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We report on the first application of the stochastic Laplacian Heaviside method for computing multiparticle
interactions with lattice QCD to the two-nucleon system. Like the Laplacian Heaviside method, this method
allows for the construction of interpolating operators which can be used to construct a set of positive-definite
two-nucleon correlation functions, unlike nearly all other applications of lattice QCD to two nucleons in the
literature. It also allows for a variational analysis in which optimal linear combinations of the interpolating
operators are formed that couple predominantly to the eigenstates of the system. Utilizing such methods has
become of paramount importance to help resolve the discrepancy in the literature on whether two nucleons in
either isospin channel form a bound state at pion masses heavier than physical, with the discrepancy persisting
even in the SU(3)-flavor-symmetric point with all quark masses near the physical strange quark mass. This is
the first in a series of papers aimed at resolving this discrepancy. In the present work, we employ the stochastic
Laplacian Heaviside method without a hexaquark operator in the basis at a lattice spacing of a ≈ 0.086 fm,
lattice volume of L = 48a ≈ 4.1 fm and pion mass mπ ≈ 714 MeV. With this setup, the observed spectrum of
two-nucleon energy levels strongly disfavors the presence of a bound state in either the deuteron or dineutron
channel.

DOI: 10.1103/PhysRevC.103.014003

I. INTRODUCTION

Quantum chromodynamics (QCD), the fundamental the-
ory of nuclear strong interactions, encodes the interactions
of nearly massless quarks and massless gluons which are
confined into protons and neutrons, the nucleons, with a mass
of O(1) GeV. These nucleons, which form the basis of matter,
have a residual strong interaction that leads to the formation

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

of nuclei with binding energies that are typically two orders of
magnitude smaller than this confinement scale: in the case of
the deuteron, the smallest nucleus made of one proton and one
neutron, with a binding energy of Bd ≈ 2.2 MeV, the residual
interaction is a part-per-mille. In the case of the dineutron
system, the residual interaction is smaller still, leading to a
barely unbound system.

The nonperturbative nature of QCD at these low energies,
combined with these disparate energy scales, severely com-
plicates our ability to understand the emergence of nuclear
physics directly from the Standard Model (SM) of particle
physics. The only model-independent and systematically im-
provable method for computing the properties and interactions
of nucleons directly from QCD is lattice QCD (LQCD), the
Euclidean spacetime formulation of QCD on a finite and
discrete grid, or lattice. For a discussion of the importance,
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challenges, and prospects of connecting our understanding of
nuclear physics to the SM through a coupling of LQCD and
effective theories, see the recent review articles in Refs. [1–3].

The first application of LQCD to the two-nucleon sys-
tem was in the quenched approximation (infinitely massive
q̄q virtual pairs) 25 years ago [4]. The next calculation was
performed in 2006 using dynamical quarks with pion masses
ranging from 350 � mπ � 600 MeV [5]. Since that time,
there has been a measured growth in the application of LQCD
to systems with two or more baryons, with the first calcula-
tion of a bound two-baryon system appearing in 2010 [6,7].
However, significant challenges, most notably the exponen-
tially bad signal-to-noise (StoN) ratio [8], have prevented
substantive progress: some 15 years later, even with all the
growth in computing power and algorithmic advances, there
are still no computations of two-nucleon systems utilizing
the Lüscher method [9,10] with pion masses lighter than
mπ ≈ 300 MeV [11].

However, we have seen the emergence of LQCD calcula-
tions of light nuclei at mπ ≈ 800 MeV (up to A = 4) [12,13]
which have been used to match to a pion-less effective field
theory of few-nucleon interactions and used to calibrate and
predict nuclei up to A = 6 [14]. We have also seen the devel-
opment of a new method which first constructs a two-nucleon
potential, known as the HAL QCD potential [15–19], from
which a Schrödinger equation is solved and can then be used
to predict the scattering phase shifts. If the HAL QCD method
can be demonstrated to numerically agree with the Lüscher
method, then it offers a promising alternative for computing
the interactions of baryons from LQCD.

However, there is controversy in the literature concerning
the aforementioned agreement and, in turn, there is a discrep-
ancy on whether or not two nucleons form a bound state at
medium and heavy pion masses. In short, most calculations
of two-nucleons that utilize the Lüscher method observe the
presence of (deeply) bound deuteron and dineutron systems
at pion masses larger than ≈300 MeV [13,20–24]—with the
exception of the Mainz group which found a bound dineutron
to be unlikely at mπ ≈ 960 MeV [25]—while the HAL QCD
Collaboration, utilizing their potential method, concludes that
there are no bound states in either channel [17,26]. For a more
detailed discussion of the controversy, see the recent review in
Ref. [1].

Some have found it tempting to think this disagreement is
a demonstration that the HAL QCD method has uncontrolled
systematic uncertainties. However, while the Lüscher method
provides a rigorous mapping between the finite-volume en-
ergy spectrum and the infinite-volume scattering amplitudes,
there are potential unresolved systematic uncertainties in the
application of the method, particularly in properly identifying
the multiparticle energy spectrum. All applications that ob-
serve the existence of bound two-nucleon systems rely upon
a local hexaquark creation operator at the source and dilute,
two-nucleon momentum-space annihilation operators at the
sink. The HAL QCD Collaboration has shown that the ex-
tracted spectrum in many of these cases does not pass basic
consistency checks, demonstrating that there are larger sys-
tematic uncertainties than have been reported [27]. Combined
with the StoN challenges and the very small elastic scattering

energy gaps, this has led HAL QCD to speculate the calcula-
tions which observe bound states have been misled by “false
plateaux” in the effective masses of the system, which can
arise with non-positive-definite correlation functions [28].1

These non-positive-definite correlation functions require
the assumption that the overlap onto the eigenstates of the sys-
tem are dominated by a single interpolating field constructed
from the projection of each nucleon individually onto a state
of definite momentum at the sink side. Consider the center of
mass (CoM) for simplicity, such that

〈NN (q)| ∼
∑
x,y

c(p)〈0|eip·xe−ip·yN (x)N (y), (1)

where q is the relative interacting momentum, which is deter-
mined through the Lüscher quantization condition; p is given
by a noninteracting plane-wave momentum mode allowed in
the finite periodic volume, p = 2π

L n with n vector of integers;
and c(p) is a weight which can be chosen arbitrarily if a
single momentum mode p dominates the overlap (in practice,
the existing calculations have chosen c(p) = 1). For weakly
interacting systems, such as I = 2 ππ scattering, this type
of interpolating fields works reasonably well as demonstrated
by the consistency between the results from NPLQCD [32]
and HadSpec [33] which utilized this simplistic operator and
a full variational basis, respectively. For strongly interacting
systems, such as the two-nucleon system, the results in the
literature are insufficient to draw a conclusion one way or the
other as to how well this simplistic basis of interpolating fields
couples cleanly to the spectrum.

In contrast, with a variational basis of interpolating fields,
one is not restricted to this assumption and instead utilizes a
linear combination of creation and annihilation operators,

〈NN (q)| ∼
∑

p

∑
x,y

c(p)〈0|eip·xe−ip·yN (x)N (y), (2)

where now the c(p) coefficients are determined through a
diagonalization of the set of interpolating fields used and con-
strained by the numerical values of the correlation function.
Even with the variational basis, experience shows that it is
still necessary to have a large basis of operators which provide
sufficient overlap onto the various states of the system. For
example, in the I = 1 ππ system, one must include opera-
tors that look both like local ρ operators (q̄γμq) as well as
displaced two-pion operators to obtain a spectrum that is con-
sistent with the expected ρ resonance [34]. A similar study of
the negative parity nucleon found that a nonlocal Nπ operator
is required [35]. In the case of the two-nucleon system, it
could be that the hexaquark operator is important for coupling
to a deeply bound state, as speculated in Ref. [22].2

1This has been challenged, but not conclusively demonstrated to be
wrong [29–31].

2A recent study showed the use of hexaquark operators, at both
the source and sink, gives effective energies above threshold (and
even above effective energies utilizing two-baryon interpolators at
the sink) in the dineutron channel, suggesting a hexaquark operator
may not be necessary to accurately extract the spectrum [25].
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In the present work we take a first step toward trying
to resolve this discrepancy by performing the first LQCD
calculation of the two-nucleon systems in both isospin
channels using a positive-definite correlation matrix with a
variational basis of operators. The first application of a vari-
ational basis to two-baryon systems was applied recently
by the Mainz group to the H-dibaryon and dineutron sys-
tems [25,36] in which significant tension with the local
hexaquark results from NPLQCD was observed [6,13], al-
though some tension with the HAL QCD potential method
exists as well [7,26]. One possible explanation for this
is the use of only two dynamical quark flavors (with a
“quenched” strange quark) from Mainz, giving rise to po-
tentially large systematic effects in the determination of the
binding energy as compared to HAL QCD and NPLQCD.
Furthermore, all calculations were performed with a
single lattice spacing with different lattice actions.

