The KH instabilities, on the liquid sheet surface, have the same pattern for both

cases; however, the waves on the lower density ratio jet have shorter wavelengths compared

to the other case.

When the difference between the liquid and gas density diminishes (ρ̂ increases), the behavior

of the jet changes completely. This is shown in Figure 3.27, where the liquid interface for

ρ̂ = 0.9 at three time instants are shown along with their vorticity contours. The first

thing to notice in this figure is that, the instabilities occur much later in time (compare

t∗ = 45 for this case with t∗ = 30 in the previous cases). The instabilities (mostly Kelvin-

Helmholtz) have much longer wavelengths and grow much faster than the former cases. It is

also interesting to note that, because of the similarity in the density of the liquid and the gas,
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Figure 3.26: Jet development at t∗ = 30 (top), t∗ = 35 (middle) and t∗ = 40 (bottom). Re = 15, 000,

We = 30, 000, µ̂ = 0.0066, d̂ = 0.8; (a) ρ̂ = 0.1, (b) ρ̂ = 0.05.

the jet cap inflates and the jet floats in the gas. It is apparent in this figure that the liquid

jet diverges gradually (spreads into the gas) instead of converging towards the centerline.

The vortices that are generated because of large velocity gradient on the liquid/gas inter-

face, are shed near the nozzle exit. The counter-vortices then grow as they are convected

downstream by the main flow. Eventually these vortices spread into the surrounding gas by

the effects of advection and viscosity. The frequency of the shed vortices depends on the
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Figure 3.27: Jet development at t∗ = 45 (top), t∗ = 50 (middle) and t∗ = 55 (bottom). Re = 15, 000,

We = 30, 000, ρ̂ = 0.9, µ̂ = 0.0066, d̂ = 0.8; (a) liquid/gas interface, (b) azimuthal vorticity.

flow Re number; increasing with an increase in the jet Reynolds number. Although this

case is not of much interest in this study, as well as in many other applications such as fuel

injection, the results of this case are included in the comparisons for the sake of consistency

and pedagogy.
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Figure 3.28: Axial variation of the dimensionless radius for different density ratios (the main plot); com-
parison between the convergence lengths of different density ratio cases (the sub-figure). Re = 15, 000,

We = 30, 000, µ̂ = 0.0066, d̂ = 0.8.

The comparison between the axial variation of the liquid sheet radius for jets with different

density ratios is given in Figure 3.28. As could be seen in this figure, the case with like-

density gas and liquid does not converge on the centerline. The convergence length of the

liquid annulus versus the density ratio is plotted in the sub-figure of the same figure. This

figure shows that the gas/liquid density ratio is an important parameter influencing the

convergence length. As the density ratio increases, the convergence length grows with an

increasing slope. The case with ρ̂ = 0.05 collapses at x∗ ≈ 1.2D, while the jet with ρ̂ = 0.1

converges at x∗ ≈ 1.5D.

The same story as for the convergence length, goes on for the convergence rate of the three

annular jets, as is shown in Figure 3.29. The jet with ρ̂ = 0.05 converges after t∗ ≈ 36, and

the convergence time increases with density ratio, such that the jet with ρ̂ = 0.1 converges

at t∗ ≈ 40. The liquid jet with the highest density ratio does not converge by the end of the

time that was considered for the computations.
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Figure 3.29: Variation of the dimensionless radius of the annular jet tip versus dimensionless time, for
different density ratios (the main plot); comparison between the convergence rate of different density ratio

cases (the sub-plot). Re = 15, 000, We = 30, 000, µ̂ = 0.0066, d̂ = 0.8.

The axial penetration versus time of the three jets are compared in Figure 3.30. Unlike the

Re and We numbers, it is apparent that the density ratio does affect the axial penetration

Figure 3.30: Axial penetration of the annular jet versus dimensionless time, for jets with different density
ratios. Re = 15, 000, We = 30, 000, µ̂ = 0.0066, d̂ = 0.8.

95



rate of the annular liquid jet. As was mentioned earlier, and is shown in the figure, the lower

density ratio jet penetrates more compared to the higher ones. Thus, at the same time,

longer liquid jet is produced by lowering the gas/liquid density ratio. The reason is that

the liquid jet with lower density ratio has higher momentum relative to the gas medium,

consequently, higher axial penetration is rendered. Also notice that, for the highest density

ratio jet, the axial penetration is ceased (decelerated) after t∗ ≈ 45 and the jet grows more

in the radial direction, as was shown in Fig 3.27.

