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Abstract

Allosteric regulation of protein function is widespread in biology, but challenging for de novo 
protein design as it requires explicit design of multiple states with comparable free energies. We 

explore the possibility of de novo designing switchable protein systems through modulation of 

competing inter and intra-molecular interactions. We design a static, five-helix “Cage” with a 

single interface that can interact either intra-molecularly with a terminal “Latch” helix or inter-

molecularly with a peptide “Key”. Encoded on the Latch are functional motifs for binding, 

degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. 

We describe orthogonal Cage-Key systems that function in vitro, in yeast and in mammalian cells 

with up to 40-fold activation of function by Key. The design of switchable protein function 

controlled by induced conformational change is a milestone for de novo protein design and opens 

up new avenues for synthetic biology and cell engineering.

There has been considerable progress in the de novo design of stable protein structures based 

on the principle that proteins fold to their lowest free energy state. These efforts have 

focused on maximizing the free energy gap between the desired structure and all other 

structures, and have resulted in a wide range of stable proteins that exclusively populate the 

designed state1–4. Designing proteins that can switch conformations is more challenging, as 

multiple states must have sufficiently low free energies relative to the unfolded state, and 

free energy differences between the states must be small enough that switching can be 

toggled by an external input5,6. Recent advances in designing systems with multiple states 

include a transmembrane ion transporter7 and Gβ1 variants that dynamically exchange 

between two related conformations8; however, a method for the de novo design of modular, 

tunable protein systems that switch conformational states in the presence of an external input 

has not yet been achieved.

We set out to design de novo switchable protein systems guided by the following 

considerations. First, programming free energy differences between two states is more 

straightforward in a system governed by inter- and intra-molecular competition at the same 

site than by allosteric activation at distant sites9–11 because many of the residue-level 

interactions can be similar if not identical. Second, a stable protein framework with an 

extended binding surface available for the competing interactions is more programmable and 

less likely to engage in off-target interactions than a framework that only becomes ordered 

upon binding12,13. These features are described by the abstract system in Fig 1a, which 

undergoes thermodynamically-driven switching between binding-competent and binding-

incompetent states. A Latch (blue) contains a peptide sequence (orange) that can bind a 

Target (yellow) unless blocked by intramolecular interactions to a Cage (cyan); a Key 

(green) that binds more tightly to the Cage outcompetes the Latch, allowing the peptide to 

bind the Target. The behavior of such a system is governed by binding equilibrium constants 

for the individual subreactions (Fig. 1a): Kopen, the dissociation of Latch from Cage; KLT, 

the binding of Latch to Target; and KCK, the binding of Cage to Key. When the Latch-Cage 

interaction is too weak (Fig. 1b, red and orange curves, see Supplementary Information), the 

system binds Target in the presence of little to no Key and the fold induction by Key is low, 
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while when the Latch-Cage interaction is too strong (purple curve), the system only partially 

binds Target even at high Key concentrations. The Latch-Cage interaction affinity that gives 

optimal switching (Fig. 1b, blue curve left, green curve right) is a function of the Latch-

Target binding affinity.

LOCKR Design

To implement the switchable system of Fig. 1a, we chose structural features amenable to 

tuning the affinities of the Cage-Latch and Cage-Key interactions over a wide dynamic 

range. Helical interfaces are dominated by sidechain-sidechain interactions, which can be 

more readily tuned than the backbone hydrogen-bonding interactions between β-strands14. 

To allow fine control over the specificity and relative affinities of the Cage-Latch and Cage-

Key interactions, we chose to design interfaces containing buried hydrogen bond networks; 

as in DNA base-pairing, specificity can be altered by minor changes to hydrogen bond 

donors and acceptors15. As a starting point, a designed homo-trimer of -helical hairpins 

mediated by hydrogen bond networks (5L6HC3_115) was connected into two monomeric 

frameworks by designing short unstructured loops between the subunits (Fig. 1c). In the 

five-helix framework, there is an open binding site for a sixth helix added in trans; this site is 

filled by a sixth helix in cis in the six-helix framework.

The five-helix (Cage) and six-helix (Cage plus Latch) designs expressed in E. coli were 

largely monomeric by size-exclusion chromatography (Extended Data 1), and remain folded 

up to 5 M guanidine hydrochloride (Fig. 1d). Small-angle x-ray scattering (SAXS) spectra of 

the connected designs are similar to that of the starting trimer and indicative of well-folded 

proteins16 (Fig. 1e, Supplementary Table 1; the greater deviations for the five-helix design 

likely reflects the loss of a helix). The five-helix framework, but not the six-helix framework, 

bound GFP fused sixth-helix in a pull-down assay (Fig. 1f); the latter result is expected since 

if the interfaces are otherwise identical and the connecting linker unstrained, the 

intramolecular interaction should outcompete its intermolecular counterpart because of the 

reduced entropic cost of formation of intramolecular interactions. To enable the Key to 

outcompete the Latch, we tuned Kopen by incorporating mutations in the Latch that weaken 

its interaction with the Cage17–19. A Cage-Latch framework with two serine substitutions in 

the Latch (V223S/I238S) bound Key nearly as strongly as the five-helix Cage without the 

Latch (Fig. 1f, Extended Data 2); the two serines likely weaken the Cage-Latch interaction 

by decreasing the helical propensity of the Latch and increasing the cost of desolvating the 

Latch when it binds the Cage. In the absence of Key, the Latch is bound to the Cage as in the 

original monomer (their SAXS spectra are nearly identical and closely match those of the 

design models; Fig. 1e, Extended Data 1), but the guanidine hydrochloride denaturation 

midpoint and ΔGfolding are more similar to the truncated five-helix design indicating the 

mutations are destabilizing (Fig. 1d,e; Extended Data 1). We call such Cage-Latch 

frameworks Switches, and the Switch-Key pair LOCKR for Latching Orthogonal Cage-Key 

pRoteins for the remainder of this article.
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LOCKR Inducible Bim-Bcl2 Binding

We reasoned that a functional peptide sequence embedded in the Latch could be rendered 

inactive until Key binding frees the Latch from the Cage, and that activation could be tuned 

by modulating the thermodynamic parameters outlined in Fig. 1a. To install function into 

LOCKR, we selected the Bim-Bcl2 interaction central to apoptosis as a model system, and 

sought to cage Bim such that binding to Bcl2 only occurred in the presence of Key. Three 