For the present work, we focus on the two two-nucleon
channels with total isospin I = 0 and 1, which we refer to as
the deuteron and dineutron channel, respectively. We utilize
the stochastic Laplacian Heaviside method [37], which is a
stochastic variant of the distillation method [38]. We will
summarize the method in Sec. II. As discussed in Sec. III,
our calculation strongly disfavors a bound state in either the
deuteron or dineutron channel. We discuss the implications of
this work as well as the limitations and provide an outlook in
Sec. IV. For the broader community to have confidence in the
application of LQCD to nuclear physics, it is of paramount
importance to resolve the issue underlying the contradictory
results in the literature.

II. STOCHASTIC LAPLACIAN HEAVISIDE METHOD

A successful computation of two-nucleon energies relies
heavily on the construction of optimal operators. Unfor-
tunately, this leads to several sources of computational
difficulty. First, the six valence quarks present in two-nucleon
correlation functions give rise to a large number of Wick
contractions. Next, to maximize overlap onto the individual
finite-volume two-nucleon states, both nucleon interpolating
operators should be projected onto a definite spatial momen-
tum at the source and sink. Finally, two-nucleon interpolators
which transform irreducibly under the finite-volume remnant
of rotational symmetry require a summation over two-nucleon
momentum combinations which transform among themselves
under the little group.

The considerations above necessitate a flexible and effi-
cient treatment of all-to-all quark propagation in which the
quark propagator is determined between all spatial lattice
points. The stochastic Laplacian Heaviside (LapH) method,
which is employed here, has been successful for two-meson
[39,40] and meson-baryon [41] correlators. This method en-
ables a particular choice of quark smearing in which the quark
fields are projected onto the space spanned by the lowest Nev

eigenmodes of the gauge-covariant three-dimensional laplace
operator [38]. Stochastic estimators with Nr noise sources
are then introduced in this Nev × Nspin dimensional LapH
subspace rather than the entire spatial lattice, significantly
improving the variance [37].

The stochastic estimators are improved by ‘dilution’ [42],
in which each stochastic field is partitioned into Ndil fields,
each of which has support on a unique subset of the LapH sub-
space. For this work we employ Nev = 384, full spin dilution,
and 12 LapH eigenvector projectors, so Ndil = 4 × 12 = 48.3

To ensure unbiased estimates of products of quark propa-
gators, independent stochastic fields are required for each
valence quark line, so that estimates for the quark propagators
are given by

Qaα,bβ (x, y) = lim
Nr→∞

1

Nr

∑
r,d

φ(r,d )
aα (x)ρbβ (y)(r,d )∗, (3)

where (r, d ) denote the noise and dilution indices, respec-
tively, ρ(y) is a stochastic combination of LapH eigenvectors
and φ = Qρ is the result of a linear system solve, which
are solved efficiently in GPU accelerated nodes with QUDA
[43,44].

The computation of two-nucleon correlation functions is
also simplified with stochastic LapH. Each two-nucleon inter-
polator trasnforming irreducibly is given by

OII3�λ

 (P) =

∑
p1 p2

cII3�λ

1
2

N
1 N
2 , (4)

with definite isospin (I, I3), little group irrep �, irrep row
λ, and total momentum P. The additional identifier 
 distin-
guishes multiple linearly independent operators of this type,
while the labels 
1,2 for the single nucleon operators denote
the individual I3 and momenta p1,2. Note that all terms have
p1 + p2 = P, with the p1,2 in different terms related via little
group transformations. The coefficients cII3�λ


1
2
are determined

according to Ref. [45] and are available upon request.
When using stochastic LapH estimates for quark propaga-

tors, temporal correlators factorize into “source” and “sink”
functions which depend on the fields in Eq. (3) at a given
Euclidean time separation. For single nucleons, these fields
are

�
(i1,i2,i3 )

 (p, t ) = c(�,λ)

αβγ εabc

∑
x

eip·xφ(i1 )
aα (x)φ(i2 )

bβ (x)φ(i3 )
cγ (x)

(5)
and 

(i1,i2,i3 )

 (p, t ) [in which the φ(x) are replaced with ρ(x)],

where we have used the shorthand ik = (rk, dk ) to combine
the noise and dilution indices.

The rank-three tensors of Eq. (5) are contracted over the ik
to project onto definite (I, I3) and treat all Wick contractions
for each of the terms in Eq. (4). To produce an unbiased
stochastic estimate, each of the six valence quark lines in a two
nucleon correlation function require a different rk . However,
for a given set of stochastic sources, each permutation and
combination of six rk produces a new (in principle correlated)
estimate. However, even using the minimal number of noise
sources but moderately increasing the number of permutations
results in a scaling of the statistical errors consistent with

3In practice only the upper two spin components are used for the
computation of states propagating forward in time, reducing the
effective Ndil by a factor two in the correlator construction.

014003-3



BEN HÖRZ et al. PHYSICAL REVIEW C 103, 014003 (2021)

TABLE I. Bare parameters for the lattice action of the C103
ensemble.

ens. β V c0 κu,d = κs csw

C103 3.4 96 × 483 1.66 0.136497611186012 1.986246

independent measurements [46]. We use the maximal number
of permutations of six noise sources, accounting for nucleon-
level symmetries, giving a total of 180 permutations. Further
details of algorithmic improvements and the optimization of
our developed code are given in Appendix B.

III. LATTICE CALCULATION

We employ an isotropic clover-Wilson action with Nf =
2 + 1 dynamical fermions that matches the setup being used
by the CLS Collaboration [47]. We have generated the
new C103 ensemble with mu = md = ms ≈ mphys

s , using the
openQCD code [48] on the BlueGene/Q machine at LLNL
(Vulcan). The lattice spacing is a ≈ 0.086 fm [49] with a
lattice extent V = 483 × 96, periodic boundary conditions in
space and thermal boundary conditions in Euclidean time.
The C103 ensemble has four thermalized replicas (streams) of
about 400 configurations, and each replica is started from dif-
ferent thermalized configurations and with different random
seeds. Each configuration is saved after 2 HMC trajecto-
ries of length τ = 2 in molecular dynamic time units. The
bare parameters of the lattice action are provided in Table I.
The present computation of two-nucleon correlation functions
uses four time sources [cf. t in Eq. (5)] on 802 configurations
spanning two of the replicas, for a total of 3208 time-sources.

A. Correlation functions

At low temperatures the spectral decomposition of a two-
point correlation function is given by

Ci j (t ) =
∑

n

zi,nz̃†
j,ne−Ent , (6)

where zi,n = 〈|Oi|n〉 is the overlap of the nth enegy eigen-
state onto the vacuum through the annihilation operator
Oi. If the creation and annihilation operators come from a
Hermitian-conjugate basis, then this correlation function is
positive definite such that all zi,nz̃†

i,n = |zi,n|2 � 0. This simple
fact greatly simplifies the analysis of excited-state contamina-
tion to the ground-state contribution in Eq. (6). Specifically
it eliminates the possibility of having a false plateau which
could be generated by opposite sign contributions to Eq. (6)
from the lowest lying states in the spectrum.

For single-hadron correlation functions, a calculation
which uses local point or gaussian-smeared (Wuppertal
[50,51]) quark sources for the hadron creation operator while
using momentum-space annihilation operators is still posi-
tive definite, since translation invariance ensures that, up to
a multiplicative constant arising from the Fourier transform,
the creation and annihilation operators are still Hermitian
conjugate to each other. If the annihilation operator of a
two-hadron correlation function was constructed with a sin-

gle total-momentum Fourier transform, then it would also be
positive definite for the same reason, but it is well known
that such operators do not provide enough control over the
eigenstates of the system to reliably extract the multitude of
energy levels corresponding to the two hadrons interacting at
different values of relative momentum. Therefore, two-hadron
correlation functions are typically computed with each of the
two final-state hadrons separately Fourier transformed to a
particular final-state momentum. Unfortunately, such annihi-
lation operators are no longer Hermitian conjugates of the
spatially local creation operators, and thus the correlation
functions lose their positive-definite quality.