3.3.2 Density ratio and the instabilities

As in the previous sections, it would be instructive to first study the linear analysis predic-

tions of the growth rates. The instabilities’ growth rate for different density ratios are given

as a function of the instabilities’ wavelength, based on the linear VPF instability analysis of

Joseph et al. (eqn. 3.1), in Figure 3.31.

λ

Figure 3.31: Linear growth rate as a function of wavelength for different density ratios, based on VPF
instability analysis of Joseph et al. [4]. Re = 15, 000, We = 30, 000, µ̂ = 0.0066, d̂ = 0.8.
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As the figure shows, both the range of the unstable wavelengths and the growth rate of

the waves increase with increasing the density ratio. The fact that the instabilities grow

faster in the highest density ratio jet (ρ̂ = 0.9) is consistent with our numerical results, as

was evident in Fig. 3.27. However, smaller unstable waves were not observed in this case,

opposing what the linear analysis suggests. In fact, the wavelength of the instabilities that

are observed in Fig. 3.27 for ρ̂ = 0.9 are much larger than the two other cases with lower

density ratios (Fig. 3.26). Yet the linear analysis is in accordance with this observation, since

it predicts that even the instabilities with larger wavelengths have higher growth rate in high

density ratio compared to the negligible growth rate of low density ratio instabilities. Later

in this section, we will see that, for the highest density ratio case, the numerical results show

unstable waves with wavelengths twice the value of the maximum wavelengths that were

observed so far.

Figure 3.32 shows the dimensionless KH and RT wavelengths that were observed in the

start-up period of injection for the three density ratio jets, separately. As indicated earlier,

the instabilities emerge later in time for higher density ratios. Compare the first instabilities

appearing at t∗ = 20 for ρ̂ = 0.05, with t∗ = 25 and 42.5 for ρ̂ = 0.1 and 0.9, respectively.

The average wavelength of the KH instabilities grows larger in time, in all the cases. The

RT instabilities, however, remain in almost the same range at all of the time stages. The

number of observed RT instabilities are much less than the KH instabilities in ρ̂ = 0.9 case;

indicating that the KH instability is dominant at very high density ratio jets. The average

wavelength of both KH and RT instabilities also grow with the density ratio, as is shown in

Figure 3.33. The largest unstable wave that has been distinguished for the lowest density

ratio jet, has a wavelength of 1.6h, while this value grows to 2.2h for ρ̂ = 0.1. The jet with

the highest density ratio has unstable KH waves with wavelengths 4 times the thickness of

the liquid sheet; i.e. 200 µm. The complete steps of the jets’ evolution process could be

found in Appendix C.
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Figure 3.32: Dimensionless KH and RT wavelength spectrum vs. time; the error bars correspond to 5% and
h = 50 µm. Re = 15, 000, We = 30, 000, µ̂ = 0.0066, d̂ = 0.8; ρ̂ = 0.05 (a), ρ̂ = 0.1 (b), ρ̂ = 0.9 (c).

Figure 3.33: Dimensionless KH and RT wavelength spectrum during start-up vs. gas to liquid density ratio.
h = 50 µm, Re = 15, 000, We = 30, 000, µ̂ = 0.0066, d̂ = 0.8; (the plot is in semi-log scale).
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3.4 Viscosity ratio effects

Similar to the density ratio, the viscosity ratio is defined as the ratio of the gas viscosity to

the liquid viscosity in this study, µ̂ = µg/µl. The three viscosity ratios that are compared

in this research are 0.0001, 0.0066 and 0.05. The first value represents an almost inviscid

gas case, while the last value is chosen to mimic a highly viscous gas (keeping the liquid

viscosity constant). The intermediate value equals the viscosity ratio of high pressure air

and liquid Kerosene (properties given in Table 2.1). The effects of viscosity ratio variation

on the annular jet flow characteristics are discussed in this section. The complete picture of

the jet development steps for the aforementioned cases are given in Appendix D.

3.4.1 Jet penetration and convergence rate

The results of radial position of the liquid sheet, with respect to the axial distance from

the nozzle exit and with respect to the injection time, are given in Figures 3.34 and 3.35,

respectively, for the three cases. These results indicate that the viscosity ratio has only a

minor influence on the annular jet convergence characteristics; the convergence length and

the convergence rate.

