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Abstract

Relational reasoning is often viewed as the pinnacle of hu-
man intelligence. Accordingly, one common viewpoint is that
learning categories defined by relational regularities is more
difficult than learning categories defined by featural regulari-
ties. This view is supported by developmental trends in learn-
ing. Studies comparing featural and relational category learn-
ing in adults also find a feature advantage, but these studies do
not ground featural and relational information in a common
perceptual substrate. The current study offers an appropri-
ate comparison between feature- and relation-based category
learning. Contrary to previous studies, we show how relational
learning can be easier. The advantage is attributable to the
flexibility of online relational comparisons between a stimulus
and a memory representation of a category. Alternative expla-
nations based on difficulties in processing absolute vs. relative
stimulus information are ruled out.
Keywords: Analogy; Category Learning; Relations

Introduction
The ability to grasp complex relations is a hallmark of human
intelligence (Thompson & Oden, 2000). Evaluative tests such
as the SAT, GRE, or Raven’s Progressive Matrices stress the
importance of relational thinking. Most research comparing
relational and featural performance supports the view that re-
lational processing is a more advanced competency. Children
learn concepts defined by features earlier than those defined
by relations (Gentner, 1978). Experts differ from novices by
organizing knowledge within their domain along relational
lines (Chi, Feltovich, & Glaser, 1981).

Despite this work comparing featural and relational pro-
cessing, studies comparing the ability to learn novel concepts
defined by features or relations under comparable conditions
is absent. It is possible that when numerous factors are bal-
anced, relational learning could prove easier than featural
learning. For example, feature- and relation-based tasks of-
ten differ in their information demands (Kittur, Hummel, &
Holyoak, 2004; Waltz, Lau, Grewal, & Holyoak, 2000).

Furthermore, no study comparing feature- and relation-
based learning has used stimuli that rely on the same percep-
tual substrate. In all cases, the perceptual features carrying
relational and featural information are different. In other do-
mains, such as same/different discrimination (Love, Rouder,
& Wisniewski, 1999) and change detection (Kroger, Holyoak,
& Hummel, 2004), this concordance has been achieved, but
never in a learning study.

Although many would agree that the developmental trajec-
tory follows a progression from appreciating feature matches

to grasping more complex relational matches (Gentner, 1988;
Gentner & Ratterman, 1991; Richland, Morrison, & Holyoak,
2006), how far does this shift go? Perhaps when confounding
factors are equated, adults will more readily master relation-
based concepts than feature-based ones.

The current study finds that certain relation-based cate-
gories are more readily acquired and explores the basis for
this advantage. All four experiments made use of stimuli in
which featural and relational information supervenes on the
same perceptual information. Experiment 1 establishes that
certain relation-based categories are more readily acquired
than comparable feature-based categories. Experiment 2
rules out that this advantage arises from a greater difficulty in
encoding absolute stimulus information compared to relative
stimulus information. Experiment 3 suggests that relation-
based categories are acquired faster when the flexibility af-
forded by aligning relations during the comparison process is
useful for completing the task. Experiment 4 further tests this
hypothesis using a category structure that should not benefit
from the power of analogical alignment. In this case, feature-
and relation-based categories are acquired at the same rate.

Stimulus Design
The simple scenes used for the experiments were designed
specifically to address the issue of whether it is harder for
adults to learn categories defined by the relationships between
objects or to learn categories defined by the general features
of those same objects. To avoid confounding factors and pro-
vide an informative comparison, the relations and features
were both defined over the same perceptual factors. To cor-
rectly classify a scene based on its features, participants had
to observe the brightness and size of each object. To correctly
classify the scene based on the relations within it, the par-
ticipants had to make a relational judgement about the same
perceptual factors of brightness and size.

Each scene consisted of two circles appearing side-by-side.
Across trials, these two circles varied in their size (small,
medium, large) and brightness (light, moderate, dark). These
circles were combined to give two overall relation attributes
(which side was bigger and which was brighter) and two over-
all feature attributes (size and brightness). The medium and
moderate values were always manifested once in a scene (See
Figure 1).

Experiment 1
The purpose of Experiment 1 was to investigate the relative
difficulty of learning to classify a scene based on either the
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Figure 1: Four example stimuli and their differences. The
circles vary on four different attributes: two features and two
relations. The features are overall size and overall brightness
(defined over both circles). The relations are which circle
(by left/right spatial position) is bigger and which circle is
brighter.

relations between objects in a scene or the overall features of
the scene.

Methods

Participants Fifty-two undergraduate students from the
University of Texas at Austin participated for course credit.
Participants were randomly assigned to the feature relevant
(n=27) or relation relevant (n=25) condition.