Bcl2 binding peptides20,21 (Extended Data 3a) were chosen to sample a range of KLT and 

the base LOCKR structure was manipulated to sample a range of KCK and Kopen. The three 

sequences were embedded in the Latch by sampling different helical registers such that 

residues involved in binding to Bcl2 are sequestered in the Cage-Latch interface (Extended 

Data 3b,c), optimizing for the burial of hydrophobic residues and surface exposure of polar 

residues. (Supplementary Information). To enable sampling of a broader range of Kopen and 

KCK values, we expanded the available interaction surface area for the Cage:Latch and 

Cage:Key interactions by lengthening the helices in the Switch by 5-, 9-, or 18-residues 

(Extended Data 3d), taking advantage of the modular nature of parametric de novo helical 

bundles2,22,23. Increasing Cage:Latch affinity (decreasing Kopen) makes the system more 

“off” in absence of Key, and extending the Key to increase affinity for the Cage could allow 

it to better outcompete the Latch once Kopen is appropriately tuned (increase Kopen relative 

to KCK). A design caging full length Bim with Cage, Latch and Key each extended by 18-

residues is fully off in the absence of Key (Fig. 2a left). Strongest inducible binding was 

observed with a Latch truncated by 9 residues and a full-length Key (Fig. 2a right); the Key 

buries more surface area and hence outcompetes the Latch for Cage binding. Addition of 

Key activated Target binding by BimSwitch over forty-fold (Fig. 2b), comparable to or better 

than naturally occurring protein interaction switches24–26.

According to the model in Fig. 1a, the range of Key concentrations over which BimSwitch 

activates is controllable by tuning KCK and KLT. We investigated using BLI (Biolayer 

Interferometry) to monitor binding to Bcl2 in response to different length Keys, hence 

different KCK (Fig. 2c). These activate BimSwitch at different concentrations: a 40-residue 

Key produces no activation (pale green), a 45-residue Key activates with an EC50 of 230 +/

− 58 nM (green), and the full-length 58 residue Key activates with an EC50 of 27.0 +/− 2.8 

nM (dark green, Fig. 2b,c). To probe how LOCKR activation depends on KLT, we used 

different affinity targets: Bcl2, BclB, and Bak bind non-caged Bim with Kds of 0.17 nM21, 

20 nM21, and 4.2 μM (Extended Data 4a), respectively. Consistent with the Fig. 1a model, 

activation of BclB binding requires higher Key concentrations than activation of Bcl2 

binding, while Bak does not bind in this range of Key concentrations (Extended Data 4b). 

The equilibria involved in activation are indeed sensitive to small changes in the binding free 

energy of both Key and Target.

To enable independent caging and specific unlocking of different protein functions in the 

same cell, we sought to create orthogonal Switch-Key pairs by incorporating different 

hydrogen bond networks at the Cage-Latch/Key interface through Rosetta design27,28 (see 

Supplementary Information). Designs BimLOCKRb and BimLOCKRc show 22-fold and 8-

fold activation with their cognate Keys (Fig. 2d). The original BimLOCKR (BimLOCKRa) 

and the new designs are mutually orthogonal; each Switch is activated only by its cognate 
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Key at concentrations up to 5 μM (Fig. 2e), illustrating the power of the buried hydrogen 

bond network approach to achieving specificity.

LOCKR inducible protein degradation

We sought to couple Switch activation to protein degradation in living cells by caging the 

cODC degron29. The caging strategy employed for Bim was used to embed three variants of 

cODC into Switcha: the wild-type sequence, wild-type with a proline removed (since proline 

destabilizes -helices), and the central dipeptide CA (Extended Data 5). Designs were 

characterized in S. cerevisiae using a dual-inducible expression system30 to independently 

titrate Switch fused to yellow fluorescent protein (YFP) expression and Key fused to blue 

fluorescent protein (BFP) expression (Fig. 3a). Key induced degradation was dependent on 

the presence of the degron in the Switch, and was not observed when YFP was fused to 

either BimSwitcha or Switcha (Extended Data 5). We optimized the amount of inducible 

degradation by varying the Switch toehold length to tune Kopen (Extended Data 5), and 

found the Switch with proline removed and a 12-residue toehold had the largest dynamic 

range (hereafter referred to as degronSwitcha). Keys of different lengths (43 residues versus 

55 residues) produced a similar dynamic range of Switch activation, but a higher Key 

concentration was required for maximal activation for the shorter Key (Fig. 3b; Extended 

Data 6), as in the case of BimLOCKR in vitro (Fig. 2d), suggesting the Fig 1a model holds 

in living cells. Key fluorescence was independent of degronSwitcha concentration (Extended 

Data 6), suggesting the Key is not co-degraded with degronSwitcha. We next examined the 

dynamics of activation, and found that the amount of YFP-degronSwitcha starts decreasing 

shortly after induction of Key, reaching a new steady-state in ~3 hours (Fig 3c). Taking into 

account the rates of synthesis (Supplementary Information), we estimate a 24 minute half-

life for activated degronSwitcha, which is similar to the previously measured 11–30 

minutes29 for the cODC degron.

We next designed orthogonal degronLOCKRs to enable Key-induced degradation of 

different proteins in the same cell by installing the proline-removed cODC degron in 

LOCKRb and LOCKRc. YFP fusions of these designs were expressed together with each 

Key variant fused to cyan fluorescent protein (CFP). degronLOCKRa and degronLOCKRc 

were strongly activated by their cognate Keys, but not by each other’s Key (LOCKRb did not 

activate; Extended Data 7). To test the orthogonality of degronLOCKRs in the same cell, we 

constitutively coexpressed degronLOCKRa and degronLOCKRc fused to YFP and red 

fluorescent protein (RFP), respectively, and titrated expression of each Key. Expression of 

Keya led to selective degradation of YFP but not RFP, and expression of Keyc, to selective 

degradation of RFP but not YFP (Fig. 3d).

To evaluate degronLOCKR function in mammalian cells, we expressed degronSwitcha fused 

to mCherry RFP in human HEK293T cells, and measured RFP fluorescence in the presence 

and absence of Key. A redesigned asymmetric degronSwitcha with an 8-residue toehold (see 

Supplementary Information; Extended Data 8) triggered a 11-fold reduction in mean RFP 

fluorescence in the presence of Key (Fig. 3e).
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degronLOCKR control of gene expression in live cells

We sought to use degronLOCKR to modulate the intracellular concentration of a synthetic 

transcription factor and dCas9 in yeast. We independently expressed a zinc-finger based 

synthetic transcription factor (synTF)31 fused to RFP-degronSwitcha, and Keya-BFP-NLS. 

