
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
On Sparse and Efficient Deep Learning

Permalink
https://escholarship.org/uc/item/1ws8d3w1

Author
Lu, Yadong

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ws8d3w1
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

On Sparse and Efficient Deep Learning

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Statistics

by

Yadong Lu

Dissertation Committee:
Distinguished Professor Pierre Baldi, Chair

Professor Michele Guindani
Professor Babak Shahbaba

2021

Chapter 3 © 2021 Physics Review D
All other materials © 2021 Yadong Lu

DEDICATION

To my parents.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES viii

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Outline and Contributions . 2

1.1.1 Variational Sparse Learning via Non-local Priors 2
1.1.2 Sparse Autoregressive Models for Scalable Generation of Sparse Images

in Particle Physics . 3
1.1.3 Detecting JAVA Runtime Exceptions using Sparse Location Information. 4

2 Variational Sparse Learning via Non-local Priors 5
2.1 Background . 5
2.2 Non-local Priors for variable selection . 7
2.3 Variational Inference for Non-local Prior selection 9

2.3.1 Learned Hard Concrete Relaxation 10
2.3.2 A Factorizable Normalizing Flow as Flexible Variational Distribution 12
2.3.3 Derivation and Optimization of ELBO 13
2.3.4 Convergence Analysis . 15

2.4 Related Work . 16
2.5 Experiments . 17

2.5.1 High Dimensional Linear Regression 17
2.5.2 Identifying informative neurons and electrodes in rodent odor recognition 22

2.6 Discussion . 25

3 SARM: Sparse Autoregressive Models for Scalable Generation of Sparse
Images in Particle Physics 27
3.1 Background . 27
3.2 Datasets . 29

iii

3.2.1 Jet Substructure Study . 30
3.2.2 Muon Isolation Study . 31

3.3 Autoregressive Models (ARMs) . 32
3.4 Sparse Autoregressive Models (SARMs) . 34

3.4.1 Sparse Images Likelihood Models . 35
3.4.2 Multi-Stage Generation for Heterogeneous Areas 37

3.5 Evaluation Methods . 39
3.6 Results . 41

3.6.1 Jet Substructure Study . 41
3.6.2 Muon Isolation Study . 47

3.7 Discussion . 53

4 Detection of JAVA Runtime Exceptions with Sparse Location Information 54
4.1 Background . 54
4.2 Motivation and Goal . 58
4.3 Dataset . 62
4.4 Proposed Approach . 64

4.4.1 Action-Context Token Sequence . 65
4.4.2 LA-BERT Model . 68

4.5 Evaluation . 73
4.5.1 Exception Type Prediction . 73
4.5.2 Exception Prone Tokens Prediction 78

4.6 Related Work . 82
4.7 Discussion . 83

5 Conclusion and Future Work 85

Bibliography 87

Appendix A Supplementary Material for Chapter 2 99

Appendix B Supplementary Material for Chapter 3 105

iv

LIST OF FIGURES

Page

2.1 Comparison of the probability densities for a N(0, 1) local versus multiple
non-local inverse moment priors for the alternative density of a discrete spike-
and-slab selection prior. A point mass at zero is assumed for the null hypothesis
(not shown). The inverse moment prior places negligible (i.e. close to zero)
mass around the origin. When τ increases, the prior becomes flatter, with
heavier tails. 9

2.2 Hard Concrete distribution with parameter δ and ζ, initialized at ζ = 1.1, δ =
−0.1 . 12

2.3 Comparing the convergence speed of the sum of square error for the parameter
estimate during training in our variational algorithm. Left column: SSE
of coeffcients with non-zero ground truth value. Right column: SSE of
coeffcients with zero ground truth value. The error bar is showing for one
standard deviation from the mean calculated using 50 repeated experiments.
Using non-local prior results in faster convergence of both zero and nonzero
parameters in all settings. And the variance of the estimates becomes larger
when the residue variance φ increases . 21

2.4 Histogram of 2000 variational posterior distribution draws (blue) using iMOM-
LHC and the MCMC posterior draws (orange) using iMOM-MCMC. The
red dashed vertical lines represent the ground truth values of the regression
coefficients. Both iMOM-LHC and iMOM-MCMC are able to detect the
non-zero coefficients and the posterior draws are close to the ground truth
values. However, iMOM-LHC is much more scalable than iMOM-MCMC. . 21

2.5 Comparison of sum of square errors (SSEs) between the estimated and the
ground truth of the regression coefficients using iMOM-LHC (blue) and SaS-
LHC (orange). The SSEs using iMOM-LHC is smaller than the SSEs using
SaS-LHC. 23

2.6 Dynamics of neuron spiking activity measured by spikes per second of the
rodent named SuperChris. It shows the time window between -0.8 seconds
and 0.5 seconds relative to odor release for Tetrode 13 unit 2 (T13-U2) and
unit 5 (T13-U5). 23

2.7 Neuron selection probability comparing spike and slab prior and iMOM prior.
Using the iMOM prior results in a sparser solution while maintaining accuracy. 26

v

2.8 Voronoi diagram showing tetrode-wise selection probability (the darker the
higher) by iMOM-LHC. Tetrode T13, T14 and T19 in the medial area (CA1)
of the brain are selected with clearly higher probability than the rest of the
tetrodes during rats’ odor recognition process, corroborating with the evidence
that CA1 receives strong input from regions processing olfactory information. 26

3.1 Calorimeter images in particle physics are often very sparse, where most of
their pixels have very small values. Left: Typical signal image of a hadronic
jet from [39] Right: Typical signal image of the vicinity of a muon from [81]. 28

3.2 Pixel generation process by a deep ARM to create an image with D pixels.
For the pixel xi, a deep neural network (DNN) is evaluated on a vector with
values x0, . . . , xi−1, zero-padded to length D. The output of the network are
the parameters θi of a parametric probability density P (xi|θi), from which xi
is sampled. 33

3.3 Generation process of a deep autoregressive model. During generation, the
first pixel x0 is sampled from x0 ∼ P (x0|θ0). Next, the pixel x0 is zero-padded
to a D dimensional vector and passed to the neural network ARM model,
which evaluates the parameters θ = {θ0, . . . , θD−1}, though only θ1 is needed
to sample the next pixel x1 ∼ P (x1|θ1). The pixels x0 and x1 are again
zero-padded to create a D dimensional vector which is passed into the neural
network to generate the next pixel. This process is repeated until all pixels are
generated. Note that the same neural network is used at each generation step,
and part of its weight connections are disabled to preserve the autoregressive
structure. 34

3.4 Generation process for the D+C model. The blue circle dots represent the
value sampled for each pixel. For example, given the first pixel value of 6.7,
sampled from the empirical distribution of the dataset, the neural network
outputs the distribution parameters γ1 = 0.1, µ1 = 3.1, s1 = 3.9 to generate the
second pixel. Then a Bernoulli random variable is sampled from z1 ∼ Bern(γi)
and a logistic random variable is sampled from x̃i ∼ Logistic(µi, si). The value
of the second pixel xi is produced by the product of these two variables as:
xi = zi · x̃i = 0 · 2.9 = 0. This sequential process is repeated until every pixel
is generated. 37

3.5 (Left) Distribution of pixel values in the jet substructure dataset for the 9
pixels in the center of the images (central region) and the rest of the pixels
(peripheral region). Note that the majority of the pixels in the peripheral
region are zero-valued and in general have lower variance than pixels in the
central region. (Right) Two-stage generation for the central and peripheral
regions using a spiral path and two different SARM modules. Using different
networks for each region improves performance. 38

3.6 Example jet images generated from each model. Notice that SARM-2 (D+C)
is able to produce small value pixels in the periphery of the images. The
intensity of each pixel is shown on a log scale, where the white space represents
pixels with value zero. 41

vi

3.7 Pixel-wise average of the images generated by each model. Notice that LAGAN
struggles to capture the distribution of low value pixels in the periphery of the
images and has a non-smooth radial transition compared to the autoregressive
models. The intensity of each pixel is shown on a log scale, where the white
space represents pixels with value zero. 42

3.8 Distributions of jet observables (Top: Mass, Bottom: PT) calculated from
images generated by several generative models and from the original images
generated by Pythia. Signal images, with two collimated quarks, are on the
left; background images, with a single quark or gluon, are on the right. . . . 44

3.9 Evaluation of the fidelity of images generated by several models in the context
of a classification task. Images generated by the model are used to train a
network to discriminate between signal and background, but performance is
measured using the original Pythia images. 44

3.10 Example calorimeter images in the vicinity of a muon from the generative
models as well as the original Monte Carlo generator. Top row shows isolated
muons (signal), while the bottom shows muons produced in association with a
jet (background). The intensity of each pixel is shown on a log scale, where
the white space represents pixels with value zero. 48

3.11 Pixel-wise averages of calorimeter images in the vicinity of a muon from the
generative models as well as the original Monte Carlo generator. Top row
shows isolated muons (signal), where little calorimeter activity is expected.
The bottom row shows muons produced in association with a jet (background),
which deposits significant energy near the muon. A linear scale is used to
reveal the differences between signal and background images. 49

3.12 Distributions of calorimeter observables (top: invariant mass, bottom: total
PT) calculated from images generated by several generative models and the
originals generated by a Monte Carlo generator. Signal images, in the vicinity
of an isolated muon, are on the left. Background images, in the vicinity of a
muon produced with an associated jet, are on the right. 49

3.13 Evaluation of the fidelity of images generated by several models in the context
of a classification task, distinguishing muons produced in isolation from those
produced in association with a jet. Images generated by the model are
used to train a network to discriminate between signal and background, but
performance is measured using the original Monte Carlo images. 52

4.1 Distribution of the 10 Most Frequent Exceptions 64
4.2 Overview of the D-REX Prediction Pipeline 65
4.3 Architecture of LA-BERT Model . 69
4.4 An Illustration of Self Attention Mechanism 70
4.5 Qualitative Analysis Examples . 80

vii

LIST OF TABLES

Page

2.1 Comparison of Mean sum of square error of coefficient estimation (SSE) and
precision/recall (P/R) of various methods: (a) iMOM prior with learned
hard concrete reparameterization (iMOM-LHC) outperforms the iMOM prior
without using LHC in both SSE and precision/recall, (b) in all of the settiings,
iMOM-LHC has has higher precision than SaS-LHC, which indicates that it
outperforms spike and slab prior in terms shrinking non-zero coefficients, (c)
comparing to Frequentist methods, iMOM-LHC has higher precision especially
at larger φ value, and (d) when p = 1500, it took 20x more time for MCMC
algorithm to run 5000 iteration comparing to our variational algorithm for
iMOM-LHC (1532.1 seconds on 2.3 GHz Intel Core i5 v.s. 75.6 seconds on
single TITAN X (Pascal) GPU). 19

2.2 Neural level selection results by spike and slab and iMOM prior. 26
2.3 Tetrode level selection results by spike and slab and iMOM prior. 26

3.1 Comparison of images created by various generative models with original
images from Pythia, evaluated using the Wasserstein distance (with p = 1)
between one-dimensional distributions of physical quantities calculated from
the images: jet PT and invariant mass, also shown in figure 3.8. Smaller values
indicate a closer match to the Pythia images. Four SARMs are evaluated,
those with either one-stage (SARM-1) or two-stage (SARM-2) models, and
those with either discrete and continuous distributions (D+C) or a mixture of
discrete distributions (D+D). 43

3.2 Quality of jet substructure signal images generated by SARM-1 (D+D) with
various pixel-generation orderings. The quality is measured by the Wasserstein
distance for the physical observables (PT and mass) between the generated
images and the original Pythia images. Spiral-in clockwise/counterclockwise
(CW/CCW), spiral-out clockwise/counterclockwise (CW/CCW), column-wise,
row-wise, and two random approaches are compared. The outward spiral
orders show good performance due to the radial structure of the images. . . 46

3.3 Comparison of image generation speed between the Monte Carlo approach
(Pythia) and various generative models. The SARM-2 models are slower than
LAGAN, but still considerably faster than Pythia and Pixel CNN++. 47

viii

3.4 Comparison of images created by various generative models to the original
Monte Carlo images using the Wasserstein distance (with p = 1) between
one-dimensional distributions of physical quantities calculated from the images:
PT and invariant mass, also shown in figure 3.12. Smaller values indicate a
closer match to the Monte Carlo images. Two SARMs are evaluated, with
either discrete and continuous distributions (D+C) or a mixture of discrete
distributions (D+D). 50

3.5 Quality of images generated by SARM-1 models with various pixel-generation
orderings for the muon isolation signal dataset. The quality is measured by
the Wasserstein distance for the physical observables (PT and mass) between
the generated images and the original Monte Carlo images. 52

3.6 Comparison of image generation speed between the Monte Carlo approach and
various generative models. The SARM-2 models are considerably faster than
Pixel CNN++ and the Monte Carlo generator. 52

4.1 Tokens in Action-Context Token Sequence 68
4.2 Exception Prediction Accuracy on 200k Test Set 76
4.3 Downloaded Java Projects Summary . 77
4.4 Exception Prediction Accuracy Comparison on Unseen Java Projects 78
4.5 Exception Prone Tokens Prediction: MeanPrecision 79

ix

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Pierre Baldi for his guidance and a lot of insightful
discussions on research ideas throughout the past few years. I always feel fortunate and
enjoyable to work with him on a variety of exciting scientific problems. Without him this
dissertation would not have become possible. I want to acknowledge Professor Michele
Guindani for introducing me to Bayesian thinking which greatly benefited my research. His
support and encouragement helped me through difficult times in research. I also want to
thank Professor Babak Shababa, who taught me useful knowledge in statistical computing,
which later became an important topic of my thesis.

In addition, I am grateful for all of my collaborators, especially Professor Daniel Whiteson,
Professor Cristina V. Lopes, Julian Collado and Farima Farmahinifarahani. It has been
wonderful to work together with them during my PhD. Lastly, I want to give special thanks
to my dad Yingjie Lu, who led me into the fascinating world of math and computer science in
my childhood, and my mom Xiaoying Deng, who constantly fills me with her unconditional
love and encouragement.

x

VITA

Yadong Lu

EDUCATION

Doctor of Philosophy in Statistics 2021
University name Irvine, California

Bachelor of Science in Mathematics 2016
Sichuan University Chengdu, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2019-2020
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2021
University of California, Irvine Irvine, California

REFEREED JOURNAL PUBLICATIONS

Yadong Lu, Julian Collado, Daniel Whiteson, Pierre Baldi. "SARM: Sparse Autoregressive
Model for Scalable Generation of Sparse Images in Particle Physics", Physics Review D, 2021.

REFEREED CONFERENCE PUBLICATIONS

Yadong Lu, Yinhao Zhu, Yang Yang, Amir Said, Taco S Cohen. "Progressive Neural
Image Compression with Nested Quantization and Latent Ordering", International Confer-
ence on Image Processing (ICIP), 2021.