The sub-plots in Figures 3.34 and 3.35 show that, both the convergence length L∗c and

convergence time t∗c , increase slightly with increase of the viscosity ratio. Notice that the

convergence length difference between the three cases is just about 0.03 of the jet diameter

(≈ 15 µm), while each of the viscosity ratios are an order of magnitude different from

the other. In a sense, we could claim that the viscosity ratio has negligible effect on the

convergence length. All of the jets converge at about L∗c ≈ 1.18D.

The effect of viscosity ratio on the convergence rate of the liquid sheet is also negligible. The

jet with the highest viscosity ratio convergences only less than a microsecond after the jet
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Figure 3.34: Axial variation of the dimensionless radius for different viscosity ratios (the main plot); com-
parison between the convergence lengths of different viscosity ratio cases (the sub-figure). Re = 15, 000,

We = 30, 000, ρ̂ = 0.05, d̂ = 0.8.

Figure 3.35: Variation of the dimensionless radius of the annular jet tip versus dimensionless time, for
different viscosity ratios (the main plot); comparison between the convergence rate of different viscosity

ratio cases (the sub-plot). Re = 15, 000, We = 30, 000, ρ̂ = 0.05, d̂ = 0.8.
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with the lowest viscosity ratio; the difference between the viscosity ratios of the two cases

are two orders of magnitude, though. All three cases collapse on the centerline at t∗c ≈ 36.5

after the start of injection.

In terms of the axial penetration, the three jets with different viscosity ratios also give the

same performance, as is shown in Figure 3.36. This figure shows that, the axial penetration

of all three jets match perfectly at early time instants t∗ < 30. For 30 < t∗ < 40, although

not perfectly, the three cases match very closely. These results, and the results of the radial

penetration given before, show that the length of the liquid jet is almost independent of the

gas/liquid viscosity ratio, for the range of flow parameters that have been studied in this

research.

Figure 3.36: Axial penetration of the annular jet versus dimensionless time, for jets with different viscosity
ratios. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, d̂ = 0.8.

3.4.2 Viscosity ratio and the instabilities

The linear viscous potential flow analysis results of Joseph et al. [4], shown in Figure 3.37,

indicate that the viscosity ratio has negligible effect on the growth rate of the instabilities,

as well as the range of unstable wavelengths. The increase in the growth rate of comparable
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Figure 3.37: Linear growth rate as a function of wavelength for different viscosity ratios, based on VPF
instability analysis of Joseph et al. [4]. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, d̂ = 0.8.

wavelengths, from the higher viscosity ratio jets to the lower ones, is very small, so that the

linear analysis suggests that we should statistically see the same range of wavelengths and

growth rates in all three cases.

The comparison between the liquid jets’ interface for the jets with µ̂ = 0.0001 and µ̂ = 0.05,

at three instants of injection, are given in Figure 3.38. At t∗ = 30, and before that, the

two jets look almost the same. However, the liquid jet with lower viscosity ratio (a) shows

thinner and more elongated ligaments near the curled edges of the jet cap, compared to

the high viscosity ratio jet (b). Also notice the earlier appearance of the Kelvin-Helmholtz

waves on the stem of the liquid sheet in the jet with lower viscosity ratio (Fig. 3.38a, at

t∗ = 30). These waves could be tracked up to t∗ = 32.5, where the KH waves have grown on

the surface of the low viscosity ratio jet (a), while the instabilities on the liquid sheet with

higher viscosity ratio are just about to emerge (b). Both jets have penetrated the same axial

distance at this time.
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Figure 3.38: Jet development at t∗ = 30 (top), t∗ = 32.5 (middle) and t∗ = 37.5 (bottom). Re = 15, 000,

We = 30, 000, ρ̂ = 0.05, d̂ = 0.8; (a) µ̂ = 0.0001, (b) µ̂ = 0.05.

Later at t∗ = 37.5, we can see that the jet with lower viscosity ratio deforms more quickly.

The mushroom-shaped cap of the jet with µ̂ = 0.0001 deforms severely and looses its curved

smooth form at its leading edge. The liquid jet with higher viscosity ratio, however, still holds

its mushroom-shaped cap in its original form up to this time. A few recognizable KH waves

on both inner and outer sides of the liquid sheet surface are apparent for the jet with high

viscosity ratio (b), at this time. Following these waves until t∗ = 40 (Fig. D2 in Appendix
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Figure 3.39: KH waves on the jet interface at t∗ = 40. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.05,
d̂ = 0.8.