Stimuli and Category Structure Each stimulus was com-
posed of two circles displayed side by side on a black screen.
The circles were bounded by constant sized green boxes of a
moderate brightness. For each individual exemplar, the cir-
cles were paired so as to give four overall binary attributes:
which side was brighter, which side was bigger, overall size
(both circles), and overall brightness (both circles). This re-
sulted in 16 different possible stimuli that participants learned
to classify.

The category structure learned by all of the participants
followed a binary XOR structure over the two relevant at-
tributes. The binary XOR is a non-linear classification rule
that requires attention to both of the relevant attributes (see
Table 1). In the relation condition, the two relation-based at-
tributes were relevant and the features were irrelevant. The
opposite was true for the feature condition.

Procedure Each participant was first presented with a
screen of detailed instructions informing them that they were
going to learn to categorize pairs of circles into two cate-
gories, A and B. Participants were instructed that each stimu-
lus varied along four binary-valued attributes (overall bright-
ness, overall size, which circle was brighter, which circle was
bigger) and told to look for a rule involving these attributes.
For each participant, the labels A and B were randomly as-
signed to correspond to the actual category A or B.

On each learning trial, two circles were presented in the
center of the computer screen. The stimulus was accompa-
nied by the text prompt “Category A or B?” at the top of
the screen. Participants freely responded with an A or B key
press. Immediately after responding, participants received ei-
ther a brief low (wrong) or high (right) pitched auditory tone
concurrent with text displayed on the bottom of the screen

containing “WRONG” or “RIGHT” and the correct category
label for the stimulus. The correct category label and the
stimulus were presented for 1250 ms before being replaced
by a blank screen for 500 ms. Then the next trial started. The
trials were blocked in groups of 16 which consisted of a ran-
dom ordering of the 16 stimuli. Participants were not made
aware of the transition from one block to the next. Category
training terminated when participants reached a learning cri-
terion of correctly classifying 12 stimuli in a row or partici-
pants completed 18 blocks (288 trials) of learning.

Table 1: Category structure

Attr. 1 Attr. 2 Attr. 3 Attr. 4 XOR Four-Category
0 0 0 or 1 0 or 1 A A
0 1 0 or 1 0 or 1 B B
1 0 0 or 1 0 or 1 B C
1 1 0 or 1 0 or 1 A D

Note: For example, with features relevant in the four-category struc-
ture: big and bright would be A; big and dark, B; small and bright, C;
and small and dark, D.

Results and Discussion
An accuracy score was calculated for each participant over
the 288 trials. If a participant reached the learning criterion
before 288 trials, they were assumed to have been correct on
the remaining trials. The results are summarized in Table 3.

Significantly more participants reached criterion in the re-
lation condition, 14 of 25 participants versus 4 of 27 in the
feature condition χ2(1,N = 52) = 8.00, p < .01. The mean
accuracy for the two learning conditions was .73 (relation)
and .54 (feature). Only in the relation condition did partici-
pants perform significantly above chance, t(24) = 5.38, p <
.001, t(26) = 1.70, p ≈ .10 (respectively). A t-test revealed
that the difference in the mean accuracy of participants in the
two conditions was significant, t(50) = 5.19, p < .001, η2

p =
.25.

The results of Experiment 1 demonstrate that categories
defined by the relations are easier to learn than categories de-
fined by the features of a scene.

Experiment 2
Experiment 1 demonstrated that relation-based categories are
easier to learn than feature-based categories. One possible
explanation for this surprising result is that people find it eas-
ier to process relative rather than absolute stimulus informa-
tion (cf. Garner, 1954; Huttenlocher, Duffy, & Levine, 2002;
Stewart, Brown, & Chater, 2005). Learners in the feature
condition needed to process absolute stimulus information to
determine whether each stimulus was dark or light and small
or large, whereas learners in the relation condition could sim-
ply compare the two circles forming a stimulus.

Experiment 2 tests the hypothesis that the difficulty in de-
termining absolute feature values was responsible for the poor
performance of participants in the feature condition of Ex-
periment 1. All of the participants were pretrained to iden-
tify the feature values of the circles. Participants were then
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transferred to either the relation- or feature-based classifica-
tion task used in Experiment 1. If the relational learning
advantage observed in Experiment 1 arose from a difficulty
in processing absolute stimulus information, Experiment 2’s
pretraining on absolute values should neutralize the relational
learning advantage.