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi, Sakshi Agarwal, Rina Dechter.
"Deep Bucket Elimination", International Joint Conference on Artificial Intelligence (IJCAI),
2021.

Ying Wang, Yadong Lu, Tijmen Blankevoort. "Differentiable joint pruning and quan-
tization for hardware efficiency", European Conference on Computer Vision (ECCV), 2020.

Siyu Shao, Ruqiang Yan, Yadong Lu, Peng Wang, Robert X. Gao. "DCNN-based multi-
signal induction motor fault diagnosis", IEEE Transactions on Instrumentation and Mea-

xi

surement, 2019.

Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Di Yang, Pedro Martins, Hitesh
Sajnani, Pierre Baldi, and Cristina Lopes. "Towards Automating Precision Studies of Clone
Detectors", International Conference on Software Engineering (ICSE), 2019.

Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina Lopes.
"Oreo: Detection of Clones in the Twilight Zone", Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018.

BOOK CHAPTERS

Yinsen Miao, Jeong Hwan Kook, Yadong Lu, Michele Guindani, Marina Vannucci. "Scalable
Bayesian Variable Selection Regression Models for Count Data", Flexible Bayesian Regression
Modelling, Elsevier, 2019.

xii

ABSTRACT OF THE DISSERTATION

On Sparse and Efficient Deep Learning

By

Yadong Lu

Doctor of Philosophy in Statistics

University of California, Irvine, 2021

Distinguished Professor Pierre Baldi, Chair

Rapid and ongoing technology developments enable researchers to collect large scale, high-

dimensional data in a wide range of areas in science and technology. The availability of these

data, together with increasing computational resources, have led to the remarkable success

of deep learning in a variety of tasks such as computer vision, natural language processing,

and reinforcement learning. However, deep neural networks for modeling high-dimensional

data can be hard to interpret and pose heavy computational burdens. One approach for

addressing some of these issues is to learn sparse representations.

In my thesis, I present several approaches to facilitate efficient learning of sparse representa-

tions in deep learning. I first describe a scalable variational inference algorithm to perform

variable selection in Bayesian settings using non-local priors. There, I show that our method

approximates the posterior estimates with the same degree of precision in variable selection

as traditional MCMC algorithms, while providing a one-order-of-magnitude speedup. Then

I propose a deep auto-regressive generative model to efficiently learn sparse distributions

and demonstrate its effectiveness on the problem of generating high-quality jet images in

particle physics to speed up scientific discovery. Finally, I introduce an approach which

adapts transformers, the current state-of-the-art deep learning models for natural language

processing tasks, to software data. There I tackle the problem of learning sparse location

xiii

information to identify exception prone segments of source code in software engineering.

xiv

Chapter 1

Introduction

Sparse distribution is becoming increasingly useful in high dimensional statistical analysis.

In a general setting where we have collected data for a variable of interest, and a large set of

covariates that might be associated with the variable of interest, a common question asked

is: can we discover a handful of covariates and build a model using the selected covariates

to predict the variable of interest considerably well? Further, we often ask: how certain do

we believe the selected covariates are indeed significant in explaining the variable of interest.

The second question is especially important, for example in bio-medical applications where it

is crucial to obtain uncertainty estimates. In this case, the sparse distribution, with a point

probability mass at zero and the rest of probability mass at non-zero values, can be used to

reflect the belief on how certain we should include each individual covariate. In the Bayesian

setting, we estimate the posterior of these sparse distributions given the data we observed.

This procedure is typical in Bayesian variable selection literature [87, 45].

Another type of use case of sparse distribution is to model the sparseness of the data. In

high energy physics experiments, it is common that two beams of particles are accelerated

to near light speed and collide in a vacuum chamber with cylinder shape and the particle

1

detectors are installed on its wall. When the products of the collision hit the detectors, the

Mass and angle information are recorded. So that at a given time point when we unroll the

cylinder, the detector’s signal can be seen as a rectangular image, where it is often called

jet image [95, 4]. At any given time, only a small part of the detectors get activated due

to collision, hence the jet image is usually sparse. The jet image is useful for a variety of

tasks [51, 113], however, generating it relies on Monte Carlo sampling, which is extremely

slow considering the amount needed to be generated [39]. To generate the sparse jet images,

a sparse distribution is needed to model each individual pixel distribution. We will see an

example where a deep neural network is applied to learn the sparse distribution of each pixel

as well as the dependency between all the pixels in the images.

1.1 Outline and Contributions

1.1.1 Variational Sparse Learning via Non-local Priors

Sparse learning methods have received increasing interest in recent years due to their wide

range of applications in high-dimensional problems. Fully Bayesian methods provide a

principled approach to learning sparse representations of the data, but they tend to be

computationally intensive. In this chapter, I discuss an approach to leverage the flexibility

of the transformation in the normalizing flows as variational approximations and propose a

scalable variational inference algorithm for Bayesian sparse learning using non-local priors.

Non-local priors refer to a family of prior distributions that assign negligible mass to the

region near the origin, leading to faster shrinkage of spurious non-zero parameters compared

to the commonly-used spike and slab priors. A Learned Hard-Concrete (LHC) relaxation is

proposed as a learnable approximation to the discrete spike in the variable selection priors.

Simulation results in high-dimensional regression problems show that our approach can match

2

the performance of MCMC methods, while providing an order of magnitude improvement in

speed. Furthermore, we demonstrate the effectiveness of our method in identifying informative

neurons based on a rodent experiment involving an odor recognition task.

1.1.2 Sparse Autoregressive Models for Scalable Generation of Sparse

Images in Particle Physics

Generation of simulated data is essential for data analysis in particle physics, but current

Monte Carlo methods are very computationally expensive. Deep-learning-based generative

models have successfully generated simulated data at lower cost, but struggle when the data

are very sparse. I introduce a novel deep sparse autoregressive model (SARM) that explicitly

learns the sparseness of the data with a tractable likelihood, making it more stable and

interpretable when compared to Generative Adversarial Networks (GANs) and other methods.

In two case studies, we compare SARM to a GAN model and a non-sparse autoregressive

model. As a quantitative measure of performance, we compute the Wasserstein distance

(Wp) between the distributions of physical quantities calculated on the generated images

and on the training images. In the first study, featuring images of jets in which 90% of the

pixels are zero-valued, SARM produces images with Wp scores that are 24− 52% better than

the scores obtained with other state-of-the-art generative models. In the second study, on

calorimeter images in the vicinity of muons where 98% of the pixels are zero-valued, SARM

produces images with Wp scores that are 66− 68% better. Similar observations made with

other metrics confirm the usefulness of SARM for sparse data in particle physics.

3

1.1.3 Detecting JAVA Runtime Exceptions using Sparse Location

Information.

Runtime exceptions are inevitable parts of software systems. While developers often write

exception handling code to avoid the severe outcomes of these exceptions, such code is

most effective if accompanied by accurate runtime exception types. Predicting the runtime

exceptions that may occur in a program, however, is a challenging task, as the situations

that lead to these exceptions are complex. In this paper, we propose D-REX (Deep Runtime

EXception detector), as an approach for predicting runtime exceptions of Java methods based

on the static properties of code.

The core of D-REX is a machine learning model that leverages the representation learning

ability of neural networks to infer a set of signals from code to predict the related runtime

exception types. This model, which we call Location Aware BERT, adapts a state-of-the-art

language model, BERT, to provide accurate predictions for the exception types, as well

as interpretable recommendations for the exception prone elements of code. We curate a

benchmark dataset of 200,000 Java projects from GitHub to train and evaluate D-REX.

Experiments demonstrate that D-REX predicts exception types with 81% of Top 1 accuracy,

outperforming multiple non-BERT baselines by a margin of at least 22%. Furthermore, it

can predict exception prone code elements with 75% Top 1 precision.

4

Chapter 2

Variational Sparse Learning via

Non-local Priors

2.1 Background

Sparse learning methods play an important role in a wide range of applications such as

image processing [138, 82], natural language processing [126, 125], and for learning sparse

and efficient neural network structures [53, 136]. They typically lead to more interpretable

models and reduce computational burden. Sparsity inducing priors offer a general approach

to sparse learning within the Bayesian framework, while providing a reliable method for

uncertainty quantification. The “spike and slab” family of priors [87, 45] is the gold standard

in Bayesian variable selection. It places a Dirac delta mass at the origin to explicitly

induce sparsity and uses a zero-centered Gaussian with large variance to model the non-zero

density of the parameter. Such priors allow to compute the posterior probability of whether

a parameter is different than zero in Bayesian hypothesis testing and variable selection.

Another commonly-employed family of sparsity inducing priors is provided by scale-mixtures

5

of Gaussian distributions [15, 103] The resulting “shrinkage" priors are characterized by heavy

tails and therefore lead to a more robust framework for handling large outlying signals [32, 17].

In fact, penalized likelihood approaches commonly used within the frequentist framework can

often be re-interpreted as sparsity inducing priors, for example the LASSO method [127] is

analogous to using a Laplace prior [100].

In recent years, there have been discussions, both philosophically and practically, on the

appropriateness of the above methods since they tend to place a significantly high probability

mass around a neighborhood of the null value. By definition, the alternative hypothesis should

be disjoint from the null hypothesis. Therefore the prior density reflecting the alternative

hypothesis should coherently be zero at the null value. In practice, excessive mass around

the null value often fails to penalize the parameters that are small but not supported by the

data [110].

Non-local priors have been proposed as an alternative to the previous approaches [67]. Consider

the case where the null hypothesis is that a parameter, β, is equal to zero. In a sparsity

learning context, we can briefly describe a non-local selection prior p(β) as a discrete mixture

of a point mass at zero (the null value) and a non-local density, i.e. a density that places

negligible mass around zero. It has been shown that non-local priors provide shrinkage for

spurious parameters either at fast polynomial or quasi-exponential rates as the sample size n

increases [110].

Currently, inference for models involving non-local priors is based on MCMC methods,

which are computationally demanding for high dimensional variable selection. Our goal

is to propose a scalable and practical variational method for sparse learning problems

using non-local priors. Our contributions can be summarized as follows: 1) we derive the

evidence lower bound (ELBO) for a family of non-local priors and show that our variational

algorithm is able to consistently approximate the correct gradient signal to shrink spurious

parameters in linear regression settings, 2) we propose a learned hard-concrete relexation as

6

a reparameterization scheme for the random binary selection indicators in the spike-and-slab

prior, removing the need to manually choosing the scaling constants in the hard-concrete

distribution [79], 3) we conduct an extensive simulation study to show that by employing a

factorized normalizing flows, [109, 62] as flexible variational posterior, our method is able

to match and even outperform the estimation performances of MCMC methods in an high-

dimensional variable selection problem, and 4) we apply our method on neuronal spike-train

data from a rodent experiment, successfully identifying informative neurons and tetrodes

implied in odor recognition.

2.2 Non-local Priors for variable selection

In this Section, we provide general background on the use of non-local prior densities in

Bayesian variable selection [68]. To set the stage, we consider a linear regression framework,

where the interest is to investigate how a dependent variable y is associated to a small subset

of available covariates x1, . . . , xp, after collecting N measurements,

yi =

p∑
j=1

xi βj + εi,

i = 1, . . . N , where the βj’s denote real-valued regression coefficients and εi ∼ N(0, σ2)

captures measurement error. In model selection, the objective is to identify which covariates

are relevant and should be included in the model, by conducting hypotheses tests on each

regression coefficient. More formally, suppose the null hypothesis H0 assumes that a coefficient

βj ∈ Θ0 for some j, and the alternative hypothesis H1 is βj ∈ Θ1. In variable selection

problems, the hypotheses relate to the significance of the coefficients, i.e. H0: βj = 0 versus

H1: βj 6= 0. In this paper, we will define a non-local prior for the regression coefficients as a

prior such that p(βj|H1) = 0 for all βj ∈ Θ0 and p(βj|H1) > 0 for all βj ∈ Θ1, j = 1, . . . , p.

Correspondingly, we introduce an auxiliary variable zj, that follows a Bernoulli distribution

7

Bern(π0). The indicator variable identifies the distributional assumptions on the parameter

βj under the null and alternative hypotheses, i.e. if zj = 0 the data are assumed to be drawn

from the model where βj = 0. Thus, the non-local selection prior can be regarded as a

mixture of a point mass at zero and a continuous non-local alternative distribution (i.e., a

spike-and-slab non-local prior)

βj ∼ (1− zj) δ0 + zj p(βj; τ)

where zj ∼ Bern(π) and p(βj; τ) is a non-local density indexed by a parameter τ and

characterizing the prior distribution of βj under the alternative hypothesis. Similarly as in the

traditional spike-and-slab prior formulation, a non-local selection prior models the sparsity

explicitly by assigning a positive mass 1− π at the origin. However, differently than when

using a flat Gaussian distribution N(0, τ), the density p(βj; τ) does not place a significant

amount of probability mass near the null value, thus properly reflecting the prior belief that

the parameter is away from zero under H1. An important motivation for the use of non-local

priors has been that they balance the rates of convergence of Bayes factors under the null

and alternative hypothesis [67]. On the contrary, the large sample properties of Bayes factors

obtained by the traditional local alternative priors imply that, as the sample size n increases,

evidence accumulates much more rapidly in favour of true alternative models than in favour

of true null models. More specifically, here, we consider the inverse moment prior (iMOM)

[67, 86], assuming independence of the βj’s. Thus, the joint density function is obtained as

p (β|τj) =

p∏
j=1

(τj)
1
2

√
πβ2

j

exp

{
− τj
β2
j

}
.

In practice, we use τj = τ > 0,j = 1, . . . , p, where the parameter controls the magnitude of

the modes and the thickness of the tail densities (see Figure 2.1). When τ increases, the prior

becomes flatter, with heavier tails.

8

Figure 2.1: Comparison of the probability densities for a N(0, 1) local versus multiple non-
local inverse moment priors for the alternative density of a discrete spike-and-slab selection
prior. A point mass at zero is assumed for the null hypothesis (not shown). The inverse
moment prior places negligible (i.e. close to zero) mass around the origin. When τ increases,
the prior becomes flatter, with heavier tails.