D), we can see in Figure 3.39 that, the wavelength of these KH waves decreases as they move

upstream, and a series of KH waves with almost same size appear on both inner and outer

sides of the sheet. The wavelength of the instabilities on the inner surface being longer and

with smaller amplitudes, compared to the outer surface waves. Both inner and outer waves

grow in amplitude but diminish in wavelength as they move upstream with respect to the

jet. The whole picture of the liquid sheet at this time, suggests that the instabilities are in

a mode between sinuous (anti-symmetric) and varicose (symmetric) modes (refer to Fig. 1.6

for the definitions); i.e. the phase difference of the inner and outer waves is neither 0 nor π.

Earlier in the Introduction chapter, we discussed about a non-dimensional time based on

the liquid viscosity and gas density and the nozzle diameter, tlg = µlt/ρgD
2, which was

introduced by Jarrahbashi & Sirignano [79], for prediction of the real time at which the

azimuthal instabilities (lobes formation, etc.) for a cylindrical liquid jet occur. Here we will

test whether such dimensionless time could be used for qualitative prediction of the time at

which certain KH waves appear on the liquid sheet surface or not.

From the earlier sections on the effects of the Re number and the density ratio, we saw that

the instabilities occur earlier for higher Re number (lower µl) and lower density ratios (lower

ρg). The dimensionless time tlg is consistent with the latter statement, because
t2
t1
∼
ρg2
ρg1

104



based on the definition of tlg; thus, as the gas density goes down the required time for

appearance of certain KH instabilities decreases. However, by the definition, the tlg form

suggests that
t2
t1
∼ µl1
µl2

; which means that the time at which the instabilities are first observed

should be postponed by a decrease in the liquid viscosity. However, this is not consistent

with what we see in our computational results. A decrease in the liquid viscosity corresponds

to a higher Re number, and as indicated, the instabilities occur earlier at higher Re jets.

Hence, t should be directly proportional to the liquid viscosity, opposing to what is suggested

by tlg definition.

From this analysis, we would conclude that the dimensionless time defined by Jarrahbashi

and Sirignano [79] is not appropriate for the prediction of the 2D axisymmetric KH insta-

bilities on an annular jet. This should not be misinterpreted as either one of the analyses

are incorrect, though. The defined dimensionless time was devised for occurrence of 3D

azimuthal instabilities on a cylindrical jet, while our simulation does not allow for those

instabilities to occur (because of the axisymmetry). It should also be noted that Jarrahbashi

and Sirignano [79] found that the 3D instabilities occur much faster than the axisymmetric

ones, and this could be another justification for why such dimensionless time does not work

in this 2D analysis.

The range of the observed KH and RT wavelengths on the liquid jets with different viscosity

ratios are given in Figure 3.40 as a function of the injection time. As could be seen in all the

plots, the average wavelength of the unstable KH waves increases with time, while the RT

instabilities diminish in wavelength as we go forward in time. The advent of the instabilities

are also quite the same in all the jets, regardless of their significant difference in the viscosity

ratio. All the jets experience their first perturbations at t∗ = 20–22.5.

The range of all the KH and RT wavelengths that have been observed during the start-up

period of injection is illustrated as a function of the jet viscosity ratio, in Figure 3.41. What

is interesting to note at a first glance, is that the range of both KH and RT instabilities are
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Figure 3.40: Dimensionless KH and RT wavelength spectrum vs. time; the error bars correspond to 5% and
h = 50 µm. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, d̂ = 0.8; µ̂ = 0.0001 (a), µ̂ = 0.0066 (b), µ̂ = 0.05 (c).

almost the same for all different viscosity ratios. This means that, statistically speaking,

the range of the unstable wavelengths is independent of the gas/liquid viscosity ratio. This

result is totally consistent with the results of linear VPF analysis that were presented earlier

in this section (refer to Fig. 3.37). The largest and smallest KH waves that have been seen in

the simulations are about 1.6h (80 µm) and 0.5h (25 µm), respectively, for all of the cases.

The RT wavelengths also vary from 0.16h to 0.55h, with a few small deviations in some

cases.