Methods

Participants Twenty-nine undergraduate students from the
University of Texas at Austin participated for course credit.
Participants were randomly assigned to the feature relevant
(n=15) or relation relevant (n=14) condition. All participants
received pretraining.
Stimuli and Category Structure The stimuli and category
structure were the same as those used in Experiment 1.
Procedure The procedure was similar to Experiment 1.
The one difference was that all of the participants were first
trained on identifying the feature values. A single circle was
randomly chosen from the nine possible circles (with replace-
ment) and shown to the participant on a computer screen. The
circle was either small, medium or large, and of low, moder-
ate or high brightness. Text would then appear next to the
circle asking the level of brightness of the circle (1-3). Partic-
ipants responded by pressing 1, 2, or 3. They then heard either
a low (wrong) or high (right) tone accompanied by text giving
the actual level. The participants were then asked how bright
the circle was, they responded and were then given feedback
in the same manner. They were shown these circles until they
were able to correctly identify both the size and brightness of
six circles in a row. Participants were then run in either the
relation or feature learning condition as in Experiment 1.

Results and Discussion

Participants needed an average of 14.79 (SE=1.21) identifica-
tion trials (two judgments on each trial) to reach the criterion
of correctly identifying both the size and brightness attributes
of six circles in a row. There was no significant difference in
the identification performance of participants later assigned
to the relation or feature condition, with means of 14.00 (SE
= 1.90), and 15.33 (SE = 1.55) respectively, t < 1.

The following results are summarized in Table 3. During
the learning phase, significantly more participants in the rela-
tion condition reached criterion, 9 of the 14 versus 2 of 15 in
the feature condition, χ2(1,N = 29) = 5.97, p < .05. Over-
all, participants in the relation condition achieved a mean
accuracy of .79, which differed significantly from chance,
t(13) = 4.95, p < .001. For the feature condition, the mean
accuracy of .52 did not differ significantly from chance, t < 1.
A t-test showed that the participants performed significantly
worse in the feature learning condition than in the relation
learning condition, t(27) = 4.42, p < .001, η2

p = .45.
Experiment 2’s results suggest that the reason for poor per-

formance in the feature condition is not caused by difficulty
in identifying absolute stimulus values. Participants readily
mastered the value mappings during pretraining. Neverthe-
less, participants learned categories defined by relations faster
than those defined by features (as In Experiment 1).

Experiment 3
The results from Experiment 2 suggest that difficulty in pro-
cessing absolute stimulus values is not the cause of the re-
lational learning advantage. Another alternative explanation
is that the flexibility provided by online alignment processes
provides greater benefit to relational rather than feature learn-
ers. The process of structural or analogical alignment in-
volves comparing two analogs that contain relations (e.g.,
bigger, brighter) to determine appropriate correspondences
between the analogs (Gentner, 1983). Numerous computa-
tional models have been designed that implement this align-
ment process (e.g., Falkenhainer, Forbus, & Gentner, 1989;
Hummel & Holyoak, 1997; Larkey & Love, 2003).

The Building Relations through Instance Driven Gradient
Error Shifting (BRIDGES) model (Tomlinson & Love, 2006)
is particularly relevant in terms of motivating predictions
for Experiments 3 and 4. BRIDGES is an exemplar-based
connectionist model of human category learning model that
can appreciate analogical relationships between stimuli and
stored predicate representations of exemplars. Rather than
relying on pre-established correspondences between scenes
(e.g., left circle corresponds to left circle) as in standard cat-
egory learning models (e.g., Kruschke, 1992), BRIDGES
aligns the current stimulus with each category exemplar
stored in memory in order to minimize attention-weighted
mismatch (and thus maximize similarity) for both feature and
relational correspondences.

This online alignment process can yield non-metrical sim-
ilarity spaces in which stimuli that differ on two relations
can be more similar than stimuli that differ on one relation.
For example, BRIDGES predicts that comparing the top-left
and bottom-left stimuli in Figure 1 results in an alignment
that puts the left circle from one scene into correspondence
with the right circle of the other scene. This alignment cre-
ates matches for all features and relations (overriding the
default preference to preserve spatial correspondences) and
thus results in a high similarity match. Importantly for the
current learning studies, items that mismatch on both rela-
tions are always members of the same category for relational
learners (see Table 1). To the extent that high within- and
low between-category similarity promotes category acquisi-
tion (Rosch & Mervis, 1975), a flexible alignment process
predicts the relation advantage observed in Experiments 1 and
2.

Experiment 3 tests the flexible alignment hypothesis. Par-
ticipants rated the similarity of all pairs of stimuli. If the
preferred alignment changes depending on the stimuli being
compared, the resultant similarities should be non-linear with
respect to the number of relational differences between the
stimuli. In fact, stimulus pairs mismatching on both relations
might be judged to be more similar than stimulus pairs mis-
matching on one relation.