2.3 Variational Inference for Non-local Prior selection

In a Bayesian framework, the posterior distribution of the β’s, p(β|y,x), is obtained by

employing MCMC sampling schemes, since the non-local selection prior does not lead to a

posterior in closed form. However, the use of MCMC techniques may be computationally

infeasible when dealing with a high dimensional p and a large number of samples. Variational

inference (VI) [28] enables approximate posterior inference by introducing a variational

distribution qθ(β) with free variational parameter θ, to approximate the true posterior

distribution p(β|y,x). In typical applications of VI, the variational distribution is simple and

fully factorized, thus easy to sample from. The objective is to minimize the Kullback–Leibler

(KL) divergence between qθ(β) and the true posterior p(β|y,x) by using the gradient descent

algorithm on the variational parameter θ. The so called evidence lower bound to the log-

marginal distribution of y, conditional on x, is treated as the objective function,

log p(y|x) = log

∫
qθ(β)

p(y,β|x)

qθ(β)
dβ

≥ Eq log p(y|x,β)− Eq log
qθ(β)

p(β)

(2.1)

9

Here we adopt the mean field assumption, i.e. we assume qπ,η(β) =
∏p

j=1 qπj ,ηj(βj), where

π indicates the vector of parameters of the Bernoulli probability of the selection indicators

z, and η = (η1, ..., ηp) parameterizes the variational density for the alternative hypothesis,

qηj(βj|zj = 1). Thus, the evidence lower bound becomes:

ELBO =Eqπ(z)qη(β|z) log p(y|x,β, z)− Eqπ(z)qη(β|z) log
qπ,η(β, z)

p(β, z)
, (2.2)

and the objective is to perform posterior inference on π, z, and the β’s.

In this paper, we propose to use a factorizable normalizing flow generative model as the

variational distribution qπ,η(β, z) [109, 62]. A normalizing flow is a composition of invertible

mappings parameterized by neural networks, which transforms a simple distribution, e.g.

uniform, into any complex multi-modal distribution, due to the universal approximation

capability of neural networks. The density function of the resulting distribution can be

obtained by change of variable techniques. The analytical form of the transformed density

and its ability to model high dimensional multi-modal distributions make normalizing flows a

promising candidate as a flexible variational family [132, 129].

2.3.1 Learned Hard Concrete Relaxation

In (A.1), the Bernoulli random variable z is non-differentiable with respect to its parameter

π. Several recent manuscripts have investigated differentiable reparameterizations to allow

gradient-based optimization for discrete random variables [65, 83, 130]. The underlying idea

is to consider a differentiable continuous relaxation of a Bernoulli variable z ∼ Bern(π), by

defining an auxiliary random variable z̃ = fλ(u, α), as a function of a positive “temperature"

parameter λ, a random variable u ∼ Uniform(0, 1), and a positive parameter α. The

“temperature" parameter λ controls the amount of relaxation: when λ decreases to zero,

the auxiliary continuous z̃ converges in probability to a discrete Bernoulli random variable.

10

The real-valued parameter α characterizes the probability of success π, since P (z̃ > 0.5) =

P (limλ→0 z̃ = 1) = α/(1 + α). Thus, gradient descent can be performed on α to learn the

underlying Bernoulli probability π in eq (A.1). For details, we refer to (author?) [83], who

consider the Binary Concrete relaxation defined by the transformation z̃ = 1
1+exp(−(logα+L)/λ)

where L = log(u)− log(1− u) with u ∼ Uniform(0, 1).

However, the continuous relaxation defined above does not allow estimating exact zeroes and

ones as it requires to choose a threshold for variable selection. (author?) [79] have proposed

to use a hard-concrete distribution as a relaxation for a Bernoulli random variable, to obtain

a low-variance reparameterized gradient and simultaneously allowing for exact zeroes and

ones. More specifically, they consider a relaxation defined through a sigmoid function,

s = Sigmoid((log u− log(1− u) + α)/λ),

s̄ = s(ζ − δ) + δ

(2.3)

where u ∼ Uniform(0, 1) and λ is a temperature parameter. As λ→ 0, s̄ reduces to z. The

two parameters γ < 0 and ζ > 1 define a scaling factor (ζ − δ) > 1 and allow to "stretch" the

distribution to the (γ, ζ) ⊃ (0, 1) interval, so that the distribution of s is “folded" to a point

mass at zero and a point mass at one, respectively. See Figure 2.2. In practice, the hard

concrete reparameterization effectively corresponds to a thresholded version of the concrete

relaxation in [83], obtained by manually choosing a lower threshold at −δ
ζ−δ , and a upper

threshold at 1−δ
ζ−δ . These two scaling factors jointly determine the range of s̄ that can receive

gradient signals from the likelihood term. When s < −δ
ζ−δ , s̄ = 0 thus the gradient ∂s̄

∂α
= 0.

Our experience suggests that the performance of the variable selection is sensitive to these

scaling factors.

Therefore, to alleviate the difficulty of choosing hyperparameter δ and ζ, we propose to

optimize the truncation threshold for truncation by learning also the parameters ζ, δ using a

gradient-descent algorithm. By learning the scaling factor, we achieve a more flexible form

11

Figure 2.2: Hard Concrete distribution with parameter δ and ζ, initialized at ζ = 1.1, δ = −0.1

of the relaxation function s̄ than the hard concrete distribution. The experiment results

suggest that the Learned Hard Concrete relaxation (LHC) we propose leads to comparable

performance to a manually optimal tuning of ζ.

2.3.2 A Factorizable Normalizing Flow as Flexible Variational Dis-

tribution

Since the non-local alternative density typically is bimodal, using a unimodal Gaussian family

as the variational approximate posterior may lead to underestimate the posterior variance,

since also the posterior will be multi-modal. We leverage the flexibility of the normalizing flow

in density estimation to model multi-modal posterior distributions. However, the state of the

art flow-based models often result in a large computational burden [62, 73] Ḟor computational

and speed consideration, we maintain the mean field assumption of our variational method

and apply a factorizable flow model based on the deep sigmoidal flow (DSF) in (author?)

[62]. More specifically, for each j, we model the variational distribution qηj(βj|zj = 1) using

the distribution incurred by fηj(εj), where fηj is defined as the composition of K sigmoidal

12

flow (SF) transformations:

fηj(εj) = fj,k ◦ ·fj,k−1 ◦ . . . ◦ fj,1(εj) (2.4)

fj,k(zk) = Logit
(
wTj,k · Sigmoid (aj,k · zj,k−1 + bj,k)

)
(2.5)

where wTj,k = (wjk1, wjk2, ..., wjkd). To ensure invertibility of fj,k, we require wjkl ∈ (0, 1) and∑d
l=1 wjkl = 1, and aj,k, bj,k ∈ R+d are all d dimensional column vectors. In practice, we

optimize an underlying d dimensional unconstrained parameter for w′jkl, and apply a softmax

function to ensure
∑d

l=1 wkl = 1:

wjkl =
ew

′
jkl∑d

l=1 e
w′
jkl

(2.6)

We found that the factorizable sigmoidal flow with K = 2 and d = 2 provide a sufficiently

good capacity for modeling q(βj|zj).

For each sampled βj, we can compute its likelihood by change of variable formula:

pηj(βj) =

∣∣∣∣∂fηj(εj)∂εj

∣∣∣∣−1

p(εj) (2.7)

The non-linearities in the transformation fk can produce multi-modal distribution as demon-

strated in [62].

2.3.3 Derivation and Optimization of ELBO

Based on the previous discussion, we can rewrite the evidence lower bound in (A.1) by

factorizing q(β, z) = qη(β|z)qπ(z). We adopt the mean field assumption, i.e.

qπ,η(β, z) =
∏
j

qηj(βj|zj)qπj(zj) (2.8)

13

Thus, the evidence lower bound can be written as

ELBO =Eqπ(z)qη(β|z) log f(x|β, z))−

[
p∑
j=1

qπj(zj = 0) · log
qπj(zj = 0)

pπj(zj = 0)

+qπj(zj = 1) log[
qπj(zj = 1)qηj(βj|zj = 1)

pπj(zj = 1)pηj(βj|zj = 1)

]
=Eqπ(z)qη(β|z)logf(x|β, z))− [

p∑
j

KL(qπj(zj||p(zj))

+

p∑
j

qπj(zj = 1) ·KL(qηj(βj|zj = 1)||p(βj|zj = 1))] (2.9)

where KL indicates the Kullback–Leibler divergence for two distributions. We can apply

the learned hard concrete reparameterization discussed in section 2.3.1 and approximate

πj = qπj(zj = 1) using

q(s̄j 6= 0) = Sigmoid(αj − λ log
−δj
ζj

), (2.10)

since limλ→0 q(s̄j 6= 0) = πj. To reduce the variance in the gradient, we approximate the KL

divergence KL(qπj(zj)||p(zj)) as

KL(qπj(zj)||p(zj)) =

p∑
j

qαj(zj 6= 0) · log
qαj(zj 6= 0)

π0j

+ qαj(zj = 0) · log
qαj(zj = 0)

1− π0j

(2.11)

rather than estimating it via Monte Carlo expectation, where π0j denotes the prior probability

of P (zj = 1). The other KL divergence term KL(qηj(βj|zj = 1)||p(βj|zj = 1)) is instead

estimated using Monte Carlo samples, i.e., we draw m number of samples from the qηj (βj|zj =

1) and average over their log density ratio. In practice, we first draw from a standard normal

distribution εj and then apply two consecutive SF transformation on it to get the output:

βj = fη1 ◦ fη1(εj), where η1, η2 are parameters in the SF transformations.

In practice we choose to optimize a symmetric learned hard concrete distribution , where

14

ζj = 1− δj. So equivalently we have s̄j = φjsj − φj−1

2
, where φj > 0. Since we require both

φj, αj to be greater than zero, we optimize for the logarithm of both parameters during

training and transform it back during inference.

For the likelihood term Eqπ(z)qη(β|z) log f(y|β, z)), again we draw Monte Carlo samples from

qπ(z) and qη(β|z) to estimate this expectation. The full algorithm for updating the variational

parameters are summarized in algorithm ??.

2.3.4 Convergence Analysis

For the linear regression setting, we show that the gradient information of the objective

function L = 1
N
ELBO, consistently points αj to the direction such that – under the null – it

pushes limλ→0E(s̄j) to zero, i.e., the proposed variational algorithm can lead to a correct

selection of the covariates.

Theorem 1. Consider a linear regression model, where Y = Xβ+ε, where y ∈ RN , β ∈ Rp,

ε ∼ N(0, φ2I). Further, let the covariates be generated as X ∼ N(0,Σ), where max(|Σij|) <

C0 for some constant C0 > 0. If the true value of βj,true = 0, denote maxj |β̃j| < C1, where

β̃j = s̄jβj is the estimated value of βj, s̄j follows the definition in A.4, we have:

EX
∂L
∂αj′

< −2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)] +
C

N

where L = 1
N
ELBO and C > 0 is a positive constant defined in Lemma 1.

Remark: when N > C

2
∂s̄j′
∂αj′

[σ2β2
j′ s̄j′−C0C1(M−1)]

, we have E ∂L
∂αj

< 0.

It can be seen that the expected magnitude of the gradient signal increases when the absolute

value of β2
j′ is larger. Since a non-local alternative prior places more mass to the area away

from zero, it encourages the absolute value of β2
j′ to be larger compared to a local prior.

15

Therefore during optimization, the non-local prior often results in a stronger shrinkage of

spurious βjs. We note that the assumption X ∼ N(0, σ2I) can be relaxed to X ∼ N(0,Σ2),

where Σ has diagonal elements σ2 and the off-diagonal elements ρ, with ρ satisfying certain

regularity condition.

Proof of the theorem is detailed in the Supplementary materials. Theorem 2 requires careful

calculation of gradient expectation These results show that if the number of covariates p grows

with the number of samples N , the proposed gradient-based optimization of the variational

algorithm is guaranteed to shrink the coefficient of unrelated covariates to zero.

Algorithm 1: Variational sparse learning with non-local prior
Input: data x ∈ RN×P

Initialize logα = 1 and η with Xavier Initialization [48], set
while not converge do

Draw S samples from the variational distribution z ∼ qα(z) and β ∼ qη(β|z = 1).
The terms in ELBO related to each dimension of the latent variables z and β are
computed in parallel:
-ELBOj = 1

N

∑N
i=1

∑S
s=1 f(xi|β[s] � z[s])− 1

N

[∑s
s=1 qαi(z[s]) · log

qαj (z[s])

p(z[s]))

]
− 1

N

·qαj(z[s] = 1)
[∑s

s=1(qηj (β[s]|z[s] = 1) log
qηj (β[s]|z[s]=1)

p(β[s]|z[s]=1)

]
Update the parameters αj, φj, and ηj in parallel:
αj = αj + ρt∇αj(−ELBOj)
φj = φj + ρt∇αj(−ELBOj)
ηj = ηj + ρt∇ηj(−ELBOj)

end while

2.4 Related Work

There has been several contributions to the literature applying variational methods for

posterior inference of sparsity induced priors. (author?) [128] have proposed spike-and-slab

variational inference for multi-task and multiple kernel learning. They reparameterize the

spike and slab prior β ∼ πN(β|0, σ2) + (1− π)δ0(β) as β = β̃z, where β̃ ∼ N(β̃|0, σ2) and

z ∼ Bern(π). A EM algorithm is used in their variational method, whereas we employ a

16

different reparameterization through a learned hard-concrete relaxation (LHC) to allow for

direct gradient based optimization of the Bernoulli parameter. Differently from the hard

concrete distribution in [79], the proposed LHC is able to optimize the scaling factor based

on the available data and thus results in better performances (see Section 5). Furthermore,

the proposed method doesn’t depend on the specific form of the likelihood model, so it is

readily generalizable to handling sparsity in generalized linear models.

Scale mixture of Gaussian priors are also commonly used to promote sparsity, e.g. the

Horseshoe prior. [64] propose noncentered parameterizations of the horseshoe prior to allow

for efficient mean-field variational inference. [47] use regularized Horseshoe prior for inference

on the weights in Bayesian neural networks when the training data are limited [102]. Our

method distinguishes from these contributions since we use non-local priors to model the

sparsity, more specifically through a mixture containing a point mass at zero, thus providing

larger separation between the null value and alternative values [110].

Finally, normalizing flow models have been previously considered for variational inference as

an enrichment to the mean field Gaussian distribution [132, 109]. To exploit the trade-off

between the computational efficiency of the mean field assumption, and the flexibility of

the normalizing flow in density estimation, we use a factorizable deep sigmoidal flow in the

variational distribution and show that leads to results comparable to those of MCMC methods

in terms of posterior distribution estimation in high dimensional variable selection problem.