The sLapH (and LapH) methods allow for the construction
of Hermitian-conjugate pairs of creation and annihilation op-
erators in which each hadron at the source and sink can be
separately Fourier transformed. The advantage is twofold: a
volume-averaging effect at the source as well as the sink, im-
proving the stochastic precision and a positive-definite matrix
of correlation functions.

Another well-known feature of two-nucleon calculations is
that a ratio of correlation functions constructed as

R(t ) = CNN (t )

CN (t )CN (t )
(7)

provides the best way to estimate the interaction energy. The
stochastic correlation between the two-nucleon and single-
nucleon correlation functions, CNN and CN , is very strong, and
the ratio R benefits from a large cancellation of the single-
hadron inelastic excited states: the effective mass of this ratio
correlation function R yields a precise estimate of the inter-
action energy. However, prior to a time separation when the
single-hadron correlation function has relaxed to the ground
state, this ratio correlation function can be susceptible to false
plateaus: the Taylor expansion of the single-hadron correlators
in the denominator leads to opposite sign contributions to
the ratio correlation function which are precisely the kind of
corrections that can lead to false plateaus.

To describe this feature more precisely, suppose the single-
nucleon correlation function was described by just the ground
state and a single excited state,

CN (t ) = A0e−E0t + A1e−E1t . (8)

In this simplistic model, the two-nucleon correlation function
would be given by

CNN (t ) =
∑

q

B00,qe−[2E0+�E00(q)]t

+
∑

q̃

B01,q̃e−[E0+E1+�E10(q̃)]t

+
∑

q′
B11,q′e−[2E1+�E11(q′ )]t , (9)

where the sums over q, q̃, and q′ run over the elastic scat-
tering modes between two ground-state nucleons, a ground
and excited state, and between two excited states, respectively,
as allowed by the Lüscher quantization condition. The in-
teraction energies �E00, �E10, and �E11 depend upon the
relative momentum between the states (q) and are typically
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much smaller than the inelastic excited-state energy E1 − E0

as these elastic scattering energies must vanish as L → ∞
except in the case of a bound state. The large-time behavior
of the ratio correlation function is then approximated by

R(t ) = b00,0e−�E00(q0 )t + b00,1e−�E00(q1 )t

+ b10,0e−(E1−E0+�E10(q̃0 ))t − 2a1e−(E1−E0 )t

+ · · ·, (10)

where the b00,n, b10,0, and a1 are ratios of overlap factors. The
observed near-exact cancellation of inelastic excited states
in the ratio manifests as near-exact cancellation between the
b10,0 and −2a1 terms on the second line of Eq. (10). Such
cancellations with opposite signs can lead to false plateaus
early in Euclidean time before the time-separation in which
the single-nucleon correlation function is saturated by the
ground state.4

To avoid this problem, the NPLQCD Collaboration has
long advocated that a sufficient amount of statistics should
be used such that the interaction energies can be precisely
determined without the need of relying upon the ratio correla-
tion function, but rather the two-nucleon and single-nucleon
correlation functions can be fit independently and �E00(q)
can be extracted under jackknife or bootstrap resampling of
the ground-state energies such determined [6,52,53].

For many calculations, including the present one, the
statistical precision is insufficient to achieve a multisigma
determination of the interaction energy from fits to the two-
nucleon and single-nucleon correlation functions separately.
A simple measure of the feasibility of such a strategy is
whether one can use the ratio correlation function R(t ) only
at sufficiently late times that the single-nucleon has plateaued
and still achieve a convincing energy extraction of the in-
teraction energy [24]. This is almost the case in the present
calculation, but we require the use of a few time slices
[O(0.17–0.35) fm] prior to the ground-state saturation of the
single-nucleon correlation functions.

The desire to leverage the positive-definite nature of the
two-nucleon correlation functions with sLapH, and that, with
the present stochastic precision, we must rely upon values
of the correlation function prior to the single-nucleon being
saturated by just the ground state, motivates the following
set of correlation functions and their parametrizations. First,
we factorize the spectral decomposition by pulling out the
ground-state contribution as a prefactor. For a single nucleon
of momentum q, we parametrize the correlation function as

CNq (t ) = z2
q,0e−Eq

0 t
(
1 + z2

q,ne−�Eq
n,0t

)
, (11)

with an implicit sum over all excited states n > 0. The ground-
state energy is Eq

0 and

�Eq
n,0 ≡ Eq

n − Eq
0 . (12)

4The false plateaus HAL QCD has speculated occur for the local
source, momentum-space sink correlation functions are not from
this early time interference, but rather from non-positive-definite
contributions from various elastic scattering states which pollute the
correlation function at late time, up until O(4) fm [28].

The ground-state overlap factor is given by zq,0, and the zq,n

are the ratio of overlap factors of the nth state to the ground
state which all satisfy the bound zq,n > 0.

To take advantage of the positive definiteness of the two-
nucleon correlation function and also the cancellation of
excited states in the ratio correlation function, instead of fit-
ting the two-nucleon correlator, we fit the ratio correlator but
with the following functional form

R(t ) = r2
0e−�ENN

0 t
(
1 + r2

l e−�ENN
l,0 t

)
(
1 + z2

q,ne−�Eq
n,0t

)(
1 + z2

p,me−�E p
m,0t

) , (13)

with implicit summations over the l , n, and m excited states.
The various new terms in this expression are

(1) �ENN
0 = ENN

0 − Eq
0 − E p

0 , the ground-state interac-
tion energy of interest for total momentum P = p + q;

(2) �ENN
l,0 = ENN

l − ENN
0 , the energy gap between the

lth two-nucleon excited-state and the two-nucleon
ground-state energy. The lth energy gap can arise from
either an elastic scattering state of the two ground-
state nucleons or when one or both nucleons are in an
inelastic excited state;

(3) r2
0 = (zNN

0 )2/(zq,0zp,0), the ratio of the ground-state
two-nucleon overlap factor to the product of single-
nucleon overlap factors;

(4) r2
l = (zNN

l /zNN
0 )2 > 0, the ratio of the lth two-nucleon

overlap factors to the ground-state two-nucleon over-
lap factor, which are all positive.

With this fit function, Eq. (13), if an equal number of “in-
elastic” excited states are included in the numerator as in the
denominator, as well as possibly extra “elastic” excited states,
then the fit function can naturally capture the cancellation of
the inelastic excited states from the single nucleon that are
observed to also pollute the two-nucleon correlation functions
at early times, without forcing this cancellation to be exact.
In the next section, we will demonstrate the stability of the
analysis with respect to the time-range and number of states
used in the analysis.

B. Energy spectrum

1. The pion

We first look at the pion correlation function to estimate
mπ . A single operator was used to construct this correlation
function which is fit to the cosh version of Eq. (6) to take into
account wrap-around effects,

Cπ (t ) =
∑

n

znz†
n[e−Ent + e−En (T −t )]. (14)

Figure 1 shows an N-state stability plot of the ground-state
pion mass versus tmin with the chosen fit (given by the
filled symbol) coming from N = 3 states and tmin = 3. The
fits were performed with a Bayesian constrained analysis
[54], resulting in a determination of the pion mass in lattice
units of

mπ = 0.310810(95). (15)

014003-5



BEN HÖRZ et al. PHYSICAL REVIEW C 103, 014003 (2021)

0.3108

0.3110

0.3112

E
0

1 states

2 states

3 states

2 4 6 8 10 12 14 16 18 20
tmin

0

1

Q

FIG. 1. A tmin stability plot of the pion ground-state mass with
different N states in the fit function. See text for description. The
filled symbol at tmin = 3 is the chosen fit.

2. Single nucleon analysis

We then move on to study the mass of single nucleons. The
single-nucleon correlation functions were fit with Eq. (11),
also using a Bayesian constrained analysis [54]. The ground-
state energy prior is estimated from the long-time behavior
of the effective mass and the ground-state overlap factor is
estimated from an effective overlap construction:

meff (t ) = ln

(
CNq (t )

CNq (t + 1)

)
,

zeff
Nq

(t ) = [
emeff (t )t CNq (t )

]1/2
. (16)

The prior central values are taken from the mean of these at a
late reference time of t = 10 and the prior widths are taken to
be 10 times the uncertainties on the relative effective quantity
at this time. For the excited-state energy splittings, we use a
log-normal distributed prior such that the total energies are
ordered. The mean values of the priors are estimated at twice
the pion mass with a width that comes down a little lower than
the first Nπ p-wave scattering state. The central value of the
lth state energy and the excited-state overlap factors are then
priored as

Eq
l = Eq

0 + l × �Eq,

ln(�Eq) = [ln(2mπ ), 0.7],

zq,l = (1.0, 1.0), (17)

where �Eq is the mean value and l = 1 is the first excited
state. We use the notation (pc, pw ) to represent a prior with
central value pc and width pw assuming that its distribution
is Normal unless the prior name is ln(·), in which case a log-
normal distribution is assumed.