Activity of the synTF was measured using YFP produced by the synTF promoter (Fig. 4a, 

left). Key induction triggered a 61% decrease in RFP (the transcription factor), and an 82% 

decrease in YFP (the transcription factor target), respectively (Fig. 4a, right; Extended Data 

9a). To investigate the generality of transcriptional control by degronLOCKR, an activating 

dCas9-VP64 fusion32 was fused to RFP-degronSwitcha and targeted to a tet operator site 

with a constitutively expressed sgRNA to induce expression of YFP (Fig. 4b, left). A 78% 

reduction of RFP and 41% reduction of YFP was observed upon induction of Key (Fig. 4b, 

right; Extended Data 9b). Together, these results demonstrate the modularity and 

functionality of degronLOCKR for controlling the stability of proteins in live cells.

LOCKR inducible nuclear export

To investigate inducible control over nuclear localization, we caged a nuclear export 

sequence (NES33) in Switcha (Extended Data 10a,b) using the same strategy as for Bim and 

cODC, and fused the resulting nesSwitcha to YFP with a nuclear localization sequence34. 

An RFP-histone fusion (HTA2) was constitutively expressed in the same yeast cells to act as 

a nuclear marker (Fig. 5a). YFP co-localized with RFP in the nucleus in the absence of 

Keya-BFP, but upon expression of Keya-BFP the YFP fluorescence becomes more cytosolic, 

likely due to uncaging of the nuclear export signal (Fig. 5b; Extended Data 10c, d).

Next we used nesLOCKR to control the nuclear localization of synTF to modulate its 

activation of the pSynTF promoter. Using the dual-induction system, we expressed synTF-

RFP-nesSwitcha and Keya-BFP in the same cell as a pSynTF-YFP reporter, and observed 

that induction of Key caused a 33% decrease in YFP signal, indicating successful activation 

of nesLOCKR and exclusion of synTF from the nucleus (Fig. 5c; Extended Data 10e). 

Together, these results demonstrate our ability to cage different functional peptide motifs in 

live cells, highlighting the modularity and utility of LOCKR.

Conclusions

The design of tunable and generalizable protein switches is a considerable advance for de 
novo protein design. In the switchable LOCKR system described here, a designed key added 

in trans induces a large conformational change in a designed cage that unlocks protein 

function. We demonstrate the power and generality of LOCKR by caging three distinct 

functions: in vitro, the proapoptotic peptide Bim binding to Bcl2, and in cells, protein 

degradation mediated by the cODC degron and protein localization via a nuclear export 

sequence. The modularity and hyperstability of de novo designed proteins enables tuning of 

Switch activation over a broad dynamic range by modulating the strength of the competing 

Cage-Key and Cage-Latch interfaces. Moving forward, LOCKR provides a general approach 

for controlling function that should be applicable to a wide range of proteins and synthetic 

biology challenges.
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It is instructive to compare LOCKR to regulatory systems in nature that utilize 

autoinhibition and efforts to co-opt those systems for engineered protein switches. 

Activation of apoptosis by the pro-apoptotic proteins Bak and Bax can be triggered by 

displacement of auto-inhibitory interactions35, analogous to Key activation in LOCKR. 

Actin nucleation is modulated by N-WASP, which has an autoinhibited actin nucleating 

Arp2/3 binding domain that is released upon binding to the activators Cdc42 and PIP236. A 

number of proteins, including N-WASP, have been repurposed to control non-cognate 

functions in a switchable, inducible manner37,38, but the LOCKR system has several 

advantages. First, LOCKR is a universal platform to cage and then activate functionalities at 

will ranging from inducible activation of high-affinity protein-protein interactions to 

controlled degradation or localization of an attached cargo. Second, for any functional 

modality, many cargoes can be regulated: here we couple key-induced LOCKR-gated 

degradation to fluorescent protein levels both directly through fusion and indirectly through 

fusion to an activating transcription factor; kinases can also be controlled in the same way 

(see accompanying paper). Strategies that rely on repurposing natural proteins have 

modularity and tunability limited by the evolved functions and ligands of these existing 

proteins, whereas altering the affinities of LOCKR components is tunable based on simple 

design principles that are generally irrespective of the functional modality or application. 

Our use of a toehold for tuning helical displacement is reminiscent of DNA strand 

displacement technology39,40, but unlike nucleic acid based approaches such as, genetic 

toggles41, or riboswitches42,43 (which have largely focused on controlling transcription), 

LOCKR systems can be readily integrated with the many diverse processes controlled by 

proteins. Viewed in this light, LOCKR brings to proteins the programmability of DNA 

switching technology, with the added advantages of tunability and flexibility over rewired 

natural protein systems, and ready interfacing with biological machinery over DNA 

nanotechnology [add reference to paper #2]. More generally, the domain of sophisticated 

environmentally sensitive and switchable function no longer belongs exclusively to naturally 

occurring proteins.

Methods

PCR mutagenesis and isothermal assembly

All primers for mutagenesis were ordered from Integrated DNA Technologies (IDT). 

Mutagenic primers were designed to anneal >18bp on either side of the site for mutagenesis 

with the desired mutation encoded in the primer. PCR was used to create fragments 

upstream and downstream of the mutation site with >20bp overlap with the desired pET 

vector. The resulting amplicons were isothermally assembled into either pET21b, pET28b, 

or pET29b restriction digested with XhoI and NdeI and transformed into chemically 

competent E. coli XL1-Blue cells. Monoclonal colonies were sequenced with Sanger 

sequencing. Sequence verified plasmid was purified using Qiagen miniprep kit and 

transformed into chemically competent E. coli BL21(DE3)Star, BL21(DE3)Star-pLysS cells 

(Invitrogen), or Lemo21(DE3) cells (NEB) for protein expression.
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Synthetic gene construction

Synthetic genes were ordered from Genscript Inc. (Piscataway, NJ, USA) and delivered in 

pET 28b+, pET21b+, or pET29b+ E. coli expression vectors, inserted at the NdeI and XhoI 

sites of each vector. For pET28b+ constructs, synthesized DNA was cloned in frame with 

the N-terminal hexahistidine tag and thrombin cleavage site and a stop codon was added at 

the C-terminus. For pET21b+ constructs, a stop codon was added at the C-terminus such 

that the protein was expressed with no hexahistidine tag. For pET29b+ constructs, the 

synthesized DNA was cloned in frame with the C-terminal hexahistidine tag. Plasmids were 

transformed into chemically competent E. coli BL21(DE3)Star, BL21(DE3)Star-pLysS cells 

(Invitrogen), or Lemo21(DE3) cells (NEB) for protein expression.