2.5 Experiments

2.5.1 High Dimensional Linear Regression

In this section, we assess the effectiveness of the proposed variational approach for variable

selection in high dimensional linear regression settings, i.e. we assume a growing number

17

of covariates p and a fixed number of samples n. We follow a similar set up as in [110],

where they employ MCMC in posterior estimation using non-local priors. We fix n = 100,

and set p = 100, 500, 1000. The covariates are generated using a Gaussian distribution,

x ∼ N(0,Σ), where Σ is an exchangeable covariance matrix with variances all equal to 1

and off-diagonal correlations ρ ∈ [0, 1). The data is generated according to a linear model,

y = Xβ + ε, where y ∈ Rn, β ∈ Rp, ε ∼ N(0, φ2I) and X is an n× p matrix. In particular,

we evaluate the performance of our procedure under different scenarios, with φ ∈ {1, 4},

and ρ ∈ {0, 0.25}. In all cases, we consider only five truly non-zero coefficients β1, β2, ..., β5,

taking values 1, 2, 3, 4,and 5 respectively.

from here on For model fitting, we considered three different versions of our variational

approaches: the usual spike-and-slab prior with a Normal slab prior and the learned , and the

proposed variations with an iMOM prior, either with or without the learned-hard concrete

reparameterization. We denote the three variaional approaches as SaS-LHC and iMOM-

LHC respectively). Also, we include comparison to the LASSO, AdaLASSO, and SCAD as

Frequentist variable selection methods. The penalization parameter for LASSO, AdaLASSO,

and SCAD are chosen by 10-fold cross-validation

we employed both a MCMC method with the iMOM prior and the proposed iMOM-

LHCvariational methods, we empirically found if the temperature is low, the training is

unstable in the beginning and are the estimated parameters are prone to degenerate to 0

value. Therefore we set the temperature to be a relatively high value 0.9. The initial value of

logαj is set to zero, for all the covariates, so that the initial expected value of the learned

hard concrete variable is Es̄j = α
1+α

= 0.5.

For all of the variational methods, we set the prior probability to be 0.5, indicating un-

informativeness on about whether each covariates should be included. And for MCMC

inference of iMOM prior, we set a Beta-Binomial(1,1) on the model space. We cross-validate

the hyperparameter τ of the prior on {1, 10} and found that larger value of τ leads to a

18

better log likelihood. For variational method, we found the models to converge in terms

of likelihood score after 2000 iterations using Adam [70] optimizer with learning rate 0.05.

All the variational methods are implemented in PyTorch [101] and run on a single card of

TITAN X (Pascal) with 12 GB memory. And for MCMC method we use the R package

’mombf’ with default choice of prior specification. More experimental details can be found in

the Supplementary. All the experiments are repeated 50 times, we report the sum of square

error between the estimated value coefficients and the ground truth value. We also report the

precision and recall value of selection comparing to the ground truth non-zero coefficients.

The results for ρ = 0.25 case are summarized in table ??. More results can be found in

supplementary material. We show that the flow based variational approach using iMOM

prior (iMOM-LHC), is comparable to the iMOM-MCMC, which uses MCMC for posterior

inference.

φ = 1 φ = 4
p = 500 p = 1000 p=1500 p=500 p=1000 p=1500
SSE P/R SSE P/R SSE P/R SSE P/R SSE P/R SSE P/R

LASSO 0.468 0.2 (1.0) 0.671 0.155 (1.0) 0.735 0.151 (1.0) 1.94 0.195 (1.0) 2.706 0.154 (1.0) 2.941 0.15 (0.98)
AdaLASSO 0.066 0.955 (1.0) 0.09 1.0 (1.0) 0.112 1.0 (1.0) 0.793 0.743 (0.98) 0.839 0.779 (0.94) 1.141 0.83 (0.92)

SCAD 0.247 0.971 (1.0) 0.186 1.0 (1.0) 0.293 0.967 (1.0) 0.691 0.532 (1.0) 0.835 0.578 (0.98) 1.053 0.553 (0.98)
iMOM-MCMC 0.071 1.0 (1.0) 0.073 1.0 (1.0) 0.074 1.0 (1.0) 1.299 1.0 (0.836) 1.302 1.0 (0.836) 1.224 1.0 (0.84)

SaS-LHC 0.566 0.668 (1.0) 0.134 0.957 (1.0) 0.061 0.997 (1.0) 6.335 0.258 (0.98) 3.77 0.421 (0.976) 2.703 0.58 (0.96)
iMOM 0.122 0.987 (0.996) 0.134 1.0 (0.996) 0.228 1.0 (0.976) 2.919 0.572 (0.948) 1.757 0.83 (0.928) 1.704 0.882 (0.908)

iMOM-LHC 0.097 1.0 (1.0) 0.108 1.0 (0.996) 0.166 1.0 (0.988) 2.083 0.781 (0.968) 1.183 0.916 (0.956) 1.185 0.92 (0.928)

Table 2.1: Comparison of Mean sum of square error of coefficient estimation (SSE) and
precision/recall (P/R) of various methods: (a) iMOM prior with learned hard concrete
reparameterization (iMOM-LHC) outperforms the iMOM prior without using LHC in both
SSE and precision/recall, (b) in all of the settiings, iMOM-LHC has has higher precision than
SaS-LHC, which indicates that it outperforms spike and slab prior in terms shrinking non-zero
coefficients, (c) comparing to Frequentist methods, iMOM-LHC has higher precision especially
at larger φ value, and (d) when p = 1500, it took 20x more time for MCMC algorithm to run
5000 iteration comparing to our variational algorithm for iMOM-LHC (1532.1 seconds on 2.3
GHz Intel Core i5 v.s. 75.6 seconds on single TITAN X (Pascal) GPU).

From Table ??, we observe that in general the posterior estimate for non-local prior using our

variational approach is comparable to the estimate provided MCMC methods. In additional

the learned hard concrete reparameterization helps to improve both the variable selection

precision/recall as well as parameter estimation especially when the signal to noise ratio |βj
φ
|

is low. We show an empirical distribution of βs when p = 1000, ρ = 0.25, φ = 1 in Figure 2.4.

19

Convergence speed We compare the convergence speed of iMOM-LHC and SaS-LHC.

Figure 2.3 shows the sum of square errors (SSEs) between the estimated coefficients and the

ground truth (both zero and non-zero) converges faster to zero using iMOM prior than using

spike and slab prior. In particular, under the same setup, the SSE of coefficients with zero

ground truth value converges to zero within 150 iterations using iMOM prior, compared to

1000 iterations using spike and slab prior, demonstrating the effectiveness of iMOM prior.

Comparison of posterior draws Figure 2.4 shows an example of the comparison between

the variation posterior draws (iMOM-LHC) of the coefficients and the MCMC posterior draws

(iMOM-MCMC), when p = 500, ρ = 0.25, and φ = 1. Posterior draws from the five non-zero

coefficients β1, β2, ..., β5 displayed from left to right. It can be observed that the posterior

draws of βis from variational methods tend to have smaller variance than the MCMC draws.

The underestimation of the variance is a consequence of the variational objective function

which is commonly observed in variational infernce [28].

Comparison of SSEs Figure 2.5 shows the violin plots of the sum of square errors (SSEs)

between the estimated coefficients and the ground truth coefficients, comparing SaS-LHC and

iMOM-LHC. We observe that the iMOM-LHC outperforms SaS-LHC by having smaller SSE

values. It is notable that when the signal to noise ratio |βj
φ
| is low (left plot), iMOM-LHC has

a clear advantage compared to SaS-LHC across all the range of the number of the coefficients

ps.

20

Figure 2.3: Comparing the convergence speed of the sum of square error for the parameter
estimate during training in our variational algorithm. Left column: SSE of coeffcients with
non-zero ground truth value. Right column: SSE of coeffcients with zero ground truth
value. The error bar is showing for one standard deviation from the mean calculated using
50 repeated experiments. Using non-local prior results in faster convergence of both zero and
nonzero parameters in all settings. And the variance of the estimates becomes larger when
the residue variance φ increases

Figure 2.4: Histogram of 2000 variational posterior distribution draws (blue) using iMOM-
LHC and the MCMC posterior draws (orange) using iMOM-MCMC. The red dashed vertical
lines represent the ground truth values of the regression coefficients. Both iMOM-LHC and
iMOM-MCMC are able to detect the non-zero coefficients and the posterior draws are close to
the ground truth values. However, iMOM-LHC is much more scalable than iMOM-MCMC.

21

2.5.2 Identifying informative neurons and electrodes in rodent odor

recognition

Dataset Description

We are particularly interested in associating neuron firing activity with rodent odor recognition.

We used the data from a published experiment in which neural activity was recorded in the

CA1 region of the hippocampus in rats as they performed a nonspatial sequence memory task

[9, 121]. This task involves repeated presentations of a sequence of odors (e.g., odors ABCD)

at a single port. On each trial, a single odor was presented and the rats were required to

correctly identify whether each odor was presented “in sequence” (InSeq; by holding their

nosepoke response until the signal at 1.2s) or “out of sequence” (OutSeq; by withdrawing

their nose before the signal). Spiking activity was recorded using 14-24 tetrodes (bundles of

4 electrodes) in rats tested on well-trained or novel sequences. For each odor presentation

(trial), the data typically features spike counts from 40-70 neurons and trial identifiers (e.g.,

neuron index, odor presented, InSeq/OutSeq, response correct/incorrect). Spiking activity

from representative neuron is shown in Figure 2.7. The input data we use is the mean spiking

rate of 46 neurons belonging to one rat (SuperChris) in the 0-500ms time window (relative to

odor release). More experimental details can be found in the supplementary material.

Odor classification results at the neuron and electrode level

We first applied our method to identify neurons that are particularly informative in differenti-

ating among the odors presented on each trial. The model used to predict the presented odor

is a single hidden unit layer neural network with ReLU activation with input size 46 and

output size 4. We then obtained the softmax of the output vector to produce the probability

corresponding to the 4 odors. We compared the selection results of the model using spike

22

Figure 2.5: Comparison of sum of square errors (SSEs) between the estimated and the ground
truth of the regression coefficients using iMOM-LHC (blue) and SaS-LHC (orange). The
SSEs using iMOM-LHC is smaller than the SSEs using SaS-LHC.

Figure 2.6: Dynamics of neuron spiking activity measured by spikes per second of the rodent
named SuperChris. It shows the time window between -0.8 seconds and 0.5 seconds relative
to odor release for Tetrode 13 unit 2 (T13-U2) and unit 5 (T13-U5).

23

and slab prior and non-local prior, and the prior probability of each neuron being activated

is set to be 0.5. The initial values of αjs and the temparature are the same with linear

regression settings. We performed a 5-fold cross validation and reported the mean predictive

performance of our model. After training, the activation probability πj for each neuron or

tetrode is well separated, and in practice we choose to select with threshold at 0.01.

We found that, although the majority of neurons (37 out of 46) contributed very little

information (probability ≤ .048), 6 neurons were highly informative (.922, .926, 809, 0.879

.802, .685, .614,). A detailed examination of the activity of these 6 neurons using standard

peri-event rasters and histograms confirmed that their activity differentiated across odor

presentations (see example neuron in Figure (2.7), suggesting this model can be used as an

efficient screening tool to identify informative neurons in large datasets. We then applied our

model at the tetrode level by sharing the parameter αj for neurons within the same tetrode

group while allowing the parameters ηj in qηj(βj|zj = 1) to be different for each neuron in

the group. This allows us to enforce a tetrode-wise sparsity pattern in order to probe the

spatial association of neural activity and odor recognition. As expected, we found that the

tetrodes with the highest probabilities (T13, T14, T19, and T1) included the 6 neurons with

the highest probability mentioned above. In addition, we also found that tetrodes T1 is

moderately informative (probabilities of .325). This result suggests the model can also be

used at the tetrode level to capture informative population activity patterns not detected at

the level of individual neurons.

Finally, we examined the spatial distribution of informative electrodes within CA1. We

found that high-information tetrodes appeared to cluster in the distal segment of CA1 (the

bottom-right corner of Figure 2.8). This observation is consistent with evidence that this part

of CA1 receives strong input from regions processing olfactory information [7, 137]. Applying

the model to our experimental data allows us to confirm this finding. Further we are working

on increase the number of units recorded in each CA1 sector to more extensively control for

24

the potential influence of variations in the number of neurons per tetrode location (or in their

individual firing rate). These results suggest that our model will be a useful tool to quantify

the topographic organization of coding properties within and across brain regions.

2.6 Discussion

We present a practical approach for scalable approximate Bayesian inference for high-

dimensional variable selection via non-local priors. To allow for a flexible variatinal distri-

bution, we use the factorizable normalizing flow as our variational family. We propose a

learned hard concrete relaxation scheme allowing the model to learn an optimal value of the

scaling constant of the concrete distribution, hence allieviating the need for manual search

of the scaling constants. We applied our method on variable selection in high dimensional

linear regression, where it is shown to be comparable with MCMC estimation while can easily

provide at least an order of magnitude of speed up. We test our sparse learning approach on

rodent odor recognition data and successfully identify informative spatial patterns in neuron

activity which is believed to be associated with odor recognition.

Our approach opens a route for further work on effectively tackle variable selection problem

where Bayesian inference faces computational difficulty due to high dimensionality of the

parameter space, such as brain connectivity and genetic study. Also, we are working on

comparing our methods with more related feature selection methods and applying our method

to neural network compression.

25

Figure 2.7: Neuron selection probability comparing spike and slab prior and iMOM prior.
Using the iMOM prior results in a sparser solution while maintaining accuracy.

Neuron Level
Acc Avg num selected

SaS-LHC 57.58% (0.04) 12.6
iMOM-LHC 68.48%(0.09) 8.2

Table 2.2: Neural level selection results by spike and slab and iMOM prior.

Tetrode Level
Acc Avg num selected

SaS-LHC 61.82% (0.132) 8.0
iMOM-LHC 64.24% (0.08) 5.8

Table 2.3: Tetrode level selection results by spike and slab and iMOM prior.

Figure 2.8: Voronoi diagram showing tetrode-wise selection probability (the darker the
higher) by iMOM-LHC. Tetrode T13, T14 and T19 in the medial area (CA1) of the brain
are selected with clearly higher probability than the rest of the tetrodes during rats’ odor
recognition process, corroborating with the evidence that CA1 receives strong input from
regions processing olfactory information.

26

Chapter 3

SARM: Sparse Autoregressive Models

for Scalable Generation of Sparse Images

in Particle Physics

3.1 Background

Experiments in particle physics seek to uncover the building blocks of matter and their

interactions, which determine the structure of the Universe from subatomic to cosmic distances.

Analyses of the data produced by these experiments make extensive use of simulations to

predict the experimental signature of particle interactions under various theoretical hypothesis.

These simulations are used in likelihood-free inference as well as in the development of data

selection and analysis strategies which optimize the statistical power of the data. Current

state-of-the-art simulators apply Monte Carlo techniques to the microphysical processes

governing individual particles’ propagation and interaction [6], making them computationally

expensive [5, 107].

27

0 5 10 15 20
[Transformed] Pseudorapidity

0

5

10

15

20

[T
ra

ns
fo

rm
ed

] A
zim

ut
ha

l A
ng

le

0 10 20 30
[Transformed] Pseudorapidity

0

5

10

15

20

25

30

[T
ra

ns
fo

rm
ed

] A
zim

ut
ha

l A
ng

le

10 6

10 4

10 2

100

102

Pi
xe

l P
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

Figure 3.1: Calorimeter images in particle physics are often very sparse, where most of their
pixels have very small values. Left: Typical signal image of a hadronic jet from [39] Right:
Typical signal image of the vicinity of a muon from [81].