In Fig. 2, we show the resulting ground-state energy of the
nucleon at rest versus tmin and the number of excited states.
It is sufficient to chose n = 3 states (2 excited states) to fit
the single nucleon as early as tmin = 2 to achieve an answer
that is consistent with the general stability displayed. We
observe very similar stability of the ground-state mass for all
of the boosted single-nucleon correlation functions which are
shown in the github repository accompanying this publication

0.700

0.705

0.710

E
0 0

n = 1 n = 2 n = 3 n = 4 n = 5

0.33
0.67Q

5 10 15 20
tmin

0.33
0.67w

FIG. 2. Stability of the single nucleon ground state at zero mo-
mentum. The filled (black) circles are the effective mass data from
the correlation function. The open squares are the resulting ground-
state mass as a function of tmin and the number of states n used in the
analysis. The filled square at tmin = 5 with n = 2 is the chosen fit.
The vertical gray bands indicate time-regions excluded from this fit
and the gray filled curve is the effective mass reconstructed from its
posteriors and the horizontal band is the value of mN .

[55]. In all cases, we observe an n = 3 fit from tmin = 2 is in
excellent agreement with the general stability of the ground
state as well as n = 2 with tmin = 5. We use these two choices
for our analysis and to explore systematics associated with the
choice of the number of states and fit range. We find in lattice
units

mN = 0.70262(59). (18)

3. Two-nucleon analysis

To determine the two-nucleon eigenstates, a correlation
matrix, Ci j ≡ 〈Ôi(t )Ô†

j (t )〉, is formed from the set of opera-

tors, Ôi(t ), which have been projected onto a given (P,�).
Solutions to the following generalized eigenvalue problem
(GEVP),

C(td )vn(td , t0) = λnC(t0)vn(td , t0), (19)

for given reference times td , t0, may then be used to rotate the
correlation matrices,

Ĉn(t ) = [vn(t0, td ),C(t )vn(t0, td )], (20)

to a basis consisting of linear combinations of operators hav-
ing optimal overlap (for the given basis) onto the eigenstates
of the system.

From this set of correlation functions we form the ratio R
using Eq. (7) with single-nucleon correlators corresponding
to momenta pn of the nearest noninteracting energy level for
a given state, n. This ratio is then fit to the functional form of
Eq. (13) with similar Bayesian methods as the single-nucleon
case. Priors for the various parameters are chosen as follows:

(1) �ENN
0 : similar to the single nucleon, these are esti-

mated from the effective mass of the ratio correlation
function at a reference time of t = 10 with the prior
mean estimated from the mean of the effective mass
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and a prior width that is 10 times larger than the uncer-
tainty of the effective mass;

(2) �ENN
l,0 : We add two towers of excited states, one cor-

responding to inelastic excited states with prior means
and widths estimated as with the single nucleon inelas-
tic excited states and a second tower with energy gaps
estimated to arise from elastic scattering states. Since
we expect the GEVP to remove the low-lying elastic
scattering excited states, the gap to the first excited
state is estimated to be several levels above the ground
state with a prior width that allows it to be as small as
the first anticipated excited scattering state or as large
as an inelastic single nucleon excited state.

(3) r2
0 : As with the single nucleon, the ground-state ratio

overlap factor is estimated through an effective overlap
factor of the ratio correlation function, Eq. (16);

(4) r2
l = (1.0, 1.0): Following from Eq. (13) and similar

expectations as with the single nucleon excited states.

C. Phase shift analysis

The Lüscher finite-volume formalism [9,10], and its ex-
tension to moving frames [56,57] and various generalizations
[58–64], allows one to faithfully connect the finite-volume
two-particle spectrum to the corresponding infinite-volume
scattering phase shifts at the momenta associated with those
energies. The reduced hypercubic symmetry of the lattices,
however, mixes the partial waves associated with spherical
symmetry in infinite volume. Thus, a system which has been
projected onto the given irreps of the hypercubic group will,
in general, have nonzero overlap with an infinite number of
partial waves, and therefore a truncation in the partial waves
considered is required. Fortunately, at low energies, we expect
contributions from a partial wave, l , to fall off as E−l , justi-
fying a truncation to the lowest partial waves that couple to a
given finite-volume irrep.

In this first look at NN interactions with sLapH (the present
work), we ignore all partial-wave mixing induced by the finite,
periodic volume and restrict ourselves to considering the s-
wave interactions (a standard choice in the field so far for
two-baryons). We also restrict the energies considered to those
below the t-channel cut, q∗ � mπ/2 where q∗ is the magni-
tude of the momentum of each nucleon in the center-of-mass
(CoM) frame. We will relax these restrictions and assump-
tions in a forthcoming paper where we explore the partial
wave mixing and energies up to the inelastic pion-production
threshold.

For the low energies considered here, the K-matrix for each
partial wave is expected to be well described by a smooth
polynomial in q∗2, known as the effective range expansion
(ERE),

q∗ cot δ(q∗) = −1

a
+ 1

2
r0q∗2 + 1

6
r1q∗4 + · · ·, (21)

where δ(q∗) is the scattering phase shift, a is the scattering
length, r0 is the effective range, and rn , n > 0 are higher-order
shape parameters which give the short-distance details of the
potential. In terms of the potential, the convergence of the

ERE is expected to be rapid for qR � 1, where R is the range
of the potential.

Under the assumption that partial wave mixing is negligi-
ble, the Lüscher quantization condition provides a one-to-one
mapping between the spectrum and q∗ cot δ(q∗), which for the
s-wave is

q∗ cot δ(q∗) = 2

γ L
√

π
Zd

00

(
1,

q∗2L2

4π2

)
, (22)

where γ is the ratio of the energy to the CoM energy, γ =
E/E∗, and Zd

00 is a generalized ζ function defined in Ref. [56],
characterized by the boost vector

d ≡ L

2π
P. (23)

The input values q∗ are derived starting from the lattice ex-
tracted energies, E =

√
E∗2 + |P|2, where E∗ is then related

to q∗ via

E∗ = 2
√

q∗2 + m2
N . (24)

There are several ways to proceed in fitting the numeri-
cal results to extract the ERE parameters; here, we discuss
three. In the first method, referred to as the determinant resid-
ual method, the Lüscher quantization condition (truncated
to some maximum partial wave and parameterized appropri-
ately) is used directly to form the residuals of the χ2 function,
which is subsequently minimized [65]. Using the quantization
condition directly in the fitting procedure is a natural way
to include multiple partial waves. A convenient feature of
this method, as opposed to methods that directly solve the
quantization condition, is that the generalized ζ functions can
all be computed once before the minimization process starts.
However, one cannot avoid recomputing the covariance ma-
trix each time the parameters are adjusted during the fit, since
the model cannot be separated from the data. In subsequent
papers, we will explore this method in more detail when we
consider the partial wave-mixing induced both by the finite
volume as well as the physical mixing of the 3S1 – 3D1 waves
in the deuteron channel.

The second method, which we refer to as the q cot δ
method, has been common in the application to two-baryon
systems under the truncated partial-wave expansion (also con-
sidered here). First, one converts the energy levels, which
are determined typically with Gaussian distributed noise, to
values of the CoM momentum Eq. (24) which are used to
determine the phase shift values through Eq. (22). These val-
ues of the q∗ cot δ(q∗) are then fit with the ERE Eq. (21), to
determine the values of a, r0, and other shape parameters that
describe the low-energy interactions.