Methods
Participants Twenty-two undergraduate students from the
University of Texas at Austin participated for course credit.
All of the participants were run in the same condition (N=22)

Stimuli The stimuli were the same as those used in Experi-
ment 1.
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Procedure Participants were instructed to rate the similar-
ity of two presented stimuli on a scale from 1-9. As in Experi-
ment 1, participants were instructed that each stimulus varied
along four binary-valued attributes (overall brightness, over-
all size, which circle was brighter, which circle was bigger).
On each trial, two stimuli were simultaneously presented on
screen with text designating pair 1 and pair 2, as well as text
asking for their similarity on a scale of 1-9. One pair was on
the top of the screen and the other on the bottom. The pairs
were separated by a line. Participants responded by pressing
key 1 through 9. Following the participant’s response, the
screen blanked for 500 ms and the next trial began. Each par-
ticipant rated 136 pairs of stimuli [(16 * 15 )/ 2 + 16]: each
stimulus paired with every other stimulus, plus each stimu-
lus paired with itself. The overall order of the trials and the
assignment of pairs to the top or bottom of the screen were
randomized.

Results and Discussion For the purposes of analysis the
similarity ratings were grouped according to how many fea-
tures or relations were different within the comparison. Fig-
ure 2 illustrates the nine means resulting from this aggre-
gation. A 3 (0, 1, or 2 relation changes) X 3 (0, 1, or 2
feature changes) within-participant ANOVA revealed a main
effect of both the number of different relations, F(2,42) =
33.68, p < .001, η2

p = .62, and the number of different fea-
tures, F(2,42) = 204.81, p < .001, η2

p = .91, as well as a
significant interaction between the number of feature changes
and relational changes, F(4,84) = 36.47, p < .001, η2

p = .63.

Relational Differences
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Figure 2: Mean similarity as a function of number of different
features and relations. Error bars represent 95% confidence
intervals.

The above interaction is indicative of a non-metrical sim-
ilarity space arising from an alignment process. To test the
predictions of the alignment account more precisely, a 2 (re-
lation or feature) X 2 (one or two changes) ANOVA was
performed to compare the effects of mismatching on one or
both relations (with both features matching) with the effects
of mismatching on one or both features (with both relations
matching). The interaction predicted by the alignment ac-
count is shown in Figure 3. The ANOVA revealed a signifi-
cant main effect for the type of change, F(1,21) = 26.32, p <
.001, η2

p = .56, and the number of changes, F(1,21) =

23.85, p < .001, η2
p = .53. There was also a significant inter-

action between the type of change and the number of changes,
F(1,21) = 96.05, p < .001, η2

p = .82. Planned t-tests showed
that similarity increases significantly when both relations
change, compared to only one, t(21) = 2.13, p < .05, η2

p =
.02. In contrast, similarity decreases significantly when both
features change, t(21) = 13.68, p < .001, η2

p = .68.
The similarity results provide support for the flexible align-

ment hypothesis. Differences between the features of two
stimuli result in a linear decrease in similarity, whereas
changes in the relations result in a non-metrical similarity
space.
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Figure 3: An interaction plot of the mean similarity of the
four sub-points of particular interest. Error bars represent
95% confidence intervals.

Experiment 4
Participants’ similarity ratings in Experiment 3 were indica-
tive of a non-metrical similarity space. As predicted by an
online alignment account, under certain conditions, increas-
ing relational mismatch increased rated similarity. This sur-
prising effect was predicted to arise from the ability to select
correspondences or mappings between compared stimuli in
order to maximize similarity.

The flexibility afforded by the proposed alignment process
would be particularly beneficial to the relational learners in
Experiments 1 and 2. For relational learners of the XOR cat-
egory structures, items that differ on both relations are mem-
bers of the same category. To the extent that high within and
low between category similarity promotes acquisition (Rosch
& Mervis, 1975), a flexible alignment process predicts the
relation advantage observed in Experiments 1 and 2. The
flexible alignment process is not predicted to benefit featu-
ral learners – an added feature difference should always de-
crease similarity. The BRIDGES model provides a computa-
tional instantiation of this account that calculates the similar-
ity within- and between-categories in terms of alignments to
stored category exemplars.

Experiment 4 further tests the alignment account by train-
ing participants on a category structure in which flexible
alignment is not advantageous. Differences in performance
between featural and relational learners are predicted to com-
press under these conditions. The category structure used
in Experiment 4 is the four-category structure specified in
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Table 1. Unlike the XOR category structure, in the four-
category structure, items that differ on both relevant attributes
are members of different categories.