Detectors in particle physics experiments have a multi-layer architecture which produces highly

structured data. One essential layer, the calorimeter, measures the energy of passing particles,

and is subdivided into small cells to ensure spatial resolution. In collider experiments, the

calorimeter is typically cylindrical [95], while in fixed-target experiments it may be a surface

[4]. In both cases, the data can be represented as an image, allowing for the application of

image-processing methods initially developed for natural images. However, in contrast to

natural images, pixels in calorimeter images (figure 3.1) are very sparse, where usually 90%

or more of the pixel values are zero. In addition, these images are not as uniform as natural

images, featuring clusters in the center and noise in the periphery.

Recently, deep generative models [49, 72, 97] have produced high-quality artificial natural

images [140, 30, 73] at a relatively low computational cost. The successful application of

machine learning in high energy physics [22, 41, 122, 21, 52, 114, 119, 19], and generative

models in natural images has inspired the use of these models for generating image-like data in

physical sciences applications [39, 89, 88, 139, 104, 13, 40, 31, 120, 36, 54, 98], often employing

Generative Adversarial Networks (GAN) [49] or, less frequently, Variational Auto-encoders

(VAE) [72]. However, the extreme sparsity of the images in particle physics and other areas

of the physical sciences [35] presents unique challenges for generative models.

28

The leading applications of GAN-based generative models for sparse image synthesis in

high-energy physics, LAGAN [39] and CALOGAN [99], make use of the ReLU activation

function in the final layer to induce sparsity in the output image. The flat portion of the

ReLU activation function can lead to many error gradients being zero at the output layer,

creating challenges [34] for stochastic gradient descent [29, 70] methods. In addition, GANs

are notoriously unstable during training [16] and can suffer from mode collapse, which restricts

the diversity of events in the generated data [90, 105]. Despite these difficulties, GANs have

been one of the most popular deep generative models in particle physics.

However, other generative models may be better suited for sparse data. For example, deep

autoregressive models (ARMs) have also demonstrated impressive performance for generating

natural images among likelihood based generative models [116, 97]. In this paper, we develop

sparse autoregressive models (SARM), a class of ARMs specifically tuned to produce sparse

images. We present a systematic approach for designing SARMs and demonstrate their

effectiveness through multiple experiments. SARMs are stable during training with respect

to hyperparameter variations and weight initializations. SARMs are also interpretable in the

sense that it is possible for these model to produce an analytic likelihood for any given sample.

We then evaluate SARMs on two benchmark data sets. Given their flexibility, SARMs may

be applicable to areas beyond particle physics where sparse images must be generated.

3.2 Datasets

An important statistical task in the analysis of particle physics data is identifying the

particle source of a particular detector signature. Below, we describe two datasets, one which

distinguishes between the detector signatures of single quarks and collimated pairs of quarks,

and a second which distinguishes between muons produced in isolation and those produced

as part of a shower of particles.

29

3.2.1 Jet Substructure Study

Quarks or gluons produced in collisions leave a particular detector signature: a jet, or

shower of collimated particles, which deposit most of their energy in a tight core. In many

applications, it is important to distinguish the signatures of a single quark or gluon from that

of a collimated pair of quarks, which may leave two potentially overlapping cores. This task

is a natural setting for image-recognition algorithms, and has been the focus of many deep

learning studies [35, 10, 38, 27, 74] which rely on simplified calorimeter simulations due to

the cost of generating realistic samples. Thus, an inexpensive generation of realistic datasets

would be very valuable as a classification training sample.

We use a set of benchmark jet images from Ref. [39], where a full description of this dataset

can be found as well as the code to generate it. In this dataset, quark pairs from W -boson

decay are labeled as signal and single quark or gluon jets are labeled as background images.

The intensity of each pixel value represents the sum of the momenta transverse to the beam

(PT) over the particles which strike a particular cell. The images are generated using PYTHIA

8.219 [124] simulations of proton collisions at a center-of-mass energy
√
s = 14 TeV, selecting

jets with 250 < PT < 300 GeV. Instead of a realistic detector simulation, the calorimeter

response is mimicked via a regular 0.1× 0.1 grid in the η and φ coordinates. The jet images

are constructed and preprocessed as described in [38], including the centering and rotations of

the images. The resulting images are 25× 25 pixels, with intensity values in the [0,276] range.

We divide them into a training set containing 400,000 images for the signal and 400,000

images for the background, and a testing set containing 36,000 images for the signal and

36,000 images for the background. A typical image from this dataset is shown in figure 3.1.

This dataset has a high degree of sparseness: more than 90% of its pixels are zero valued.

30

3.2.2 Muon Isolation Study

Muons leave a very clear detector signature which is difficult to mimic. However, physicists

must distinguish between two modes of muon production: a rare mode in which muons

are produced from the decay of a heavy boson and are isolated in the detector, and a

second prolific mode in which muons are produced inside a jet, surrounded by other particles.

Fluctuations in the jet can occasionally produce apparently-isolated muons.

We use a set of benchmark calorimeter images from [81], where muons from heavy bosons are

labeled as signal and muons produced within jets are labeled as background. The signal muons

are generated with the process pp→ Z ′ → µ+µ− with a Z ′ mass of 20 GeV/c2. Background

muons are generated with the process pp → bb̄. Both signal and background datasets are

generated at a center of mass energy
√
s = 13 TeV. The collisions and immediate decays are

simulated with madgraph5 2.3.3 [14], showering and hadronization with pythia

6.428 [124], and detector response with delphes 3.4.0 [37] using the delphes

ATLAS detector model. Additional proton interactions are overlaid on top of the

primary process, at a rate of 50 additional interactions per event. This dataset only considers

muons with PT in the range: PT ∈ [10, 15] GeV/c. The signal events are weighted to match

the transverse muon momentum distribution of the background events. The calorimeter

images in the vicinity of the muon are created from the calorimeter deposits within η − φ

radius of R < 0.4, where each pixel represents the momentum transverse to the beam axis.

The deposits are preprocessed by centering the image on the coordinates of the identified

muon propagated to the calorimeter. The images are pixelated using a 32x32 grid to roughly

match the granularity of the calorimeters of ATLAS and CMS, and the pixels have values

in the range [0, 172]. The training set contains 41250 signal images and 41246 background

images, and the testing set contains 41344 signal images and 41151 background images. A

typical image from this dataset is shown in figure 3.1. This dataset has an even greater level

of sparsity: more than 98% of its pixels have zero-value.

31

3.3 Autoregressive Models (ARMs)

Autoregressive models (ARMs) approximate a high dimensional data distribution Pdata(x)

with P (x), the distribution induced by the model where x ∈ RD. For example, when working

with images, Pdata(x) represents the distribution of the values of D pixels in the image. ARMs

are generative models that create outputs sequentially, where each new output is conditioned

on the previous output [75]. Formally, ARMs transform the problem of learning the joint

distribution Pdata(x) into learning a sequence of tractable conditional distributions P (xi|xj<i).

The ordering of the pixels can influence the model’s performance and will be discussed later

in the paper. ARMs rely on the basic factorization:

P (x) = P (x0, x1, . . . , xD)

= P (x0)P (x1|x0)P (x2|x0, x1) . . . P (xD−1|x0 . . . xD−2) (3.1)

The conditional densities P (xi|xj<i) can be parameterized by deep neural networks [46,

97, 116, 131] so that: (1) P (xi|xj<i) = P (xi|θi), where θi represents the parameters of a

distribution (e.g. mean and standard deviation); (2) θi = fi(x0, . . . , xi−1), such that θi

depends on previous output; and (3) the function fi is implemented by a neural network. At

generation time, the pixel values xi are generated sequentially by sampling in order from

the distributions P (xi|θi). A simplified implementation of this process using a single neural

network is depicted in figure 3.2. The weights of the neural networks that compute the

θi’s are shared across different values of i, for regularization [131] purposes and to reduce

computational costs, hence the zero-padding of the input vector.

A common concern with ARMs is that by generating pixels in sequence, conditioning only on

previously visited pixels, the model may not be able to take into account the dependence of

a current pixel on subsequent pixels. However, this is not the case because the weights are

trained using all the data (i.e. “past” and “future” pixels) and the model always learns to

32

x0

Pixels
P(xi | θi)

xi-1

0
0

… θi

Parameters Density Prediction

DNN

~ xi

Figure 3.2: Pixel generation process by a deep ARM to create an image with D pixels. For
the pixel xi, a deep neural network (DNN) is evaluated on a vector with values x0, . . . , xi−1,
zero-padded to length D. The output of the network are the parameters θi of a parametric
probability density P (xi|θi), from which xi is sampled.

generate the joint marginal distribution of previous and current pixels. This idea is further

illustrated with a toy example in Appendix B.1.

Learning in ARMs is different from learning in other generative models such as GANs and

VAEs. ARMs directly minimize the discrepancy, in terms of KL divergence, between the

data distribution Pdata(x) and the model distribution P (x) which is produced explicitly. In

contrast, neither GANs nor VAEs produce a tractable marginal likelihood model P (x) and,

as a result, they have to resort to approximations for minimizing the KL divergence between

the data and model distributions. ARMs avoid this issue by sequentially modeling each

conditional probability distribution, allowing them to minimize the KL divergence directly

with a tractable likelihood P (x). Leveraging the flexibility of deep neural networks to learn

each conditional probability, ARMs are able to approximate a large family of continuous

distributions in RD [63].

The implementation of ARMs for images can follow several approaches [46, 50, 97, 116].

For scalability during training and generation, we use a single neural network to model

the parameters of the conditional probabilities at each step, where some connections are

33

Figure 3.3: Generation process of a deep autoregressive model. During generation, the first
pixel x0 is sampled from x0 ∼ P (x0|θ0). Next, the pixel x0 is zero-padded to a D dimensional
vector and passed to the neural network ARM model, which evaluates the parameters
θ = {θ0, . . . , θD−1}, though only θ1 is needed to sample the next pixel x1 ∼ P (x1|θ1). The
pixels x0 and x1 are again zero-padded to create a D dimensional vector which is passed into
the neural network to generate the next pixel. This process is repeated until all pixels are
generated. Note that the same neural network is used at each generation step, and part of its
weight connections are disabled to preserve the autoregressive structure.

intentionally disabled to preserve the autoregressive structure (see Appendix B.2), similar

to the structure used in [46]. Given a training image, this makes it possible to calculate all

the parameters θ0, . . . , θD−1 in parallel, instead of calculating each θi sequentially. During

generation, the model generates the output elements one-by-one as illustrated in figure 3.3.

3.4 Sparse Autoregressive Models (SARMs)

To deal with sparsity in images, we introduce sparse ARMs (SARMs) in which each conditional

distribution is a mixture comprising a Dirac delta distribution at the zero pixel value, as

one of its components. The probability associated with the zero-pixel value is learnable by

gradient descent, providing a flexible and efficient way of modeling and fitting highly sparse

datasets. The other components of the mixture can be modeled in different ways, as described

below.

34

3.4.1 Sparse Images Likelihood Models

In SARM, the likelihood function for the i-th pixel xi is formulated as:

p(xi|θi) = γi · δxi=0 + (1− γi) · δxi 6=0 · p(xi|φi) (3.2)

where the parameters θi = {γi, φi} are predicted by the underlying neural network taking

x0, . . . , xi−1 as its inputs. Since the pixel values in the calorimeter images represent the

physical deposition of energy, they must be non-negative, i.e. p(xi|φi) > 0 only when xi > 0.

To satisfy this constraint, we explore two options. First, we use a mixture of a Dirac delta

distribution at zero with a discrete distribution for the non-zero pixels (D+D). Second, we use

a mixture of Dirac delta distribution at zero with a continuous distribution for the non-zero

pixels (D+C).

Discrete Mixture Model (D+D): We discretize each pixel value xi by rounding it to the

nearest value in a pre-determined grid with points {0, g1, . . . , gN}, where gj > 0 for j from 1

to N , and gN corresponds to the largest pixel value after rounding. The model learns the

probability of each discrete value as a categorical distribution:

p(xi|θi) = γi,0 · δxi=0 +
N∑
j=1

γi,j · δxi=gj (3.3)

where each γi,j is predicted by the parameter θi = (θi0, . . . , θiN) using a softmax function.

When the grid is uniform, this likelihood is the same as the discretized softmax likelihood

used by Pixel RNN [97], which has achieved state-of-the-art results on benchmark datasets

of natural images. [42]. However, in particle physics the distribution of pixel values is

typically far from uniform. In many typical cases, there is a large number of pixels with small

values, and a few pixels with large values, as seen in figure 3.5. To better represent the pixel

distribution and minimize the error due to quantization, we assign more grid points to the

35

region of low pixel values. We achieve this by using a power transformation x̂ = x1/p on the

pixel values, where p is a hyperparameter such that p ≥ 1.

Discrete and Continuous Mixture Model (D+C): The pixel values of natural images

are usually represented by unsigned integer values between 0 and 255. However, in particle

physics images, the pixel values are typically real-valued. To avoid explicit rounding, SARM

(D+C) is built with a truncated logistic distribution that models the non-zero distribution

component of each pixel. To generate the D+C mixture, we reparameterize each pixel as

xi = x̃i · zi, where x̃i follows a truncated logistic distribution TL(µi, si) with mean µi and

scale parameter si. Here zi ∼ Bern(γi) is a Bernoulli random variable with probability

p(zi = 1) = γi, which controls the sparsity level. By assuming independence of x̃i and zi, the

likelihood function of xi becomes:

p(xi|θi) = γi · δzi=0 + (1− γi) · δzi 6=0 · p(x̃i|µi, si) (3.4)

where θi = {µi, si, γi} are functions of the previous pixel values x0:i−1, to ensure the autore-

gressive structure. In order to allow for unconstrained optimization, we treat log(si) as the

learning parameter and take its exponential in the likelihood equation 3.4. Since the pixel

distribution could be multi-modal, we use a mixture of truncated logistic (MTL) distributions

for x̃i which is more flexible.

The mixture of truncated logistic likelihood differs from the discretized logistic mixture used

in Pixel CNN++ [116] in the way it handles continuous pixel values. Pixel CNN++ requires

discretizing xi and then maximizing the probability on the discretized grid. In contrast,

SARM can directly maximize the probability density function of xi, allowing it to handle

continuous pixel values without incurring quantization errors.