Bacterial protein expression and purification

Starter cultures were grown in Lysogeny Broth (LB) or Terrific Broth II (TBII) overnight in 

the presence of 50 μg/mL carbenicillin (pET21b+) or 30 μg/mL (for LB) to 60 μg/mL (for 

TBII) kanamycin (pET28b+ and pET29b+). Starter cultures were used to inoculate 500 mL 

of Studier TBM-5052 autoinduction media containing antibiotic and grown at 37 ℃ for 24 

hours. Cells were harvested by centrifugation at 4000 rcf for 20 minutes at 4 ℃ and 

resuspended in lysis buffer (20 mM Tris, 300 mM NaCl, 20 mM Imidazole, pH 8.0 at room 

temperature), then lysed by microfluidization in the presence of 1 mM PMSF. Lysates were 

cleared by centrifugation at 24,000 rcf for at least 30 minutes at 4 ℃. Supernatant was 

applied to Ni-NTA (Qiagen) columns pre-equilibrated in lysis buffer. The column was 

washed twice with 15 column volumes (CV) of wash buffer (20 mM Tris, 300 mM NaCl, 40 

mM Imidazole, pH 8.0 at room temperature), followed by 15 CV of high-salt wash buffer 

(20 mM Tris, 1 M NaCl, 40 mM Imidazole, pH 8.0 at room temperature) then 15 CV of 

wash buffer. Protein was eluted with 20 mM Tris, 300 mM NaCl, 250 mM Imidazole, pH 

8.0 at room temperature. Proteins were further purified by gel filtration using FPLC and a 

Superdex™ 75 Increase 10/300 GL (GE) size exclusion column, pooling fractions 

containing monomeric protein.

Size-exclusion Chromatography, Multi-Angle Light Scattering (SEC-MALS)

SEC-MALS experiments used a Superdex™ 75 Increase 10/300 GL (GE) size exclusion 

column connected to a miniDAWN TREOS multi-angle static light scattering and an Optilab 

T-rEX (refractometer with EXtended range) detector (Wyatt Technology Corporation, Santa 

Barbara CA, USA). Protein samples were injected at concentrations of 3–5 mg/mL in TBS 

(pH 8.0). Data was analyzed using ASTRATM (Wyatt Technologies) software to estimate 

the weight average molar mass (Mw) of eluted species, as well as the number average molar 

mass (Mn) to assess monodispersity by polydispersity index (PDI) = Mw/Mn.

Circular dichroism (CD) measurements

CD wavelength scans (260 to 195 nm) and temperature melts (25 to 95 ℃) were measured 

using an AVIV model 420 CD spectrometer. Temperature melts monitored absorption signal 

at 222 nm and were carried out at a heating rate of 4 ℃/min. Protein samples were at 0.3 

mg/mL in PBS pH 7.4 in a 0.1 cm cuvette. Guanidinium chloride (GdmCl) titrations were 

performed on the same spectrometer with an automated titration apparatus in PBS pH 7.4 at 
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25 ℃, monitored at 222 nm with protein sample at 0.03 mg/mL in a 1cm cuvette with stir 

bar. Each titration consisted of at least 40 evenly distributed concentration points with one 

minute mixing time for each step. Titrant solution consisted of the same concentration of 

protein in PBS + GdmCl. GdmCl concentration was determined by refractive index.

Small angle X-ray scattering (SAXS)

Samples were exchanged into SAXS buffer (20 mM Tris, 150 mM NaCl, 2% glycerol, pH 

8.0 at room temperature) via gel filtration. Scattering measurements were performed at the 

SIBYLS 12.3.1 beamline at the Advanced Light Source. The X-ray wavelength (λ) was 1.27 

Å and the sample-to-detector distance of the Mar165 detector was 1.5 m, corresponding to a 

scattering vector q (q = 4π*sin(θ/λ) where 2θ is the scattering angle) range of 0.01 to 0.59 

Å−1. Data sets were collected using 34 0.2 second exposures over a period of 7 seconds at 11 

keV with protein at a concentration of 6 mg/mL. Data were also collected at a concentration 

of 3 mg/mL to determine concentration-dependence; all presented data was collected at the 

higher concentration as no concentration-dependent aggregation was observed. Data from 32 

exposures was averaged separately over the Gunier, Parod, and Wide-q regions depending on 

signal quality over each region and frame. The averages were analyzed using the ScÅtter 
software package to analyze data and report statistics (Extended Data Table 1). FoXS was 

used to compare design models to experimental scattering profiles and calculate quality of fit 

(X) values. The hexahistidine tags and thrombin cleavage sites on the N-termini of LOCKR 

proteins were modeled using Rosetta Remodel so that the design sequence matched that of 

the experimentally tested protein. To capture conformational flexibility of these residues, 

100 independent models were generated, clustered, and the cluster center of the largest 

cluster was selected as a representative model for FoXS fitting without bias.

GFP pulldown assay

His-tagged LOCKR was expressed per the above protocol from pET28b+ while the Key was 

expressed fused to superfolder GFP (sfGFP) without a his-tag in pET21b+. The his-tagged 

LOCKR was purified to completion and dialyzed into TBS (20 mM Tris, 150 mM NaCl, pH 

8.0 at room temperature); the Key-GFP remained as lysate for this assay. 100 μL LOCKR at 

>1 μM was applied to a 96-well black Pierce® Nickel Coated Plate (ThermoFisher) and 

incubated at room temperature for 1 hour. Sample was discarded from the plate and washed 

3x with 200 μL TBST (TBS + 0.05% Tween-20). 100 μL of lysate containing Key-GFP was 

added to each well and incubated at room temperature for 1 hour. Sample was discarded 

from the plate and washed 3x with 200 μL TBST (TBS + 0.05% Tween-20). The plate was 

washed 1x with TBS, and 100 μL of TBS was added to each well. sfGFP fluorescence was 

measured on a Molecular Devices SpectraMax M5 plate reader or BioTek Synergy Neo2 

plate reader; fluorescence was measured at 485 nm excitation and 530 nm emission, with a 

bandwidth of 20 nm for excitation and emission.