In summary, it could be concluded that both the linear analysis and the numerical compu-
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Figure 3.41: Dimensionless KH and RT wavelength spectrum during start-up vs. gas to liquid viscosity ratio.
h = 50 µm, Re = 15, 000, We = 30, 000, ρ̂ = 0.05, d̂ = 0.8; (the plot is in semi-log scale).

tations indicate that the viscosity ratio has negligible effects on the range of instabilities, as

well as the rate and length of annular jet convergence towards the centerline. However, it

should be noted that the time instant at which certain types of instabilities are observed on

the liquid surface is affected by the viscosity ratio. Also, the zero level-set contours showed

the noticeable differences in the deformation rate of the liquid jet near the tip region, for

different viscosity ratios. The complete portrait of the jet development steps, for the cases

that have been studied in this section, are given in Appendix D.

3.5 Sheet thickness effects

The annular liquid sheet thickness is varied in this section to study its effects on the unstable

structures and the contraction rate. The sheet thickness is altered using the inner to outer

nozzle diameter ratio d̂ = d/D, while the outer nozzle diameter is kept constant D = 500 µm.

The three diameter ratios that have been used in this study are, d̂ = 0.7, 0.8 and 0.9,

corresponding to sheet thicknesses of 75, 50 and 25 µm, respectively (refer to Appendix
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E for a complete picture). Obviously, as the diameter ratio increases, the sheet thickness

decreases, and the annular sheet moves towards a planar sheet at the limit, where d̂→ 1.

3.5.1 Sheet thickness and jet penetration

Figure 3.42 illustrates the axial variation of the dimensionless radius of the liquid sheet, for

the three diameter ratio jets. As could be seen from the trajectory of the annular jets in this

plot, the liquid sheets move more towards sinuous mode, as the sheet thickness decreases.

This will be seen in more detail in the later section. Figure 3.42 shows that the annular

sheet convergence length increases with increasing the diameter ratio (decreasing the sheet

thickness). The sub-plot in Fig. 3.42 shows that the dimensionless convergence length for

the thickest liquid sheet is about 0.7, while the thinnest sheet converges at a distance 1.4

times the nozzle diameter, downstream of the nozzle exit plane.

Figure 3.42: Axial variation of the dimensionless radius for different diameter ratios (the main plot); com-
parison between the convergence lengths of different diameter ratio cases (the sub-figure). Re = 15, 000,
We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066.
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Figure 3.43: Variation of the dimensionless radius of the annular jet tip versus dimensionless time, for
different diameter ratios (the main plot); comparison between the convergence rate of different diameter
ratio cases (the sub-plot). Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066.

The radial convergence rate of the annular jets with different diameter ratios are compared

in Figure 3.43. As could have been expected, the jet with smaller sheet thickness converges

the latest. The thick annular sheet converges very soon at t∗ = 31, while the convergence

time is postponed for lower sheet thickness, and the thinnest liquid sheet converges at about

t ≈ 40; this is shown in the sub-plot of Fig. 3.43.

An interesting observation in the plots of Figure 3.43 is that, the radius of the thinnest liquid

sheet start to decrease with a very steep slope after t∗ ≈ 36. In order to find out the reason

for this sudden decrease, it is helpful to have a look at the liquid sheets’ interfaces during

the start-up period. The comparison between the liquid jets’ interfaces for the thickest and

the thinnest liquid sheets are given in Figure 3.44, at four different time intervals.

As could be seen in Figure 3.44, the thicker jet converges in much less time, while the thinner

jet has mostly axial penetration, with very low radial deviation during the first 35 µs. At

t∗ = 32.5 a few Kelvin-Helmholtz waves appear on the inner and outer sides of both jets.
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Figure 3.44: Jet development at t∗ = 30 (top), t∗ = 32.5 (mid-top), t∗ = 35 (mid-bottom) and t∗ = 37

(bottom). Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066; (a) d̂ = 0.7, (b) d̂ = 0.9.
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These KH waves grow in amplitude and wavelength as time elapses and produce sinuous

waves with similar amplitudes and wavelengths, and almost the same phase, on both inner

and outer sides of the thinner liquid sheet at t∗ = 35. The growth of the instabilities causes

an attenuation in the sheet thickness, and we could clearly see the necking of the sheet at

x∗ = 0.8 at this time. The thin liquid sheet breaks-up at the location where this necking

happens, at t∗b = 35.7 (not shown in the figure). After the sheet break-up happens, the

part of the jet, which is left downstream, deforms much faster, and without the necessary

momentum from the main jet stem, which is now detached, to push it forward, its axial

penetration slows down, while its cap spreads into the surrounding gas, under the effect of

viscosity and the vortices that are now detached from the jet stem at the point of break-

up. In other words, the jet cap experiences an explosion-like transformation which degrades

the liquid jet behind the cap into thinner ligaments and rings. Since most of the detached

vortices are advected in the radial direction, this phenomenon causes a sudden decrease in

the jet radius; i.e. higher rate of radial convergence and lower axial penetration.