36

Figure 3.4: Generation process for the D+C model. The blue circle dots represent the
value sampled for each pixel. For example, given the first pixel value of 6.7, sampled
from the empirical distribution of the dataset, the neural network outputs the distribution
parameters γ1 = 0.1, µ1 = 3.1, s1 = 3.9 to generate the second pixel. Then a Bernoulli
random variable is sampled from z1 ∼ Bern(γi) and a logistic random variable is sampled
from x̃i ∼ Logistic(µi, si). The value of the second pixel xi is produced by the product of
these two variables as: xi = zi · x̃i = 0 · 2.9 = 0. This sequential process is repeated until
every pixel is generated.

There are several differences between the D+D and the D+C models. The D+D model

allows enough flexibility to represent multi-modal distributions, as each grid point has its

own learnable probability. However, there is a price for this flexibility. It is significantly

more time-consuming to generate an (N + 1)-way softmax vector and sample from a discrete

mixture (D+D) than it is to generate the parameters of γ, µ, s and then sample from a

discrete and continuous mixture (D+C). Other constrained domain distributions such as the

exponential and the gamma distributions were also considered but led to inferior results. The

exponential distribution suffers from a lack of flexibility due to having only one learnable

parameter.

3.4.2 Multi-Stage Generation for Heterogeneous Areas

In many ARM applications, a single network is used to predict the parameters θi of the

conditional probability distribution P (xi|θi). This approach works well if the distribution of

37

0 50 100 150 200 250 300
Pixel value

101

102

103

104

105

106

107

108

De
ns

ity
 (l

og
 sc

al
e)

Central Region
Peripheral Region Central Stage

Peripheral Stage

Figure 3.5: (Left) Distribution of pixel values in the jet substructure dataset for the 9 pixels
in the center of the images (central region) and the rest of the pixels (peripheral region).
Note that the majority of the pixels in the peripheral region are zero-valued and in general
have lower variance than pixels in the central region. (Right) Two-stage generation for the
central and peripheral regions using a spiral path and two different SARM modules. Using
different networks for each region improves performance.

pixel values is similar across pixels, as is often the case in natural images. However, as shown

in figure 3.5 (left), the pixel value distribution in the central square of a calorimeter image

containing a jet is very different from the distribution in the rest of the image (see also [38]).

In order to handle these heterogeneous regions, we use a two-stage approach by stacking two

distinct deep SARM modules, one for the center and one for the periphery. When the model

generates the image from the inside out, the outer module generates pixels conditioned on

the outputs of the center module, as illustrated in figure 3.5 (right). We refer to this model

as SARM-2 while the single stage model is SARM-1. Since the center may not have a clear

border, we treat the size of the center relative to the periphery as a hyperparameter during

training. Note that in general the number of stages depends on the structure of the data and

is not limited to two. Furthermore, it is possible to learn the SARMs associated with each

region in any order.

Thus, in summary, through the experiments to be presented, we show that a good heuristic

approach for SARM design is to: (1) decompose the images into relevant regions (e.g. center

vs background); (2) use a different SARM for each region type; and (3) within each region

type, preferably choose a systematic and congruent order for generating the pixels, as these

38

compare favorably to random generation orders. By systematic and congruent orders we

mean orders that have some kind of continuity for the location of the pixels being generated–

subsequent generated pixels should be close in the image–while respecting the geometry of

the highly activated region (e.g. a spiral order for a globular region, a linear order for a linear

region).

3.5 Evaluation Methods

The goal is to train generative models which create images indistinguishable from images

created by the slower Monte Carlo methods. We compare the performance of our models,

both in terms of image quality and generation time, against two other generative models:

LAGAN [39], the current state-of-the-art generative model for sparse images in particle

physics; and Pixel CNN++ [116], a widely used autoregressive model for natural images not

tuned for sparse images. We evaluate all models on both datasets described above; note that

LAGAN was designed to handle images typically found in the jet substructure dataset, while

the muon dataset features extreme sparsity in comparison. We measure the quality of the

generated images both qualitatively and quantitatively.

Qualitative Evaluation: We examine typical images generated by each model, as well as

the pixel-wise average intensity of the generated images, using the images produced by the

Monte Carlo methods, which in the jet substructure study are referred to as the Pythia

images. Additional qualitative comparisons are described in the Appendix B.3 and B.4.

Quantitative Evaluation: Comparisons of distributions in high-dimensional datasets

should focus on the scientific context and potential applications. In particle physics, the

calorimeter information is typically used to calculate physical quantities, such as invariant

mass or transverse momentum (PT), which are especially revealing as metrics because they

39

have not been explicitly optimized by the models. In addition, calorimeter images are used

to train classifiers which can identify particles from their patterns of depositions.

One-dimensional distributions of mass and PT can be evaluated in comparison to the distri-

butions from Monte Carlo generators using the Wasserstein distance, the minimum cost to

transform one distribution into the other one, expressed by:

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
‖x− y‖pdJ(x, y)

)1/p

(3.5)

where J (x, y) is the family of joint probability distribution of x and y; P and Q are marginal

distributions, and p ≥ 1. When p = 1, this metric is also known as the Earth Mover’s

Distance [112]. To match the results in [39], we computed W1(P,Q), where P represents one

of jet observable distributions from the Pythia images, and Q represents the corresponding

jet observable distribution from the generated images.

An important motivation for developing generative models for fast simulations is to provide

a computationally inexpensive method to augment existing datasets in classification task

[38, 20]. The jet substructure dataset was generated to train classifiers to distinguish between

jets from W boson decays (signal) and those from single quarks and gluons, a well-known

classification task [38, 20]. The muon isolation dataset was generated to train classifiers

to distinguish isolated muons from those due to heavy-flavor jet production. Therefore, an

essential test for the quality of the generated images is whether they can be used in these

classification tasks. To quantify this, the generated images were used as training sets to

develop a classifier whose performance was assessed using the Monte Carlo images. The same

convolutional neural network architecture was trained with the same hyperparameters on

five different data sets: Monte Carlo images, images generated by SARM-2 (D+C) images

generated by SARM-2 (D+D), images generated by LAGAN, and images generated by Pixel

CNN++. Because higher quality images should lead to improved classification of the Monte

40

0 10 20

0

5

10

15

20
Si

gn
al

Pythia

0 10 20

0

5

10

15

20

SARM-2 (D+C)

0 10 20

0

5

10

15

20

SARM-2 (D+D)

0 10 20

0

5

10

15

20

Pixel CNN++

0 10 20

0

5

10

15

20

LAGAN

0 10 20

0

5

10

15

20Ba
ck

gr
ou

nd

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

Figure 3.6: Example jet images generated from each model. Notice that SARM-2 (D+C) is
able to produce small value pixels in the periphery of the images. The intensity of each pixel
is shown on a log scale, where the white space represents pixels with value zero.

Carlo images, we used the classification performance as the evaluation metric.

Speed: Each generative model was used to generate batches of images multiple times to

measure the average speed of image generation.

3.6 Results

3.6.1 Jet Substructure Study

Qualitative Analysis

An example image from each generative model and from the Pythia Monte Carlo generator

is shown in figure 3.6. It is clear that SARM-2 (D+C) excels at generating pixels with small

values around the periphery in comparison to the other models. Additional samples for each

model can be seen in Appendix B.7. To assess the overall quality of the generated images,

figure 3.7 shows the pixel-wise average of each dataset. The autoregressive models, SARMs

and Pixel CNN++, are able to model the peripheral radial region around the center more

accurately. This region has higher degree of sparseness than the center region, making it

41

0 10 20

0

5

10

15

20
Si

gn
al

Pythia

0 10 20

0

5

10

15

20

SARM-2 (D+C)

0 10 20

0

5

10

15

20

SARM-2 (D+D)

0 10 20

0

5

10

15

20

Pixel CNN++

0 10 20

0

5

10

15

20

LAGAN

0 10 20

0

5

10

15

20Ba
ck

gr
ou

nd

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

0 10 20

0

5

10

15

20

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

Figure 3.7: Pixel-wise average of the images generated by each model. Notice that LAGAN
struggles to capture the distribution of low value pixels in the periphery of the images and
has a non-smooth radial transition compared to the autoregressive models. The intensity of
each pixel is shown on a log scale, where the white space represents pixels with value zero.

more challenging for the generative models to accurately capture. We note that the images

from the SARM-2 (D+C) model appear to be most similar to the Pythia images, while the

other models are less able to generate the peripheral region faithfully. In addition, Pixel

CNN++ struggles to achieve the radial structure present in the Pythia images and creates

a square-like structure instead. In general, the images from figure 3.7 generated by the

autoregressive models show a smooth transition from the highly activated center to the sparse

border, similar to that seen in the Pythia dataset. In contrast, the border of the LAGAN

images is irregular, which could be due to its reliance on the ReLU activation function to

induce the sparsity, making the model unable to estimate the sparseness level directly.

Quantitative Analysis: Jet Observables as Metrics for Quality

To quantify the fidelity of the images generated by each model as compared with the original

samples, we insert them into typical applications in particle physics. In the context of

collisions that produce jets, it is common to calculate the invariant mass of the jet, and

the transverse momentum. Distributions of jet mass and PT are shown in figure 3.8 for all

models, which all succeed in matching the general shape, though discrepancies are visible,

and Wasserstein distances are shown in table 3.1.

42

Table 3.1: Comparison of images created by various generative models with original images
from Pythia, evaluated using the Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the images: jet PT and invariant mass,
also shown in figure 3.8. Smaller values indicate a closer match to the Pythia images. Four
SARMs are evaluated, those with either one-stage (SARM-1) or two-stage (SARM-2) models,
and those with either discrete and continuous distributions (D+C) or a mixture of discrete
distributions (D+D).

PT Mass
Model Signal Background Signal Background
LAGAN 3.15 3.29 1.45 1.39
Pixel CNN++ 3.46 3.59 1.09 1.56
SARM-1 (D+C) 2.33 2.46 1.07 1.54
SARM-2 (D+C) 2.32 2.71 1.06 1.39
SARM-1 (D+D) 1.95 2.52 1.34 2.45
SARM-2 (D+D) 1.44 1.66 0.94 0.92

All SARM variants achieve lower distances in the PT distributions than LAGAN and Pixel

CNN+, and comparable or better distances in jet mass. The best results in all categories

are obtained by the SARM-2 (D+D). Compared to the best of Pixel CNN++ and LAGAN,

SARM-2 (D+D) provides a 51.92% improvement for PT, and a 23.79% improvement for mass,

averaged over the signal and background sets. These results demonstrate the effectiveness

of taking sparseness into account during learning and generation. Secondly, the SARM-2

models clearly outperform the SARM-1 models for both the (D+D) and (D+C) likelihoods,

which shows the effectiveness of the multi-stage approach in modeling heterogeneous areas in

the images.

Classification of Generated Images

An important application of generated calorimeter images is to augment training sets for

networks learning to perform vital signal-background classification tasks. As a high-level

test of the image quality, we train networks using images generated by each model (200k

signal, 200k background), and evaluate the performance on the original images from Pythia

43

40 60 80 100 120
Mass [GeV/c2]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Signal
Pythia
LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

40 60 80 100 120
Mass [GeV/c2]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Background
Pythia
LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

220 240 260 280 300 320 340
PT [GeV/c]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Pythia

LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

220 240 260 280 300 320 340
PT [GeV/c]

0.000

0.005

0.010

0.015

0.020

0.025

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Pythia

LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

Figure 3.8: Distributions of jet observables (Top: Mass, Bottom: PT) calculated from
images generated by several generative models and from the original images generated by
Pythia. Signal images, with two collimated quarks, are on the left; background images, with
a single quark or gluon, are on the right.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Pythia (AUC = 0.894)
SARM-2 (D+D) (AUC = 0.869)
SARM-2 (D+C) (AUC = 0.841)
LAGAN (AUC = 0.825)
Pixel CNN++ (AUC = 0.815)

Figure 3.9: Evaluation of the fidelity of images generated by several models in the context of a
classification task. Images generated by the model are used to train a network to discriminate
between signal and background, but performance is measured using the original Pythia
images.

44

(20k signal, 20k background). Training sets which best mimic the original Pythia images

should lead to networks which most closely match the performance of a network trained on

Pythia images. Detailed information about the classifier and training procedure are given in

Appendix B.5. The receiver operating characteristic (ROC) curves for networks trained on

images from Pythia , SARM-2 (D+C), SARM-2 (D+D), Pixel CNN++ and LAGAN are

shown in figure 3.9. Classifiers trained on both SARM generated datasets have higher AUC

(area under the ROC curve) scores than the classifiers trained on the LAGAN images and

Pixel CNN++ images.

Generation Order

SARMs generate images pixel by pixel, conditioning each step on the previously generated

pixels. The order of the pixel generation corresponds to a dependency decomposition in

Equation 3.1, which may impact training performance. The traversal path is especially

important for images containing heterogeneous areas. For natural images, [46] uses an

ensemble of models with random paths, while Pixel CNN++ and other models [116, 97] use

the row-by-row pixel ordering.

The average performance of various pixel orderings for SARM-1 (D+D) over 10 repeated

runs is shown in table 3.2. Each order is evaluated by using the Wasserstein distance between

the distributions of the generated signal images and the Pythia signal images for the jet PT

and invariant mass.

The spiral paths, clockwise (CW) and counterclockwise (CCW), achieve the stronger results.

This could be understood in terms of mutual information between neighboring pixels. Unlike

the other orderings, the spiral ordering is continuous, i.e. it always generates a pixel adjacent

to the previously generated pixel. Furthermore, the spiral order is congruent with the globular

shape of the highly activated region in the jet images, e.g. Fig. 3.7. Starting the spiral

45

Table 3.2: Quality of jet substructure signal images generated by SARM-1 (D+D) with
various pixel-generation orderings. The quality is measured by the Wasserstein distance for
the physical observables (PT and mass) between the generated images and the original Pythia
images. Spiral-in clockwise/counterclockwise (CW/CCW), spiral-out clockwise/counterclock-
wise (CW/CCW), column-wise, row-wise, and two random approaches are compared. The
outward spiral orders show good performance due to the radial structure of the images.

PT (std) Mass (std)
Spiral-out CCW 1.94 (0.09) 1.38 (0.10)
Spiral-out CW 2.47 (0.23) 1.53 (0.22)
Spiral-in CCW 3.64 (0.32) 1.62 (0.14)
Spiral-in CW 3.20 (0.22) 1.45 (0.16)
Row-wise 3.06 (0.30) 2.01 (0.11)
Column-wise 3.38 (0.39) 1.90 (0.08)
Random I 4.05 (0.51) 1.74 (0.53)
Random II 3.41 (0.33) 1.25 (0.26)

from the center outperforms inward spirals, indicating that it may be easier to learn the

correlations between the pixels starting with pixels that are more active (more non-zero pixel

values). The difference between CW and CCW is likely due to asymmetries generated by the

rotation and centering steps in the preprocessing of the data. We use this asymmetric version

of the data in order to enable direct comparison to the LAGAN model. These results confirm

that non-random, systematic, generation orders that have good continuity and congruence

properties perform well (and outperform random orders). A full exploration of the ordering

dependency is beyond the scope of this work and computationally challenging due to the

factorial number of possible orderings.