As is well known, the ζ functions appearing in Eq. (22)
have nonlinear dependence upon q∗ in the typical range over
which the momenta can be determined. This transforms the
roughly Gaussian distributed determination of E (and hence
q∗) into a highly asymmetric distribution of q∗ cot δ(q∗).
Moreover, it is common to perform the ERE fit by treating
q∗ cot δ(q∗) data points as having uncertainties in both the x
and y directions. However, under the assumption of no partial
wave mixing, the Lüscher quantization condition, Eq. (22)
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provides a one-to-one mapping between the x (q∗2) and y
[q∗ cot δ(q∗)] values, such that there is really only a single
variable with uncertainty. For sufficiently precise determina-
tions of q∗ values such that a linear approximation to Eq. (22)
describes the results, treating the pairs of [q∗2, q∗ cot δ(q∗)]
points with correlated uncertainties is expected to faithfully
reproduce the true uncertainty with the standard linear trans-
formations for handling x and y uncertainty. However, when
the nonlinearity of Eq. (22) is important, this method can pro-
duce biased results. See, for example, Ref. [27] for a treatment
that enforces this constraint from Eq. (22).

We propose an alternative method that properly han-
dles this nonlinear relationship, which we refer to as the
spline/gradient method. Consider a bootstrap (BS) resampling
of the values of (Xi,Yi ) = [q∗2

i , q∗
i cot δ(q∗

i )] pairs on irrep i.
For a given BS sample, one can define the squared distance be-
tween this point and the intersection of the ERE function with
the ith irrep as the distance along the curve defined through
Eq. (22), which we denote Yi = f (Xi ) for convenience, with
the distance given by

si( f ′
i , zi,β̂ , zi,bs) =

∣∣∣∣∣
∫ zi,bs

zi,β̂

dx
√

1 + f ′
i (X )2

∣∣∣∣∣, (25)

where f ′
i is the derivative of f along the curve, zi is a gen-

eralized coordinate along the curve, zi,β̂ is the location of
intersection of the ERE function with the ith irrep, and zi,bs

is the coordinate of the bsth sample of irrep i. These BS
distances can be used to construct the objective function that
penalizes data discrepancy between all irreps with the inter-
section of the ERE parametrization. Then, an uncorrelated,
unweighted least-square penalty for BS sample bs would be
given by

∑
i si( f ′

i , zi,β̂ , zi,bs)2. To estimate the appropriate co-
variance, we leverage the delta method [66] that scales the
covariance from X using the gradient of f (X ). For a normally
distributed set of X variables of mean μX ,

(X̄ − μX ) ⇒ N (0, �X ),

with �X is the covariance of the X variables over the irreps,
the delta method states for a differentiable f , the distribution
of f (X ) follows

f (X̄ ) − f (μX ) ⇒ N[0,∇ f (μX )T �X ∇ f (μX )],

where ∇ f (μX ) is the vector of f ′
i over the irreps. And thus,

the correlated objective function we can minimize to estimate
the ERE parameters (β̂), for a given BS sample is given by

χ̃2
bs =

∑
i j

si( f ′
i , zi,β̂ , zi,bs)Wbs,i j s j ( f ′

j, z j,β̂ , z j,bs), (26)

where the inverse “covariance matrix” for sample bs is

Wbs = [∇ f (Xbs)T �̂X ∇ f (Xbs)]−1. (27)

While the variance of X is fixed for each BS sample, the gradi-
ents are evaluated sample by sample. To estimate the distance
and gradient along the Lüscher curve, a cubic spline is fit to
each pair of values using the BS samples. The ERE parameters
are then estimated with the resulting BS distribution of β̂BS .
For more detail, see Appendix C and Ref. [67].

A third method we consider is essentially the “spectrum
method” described in Ref. [65], which directly minimizes
spectrum residuals, thus avoiding skewed q cot δ distribu-
tions. This method is composed into two steps: An outer
step, effectively computing the spectrum as a function of
ERE parameters and an inner root-finding step, solving for
the value of q∗2 which satisfies the Eq. (21) = (22) for
given q cot δ parametrization. This inner step performs a least-
squares minimization for fixed ERE parameters that minimize
the residual of the predicted q∗2 values with those deter-
mined from the spectrum. The outer step computes a function
f (a, r0, ...; irrep, P, n) that returns the value of q∗2 for a given
irrep at boost P of the nth principle correlator, which are com-
pared against the spectrum by q∗2

irrep,P,n = E∗2
/4 − m2

N which
is the numerical value of q∗2 for the same state. We then
minimize the χ2 with respect to the ERE parameters

χ2
spec =

∑
i, j

[
f (β; i) − q∗2

i

]
Cov−1

q∗2,i j

[
f (β; j) − q∗2

j

]
, (28)

where β = {a, r0, . . . } and i, j are master indices running over
the combinations of irrep, P, n. The covariance is constructed
from the bootstrap distributions of q∗2

i with respect to the

bootstrap means q∗2
i ,

Covq∗2,i j = 1

Nbs

∑
bs

(
q∗2

i,bs − q∗2
i

)(
q∗2

j,bs − q∗2
j

)
. (29)

There are many other variants of extracting the physical pa-
rameters from the two-particle spectrum which are discussed
in the literature; see, for example, Refs. [68–76].

As we will show in Secs. III C 1 and III C 2, of the
two methods used in this work, the spectrum method is less
susceptible to outliers, since the q∗2 values determined are
bound to finite intervals and have a near Gaussian distribution
following from their parent E distributions, and therefore,
the resulting uncertainty on the extracted ERE parameters is
smaller. This is in contrast to the values of q cot δ determined
with Eq. (22) as these distributions become highly nonsym-
metric and heavy tailed. Nevertheless, the spline/gradient
method we introduce reproduces the same values of the ERE
parameters and is less susceptible to the heavy-tailed fluctu-
ations than the more standard analysis of q cot δ values one
finds in the literature.

1. Deuteron channel

To extract results for the deuteron channel, we consider
all irreps whose lowest partial-wave contribution corresponds
to s-wave scattering of nucleons with isospin I = 0 and spin
s = 1. To determine the spectrum, we first perform a stability
analysis of the two-nucleon correlation function as a function
of tmin and the number of “elastic” excited states used above
and beyond the n = 2 states used for the single nucleon. In
Fig. 3, we show sample stability plots for fits to the NN ratio
correlation functions in two different irreps. In all irreps, we
find that the choices

(1) N, Eq. (6): Nstates = 2, t = [5, 20];
(2) NN, Eq. (13): Nstates = 2, nel = 0, t = [5, 15];
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FIG. 3. Stability plot of the ground-state energy in the T1g irrep
with d = 0 (a) and the second principal correlator in the E irrep with
d = 1 (b). The filled (black) circles are the effective mass of the ratio
correlation function, Eq. (13). The open squares are the resulting
�Eg.s. energy as a function of tmin and the number of “elastic” excited
states used, see the text. The filled square is the chosen fit. The
vertical gray bands indicate time-regions excluded from this fit, the
gray curve is the effective mass reconstructed from its posteriors and
the (red) horizontal band is the value of �Eg.s..

lead to an optimal, or near optimal fit as measured by three
factors:

(1) Good quality of fit, Q;
(2) For a given tmin, the highest weight w = elogGBF as

measured by the relative Bayes Factor, see Ref. [77]
for further discussion on this point where fits with
different amounts of data are also considered;

(3) Consistency with the long time values of the effective
mass of the ratio correlation function.

We opted to select the values of tmin = 5 and nel = 0 to
be the same for all irreps analyzed to minimize the chance of
accidentally biassing the result through a more fine-grained
optimization.

Stability plots for all irreps can be found with the git
repository accompanying this publication [55]. In Appendix
A in Table II, we list the irreps and the resulting ground-
state energies of the two-nucleon system and corresponding
boosted single nucleons as well as the processed values of q∗2

and q∗ cot δ in mπ units used in this analysis.

In Fig. 4 we show the resulting values of (q∗, q∗ cot δ) from
all irreps along with an ERE fit using the spline/gradient
method (left) and the spectrum method (right). To cleanly
display the correlated distributions of (q∗, q∗ cot δ) pairs, we
bootstrap our energy results and show the resulting 68% con-
fidence intervals in the data. We note that the results from
different irreps agree nicely within their respective energy
ranges. The purely s-wave contributions from each irrep are
expected to be consistent with each other, with any discrepan-
cies arising from mixing of higher partial waves. The smooth
q cot δ behavior taken from multiple irreps thus gives some
confidence that mixing from higher partial waves is negligible
within our errors.