The effects of sheet break-up in the thinner annular jet could be also detected in the axial

penetration rate of the jets, plotted in Figure 3.45. The thicker liquid sheet has higher

penetration than the thinner ones at early time intervals t∗ < 25. As is illustrated in this

figure, and was also shown in Fig. 3.44, after t∗ = 25 the thicker sheet starts to grow

radially, while the thinner jets continue to grow axially, and overtake the thicker jet in axial

penetration. However, after t∗ = 31, when the thicker jet collapses on the axis of symmetry,

its axial velocity increases as most of its momentum is contributed to axial penetration only

(of-course some part of the jet is deflected upstream towards the nozzle on the centerline).

Hence, the axial penetration of the thicker jet again becomes larger than the thinner ones.

This obviously more pronounced when the thinnest liquid sheet breaks-up at t∗ ≈ 36. The

effect of the sheet breakup on the axial penetration of the thin annular jet could be clearly

seen in Fig. 3.45, where the line associated with d̂ = 0.9 (shown with circles) goes under

the line associated with d̂ = 0.8 (shown with triangles). The point of intersection t∗ ≈ 36
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Figure 3.45: Axial penetration of the annular jet versus dimensionless time, for jets with different diameter
ratios. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066.

corresponds to the sheet breakup time.

3.5.2 Sheet thickness and the instability modes

Figure 3.46 based on the linear analysis of Joseph et al. [4], shows that the neutral wave-

length, greater than which the waves become unstable, decreases with decreasing the sheet

thickness. In other words, the range of the unstable waves grows with the diameter ratio.

Also, the waves with similar wavelengths have higher growth rates for thinner liquid sheets

based on the linear theory. This is consistent with our numerical results, shown in Fig-

ure 3.44, where we could see that the amplitude of the waves grow much faster in thinner

liquid sheet jet (compare column b of Fig. 3.44 with column a). Later in this section, when

we compare the wavelengths of the observed KH instabilities for different sheet thicknesses,

we will see that they are also in accordance with the linear theory results.

In Figure 3.44, we saw that the KH waves emerged on the inner and outer sides of both

thick and thin annular jets and they grew in time, as they moved upstream. Comparing
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Figure 3.46: Linear growth rate as a function of wavelength for different diameter ratios, based on VPF
instability analysis of Joseph et al. [4]. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066.

the KH waves on the inner and outer interfaces of the thinnest liquid sheet at t∗ = 35

(Fig. 3.44b), with the thicker liquid sheet, or even with all the other cases that were studied

earlier, at the comparable time, we see that, these waves are the most in-phase waves that

have been observed so far. The crests and troughs of all the KH waves on the outer interface

match almost perfectly with the crests and troughs of the waves on the inner interface,

respectively, for d̂ = 0.9 at t∗ = 35. This shows that the instabilities move towards sinuous

(anti-symmetric) mode as the liquid sheet becomes thinner (refer to Fig. 1.6 for modes’

description).

After the KH instabilities grew sufficiently large and the thin liquid sheet broke-up at about

t∗ ≈ 36, we saw that the amplitude of all of the waves died out, and a few small KH waves

remained on the outer surface of the sheet, as is given in Figure 3.44b at t∗ = 37. Tracking

these waves later in time, we can see in Figure 3.47 that, the KH waves start to grow again

on both sides of the sheet at t∗ = 38.5, and their phases start to synchronize to form a

sinuous wave. We can expect the same procedure to go on again and cause the second sheet
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Figure 3.47: KH waves on the jet interface at t∗ = 38.5. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066,
d̂ = 0.9.

Figure 3.48: The second sheet breakup at t∗ = 39.2. Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066,
d̂ = 0.9.

breakup, and the same process is repeated over and over again. The second sheet breakup

occurs at t∗b2 = 39.2 and L∗b2 = 0.4, as is recorded in Figure 3.48. Notice that, the sheet

breakup distance from the nozzle exit has be halved from its primary length L∗b1 = 0.8. Thus,

we can presume that all the next breakups happen at a closer distance from the nozzle exit,

however, we know that this distance cannot decrease monotonically to zero, since the KH

waves cannot appear at exactly the nozzle exit plane. This suggests the existence of a limit

distance, where no breakups could happen at a distance less than that.