Bio-Layer Interferometry (BLI)

BLI measurements were made on an Octet® RED96 System (ForteBio) with streptavidin 

(SA) coated biosensors and all analysis was performed within ForteBio Data Analysis 

Software version 9.0.0.10. Assays were performed with protein diluted into HBS-EP+ 

Buffer from GE (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% v/v Surfactant P20, 
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0.5% non-fat dry milk, pH 7.4 at room temperature). Biotinylated Bcl2 was loaded onto the 

SA tips to a threshold of 0.5 nm programmed into the machine’s protocol. Baseline was 

obtained by dipping the loaded biosensors into HBS-EP+ buffer; association kinetics were 

observed by dipping into wells containing defined concentrations of LOCKR and Key, then 

dissociation kinetics were observed by dipping into the buffer used to obtain the baseline. 

Kinetic constants and response at equilibrium were computed by fitting a 1:1 binding model.

Construction of DNA circuits

Hierarchical golden gate assembly was used to assemble plasmids for yeast strain 

construction using the method in Lee et al.44. Individual parts had their BsaI, BsmBI, and 

NotI cut sites removed to facilitate downstream assembly and linearization. Parts were either 

generated via PCR or purchased as gBlocks from IDT. These parts were assembled into 

transcriptional units (promoter-gene-terminator) on cassette plasmids. These cassettes were 

then assembled together to form multi-gene plasmids for insertion into the yeast genome.

Yeast strains and growth media

The base S. cerevisiae strain used in all experiments was BY4741 (MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0). All yeast cultures were grown in YPD media (10 g/L Bacto Yeast Extract, 

20 g/L Bacto peptone, 20 g/L dextrose) or synthetic complete medium (SDC) (6.7 g/L 

Bacto-yeast nitrogen base without amino acids, 2 g/L complete supplement amino acid mix, 

20 g/L dextrose). Selection of auxotrophic markers (URA3, LEU2, and/or HIS3) was 

performed on synthetic complete medium with the appropriate dropout amino acid mix. All 

yeast strains used in this work are listed in Supplementary Table 4 and 5.

Estradiol and Progesterone induction—Yeast strains were grown overnight by 

picking a single colony from a plate into YPD media. Saturated culture was diluted 1:500 in 

fresh SDC and aliquoted into individual wells of a 2 mL 96 well storage block (Corning) for 

a three hour outgrowth at 30 ℃ and 900 RPM in a Multitron shaker (Infors HT). Estradiol 

(Sigma-Aldrich) and progesterone (Fisher Scientific) were prepared at a 10x concentration 

by making the appropriate dilutions into SDC from a 3.6 mM estradiol and 3.2 mM 

progesterone stock solution. After the three hour outgrowth, 50 μl of estradiol and 

progesterone inducer were added to the 96 well block in the appropriate combinations and 

the block was returned to the shaker. Flow cytometry measurement was performed after six 

hours of incubation for all experiments, except for those involving synTF or dCas9, which 

was allowed to incubate for 12 hours due to the additional transcriptional step in the system.

Mammalian Cell Culture and Lentiviral Transduction

HEK293T cells (from ATCC® CRL-3216™) were maintained in DMEM (Dulbecco’s 

Modified Eagle Medium, Gibco) supplemented with 10% Fetal Calf Serum (SAFC) and 

passaged every ~3 days. Cell line was not authenticated nor tested for mycoplasma 

contamination. Pantropic VSV-G pseudotyped lentivirus was produced via transfection of 

Lenti-X 293T cells (Clontech #11131D) with a custom pHR’SIN:CSW transgene expression 

vector and the viral packaging plasmids pCMVdR8.91 and pMD2.G using Fugene HD 

(Promega). At 48 hr, viral supernatant was harvested and the HEK293T cells were exposed 
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to the virus for 24 hr. Transductions were performed in triplicate. All plasmids used for 

HEK293T experiments are listed in Supplementary Table 6.

Description of automated flow cytometry and continuous culture system

Hardware—We adapted an existing automated experimental platform45 to perform variable 

concentration small molecule induction and long-term culturing. Yeast cultures were grown 

in 50 mL optically clear conical tubes (Falcon) that were held in eight custom temperature-

controlled, magnetically stirred chambers. Liquid handling was accomplished using a 14 

position stream selector (VICI Cheminert) and two syringe pumps (Cavro XCalibur Pump, 

TECAN) of a BD High-Throughput Sampler. Commands to the HTS were controlled using 

LABVIEW 2013. This setup allowed for periodic sampling and dilution of individual 

cultures. Each sampling period consisted of three main steps: 1) send sample to flow 

cytometer for measurement, 2) extract culture and send to waste, and 3) replenish culture 

with fresh media at desired hormone concentration. Each sampling period can be designated 

to either induce cultures to a new higher hormone concentration or to maintain desired 

hormone concentration. A sampling frequency of 24 minutes and a dilution volume of 3 mL 

were used.

Yeast culture—Yeast strains were grown overnight by picking a single colony from a plate 

into YPD media. Saturated culture was diluted 1:200 into fresh SDC. Cultures were grown 

for 2 hours in glass tubes at 30 ˚C and 250 RPM in a Innova 44 shaker (New Brunswick). 

Cultures were then diluted to 0.01 OD600 in fresh SDC and aliquoted into individual 50 mL 

optically clear conical tubes (Falcon) at a total volume of 30 mL YPD. Another one hour 

outgrowth was performed in bioreactors with magnetically-controlled stir bars at 30 ˚C. All 

SDC media was supplemented with 5,000 U/mL Penicillin Streptomycin (Thermo-Fisher).

Estradiol and progesterone induction to test degronLOCKR dynamics—A 1X 

concentration was determined by the highest desired hormone concentration at which to test 

strains (30 nM E2 and 50 nM Pg, respectively). A solution of E2 and SDC media was 

created at a 10X concentration to bring pre-induced cultures to a desired concentration in 

one sampling period. A second solution of Pg and SDC media was created at a 10X 

concentration to induce Key expression after degSwitch-YFP expression reached steady-

state. SDC media was prepared at three different concentrations of hormone: (1) 10X E2/no 

Pg, (2) 1X E2/no Pg, (3) 1X E2/10X Pg, and (4) 1X E2/1X Pg. After a one hour outgrowth 

in bioreactors (t=−6 hr), the first induction was performed to achieve E2 concentration by 

extracting 3 mL from all cultures and replenishing with (1). After E2 induction, sampling 

proceeded as described above (see Hardware). All sampling periods following the first 

induction time point included sending a sample to the cytometer for measurement, extracting 