We find that the fits to the ERE to q∗2, next-to-leading order
(NLO) and q∗4, next-to-next-to leading order (NNLO) give
consistent results for the phase shift within our energy range
at our given uncertainties. This, coupled with the smooth
behavior of the data, strongly indicates a convergence of the
expansion within the energies considered. Our results for the
effective range parameters are as follows:

Method Order mπa mπ r0 m3
π r1

q cot δ NLO −7.9
(+3.5

−6.8

)
5.5

(+1.5

−1.1

)
—

spec NLO −5.5(1.6) 5.82(71) —

q cot δ NNLO −7.6
(+3.9

−7.9

)
5.3

(+2.4

−3.5

)
2
(+56

−33

)
spec NNLO −4.7(1.7) 4.2(2.3) 29(37)

(30)

Using the NLO ERE expansion, one can solve a quadratic
equation for solutions of

q cot δ = iq, (31)

resulting in the two solutions

q±
mπ

= i

mπ r0

(
1 ±

√
1 − 2

r0

a

)
. (32)

Taking the results from the more stable spectrum analysis, the
plus solution is found to be

q+
mπ

= i 0.476(62). (33)

In principle, this could correspond to a bound-state solution.
However, this solution lies well outside the range where our
results are constraining the amplitude (it is the crossing of our
q cot δ and −

√
−q2 at large, negative value of q2). However,

this cannot be a physical bound state as the slope of the
q cot δ curve is larger than the tangent of the −iq curve at
this crossing, as discussed in detail in Ref. [27]. The negative
solution

qdeuteron
−
mπ

= −i 0.132(32) (34)

lies in the range of our results, is purely imaginary with a
negative sign, and thus corresponds to a virtual bound state.
This state is expected physically for an attractive interaction
with a large, negative scattering length. As the strength of
the interaction increases, such that the system would form a
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TABLE II. Energy levels and phase shifts for the deuteron channel. These are determined with a 2-exponential fit to both the single-nucleon
(t = [5, 20]) and ratio two-nucleon correlation functions (t = [5, 15]) defined in Eqs. (11) and (13). The total momentum is given by the boost
vector d, Eq. (23). The state indicates the resulting principle correlation function after performing the GEVP. d1,2 are the squared boost vectors
of the individual nucleons used in the ratio correlation function which is fit to determine the interacting energy �ENN and total energy ENN

which is converted to the CoM frame E∗
NN and processed to get q∗ cot δ.

d2 Irrep State d1 E1 d2 E2 �ENN ENN E∗
NN q∗2/m2

π q∗ cot δ/mπ

0 T1g 0 0 0.70262(59) 0 0.70262(59) −0.00115(27) 1.4041(12) 1.4041(12) −0.0084(40) 0.24(18)
0 T1g 1 1 0.71459(50) 1 0.71459(50) −0.00439(46) 1.4248(12) 1.4248(12) 0.143(13) 0.55(16)
1 A2 0 0 0.70272(57) 1 0.71462(51) −0.00306(33) 1.4143(11) 1.4082(11) 0.0217(97) 0.155(96)
1 A2 1 1 0.71463(50) 2 0.72627(49) −0.00314(40) 1.4378(11) 1.4318(11) 0.195(13) 1.02(41)
1 E 0 0 0.70271(56) 1 0.71458(50) −0.00208(28) 1.4152(11) 1.4091(11) 0.0284(96) 0.31(46)
1 E 1 1 0.71454(49) 2 0.72617(50) −0.00446(37) 1.4362(11) 1.4303(11) 0.184(13) 0.66(17)
3 E 0 0 0.70274(54) 3 0.73768(51) −0.00589(58) 1.4345(13) 1.4165(13) 0.082(13) 0.362(90)
4 E 0 1 0.71469(51) 1 0.71469(51) −0.00153(23) 1.4279(11) 1.4037(11) −0.012(12) 0.1(2.5)
4 E 1 0 0.70270(57) 4 0.74877(59) −0.00307(43) 1.4484(12) 1.4245(12) 0.141(11) 0.55(13)
2 A2 0 1 0.71461(51) 1 0.71461(51) −0.00393(39) 1.4253(11) 1.4132(11) 0.058(11) 0.33(12)
3 A2 0 0 0.70269(56) 3 0.73769(52) −0.00519(68) 1.4352(13) 1.4172(13) 0.087(14) 0.43(12)
4 A2 0 1 0.71471(50) 1 0.71471(50) −0.00130(25) 1.4281(10) 1.4039(11) −0.010(12) 0.2(4.6)
4 A2 1 0 0.70284(56) 4 0.74890(57) −0.00301(44) 1.4487(12) 1.4249(12) 0.144(11) 0.60(16)
2 B1 0 1 0.71459(51) 1 0.71459(51) −0.00436(37) 1.4248(12) 1.4127(12) 0.055(12) 0.27(10)
2 B2 0 1 0.71455(52) 1 0.71455(52) −0.00340(40) 1.4257(12) 1.4136(12) 0.061(12) 0.39(19)
2 B2 3 1 0.71465(50) 3 0.73786(50) −0.00401(57) 1.4485(12) 1.4366(12) 0.231(15) 0.71(24)

bound state, the virtual bound-state solution would move to-
ward zero and become a positive imaginary solution which is
the bound state. There have been few previous identifications
of virtual states with lattice QCD in the two-meson sector
[78,79].

Such a bound-state solution would have a positive scat-
tering length, such that the intercept of q cot δ at threshold
(q2 = 0) would be negative. This implies one should find
negative values of q cot δ for small, positive q2, which we do
not find with our results. Thus, the results of this computation
strongly disfavor the existence of a bound deuteron at this pion
mass, and with this particular action at finite lattice spacing.

These results are not sufficient to rule out a bound state
in the system. For example, the operator basis we have cho-
sen, which does not include a hexaquark operator, may not

have sufficient overlap with a bound state to correctly extract
energy levels. If this were the case, then all of our results
would have to systematically shift downwards by several
sigma with the inclusion of this otherwise missing operator.
In a forthcoming publication, we will investigate the impact
of including such a hexaquark operator in the basis, which has
yet to be included due to its numerical cost.

2. Dineutron channel

For the dineutron channel, we similarly chose all irreps
corresponding to I = 1, s = 0, having overlap onto the s-
wave as the leading contribution at low energies for values
of q∗ < mπ/2. After performing a stability analysis, we also
observe the same choice of tmin = 5 and nel. = 2 provides
an optimal or near-optimal fit for all irreps. The irreps and
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FIG. 4. Phase shift analysis, ignoring all partial wave mixing, in the irreps that overlap with the S-wave deuteron. The spline/gradient
method is shown on the left and the spectrum method on the right. The smaller (magenta) band is the 1-sigma result of the NLO (q∗2) order fit
while the larger (gray) band is the 1-sigma result of the NNLO (q∗4) order analysis. The solid (cyan) line is the solution of q cot δ = iq where
a bound state would occur if it were in the spectrum.
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FIG. 5. Same as described in the caption of Fig. 4 except for the s-wave dineutron channel.

resulting energies and processed values of q∗2 and q∗ cot δ are
given in Table III in Appendix A.

The resulting values of q∗ cot δ also suggest minimal par-
tial wave-mixing and a smooth q∗2 dependence. The ERE
analysis with the two methods described above is displayed
in Fig. 5 and yields the following parameters:

Method Order mπa mπ r0 m3
π r1

q cot δ NLO −6.6
(+3.1

−2.6

)
8.4

(+4.4

−2.3

)
—

spec NLO −5.5(2.0) 8.4(1.5) —

q cot δ NNLO −6.3
(+3.2

3.0

)
7.5

(+5.4

−5.5

)
14

(+117

−85

)
spec NNLO −5.6(2.0) 8.7(2.6) −5(45)

(35)
Similar to the deuteron, the results are consistent with no
bound state and a virtual bound state at

qdineutron
−
mπ

= −i 0.121(32). (36)

Taken together, our results, while not conclusive, strongly
disfavor the presence of a bound state in either the deuteron
or dineutron channel.

IV. DISCUSSION AND OUTLOOK

We have presented the first lattice QCD calculation of
two-nucleon systems using the stochastic Laplacian Heaviside
method [37]. There are only two such two-baryon calculations
using a variational operator basis in the literature, the other
being an application to the H-dibaryon system and the dineu-
tron system [25,36] using the more common “distillation”
method [38]. In this work and Refs. [25,36], the pion mass
is rather heavy. In our case it is set approximately equal to the
physical strange quark mass resulting in mπ ≈ 714 MeV, and
in Ref. [25] it corresponds to mπ ≈ 960 MeV in an Nf = 2
calculation.5

5Ref. [25] also performed calculations at pion masses as low as
mπ ≈ 436 Mev, but reliable fits to the phase shift were unattainable.