Figure 3.49 illustrates the dimensionless KH and RT wavelength spectrum at different time
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Figure 3.49: Dimensionless KH and RT wavelength spectrum vs. time; the error bars correspond to 5%.
Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066; d̂ = 0.7 (a), d̂ = 0.8 (b), d̂ = 0.9 (c).

intervals for the three different sheet thicknesses. In the two thicker liquid sheets (a & b),

the KH waves keep growing in wavelength as time passes. The thinner liquid sheet (c),

however, has its longest KH wavelengths just before it breaks-up at t∗ = 35, after which, the

wavelength of the instabilities diminishes in time, and this cycle goes on again. The average

wavelength of the RT instabilities decreases with time in all of the cases.

The normalized spectrum of all of the observed KH and RT instabilities are collected in

Figure 3.50 versus the annular liquid sheet diameter ratio. As this figure shows, both KH

and RT instabilities’ wavelengths increase with the diameter ratio, as was suggested by
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Figure 3.50: Dimensionless KH and RT wavelength spectrum during start-up vs. liquid sheet diameter ratio.
Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066.

the linear Viscous Potential Flow analysis, plotted in Fig. 3.46. The thinnest liquid sheet

experiences instabilities with wavelengths almost triple the sheet thickness, while the largest

wavelength observed for the thickest liquid jet is about the same size as the sheet thickness.

However, considering the dimensional wavelength we would see that the largest wavelength

in all of the cases is almost the same, λ ≈ 75 µm (notice that the sheet thicknesses are

75, 50 and 25 µm, from the thickest to the thinnest). The same story goes on for the RT

instabilities, which also grow in wavelength as the sheet thickness decreases. The complete

picture of the jet development steps for the thickest and thinnest liquid sheets are given in

Appendix E.

3.6 Characteristic convergence time

In this section, we intend to modify the previously defined characteristic time τ = D/U ,

by using the results that we have obtained for the convergence rate as a function of the

other parameters. The new characteristic time τc, which can be used to normalize the
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dimensional time, represents the convergence time in a more appropriate way than the

original definition. Based on the numerical results that were represented in the earlier

sections, we can conclude that the characteristic convergence time is proportional to the

dimensionless groups as follows:

τc ∝ Re−0.1

τc ∝ We−0.01

τc ∝ ρ̂0.15

τc ∝ µ̂0.003

τc ∝ d̂

Neglecting the dependence of the convergence time on the viscosity ratio, we can write the

characteristic time as

τc = Re−0.1We−0.01ρ̂0.15d̂
D

U
(3.3)

If we now define a new characteristic density as ρc =
ρ2.3g
ρ1.3l

, and call the Reynolds and Weber

numbers based on this characteristic density Rec and Wec, the characteristic time could be

written as

τc =
1

Re0.1c We0.01c

d

U
(3.4)

If we further neglect the minor effects of the We number, we can simplify the characteristic

time as

τc =
d

U Re0.1c
=

ρ0.15l µ0.1
l d

ρ0.25g U1.1h0.1
(3.5)

and the dimensional time could be normalized by this characteristic convergence time to give

t∗ = t/τc. Although this characteristic time embeds all of the parameters’ effects, it should

be noted that it is good only for the range of the dimensionless variables that were used
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in this study; i.e. high Reynolds and Weber numbers, Re > 3000 and We > 6000. Most

probably, the effect of surface tension on the characteristic time will grow stronger at lower

Weber numbers, so that it could not be simply neglected.
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Chapter 4

Conclusions

A transient 2D axisymmetric finite-volume method was used in this research to study the

spatial and temporal instabilities that occur on the interface of an annular liquid jet and an

incompressible gas, during the start-up period of injection. Use was made of the level-set

method to track the liquid/gas interface. The effects of five dimensionless flow parameters

on the emerging Kelvin-Helmholtz and Rayleigh-Taylor instabilities were studied; Reynolds

and Weber numbers, gas-to-liquid density and viscosity ratios, and inner-to-outer jet di-

ameter ratio being the five parameters. The effects of these parameters on the annular jet

convergence length and rate and the structure of sheet breakup and the resulting ligaments

and rings sizes were also studied. The range of the Reynolds numbers used in this study

were from 3000 to 30,000, indicating a turbulent regime; and the Weber number ranged from

6000 to 150,000.