To the extent that relational learners engage in flexible
alignment processes (i.e., finding correspondences that run
counter to the spatial positions of the circles), they should
show a characteristic error pattern during learning. In partic-
ular, participants’ responses in the relation condition should
reflect the similarity results from Experiment 3 by show-
ing more errors between the categories that are two relevant
changes away than those only one relevant change away.

Unfortunately, cross-experimental comparisons of overall
performance levels are not warranted because of differences
in the category structures used (e.g., nonlinear vs. linear; two
vs. four category choices). The key predictions for Experi-
ment 4 are that the difficulty of featural and relational learning
should converge, and that relational learners should show ev-
idence of alignment by making more generalization errors to
the opposite category (two relevant changes away), than to an
adjacent category (one relevant change away).

Methods
Participants Fifty-three undergraduate students from the
University of Texas at Austin participated for course credit.
Participants were randomly assigned to the feature relevant
(n=27) or relation relevant (n=26) condition.

Stimuli and Category Structure The stimuli were the
same as those used in Experiment 1. In contrast to Exper-
iment 1, participants learned to classify each stimulus as a
member of one of four different categories. The categories
were the four unique combinations of the two values of the
two relation attributes in the relation condition and the two
feature attributes in the feature condition (see Table 1).

Procedure The procedure was identical to that used in Ex-
periment 1, except participants had to learn to classify the
circles as belonging to one of four categories: A, B, C, or D,
by pressing the corresponding key. There were no other dif-
ferences in the instructions. As in the previous experiments,
the labels were randomly assigned for each participant.

Results and Discussion
The number of people reaching criterion was 22 of 26 in the
relation group and 22 of 27 in the feature group. The mean
accuracy for the relation and feature conditions were .78 and
.74, respectively. This difference was not significant, t < 1.
These results are summarized in Table 3.

The pattern of participants’ errors was also analyzed. Each
incorrect response was classified as either a mistake to an ad-
jacent category (e.g., A→ B or C) or as a mistake to the op-
posite category (e.g., A→D). These counts are presented in
Table 2. As predicted, learners in the relation condition made

Table 2: Confusion Matrix with standardized residuals
Label Relations Features

Ad jacent 1056 (−2.03) 1473 (1.81)
Opposite 560 (3.06) 547 (−2.74)

more errors to the opposite category than did learners in the
feature condition, χ2(1,N = 3636) = 23.96, p < .001.

The results from Experiment 4 support the alignment ex-
planation for the relational advantage observed in Experi-
ments 1 and 2. When a category structure is used in which
alignment is not beneficial to learning relation-based cate-
gories, featural and relational learning are of equal difficulty.
The drive to flexibly align is sufficiently strong that it engages
even in situations in which it is not beneficial, as evidenced
by the preponderance of opposite category errors in the rela-
tional condition.

General Discussion
Contrary to accepted wisdom, Experiment 1 demonstrated
that learning to classify by relations can be easier than by
features when stimuli and categories that offer a valid com-
parison are employed. Experiment 2 ruled out explanations
of this relational advantage based on difficulties in process-
ing absolute stimulus values. Experiments 3 and 4’s results
favored a flexible alignment explanation of the relational ad-
vantage. Pairwise similarity ratings collected in Experiment
3 supported the notion that learners flexibly align stimuli so
as to maximize perceived similarity. Importantly, this flexible
alignment process should have differentially benefitted rela-
tional learners in Experiment 1. Experiment 4 employed a
category structure in which flexible alignment was not ben-
eficial. Under these conditions, relation- and feature-based
categories were acquired at the same rate. Alternative ex-
planations based on a difference in processing of features or
relations cannot account for the range of results.

Our findings add to a growing body of evidence that sug-
gests a central role for relational processing in categoriza-
tion. Many real-world categories have a strong relational ba-
sis (Gentner & Kurtz, 2005; Markman & Stilwell, 2001), as
do many of the features that constitute categories that we do
not view as relational (Jones & Love, (in press)). The present
work complements this line of inquiry by examining relation-
based learning of novel categories in a rigorously controlled
experimental setting.

The current work does not address how people discover
novel relations (cf. Doumas & Hummel, 2004), but instead
focuses on how people learn novel concepts using existing
relations. Nevertheless, our findings offer clues to how the re-
lations we have direct the discovery of categories in the real-
world. Whereas Rosch and Mervis (1975) focused on how the
structure of the environment biases acquisition toward cate-
gories that have high within- and low between-category simi-
larity, our findings suggest the cognitive machinery provided
by flexible alignment can exert a strong influence in regular-
izing categories to conform to the Rosch and Mervis ideal.
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