3 mL from all cultures, and replenishing cultures with (2). During the second induction time 

point (t=0 hr), cultures were induced with (3) to activate Key expression. This induction was 

followed by the same procedure as the first induction, except that hormone concentrations 

were maintained by (4). Controls (no activated Key expression) did not undergo a second 

induction and, instead, continued to be replenished by (2).
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Flow cytometry

Yeast experiments—Analysis of fluorescent protein expression was performed using a 

BD LSRII flow cytometer (BD Biosciences) equipped with a high-throughput sampler. Yeast 

cultures were diluted in TE before running through the instrument to obtain an acceptable 

density of cells. YFP (Venus) fluorescence was measured using the FITC channel, RFP 

(mScarlet) was measured using the PE-Texas Red channel, and BFP (mTagBFP2) was 

measured using the DAPI channel. For steady-state measurements, 5,000–10,000 events 

were collected per sample. For dynamic measurements, 2,000–10,000 events were collected 

per sample. Fluorescence values were calculated as the height (H) measurement for the 

appropriate channel and normalized to cell size by dividing by side scatter (SSC-H). All 

analysis of yeast flow cytometry data was performed in Python 2.7 using the package 

FlowCytometryTools v0.5.0 and custom scripts.

HEK293T experiments—Analysis of fluorescent protein expression was performed using 

a BD Fortessa flow cytometer (BD Biosciences) equipped with a high-throughput sampler. 

Cells were harvested and washed twice in PBS before running through the instrument in 

PBS+5% FBS. RFP (mCherry) fluorescence was measured using the PE-CF594 channel and 

BFP (tagBFP) was measured using the BV 421 channel. 50,000 events were collected per 

sample. Live cells were gated according to FSC-A and SSC-A, and singlets were gated 

according to SSC-A and SSC-H. Analysis of HEK293T flow cytometry data was performed 

using FlowJo v10.

Fluorescence microscopy

Saturated culture was diluted 1:100 in fresh SC media followed by a 3 hour outgrowth at 

30 ℃ with shaking at 700 RPM in a Multitron shaker (Infors HT). Estradiol (Sigma-

Aldrich) and progesterone (Fisher Scientific) were prepared at a 20x concentration by 

making the appropriate dilutions into SC media from a 3.6 mM estradiol and 3.2 mM 

progesterone stock solution. Cells were induced with estradiol and/or progesterone at a final 

concentration of 200 μM and 250 μM, respectively. After 8 hours of growth, cells were 

resuspended in 1x PBS and imaged on a Zeiss Axio Observer Z1 microscope with X-Cite 

Series 120 fluorescent lamp and Hamamatsu Orca-Flash 4.0 Digital Camera.

Structural visualization and figures

All structural images for figures were generated using PyMOL46.

Extended Data
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Extended Data Figure 1: Biophysical data from LOCKR design.
a) Size Exclusion Chromatography for the Monomer, Truncation, and LOCKR designs on 

Superdex 75. Peaks indicated by vertical dashed lines represent monomeric protein used in 

downstream characterization and functional assays. SEC repeated three times with similar 

results. b) Circular dichroism spectroscopy to determine protein stability upon heating and 

chemical denaturant, guanidinium chloride. Top row: full wavescan at 25°C (blue), 75°C 

(orange), 95°C (red), then cooled to 25°C (cyan). Middle row: guanidinium chloride melts 

also shown overlapped in Figure 1d. Bottom row: fraction folded was converted to 

equilibrium constant, then to ΔGunfolding value. The linear unfolding region, marked by 

vertical lines in middle row, was fit to determine the ΔGfolding for each design. Repeated four 

times with similar results. c) SAXS spectra (black) referenced in Figure 1e fit to Rosetta 

design models (red) using FoXS with chi-values referenced in the upper right.
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Extended Data Figure 2: GFP pulldown assay finds mutations for LOCKR.
Different putative LOCKR constructs were adhered via 6x-His tag to a Ni coated 96-well 

plate, Key-GFP was applied, and excess washed. Resulting mean fluorescence values 

represent Key-GFP bound to LOCKR constructs. The truncation was used as a positive 

control, since the Key binds to the open interface. The monomer as a negative control since 

it does not bind the Key. Error bars represent the standard deviation of three technical 

replicates, because Key-GFP was not purified from bacterial lysate leading to minor 

technical variability.
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Extended Data Figure 3: Caging Bim-related sequences.
a) Three Bcl2 binding sequences were grafted onto the Latch. aBcl2 is a single helix from a 

designed Bcl2 binder (pdb: 5JSN) where non Bcl2-interacting residues were reverted back to 

the standard LOCKR Latch sequence, shown as dashes. pBim is the partial Bim sequence 

where only Bcl2-interacting residues are grafted onto the Latch. Bim is the full consensus 

sequence of the BH3 domain. b) LOCKR (left) with the Latch in dark blue. The helical Bim 

sequence is taken from the Bim/Bcl2 interaction and grafted onto the Latch c) Left: Bcl2 

(tan) binding to Bim (orange) from pdb:2MV6 with pBim residues shown as sticks. Center: 

a well caged graft where important binding residues are caged. Right: a poor graft where 

Bcl2 binding residues are exposed and polar surface residues are against the Cage interface. 

d) Tuning BimLOCKR. aBcl2, pBim, and Bim were caged to varying degrees of success. 

Early versions of the switch, with aBcl2 and pBim did not efficiently cage Bcl2 binding in 

the off state. They also only weakly bound the Key leading to small dynamic range. The 
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Cage and Key was extended by 5, 9, and 18 residues in an attempt to provide a larger 

interface to tightly hold the Latch in the off state and provide a larger interface for Key 

binding to increase the dynamic range of activation. Mutations on the Latch, identified in 

Extended Data 2, and providing toeholds for Key binding were the two strategies employed 

to tune the switch. In graphs, “off” refers to 250–310 nM switch an absence of Key while 

“on” refers to excess Key added. The height of the bar graph shows the Req as measured by 