Computational Costs

Table 3.3 shows the speed of the generative models in comparison to the Monte Carlo method

(Pythia). The SARM-2 models are five times slower than LAGAN, which is mainly due to the

extra computational cost of the autoregressive structure. On the other hand, the SARM-2

models are two orders of magnitude faster than Pythia and Pixel CNN++. The forward

46

pass of the Pixel CNN++ model is computationally expensive due to the ResNet blocks with

convolutional layers and skip connections [116, 56]. In contrast, SARMs use a simple feed

forward network with disabled connections to preserve autoregressive structure. The speed of

the generative models is measured on a machine with 4 TITANX GPU cards each with 12G

of memory. The speed of Pythia was assessed in [39] using Amazon Web Services (AWS) and

an IntelR XeonR E5-2686 v4 at 2.30GHz CPU.

Table 3.3: Comparison of image generation speed between the Monte Carlo approach (Pythia)
and various generative models. The SARM-2 models are slower than LAGAN, but still
considerably faster than Pythia and Pixel CNN++.

Model Speed (images/sec)
Pythia [39] 34
Pixel CNN++ 50
SARM-2 (D+D) 1612
SARM-2 (D+C) 2480
LAGAN 10176

There is room to further optimize the speed of the SARM models. For instance, we find

that reducing the size of the intermediate upsampling layer of the SARM (D+D) drastically

reduces the memory requirements and improves the generation speed. Another direction is

to explore model pruning and compression.

3.6.2 Muon Isolation Study

Qualitative Analysis: Average Generated Images

Typical calorimeter images in the vicinity of a muon generated by the standard Monte Carlo

method, Pixel CNN++ as well as two SARMs are shown in figure 3.10. In this context,

LAGAN suffered from mode collapse and failed to generate reasonable quality images (See

figure B.5 in the Appendix). This is a well known problem when training GANs [16, 90, 39],

especially with sparse data.

47

0 10 20 30

0

5

10

15

20

25

30

Si
gn

al

Monte Carlo

0 10 20 30

0

5

10

15

20

25

30

SARM-2 (D+C)

0 10 20 30

0

5

10

15

20

25

30

SARM-2 (D+D)

0 10 20 30

0

5

10

15

20

25

30

Pixel CNN++

0 10 20 30

0

5

10

15

20

25

30

Ba
ck

gr
ou

nd

0 10 20 30

0

5

10

15

20

25

30
0 10 20 30

0

5

10

15

20

25

30
0 10 20 30

0

5

10

15

20

25

30

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

Figure 3.10: Example calorimeter images in the vicinity of a muon from the generative models
as well as the original Monte Carlo generator. Top row shows isolated muons (signal), while
the bottom shows muons produced in association with a jet (background). The intensity of
each pixel is shown on a log scale, where the white space represents pixels with value zero.

Figure 3.11 shows the pixel-wise average images. The SARM-2 models and the Pixel CNN++

reproduce the radial symmetry seen in the original images. However, the average images

produced by Pixel CNN++ contain noticeable artifacts, potentially due to the convolutional

layers in the model [96].

Quantitative Analysis: Calorimeter Observables as Metrics for Quality

To assess the fidelity of the images quantitatively, we calculate physical quantities which

summarize the content of the images and allow for comparison of one-dimensional distributions.

While calorimeter images in the vicinity of a muon do not necessarily contain a clustered jet,

the total PT and invariant mass of the entire image do have physical meaning. Figure 3.12

shows the distributions of these quantities for the original Monte Carlo images, as well as for

the generated images, and table 3.4 provides the corresponding Wasserstein distances.

The datasets generated by both SARM-2 models have considerably smaller Wasserstein

distances than the datasets generated by the Pixel CNN++ model for both signal and

background. The distributions of all the generated datasets approximate the shape of the

48

0 10 20 30

0

5

10

15

20

25

30

Si
gn

al

Monte Carlo

0 10 20 30

0

5

10

15

20

25

30

SARM-2 (D+C)

0 10 20 30

0

5

10

15

20

25

30

SARM-2 (D+D)

0 10 20 30

0

5

10

15

20

25

30

Pixel CNN++

0 10 20 30

0

5

10

15

20

25

30

Ba
ck

gr
ou

nd

0 10 20 30

0

5

10

15

20

25

30
0 10 20 30

0

5

10

15

20

25

30
0 10 20 30

0

5

10

15

20

25

30

0.000
0.005
0.010
0.015
0.020
0.025
0.030

Pi
xe

l E
T (

Ge
V)

0.00

0.02

0.04

0.06

0.08

Pi
xe

l E
T (

Ge
V)

Figure 3.11: Pixel-wise averages of calorimeter images in the vicinity of a muon from the
generative models as well as the original Monte Carlo generator. Top row shows isolated
muons (signal), where little calorimeter activity is expected. The bottom row shows muons
produced in association with a jet (background), which deposits significant energy near the
muon. A linear scale is used to reveal the differences between signal and background images.

0 5 10 15 20
Mass [GeV/c2]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Signal
Monte Carlo
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

0 5 10 15 20
Mass [GeV/c2]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Background
Monte Carlo
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

0 20 40 60 80 100
PT [GeV/c]

0.00

0.01

0.02

0.03

0.04

0.05

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Monte Carlo

Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

0 20 40 60 80 100
PT [GeV/c]

0.00

0.01

0.02

0.03

0.04

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Monte Carlo

Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

Figure 3.12: Distributions of calorimeter observables (top: invariant mass, bottom: total PT)
calculated from images generated by several generative models and the originals generated
by a Monte Carlo generator. Signal images, in the vicinity of an isolated muon, are on the
left. Background images, in the vicinity of a muon produced with an associated jet, are on
the right.

49

Table 3.4: Comparison of images created by various generative models to the original
Monte Carlo images using the Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the images: PT and invariant mass, also
shown in figure 3.12. Smaller values indicate a closer match to the Monte Carlo images. Two
SARMs are evaluated, with either discrete and continuous distributions (D+C) or a mixture
of discrete distributions (D+D).

PT Mass
Model Signal Background Signal Background
PixelCNN++ 1.75 2.92 0.58 0.82
SARM-2 (D+C) 0.79 0.97 0.25 0.21
SARM-2 (D+D) 0.56 0.93 0.17 0.31

Monte Carlo distributions quite well for PT and mass, but the distributions of the Pixel

CNN++ dataset have a small shift towards higher values, for both the signal and the

background. In addition, for the background they are more concentrated around the mean.

This is potentially due to the fact that Pixel CNN++ fails to model the right tail of the

pixel distribution, where the pixels have higher values but appear much less frequently in

the data (figure B.8 in Appendix). The SARM-2 (D+D) has the best overall performance,

with improvements of 68.08% for PT and 66.44% for mass, averaged over the signal and

background datasets.

Classification of Generated Images

The fidelity of the images can be evaluated in the context of the data analysis task for which

they were created, training a network to distinguish between signal (calorimeter images near

isolated muons) and background (calorimeter images near non-isolated muons).

A convolutional neural network classifier was trained using images generated exclusively by

each of the models (SARM-2 (D+C), SARM-2 (D+D), or Pixel CNN++); one additional

network was trained using images from the Monte Carlo generator. The quality of the images

is measured by comparing the classification performance of these networks on images from

50

the Monte Carlo generator, see figure 3.13. The classifiers trained on each SARM dataset

have higher AUC score than the classifier trained on the Pixel CNN++ dataset, providing

additional evidence that the SARM datasets are more similar to the Monte Carlo images and

thus better suited for downstream tasks such as data augmentation.

Generation Order

In this section, we discuss the impact of the pixel order for SARMs associated with the signal

dataset of the muon isolation study. Similarly to section 3.6.1, we conducted 10 repeated

experiments for each of the orders and summarized the results in Table 3.5.

In contrast to the jet substructure study, the muon isolation data is not rotated and the pixel

value distribution is quite uniform. Therefore we see that different generation orders have

similar performance in terms of mass and PT distances. In addition, all the models trained

using systematic orders that have some continuity in the sequence of pixels slightly outperform

the models trained using random orders. In combination, these results confirm the validity

of the heuristic strategy outlined at the end of Section IV, providing general guidelines for

SARM design and pixel generation when applying these models to other datasets.

Computational Costs

Calorimeter image generation speeds in the context of the muon isolation study are shown

in table 3.6 for the SARM models, Pixel CNN++ and the Monte Carlo generator. The

SARM models are one to two orders of magnitude faster than Pixel CNN++, similar to the

observation of the jet substructure study. The generation speed of each generative model is

measured with the same hardware as described in Section 3.6.1. The speed for the Monte

Carlo generator is measured on an Intel(R) Xeon(R) E5-2680 at 2.70GHz CPU.

51

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Monte Carlo (AUC = 0.816)
SARM-2 (D+D) (AUC = 0.808)
SARM-2 (D+C) (AUC = 0.788)
Pixel CNN++ (AUC = 0.769)

Figure 3.13: Evaluation of the fidelity of images generated by several models in the context
of a classification task, distinguishing muons produced in isolation from those produced
in association with a jet. Images generated by the model are used to train a network to
discriminate between signal and background, but performance is measured using the original
Monte Carlo images.

Table 3.5: Quality of images generated by SARM-1 models with various pixel-generation
orderings for the muon isolation signal dataset. The quality is measured by the Wasserstein
distance for the physical observables (PT and mass) between the generated images and the
original Monte Carlo images.

PT (std) Mass (std)
Spiral-out CCW 0.99 (0.37) 0.27 (0.10)
Spiral-out CW 0.92 (0.33) 0.26 (0.09)
Spiral-in CCW 0.81 (0.23) 0.20 (0.05)
Spiral-in CW 0.95 (0.24) 0.24 (0.07)
Row-wise 0.99 (0.28) 0.20 (0.05)
Column-wise 0.90 (0.26) 0.22 (0.05)
Random I 1.17 (0.30) 0.32 (0.08)
Random II 1.34 (0.41) 0.37 (0.11)

Table 3.6: Comparison of image generation speed between the Monte Carlo approach and
various generative models. The SARM-2 models are considerably faster than Pixel CNN++
and the Monte Carlo generator.

Model Speed (images/sec)
Monte Carlo 5
Pixel CNN++ 10
SARM-2 (D+D) 625
SARM-2 (D+C) 1136

52

3.7 Discussion

Sparse images, prevalent in particle physics datasets, present unique challenges for generative

models. We have developed and applied a new class of models, deep sparse autoregressive

generative models (SARMs), specifically designed to handle extreme sparseness. These

compositional models are also able to take advantage of the structure present in particle

physics images by using a multi-stage generation approach. Using several different metrics,

we compared SARMs to other generative models, in particular to Pixel CNN++, a popular

autoregressive model not adapted for sparsity, and to LAGAN, a state-of-the-art GAN for

sparse images. The comparisons were carried using two benchmark data sets.

In the first case study on jet substructure, the adaptation to sparseness enables SARMs

to produce qualitatively and quantitatively higher quality images than Pixel CNN++ and

LAGAN. SARM are also orders of magnitude faster than traditional Monte Carlo methods

and Pixel CNN++, but slower than the non-autoregressive model LAGAN, showing a trade-

off between speed and quality. The second case study features extremely sparse images

corresponding to calorimeter images in the vicinity of muons. While competing models

produce artifacts or suffer from mode collapse, SARMs are able to handle and model extreme

degrees of sparseness.

In sum, given the prevalence of sparse images in particle physics and beyond, SARMs can

be expected to provide an important option for rapid, high-quality, image generation from

training data. Because of their quality, the generated images in turn will be able to benefit a

variety of downstream data analyses.

53

Chapter 4

Detection of JAVA Runtime Exceptions

with Sparse Location Information 1

4.1 Background

Exception handling is a crucial part of developing robust and reliable software systems.

Exceptions can be defined as events (or errors) that happen during the runtime of a software

system and result in the deviation of the execution of the program from its normal and

expected behavior [25, 92], which subsequently can result in serious issues such as crashing

the system [94]. In order to control the execution of the program in the event of exceptions,

developers develop code specific to the occurrence of each exception, also referred to as

exception handling. For instance, in Java, exception handling can be done by implementing

try-catch blocks.

Most languages that support exceptions, treat all exceptions in the same way. Java, however,
1This Chapter is a joint work with Farima Farmahinifarahani,Vaibhav Saini, Pierre Baldi, and Cristina

Lopes

54

has two categories of exceptions: check and unchecked. The conceptual difference between

the two is subtle: checked exceptions are meant to capture errors that can be recovered

from, while unchecked exceptions are meant to capture unrecoverable errors. Examples

of the former include problems with the file system and network, such as file not found;

examples of the latter include problems arising from fatally wrong inputs, such as division

by a zero-valued variable and the dereferencing of null objects [123]. Operationally, Java

treats checked and unchecked exceptions differently: the declaration and handling of checked

exceptions is enforced by the Java compiler, while unchecked exceptions have no compile-time

presence, and are left for the runtime to handle. All languages that support exceptions,

and don’t have the distinction between checked and unchecked exceptions, treat them all as

unchecked runtime exceptions.

By their very nature, the consequence of unchecked exceptions is that developers can ignore

them. As such, they can go undetected for a long time, until something in the runtime goes

wrong, resulting in breaking the execution of the program while in use. However, predicting

the types of exceptions that will happen during the runtime of a program can be difficult,

and developers may not always come up with an inclusive set. Hence, they may ignore

handling such exceptions, or simply resort to handling the most generic type of exception.

Studies of the Java ecosystem have shown that the Exception class, which is at the top of the

exception hierarchy, has a high frequency of appearance in try-catch blocks [91]. Handling

the Exception class is considered a bad practice, and should be avoided, since it hides the real

causes of problems [18, 1, 2]. Previous studies reveal that bad exception handling practices are

prevalent [66], and that unchecked exceptions have a heavy toll with respect to bugs [66, 94].

Therefore, handling unchecked exceptions, or avoiding them in some way, is crucial.

In order to prevent such exceptions from happening, developers typically investigate their

code, along with the documentation of the APIs it uses. However, rather than solely relying

on the developers’ knowledge of which exceptions to handle, it will be useful to develop

55

techniques that make recommendations based on the concrete code at hand. A state-of-the-art

tool in this context is FuzzyCatch [92, 93], developed for the Android ecosystem. In the

absence of the runtime information before executing programs, FuzzyCatch makes predictions

based on the co-occurrences of API method calls and runtime exceptions in the Android

apps. However, an approach that only considers pairs of method calls and exception types,

fails to account for the complex interplay between multiple code elements (such as method

calls, numerical operations, or structural code constructs) and the exception types, which is

important in predicting exceptions, because often there are multiple method calls and the

use of certain operations and classes in a certain order that result in a runtime exception.