Even at the SU(3) flavor-symmetric point with a heavy
pion mass, the pion is the lightest propagating degree of free-
dom emerging from QCD. It is therefore natural to measure
other length scales with respect to the pion mass and possibly
natural to expect that the range R of the potential would ap-
proximately be given by m−1

π . While the scattering length can
take on any value (with the unitary limit, a → ∞, being the
crossover between BEC and BCS like systems), the effective
range is typically the size of the potential.

In the present work, we have found that in both the dineu-
tron and deuteron channels, the effective range is r0mπ ≈ 5–9,
which is an unusually large value. The delta-nucleon mass
splitting is another small energy scale, and it is found that
the splitting decreases with increasing pion mass at a mild
rate such that it is m� − mN ≈ 200 MeV at the SU(3) flavor-
symmetric point near the physical strange quark mass [80].
While this is a small energy scale compared to mπ , it is not
clear how this translates into a range of the two-nucleon po-
tential, but one should keep in mind that QCD does naturally
produce such an energy scale. NPLQCD similarly found large
values of the effective range in their calculations at mπ ≈ 800
MeV [21,24], though not quite as large.

Causality and unitarity can be used to place a bound on
the size of the effective range in terms of the range of the
potential [81] with corrections arising from a finite scattering
length [82],6

r0 � 2

[
R − R2

a
+ R3

3a2

]
. (37)

Since we do not know the range of the potential, R, as it is
dynamically generated by QCD (and it is not an observable),
we can invert this relation and use our determination of the
effective range to place a lower bound on R. Using the NLO
ERE parameters from the spectrum fit of the deuteron, the real

6This formula is derived for a finite range potential, V (r) = 0 for
r > R. Incoprorating corrections from a Yukawa tail was found to
slightly reduce the lower bound on R for the physical 1S0 channel
[83].
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FIG. 6. Values of q cot δ in the deuteron channel in the present
work compared with NPLQCD results at mπ ≈ 800 MeV. While
there is some communal expectation that discretization effects should
be subdominant, one should be cautious to note that these compu-
tations have been performed with different lattice actions at only
a single lattice spacing each: in the present case, the CLS clover-
Wilson action [47] and with NPLQCD, a single-stout smeared [86],
tadpole improved [87] clover-Wilson action [13]. Assuming the dis-
cretizaton effects are relatively small, and that the phase shift does
not have a strong pion mass dependence, these results are in conflict.

solution of Eq. (37) provides the limit

mπR � 2.0, R � 0.55 fm,

which is roughly the same or larger than the size of the
nucleon: as the pion mass increases, the pion cloud of the nu-
cleon shrinks till the size of the nucleon roughly corresponds
to a size rN ≈ �−1

QCD, similar to this value. Perhaps the range
of the potential is set by the nucleons coming “into contact”
with each other.

A. Comparing with the literature

Several groups [13,20–25] have used the Lüscher method
to compute the scattering phase shifts of the two-nucleon sys-
tems, deuteron and dineutron, at pion masses larger than 300
MeV. In all cases, except the Mainz group, they have found
(deeply) bound states with a reasonable degree of certainty.
However, the HAL QCD Collaboration [17,26] has used their
potential method to conclude that there are no bound states
(again at higher than physical pion masses). Below we discuss
possible sources of discrepancy.

We will focus our comparison with the results from
NPLQCD at mπ ≈ 800 MeV [21,24] as their results are the
most similar to ours also being at the SU(3) flavor-symmetric
point near the physical strange quark mass.7 They have found
that both the deuteron and dineutron channels form bound

7NPLQCD also has results at mπ ≈ 450 MeV with bound states,
however, these results are self-inconsistent as pointed about by HAL
QCD [27] as well as with a low-energy scattering analysis [84], and
so we do not compare with them. The more recent update of the
mπ ≈ 450 MeV results [85] addresses these issues and leads to larger
uncertainties in the constraint of the scattering parameters, though
they still identify bound states in the di-nucleon channels.

states with a relatively large binding energy of B ≈ 20 MeV
at the SU(3) flavor-symmetric point. In Fig. 6 we show our
present determination of q cot δ in the deuteron channel along
with the values from Ref. [24].

As is clearly visible from the figure, the results from
NPLQCD and the present work are not compatible with each
other: To have a bound state, there must be negative values
of q cot δ at positive values of q2 for the ERE to cross the
−

√
−q2 line with a slope smaller than the tangent to this

line [27]. Further, we have no evidence of such large negative
values of q2 as does NPLQCD (the clustering of (green) points
around q2

cm/m2
π ≈ −0.08). One should always be cautious

comparing results at finite lattice spacing, at least from calcu-
lations with different lattice actions. There is an expectation in
the community that discretization effects are a subdominant
source of systematic uncertainty. If this is found to be true
(with future work), then there must be another unresolved
systematic uncertainty.

While our results strongly disfavor the existence of a bound
deuteron or dineutron at this pion mass, they are not sufficient
to settle the discrepancy in the literature between HAL QCD
[17,26], NPLQCD [13,21,31], Yamazaki et al. [11,20], and
CalLat [22]. The possible source of the existing discrepancy
can be any of the following:

(1) There are larger systematic uncertainties in the HAL
QCD method and/or the local two-nucleon creation
operators typically used by NPLQCD and Yamazaki
et al. than are currently understood. HAL QCD has
speculated that these calculations suffer from “false
plateaus” that arise through an unfortunate linear com-
bination of elastic scattering states [28];

(2) Our variational calculation has not utilized a local
hexaquark creation/annihilation operator. It is possible
that such a local operator may couple to a deep bound
state with a significantly larger overlap such that, with-
out it, the operator basis is not sufficient to identify
the state. If this were the case, then the addition of the
hexaquark operator would have to shift the resulting
spectrum in all the irreps presented in this work down
in a coordinated way that does not spoil the otherwise
very smooth q2 dependence observed.

(3) None of the calculations have been performed with
more than a single lattice spacing and so there could be
larger-than-expected discretization effects which pro-
hibit the rigorous identification (or exclusion) of bound
states.

All of these sources of potential systematic uncertainty
may need to be explored in more detail to resolve the dis-
crepancy. A good first start would be the use of all methods in
the literature on the same set of gauge configurations such that
one could eliminate all the systematic uncertainties aside from
the method in the determination of the spectrum. Provided
the dispersion relation is continuum like in the range of mo-
mentum considered, the Lüscher method remains valid. HAL
QCD has performed the computation of the �� spectrum
and interactions using their potential method and the Lüscher
method with a local source [88], which led them to conclude
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the local source method has elastic excited-state pollution
leading to a false plateau.

In a forthcoming publication, we will compare and contrast
our present work (with more statistics) to the local source
method used by NPLQCD and Yamazaki et al., as well as
the displaced nucleons used by CalLat. With both methods,
we will implement the HALQCD potential approach such
that we can isolate possible sources of systematic uncertainty
arising in the method. We also plan to implement a hexaquark
operator into the basis to see how much it shifts the spectrum,
if at all. Resolving this discrepancy is critical if we are to
have confidence in the application of LQCD to multinucleon
systems, and more importantly for the NP and HEP long-
range science goals, to be able to compute the response of
few-nucleon systems to SM and BSM currents. NPLQCD has
invested significant effort in computing such matrix elements,
see for example the recent review [89], but if the spectrum has
been misidentified, it is not clear how much these systematic
uncertainties would modify their results and conclusions.

The phase shift analysis code and resulting bootstrap re-
sults of the data presented here are included with the github
repository [55]. The correlation functions will be released
with a future publication that includes a larger number of
correlation functions with a full partial-wave analysis.
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APPENDIX A: ENERGY LEVELS FOR THE DEUTERON
AND DINEUTRON

The deuteron and dineutron irreps, extracted energies, and
processed values of q2 and q cot δ are provided in Table II and
Table III, respectively.

APPENDIX B: COMPUTATIONAL
AND ALGORITHMIC OPTIMIZATION

Several of the kernels required in the stochastic LapH
workflow have been implemented to run on NVIDIA V100
GPUs using the QUDA library [43]. We constructed new
routines that compute the cross product and contraction of
color vectors, as well as specialized routines that compute
time-slice reductions. Due to the reduction strategy we em-
ploy, the bulk of these contractions is expressed in terms of
BLAS3 (matrix-matrix) operations, automatically improving
the arithmetic intensity of the computation. These operations
take the form

Ci = A0Bi (B1)

for dense matrices A, B,C, and batch index i. The matrix
A0 is constant with respect to the batch index. As such,
we wrote interfaces in QUDA for the cuBLAS function
stridedBatchZGEMM which minimizes data-transfer latency
between the host and device by caching the A0 matrix. We
found that by using the 4 V100 accelerators on a single
Lassen (LLNL) node we gained speed-up factors of ≈ 30x
over using the host IBM Power-9 CPUs. All the code we con-
structed specifically for this computation is publicly available
in the QUDA GitHub repository. The contraction, time-slice
reductions, and cuBLAS interface components are in mainline
QUDA.