Bio-layer interferometry.
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Extended Data Figure 4: Validation of model in Figure 1a.
a) Measurement of Bim:Bak affinity. Bio-layer interferometry (BLI) at three concentrations 

gives on and off rates for Bim:Bak binding, yielding the constants shown on right. Mean 

shown with standard deviation of four technical replicates to account for variablility in drift 

on the BLI instrument. b) BLI measurement of BimLOCKRa (400 nM) binding to Bcl2 

(gold), BclB (yellow), and Bak (lighter yellow - BimLOCKR at 1 μM) as Key is added to 

solution. Normalized due to differences in Rmax for Bcl2 and BclB on the tip. c) BLI 

measurement of BimLOCKRa binding to Keya immobilized on the tip. Open circles are with 

no Bcl2 present, gold points are with Bcl2 present at 500 nM.
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Extended Data Fig 5: Caging cODC sequences.
a) Three variations of the cODC degron to Cage. Variations meant to tune Kopen by 

removing the destabilizing proline (noPro) and minimizing mutations to the Latch (CA 

only). b) Predicted models of the full and noPro cODC sequences (orange) threaded onto the 

Latch (dark blue). Thread position chosen such that the cysteine residue needed for 

degradation is sequestered against the Cage (light blue). Proline highlighted in red in the full 

cODC mutated to an isoleucine in the noPro variant. c) Comparing the stability of YFP 

fused to cODC variants caged in Switcha to an empty Switcha and to bimSwitcha. The dual-

inducible system from Fig 3a was used to express the various YFP-Switcha fusions (solid 

lines and dots) via pGAL1 and E2, and Keya-BFP via pZ3 and Pg. YFP (Venus) alone, YFP 

fused to the WT cODC (cODC) or YFP fused to the proline removed cODC (cODC noPro), 

were also expressed using pGal1 and E2 (dashed lines). Cells were induced with a saturating 

dose of E2 (50 nM) and Pg was titrated in from 0–200 nM. Fluorescence was measured at 
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steady-state using a flow cytometer; data represent mean ± s.d. of three biological replicates. 

Lines connecting data are a guide to the eye. A moderate decrease in YFP fluorescence was 

observed as a function of Pg for the full cODC variant, whereas only a small decrease was 

observed for the proline removed and CA only. No decrease in fluorescence was observed as 

a function of Key induction for YFP alone, empty Switcha, or bimSwitcha. d) Tuning 

toehold lengths of degronLOCKRa. The dual-inducible system from Fig 3a was used to 

express the various YFP-Switcha fusions via pGal1 and E2, and Keya-BFP via pZ3 and Pg. 

YFP fused to the proline-removed cODC (cODC no Pro) was also expressed using pGal1 

and E2 (dashed line). Cells were induced with a saturating dose of E2 (50 nM) and Pg was 

titrated in from 0–200 nM. Fluorescence was measured at steady-state using a flow 

cytometer; data represent mean ± s.d. of three biological replicates. Lines connecting data 

are a guide to the eye. (Left) cODC variants alone to show dynamic range of Full cODC. 

(Right) Extending toehold on proline-removed version from 9 to 12 and 16aa. Proline-

removed with 12aa toehold shows the greatest dynamic range of all the Switches tested.
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Extended Data Figure 6: YFP (a) and BFP (b) expression corresponding to Fig 3b.
0–50nM E2 and 0–200nM Pg were used to induce expression of YFP-degronSwitcha and 

Keya (Full-length or truncated)-BFP, respectively. Fluorescence was measured at steady-

state using a flow cytometer. Heatmaps depict mean fluorescence and are a representative 

sample of three biological replicates. E2 dose (50nM) depicted in Fig 3b is indicated with 

the black rectangle on the heatmaps. YFP fluorescence was normalized to the maximum 

fluorescence (50nM E2, 0nM Pg). BFP expression was not dependent on expression of the 

Switch, suggesting the Key does not co-degrade with the Switch.
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Extended Data Figure 7: degronLOCKRa-d orthogonality.
All combinations of pTDH3-YFP-degronSwitch and pTDH3-Key-CFP were tested. 

Fluorescence was measured at steady-state using a flow cytometer. YFP fluorescence was 

averaged across three biological replicates. Percentage degradation was calculated by 

subtracting the mean YFP-degronSwitch fluorescence with the given Key-CFP coexpressed 

from the YFP-degronSwitch fluorescence without any Key expressed and normalizing by 

the YFP-degronSwitch fluorescence without any Key expressed. degronSwitcha is activated 

strongly by Keya and weakly by Keyb. degronSwitchc is activated strongly by Keyc and 

weakly by Keyb. Because degronSwitcha and degronSwitchc are not activated by Keyc and 

Keya respectively, we consider these two to be an orthogonal pair.
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Extended Data Figure 8: Comparison of different degronSwitch variants in HEK293T cells.
Fluorescence of RFP-degronSwitch variants in the presence and absence of Key-BFP were 

measured using flow cytometry. Original symmetric design was compared against a new 

asymmetric design. Two toehold lengths were tested for each variant. Data in bar graph 

represents geometric mean ± s.d. of three biological replicates. Histograms are depicted for a 

representative sample. Asymmetric cage with a t8 toehold demonstrates the largest dynamic 

range.
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Extended Data Figure 9: YFP and RFP expression for synTF (a) and dCas9-VP64 (b)
assay corresponding to Fig 4 as a function of E2 (0–125 nM) and Pg (0–100 nM). YFP 

fluorescence represents transcriptional output of either synTF or dCas9-VP64 and RFP 

fluorescence represents fluorescence of either synTF or dCas9-VP64. Fluorescence was 

measured at steady-state using flow cytometry. Heatmaps depict mean fluorescence and are 

a representative sample of three biological replicates. E2 dose (31.25nM) depicted in Fig 5 is 

indicated with the black rectangle on the heatmaps.
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Extended Data Figure 10: Design and characterization of nesLOCKR.
a) NES used in this report. b) The NES (orange) caged on the helical Latch (dark blue, 

cartoon) with hydrophobic residues sequestered against the Cage (light blue, surface) c) 
(Left) Schematic of cytosolic YFP-nesSwitcha and Key-BFP with nuclear marker HTA2-

RFP. (Right) YFP fluorescence shows the expected cytosolic distribution when YFP-

nesSwitcha is expressed with no NLS (left) but punctae of YFP fluorescence is observed 

when both YFP-nesSwitcha and Key-BFP are expressed in the cytosol, which we assume is 

due to aggregation of the nesSwitcha. Key-BFP fluorescence is co-localized to YFP-

nesSwitcha fluorescence. d) (Left) Schematic of NLS-YFP-nesSwitcha with Key-BFP-NLS 

with nuclear marker HTA2-RFP. (Right) YFP-nesSwitcha is localized to the nucleus when 

expressed with the strong (SV40) NLS. When Key-BFP is expressed with a moderately 

strong NLS, the same pattern of cytosolic YFP punctae formation is observed as when Key-