Two significant velocity reversals were traced on the annular jet centerline, which corre-

sponded to the recirculation zone and the jet collapse on the axis of symmetry. A few

examples of the complicated vortical structures in the recirculation zone were shown and

the vortex mechanism assisted by the KH instabilities, that were responsible for ejection of
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the liquid rings and ligaments from the main jet stream, were introduced. The convergence

length and time of the annular liquid sheet were seen to decrease with the Re and We

numbers and increase with the gas-to-liquid density and viscosity ratios and inner-to-outer

annulus diameter ratio; the effects of the We number and the viscosity ratio being less sig-

nificant than the others. A characteristic convergence time was also proposed based on the

obtained numerical results in the range of parameters that were used in this study, which

could more properly predict the dimensional time at which the jet collapses on the axis of

symmetry.

The range of unstable KH and RT wavelengths were plotted at different time intervals from

the start of injection, for all of the flow conditions that were studied in this report. The

average wavelength of the observed KH and RT instabilities decreased with the Re and We

numbers, and increased with the gas/liquid density ratio, and was almost independent of the

viscosity ratio and the sheet thickness; indicating that the unstable wavelengths normalized

by the sheet thickness increase significantly by decreasing the sheet thickness. The results

also indicated the stabilizing effect of the liquid viscosity and surface tension at high Reynolds

and Weber numbers.

Tracing the unstable KH and RT wavelengths in time, revealed that the average RT wave-

lengths tend to diminish, while the KH instabilities grow in wavelength as time elapses,

during the start-up period of injection. For a very thin liquid sheet, however, the average

KH wavelength reaches a maximum just before the sheet breaks-up and then decreases as a

result of the breakup. Later in time, the KH wavelengths grow again and cause the second

sheet breakup, which happens at a closer distance from the nozzle exit plane. The oscil-

lation of the KH wavelengths between a maximum and minimum value, indicate that the

thin annular sheet experiences several sheet breakup cycles, each of which cause detachment

of numerous large and small vortices that move radially outward after they are shed from

the the main liquid sheet stem during the breakup. The vortices advect liquid ligaments
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and rings (2D droplets) outward, and expedite the atomization process. For a very low liq-

uid surface tension (high We number), it was seen that, the detached vortices have enough

strength to dominate the surface tension forces and pinch-off thin liquid ligaments and rings

and carry them with themselves. This mechanism justifies the observation of numerous small

liquid rings and ligaments at the high We jet.

At the end, it is to be mentioned that both turbulence and the annular jet breakup are three-

dimensional phenomena and need to be studied in 3D. The axisymmetric assumption of the

jet injection problem in this study, hinders the occurrence of the azimuthal instabilities,

which might happen sooner than the axisymmetric instabilities and can even grow faster

than them. The 3D annular jet has been proven to be more unstable than the axisymmetric

jet. For a better understanding of the atomization process, a 3D simulation of the planar or

annular sheet breakup problem is suggested, along with the study of vortex structures and

its corresponding mechanisms that cause formation of lobes and ligaments and eventually,

sheet breakup and droplet pinch-off. Consideration of swirl to inhibit the annular collapse

would also be of practical interest.
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Appendices

There are five appendices, each of which contains the complete picture of the annular jet

development steps, for different cases of a certain dimensionless parameter. The Appendices

are as follows: Appendix A, showing the two different Reynolds cases and the base case;

Appendix B, for the two cases with different Weber numbers; Appendix C, showing the two

different density ratio jets; Appendix D, corresponding to the two viscosity ratio cases; and,

Appendix E, corresponding to the two cases with different diameter ratios.
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Appendix A:

Fig. A1: Jet development (the base case); Re = 15, 000, We = 30, 000, ρ̂ = 0.05,

µ̂ = 0.0066, d̂ = 0.8.
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Fig. A2: Jet development; Re = 3, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Fig. A3: Jet development; Re = 30, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Appendix B:

Fig. B1: Jet development; Re = 15, 000, We = 6, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Fig. B2: Jet development; Re = 15, 000, We = 150, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.8.
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Appendix C:

Fig. C1: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.1, µ̂ = 0.0066, d̂ = 0.8.
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Fig. C2: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.9, µ̂ = 0.0066, d̂ = 0.8.
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Appendix D:

Fig. D1: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0001, d̂ = 0.8.
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Fig. D2: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.05, d̂ = 0.8.
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Appendix E:

Fig. E1: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.7.
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Fig. E2: Jet development; Re = 15, 000, We = 30, 000, ρ̂ = 0.05, µ̂ = 0.0066, d̂ = 0.9.
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