Overall, correlation function construction requires a large
number of tensor contractions, and therefore dedicated com-
putational optimizations are vital. A total of 32 960 correlation
functions is computed on each gauge configuration. A strategy
to minimize the amount of computational work by optimizing
the contraction order as well as re-using common subexpres-
sions is described in Ref. [96]. Following the nomenclature of
that reference, 200 370 960 diagrams are left to evaluate after
consolidating duplicates in the initial set of 2 052 792 360
diagrams. Eliminating common subexpressions in the set of
remaining diagrams reduces the number of computationally
dominant contractions with N4

dil scaling from 344 163 600 to
9 969 360 for a combined speedup by roughly a factor 350×
compared to the naive evaluation of all tensor contractions.
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TABLE III. Energy levels and phase shifts for the dineutron channel. These are determined with a 2-exponential fit to both the single-
nucleon (t = [5, 20]) and ratio two-nucleon correlation functions defined in Eqs. (11) and (13).

P2 Irrep State N1 E1 N2 E2 �ENN ENN E cm
NN q2

cm/m2
π qcm cot δ/mπ

0 A1g 0 0 0.70259(57) 0 0.70259(57) −0.00161(37) 1.4036(13) 1.4036(13) −0.0117(54) 0.11(11)
0 A1g 1 1 0.71454(51) 1 0.71454(51) −0.00262(53) 1.4265(13) 1.4265(13) 0.156(14) 0.98(91)
1 A1 0 0 0.70282(56) 1 0.71466(51) −0.00147(27) 1.4160(11) 1.4099(11) 0.0347(95) 0.7(29.5)
1 A1 1 1 0.71451(51) 2 0.72616(51) −0.00202(47) 1.4387(12) 1.4327(12) 0.202(15) 1.5(5.5)
2 A1 0 1 0.71452(51) 1 0.71452(51) −0.00271(36) 1.4263(12) 1.4143(12) 0.066(11) 0.54(27)
2 A1 3 1 0.71461(50) 3 0.73784(50) −0.00226(67) 1.4502(13) 1.4383(13) 0.244(16) 1.3(4.5)
3 A1 0 0 0.70267(56) 3 0.73762(52) −0.00451(89) 1.4358(15) 1.4178(15) 0.092(17) 0.52(19)
4 A1 0 1 0.71479(50) 1 0.71479(50) −0.00123(22) 1.4283(10) 1.4041(11) −0.007(11) 0.3(4.1)
4 A1 1 0 0.70267(57) 4 0.74860(60) −0.00205(48) 1.4492(13) 1.4254(14) 0.148(13) 0.73(25)

APPENDIX C: ERROR PROPAGATION FOR q cot(δ)

1. Unbiasedness in weighted regression

In this section we offer a short refresher on the guarantees
and assumptions behind classic regression. The statistics re-
gression model specifies the relationship between data (X,Y )
and the associated parameters of interest β via an additive
error,

Y = Xβ + ε, (C1)

where Y is a n × 1 vector, X is a n × p matrix, β is a p × 1
vector, and ε is a n × 1 random vector. Intuitively, n is the
number of data points and p is the number of coefficients in
the regression. The usual inference task is to infer β using
the noisy observed values of Y . Any estimate for β is often
denoted as β̂ and an estimate is unbiased if E (β̂ ) = β.

The weighted regression estimate minimizes the squared
loss between the Y values and the inferred line X β̂,
β̂reg = arg min ‖W 1/2(Y − X β̂ )‖2 = (X T W X )−1X T WY . We
will show that β̂reg is unbiased if Eq. (C1) and the following
assumption holds:

E (ε|X ) = 0. (C2)

The addition of mean 0 error in the Y dimension intuitively
justifies why minimizing the squared loss in Y alone would
yield the unbiased results. Mathematically the derivation fur-
ther highlights the assumption on treating X as given implied
in both Eqs. (C1) and (C2):

E (β̂reg|X ) = E ((X T W X )−1X T WY |X ) (C3)

= E ((X T W X )−1X T W (Xβ + ε)|X ) (C4)

= β + (X T W X )−1X T W E (ε|X ) (C5)

= β. (C6)

The most common choice for W = �−1 where Cov(ε|X ) =
� but its choice affects the variance for β̂ instead of its
unbiasedness. It is also worth pointing out that Normality nor
symmetry in ε are necessary for the unbiasedness to hold.

2. Assumptions for unbiasedness are not met

In this section we explain the possible errors in fitting the
classic weighted least squares for our curve fitting exercise
at hand. The first violation is the existence of error in the
horizontal axis for each data point. Given the derivations
above, if X is measured with error as well, our objective
would incorporates both error in X and Y instead of solely
minimizing errors in the vertical axis.

The second deviation from the classic setting is the strong
nonlinear relationship between the errors in X and Y within
each irrep. Although we have errors in both axes, knowing
the error in one dimension allows us to infer the error in
the other dimension. The seemingly two-dimensional error
is therefore more appropriately modeled as having a single
source of variability.

3. Our modified weighted least squares

Our modification essentially converts the problem at hand
into the classical settings by redefining the error in terms
of squared distance along the curve rather than the vertical
axis. Figure 7 demonstrates this modified distance between
a data point and any candidate regression line, implied by β̂

FIG. 7. Plotting the bootstrap samples within a single irrep,
demonstrating the difference between the modified distance vs. the
usual regression.
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is the distance along the blue curve between the red points
X ∗

i,β̂
to Xi, j . Classic regression, however, computes the vertical

distance between Yi, j and Xi, j β̂ which forces the regression
line toward implausible values.

Let fi denote the functional relationship between Xi,· and
Yi,· for irrep i so that Yi,· = fi(Xi,·). The general equation for
the length along a differentiable curve between 2 points is
s( f ′

i , a, b) = | ∫ b
a

√
1 + f ′

i (X )2dx|. Let the point of intersec-
tion between fi and the regression line will be denoted as
(X ∗

i,β̂
, X ∗

i,β̂
β̂ ). An unweighted least-square penalty would then

be
∑

i s( f ′
i , Xi,β̂ , Xi, j )2, where j denotes the index for different

bootstrap values.
To weigh the different irreps, we estimate the covari-

ance using a similar approach as in the delta method
[66]. The delta method states that if (X̄ − μX ) ⇒ N (0, �X ),
then for a differentiable f we have f (X̄ ) − f (μX ) ⇒
N[0,∇ f (μX )T �X ∇ f (μX )]. We recycle the same f ′ from cal-
culating the lengths before, and we estimate the covariance of
X treating each irrep as a different dimension, specifically:

�̂X = 1

n − p

∑
j

⎡
⎣X1, j − X̄1

...

Xk, j − X̄k

⎤
⎦[X1, j − X̄1 . . . Xk, j − X̄k],

(C7)

∇ f (X·, j ) =
⎡
⎣ f ′

1(X1, j ) . . . 0
...

. . .
...

0 . . . f ′
k (Xk, j )

⎤
⎦, (C8)

Wj = [∇ f (X·, j )
T �̂X ∇ f (X·, j )]

−1, (C9)

where X̄i = 1
n

∑
j Xi, j is the average over the bootstraps, k

is the total number of irreps, and W is the weights we will
use to scale the modified errors. It is worth noting that the
delta method is more practical than directly estimating the
covariance empirically because the the distance along the
curve between several bootstrap samples on certain irreps are
infinite if they are across the critical point of the cot function.
These points make empirically estimating the covariance of Y
infeasible.

Our optimization for each bootstrap j, is to solve

β̂ j = arg min
β

L( f ′
· , β̂, X·, j )

T WjL( f ′
· , β̂, X·, j ), (C10)

where L( f ′
· , β̂, X·, j ) = [

s( f ′
1, X1,β̂ , X1, j )

...

s( f ′
k , Xk,β̂ , Xk, j )

].

The estimation of fi and f ′
i were done using splines which

are piecewise cubic polynomials that ensure the derivative is
continuous.
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