BFP is expressed without a NLS (Figure 5b), indicating that uncaging of the NES is 
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independent of NLS on Key-BFP localization. Key-BFP-NLS fluorescence is co-localized to 

NLS-YFP-nesSwitcha fluorescence e) YFP and RFP expression for synTF assay 

corresponding to Fig 5c as a function of E2 (0–125 nM) and Pg (0–500 nM). Fluorescence 

was measured at steady-state using flow cytometry. Heatmaps depict mean fluorescence and 

are a representative sample of three biological replicates. E2 dose (31.25nM) depicted in Fig 

5c is indicated with the black rectangle on the heatmaps.
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Figure 1. Design of the LOCKR system.
a, The Switch, composed of a Cage (cyan) and Latch (blue) with a functional motif (orange), 

has a thermodynamic transition to the open state able to bind Key (green) or Target (yellow). 

b, Numerical solutions of the model in (a) for different values of KLT (1 nM, left; 50 nM, 

right) and Kopen (0.1, red; 0.001, orange; 1e-5, green; 1e-7, blue; 1e-9, purple) with KCK 

fixed at 1 nM. c, Conversion of 5L6HC3 to monomeric frameworks. In LOCKR (right), the 

double mutant V223S/I238S allows the Key to bind. d, Guanidinium chloride denaturation 

of trimer (dark blue), monomer (cyan), truncated five-helix framework (red), and LOCKR 

(green) monitoring mean residue ellipticity (MRE) at 222 nm. Repeated 3 times with similar 

results. e, Small-angle X-ray scattering (SAXS) Kratky plots for the monomeric frameworks 

are similar to that of the input trimer, with the greatest deviation for the five-helix 

framework. Colors continued from (d). f, Key-GFP was added to monomeric frameworks 

immobilized onto a plate via a hexahistidine tag; after washing, binding was measured by 

GFP fluorescence (mean of n=3 technical replicates, error bars indicate s.d).
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Figure 2. BimLOCKR design and activation.
a, Bio-layer interferometry (BLI) measurement of BimLOCKR (250 nM) binding to 

immobilized Bcl2 in the presence and absence of 5 µM Key. Bim is tightly caged in the 

absence of Key; introduction of the toehold (right) allows key to outcompete Latch leading 

to Bcl2 binding. b, BLI measurement of Key-dependent binding of 250 nM BimLOCKR to 

Bcl2. Purple is 3 µM Key, then a three-fold dilution of the Key through blue, cyan, green, 

yellow, and orange; control without Key in red. c, Bcl2 binding by BimLOCKR as a 

function of Key concentration. BLI data was fit for the different length Keys to obtain 

equilibrium sensor response. BLI experiments (b,c) repeated three times with similar results. 

d, Bcl2 binding of BimSwitcha (dark blue), BimSwitchb (blue), and BimSwitchc (light blue) 

designs in response to cognate Key, measured by BLI and normalized to Rmax. Repeated 

twice with similar results. e, Bcl2 binding in BLI experiments for each Switch at 250 nM, 

Key at 5 µM; data points are average Rmax of two replicates.
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Figure 3. Testing functionality of degronLOCKR in live cells.
a, Dual-induction system used in S. cerevisiae to test degronLOCKR function. b, Dose 

response of YFP-degronSwitcha and Keya-BFP at 50nM E2 as a function of Pg induction. 

YFP, normalized to no Pg; BFP normalized to max Pg. Lines connecting data are a guide to 

the eye. c, Dynamics of degronLOCKR using an automated flow cytometry platform. Cells 

were grown to steady-state at 50nM E2 then induced with Pg to express Keya-BFP at t0hrs. 

Lines represent moving average taken over three data points. d, Dose response of orthogonal 

degronLOCKRs as a function of Pg. YFP-degronSwitcha and RFP-degronSwitchc were 

expressed constitutively in the same cell with either Keya-BFP (left) or Keyc-BFP (right) 

expressed using Pg. YFP-degronSwitcha, RFP-degronSwitchc and either Keya-BFP or Keyc-

BFP were normalized to no Pg (RFP, YFP) or max Pg (BFP). Lines connecting data are a 

guide to the eye. e, Asymmetric RFP-degronSwitcha was expressed in HEK293T cells with 

and without Key. Flow cytometry distribution of RFP fluorescence for a representative 
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sample indicates decreased RFP expression in the presence of Key. Geometric mean of RFP 

expression is quantified in the bar plot. Data in all panels represent mean ± s.d. of three 

biological replicates.
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Figure 4. Controlling gene expression using degronLOCKR in yeast.
a, (Left) Dual-induction system used to determine the effect of degronLOCKRa on a 

synthetic transcription factor (synTF). (Right) Dose response of YFP, SynTF-RFP-

degronSwitcha and Keya-BFP-NLS at 31.25nM E2 as a function of Pg induction, normalized 

to no Pg (YFP, RFP) or max Pg (BFP). b, (Left) Dual-induction system used to determine 

the effect of degronLOCKRa on a dCas9-VP64 targeted to the pTet7x promoter. (Right) 

Dose response of YFP, dCas9-VP64-RFP-degronSwitcha and Keya-BFP-NLS at 31.25 nM 

E2 as a function of Pg induction, normalized to no Pg (YFP, RFP) or max Pg (BFP). Data in 

all panels represent mean ± s.d. of three biological replicates. Lines connecting data are a 

guide to the eye.
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Figure 5. Controlling protein localization using nesLOCKR in yeast.
a, Key-induced nuclear export of NLS-YFP-nesSwitcha. The nucleus is marked by the 

histone HTA2-RFP. b, Fluorescence microscopy showing co-localization of NLS-YFP-

nesSwitcha (green) with nuclear HTA2-RFP (red) fluorescence when no Keya-BFP is 

expressed (top), compared to a more diffuse NLS-YFP-nesSwitcha fluorescent signal 

observed outside of the nucleus when Keya-BFP is expressed (bottom). Images shown are 

representative of n=3 biological replicates. c, (Left) Dual-induction system used to 

determine the effect of nesLOCKRa on a synthetic transcription factor (synTF). (Right) 

Dose response of YFP, synTF-RFP-nesSwitcha and Keya-BFP at 31.25 nM E2 as a function 

of Pg induction, normalized to no Pg (RFP, YFP), maximum Pg (BFP). Data represent mean 

± s.d. of three biological replicates. Lines connecting data are a guide to the eye.
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