Moreover, by only relying on API method calls, methods lacking API method calls (that are

possibly exception prone) are totally missed.

In order to be able to estimate the probability of various exception types based on the

interplay of different code elements, we need an approach that can infer these relationships

from the code. A simple statistical model or human developed heuristics may not work well

here since the existence of various code elements can lead to various scenarios of exceptions

occurrence, making it infeasible to derive an inclusive set of rules. To address this challenge,

we present D-REX (Deep Runtime Exception detector), a deep learning based approach that

captures the correlations between certain code elements and a set of Java runtime exception

types to predict the possible runtime exceptions. D-REX is also able to make predictions for

the exception prone code elements. ‘Code elements’ here refers to various code constructs,

such as method calls, type casting, or numerical operations, which are captured by D-REX

in the form of special tokens (described in Section 4.4.1). By being informed about the part

of the code that is causing an exception, developers can make more informed decisions on

how to handle the exception.

The workflow of D-REX is divided into two stages: 1) building a special token sequence

for each method which we call Action-Context Token Sequence (ACTS), containing tokens

56

representing different code elements, and 2) joint training of a feature extractor model which

produces semantically meaningful representation of the inputted ACTS, and two neural

network classifiers which take the learned representation as input in order to predict the

relevant exception types, as well as the exception prone ACTS tokens. In its second stage,

we propose a deep neural network model, Location Aware BERT (LA-BERT), which adapts

BERT (Bidirectional Encoder Representations from Transformers), a state-of-the-art language

model, for predicting the possible exception types and exception prone tokens. LA-BERT is

location aware in the sense that given a method’s ACTS tokens, it leverages the information

of which tokens are located inside the try block in its training phase. This extra piece of

information helps it in making more accurate exception type predictions as well as predicting

the exception prone ACTS tokens. While during training, we utilize existing information

about the tokens inside the try block, during inference, there is no need to provide such

information and the model predicts the tokens which it finds to be exception prone.

We chose BERT as the feature extractor model of D-REX since its self attention mechanism

allows every element of the input sequence to directly communicate with all other elements

in each layer in constant time and space complexity [133], alleviating the issue of forgetting

in modeling longer sequence data compared to the recurrent neural networks [61, 117]. We

found this particularly useful in learning meaningful representations from code as the lengths

of methods can very both within and across the projects. We demonstrate its effectiveness

in our experiments by showing that D-REX outperforms the Bidirectional LSTM [117] in

exception type prediction by a considerable margin.

Overall, our contributions can be summarized as follows.

1. We present D-REX, a novel approach for the recommendation of unchecked (runtime)

exceptions in Java, which outperforms multiple baselines.

2. We present an application of BERT for predicting runtime exceptions. To leverage the

57

sparse information of the location of try blocks during training, our main contribution,

in this respect, is Location Aware BERT that produces more accurate results and is

capable of identifying exception prone tokens.

3. We curate a benchmark dataset of 200K Java projects with more than ≈442K try-catch

blocks handling runtime exceptions. This dataset will be made publicly available.

The remainder of this paper is structured as follows. Section 4.2 builds the motivation

for our task by providing concrete examples and explains our ultimate goal in detail. In

Section 4.3, we describe the dataset that we curated for training and evaluation of D-REX,

and in Section 4.4, we discuss our proposed approach by explaining the architecture of

D-REX, capturing ACTS and the details of LA-BERT. Section 4.5 presents the results of

the experiments conducted to evaluate D-REX’s effectiveness in predicting exception types

and exception prone tokens. Finally, we present the related work in Section 4.6 followed by a

discussion on threats to validity and future work in Section 4.7.

4.2 Motivation and Goal

Runtime exceptions frequently occur in Java programs [66]; a study [94] on 246 Android

exception related bugs found the majority of them to be runtime ones. Another study on

656 Java libraries found handling of API runtime exceptions to be more frequent than the

checked ones [118]. Runtime exceptions are prevalent and can cause serious issues at the

program runtime (e.g., complete crash of program) if not properly tackled or handled. For

example, NullPointerException which frequently happens in java programs, serves as a major

cause of crashes in software systems [24] and is typically not caught during testing; hence,

making it likely to propagate to the program runtime [44]. These findings demonstrate the

importance of addressing runtime exceptions before they cause major issues.

58

In its simplest form, the problem of runtime or unchecked exception handling can be illustrated

by the howManyTimes() method starting from line 2 and ending at line 8 of Listing 4.1. In

this method, if the second parameter has a value of zero, a division by zero happens which

leads to an ArithmeticException. This may not catch the developer’s attention and they may

miss to handle this exception. A possible fix to this issue is shown in the method starting

from line 10 and ending at line 16 of Listing 4.1. In this fix, the developer is aware of the

possibility of ArithmeticException and deals with it by implementing a pre-condition on the

argument in their if statement.

Another example of a scenario susceptible to runtime exceptions is depicted in Listing 4.2 from

line 2 to 10. At runtime, this method will throw a NumberFormatException on parsing the

string values to integer values at lines 4 and 5 if a value in the input array does not represent

an integer. Even if all the values in the input array are valid representations of integers, and

the parsing is safely done, this method is yet susceptible to ArrayIndexOutOfBoundsException.

The for loop traverses the array to its last element while inside the for loop, accessing i+ 1th

index of the array can result in ArrayIndexOutOfBoundsException if i == args.length. The

method starting from line 13 of Listing 4.2 tries to tackle both problems. NumberFormatEx-

ception is being handled by a try/catch block to alert the user about the proper input, and

ArrayIndexOutOfBoundsException has been controlled by changing the upper bound of the

loop counter from args.length to args.length− 1.

As the two examples show, knowledge about the relevance of runtime exceptions can help the

developer take the necessary actions. These actions need not necessarily be implementing

an exception handler; valid actions include the addition of pre-conditions, changing the

parameters types, and even rearchitecting the code. A trivial way of reminding developers

about possible runtime problems would be to always remind them of all runtime exception

types. However, that would have a very high rate of false positives, which would make

developers ignore the reminders.

59

1 //Before fix
2 private int howManyTimes(int a , int b){
3 int result=0;
4 if (a > b) {
5 result = a / b;
6 }
7 return result ;
8 }
9 //After fix

10 private int howManyTimes(int a , int b){
11 int result=0;
12 if (b!=0 && a > b) {
13 result = a / b;
14 }
15 return result ;
16 }

Listing 4.1: Example 1: Method prone to RuntimeExeption

1 //Before fix
2 public static String [] findMax(String[] params){
3 for (int i = 0; i < params.length; i++) {
4 if (Integer .parseInt(params[i]) >
5 Integer .parseInt(params[i + 1])) {
6 params[i + 1] = params[i];
7 }
8 }
9 return params;

10 }
11 //After fix
12 public static String [] findMax(String[] params){
13 try {
14 for (int i = 0; i < params.length−1; i++) {
15 if (Integer .parseInt(params[i]) >
16 Integer .parseInt(params[i + 1])) {
17 params[i + 1] = params[i];
18 }
19 }
20 }
21 catch (NumberFormatException e){
22 System.out.println("Input array should only contain integer values .");
23 }
24 return params;
25 }

Listing 4.2: Example 2: Method prone to RuntimeExeption

60

Our goal is to design and implement an approach that can predict relevant runtime exception

types and exception prone code elements for each method. Unlike previous approaches [92,

93, 25, 106, 76], our work does not focus on recommending exception handling code. Rather,

we aim to inform the developer about the possible incidence of such exceptions and possible

causes, but delegate the needed action to the developer, as wrapping runtime exceptions in

a try/catch block is not always the best solution; sometimes fixing the code to prevent the

exception from happening in the first place can be a better approach (as observed in the

above examples).

In the absence of runtime information and user input prior to executing the program, we

make use of the static signals from code to find clues pertaining to the relevance of certain

runtime exceptions. For example, in Listing 4.1, using an int value as the denominator of a

divide operator serves as the clues about the ArithmeticException. This is an example where a

runtime exception is possible to happen while there is no API method call present in the code

related to it. As a result, by solely relying on API method calls, we may miss recommending

the relevant exception for this example. In Listing 4.2, the invocation of parseInt() on

the method parameter value gives a clue about NumberFormatException and accessing the

array indexes by doing an arithmetic operation (i + 1) inside a for loop gives clues about

ArrayIndexOutOfBoundsException. This demonstrates how the complex interplay of various

code elements can contribute to a runtime exception. Inferring the relationships between

the code elements and predicting relevant exception types accordingly using heuristics or

statistical methods may not work well here, and a machine learning based method such as

D-REX can help us by automatically learning the relevant patterns based on a large dataset

of examples.

In addition to recommending relevant exception types, by identifying exception-prone elements

of code, D-REX can help the developer find the issues in their program or implement the

suitable try/catch block, as most of the time the developer is not aware of which part of their

61

code is possibly going to throw an exception. For example, the Top 1 exception prediction

of D-REX for the example in Listing 4.1 is ArithmeticException and the divide operator

on line 5 is predicted as the most possible cause for it. For the example of Listing 4.2,

D-REXpredicts both NumberFormatException and ArrayIndexOutOfBoundsException as its

top 2 predictions, and the invocations of parseInt() and accessing the array inside the loop

as the top exception prone parts of code. An interesting observation here is that D-REX

predicted NullPointerException as its third exception type for this method; a closer look

shows that this exception is possible to be thrown if the input array (params) has a Null

value.

D-REX operates on Java methods and its core is a deep learning model. This model predicts

the relevant exception types and exception-prone elements of code by learning from a dataset

of over 350k developer-implemented try blocks containing handlers for runtime exceptions.

For training, we use the information from the try/catch blocks; for evaluation, the try/catch

blocks are removed from the methods to provide the model with the raw method source code

that it receives from a developer.

4.3 Dataset

We used the Java dataset used in the GitHub study by Lopes et al. [77] to prepare our

dataset. The benefit of this dataset is that it includes the Java projects present in GitHub

until the time of paper’s publication with forked projects excluded and a mapping of cloning

among the projects provided. This is particularly helpful in a machine learning task like ours

as we could use it to remove the repetitions among projects to reduce the duplications in

training and testing datasets and train a generalized model. The whole Java dataset used in

their study contains 1,481,468 projects and 72,880,615 files. From these projects, we only

considered those that have more than 10 files (to narrow our focus to bigger and meaningful

62

projects), leaving us with 670,429 projects. We then filtered out projects that are 50% or

more clones of other projects; giving us 544,513 projects. We then drew a 200,000 random

sample of these projects, which we name 200k dataset. Using the file level mapping of clones

in these projects [77], we also filtered out the files that are total duplicates of each other; i.e.,

the Type-1 clones [111].

Prior to processing the projects, we collected the list of Java SDK runtime exceptions from

its documentation2. We collected all subclasses of the RuntimeException class, a set of 169

exceptions. In order to curate a labeled dataset with methods and the runtime exceptions

that may arise in them, we looked for methods that have a try-catch block implemented in

them where one of the 169 collected runtime exceptions is caught in their catch statement.

We modified Java Parser [3] to parse the projects and fetch methods and the try-catch blocks

within them and the tokens needed for the Action-Context Token Sequence. After parsing

the dataset, we found 577,067 examples of try-catch blocks catching a Java runtime exception.

From these examples, we removed the ones that were catching the RuntimeException itself

since it is the superclass of all of the target exceptions and thus, including it as a label

can confuse the model. This left us with 470,376 examples. By analyzing the exceptions

frequencies, we observed that some exceptions appear rarely in the dataset; for example, 35

exception types appear less than 10 times. We decided to exclude the examples with very

rare exceptions (the ones appearing less than 100 times) to limit our attention to the mostly

frequent exception types. We also removed methods with inner classes in their bodies since

their structure is different from conventional methods and can introduce noise to the dataset.

After these two steps, we were left with 442,446 samples and 52 exception types. Figure 4.1

shows the frequencies for the top 10 most frequent runtime exceptions in the 200k dataset.

As the figure shows, the three most frequent exception types appearing more than 40,000

times are the NumberFormatException (142,800 times), the IllegalArgumentException (89,193
2https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html

63

https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html

Num
be

rFo
rm

atE
xce

pti
on

Ille
ga

lArgu
men

tEx
cep

tio
n

NullP
oin

ter
Ex

cep
tio

n

Clas
sC

ast
Ex

cep
tio

n

Ille
ga

lSt
ate

Ex
cep

tio
n

Se
cur

ity
Ex

cep
tio

n

Ind
ex

OutO
fBou

nd
sEx

cep
tio

n

Arra
yIn

de
xO

utO
fBou

nd
sEx

cep
tio

n

NoS
uch

Ele
men

tEx
cep

tio
n

Inv
alid

Ke
yE

xce
pti

on
0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

Figure 4.1: Distribution of the 10 Most Frequent Exceptions

times) and the NullPointerException (46,575 times). For the rest of the exception types

not shown here, 12 of them appeared between 10,000 and 1,000 times, and the remaining

appeared less than 1,000 times.

We split the dataset into train, validation and test sets by dedicating 80% of samples to

the train set, 10% to the validation set and 10% to the test set. As a result, the train set

has 353,956 samples and test and validation each have 44,245 samples. We perform the

training on the train set, determine all the hyperparameters and early stopping steps using

the validation set, and benchmark the accuracy of D-REX and other baselines using the hold

out test set.

4.4 Proposed Approach

An overview of the D-REX prediction pipeline is shown in Figure 4.2. The prediction starts

by receiving a Java method as input and parsing it to retrieve a token sequence which we

64

Top K exception
types
Top N exception
prone tokens

LA-BERT
model

Action-Context
Token Sequence

Parse and token
derivation

Figure 4.2: Overview of the D-REX Prediction Pipeline

call Action-Context Token Sequence (ACTS). The goal here is to capture the key elements of

code that represent the main actions carried out in the method while decreasing the language

vocabulary. This token sequence is then fed to a deep learning model, called LA-BERT,

that applies transformations on its input to build a high level semantic representation, and

predicts two outputs: (i) top K runtime exception types possible to happen in the method

ranked by their occurrence probabilities, and (ii) top N exception prone tokens, which are

tokens from ACTS that are most likely responsible for the predicted exceptions. The ACTS

tokens are translated back to the code elements they are representing for better interpretation

by developer. The details of the two main components of this pipeline, Action-Context Token

Sequence and LA-BERT, are explained in this section.

4.4.1 Action-Context Token Sequence

In order to provide the input method to the prediction pipeline, we derive a token sequence

from it that can provide the key information helpful in predicting the runtime exceptions.

Previous research have explored the correlations of API method calls with the occurrence of

65

runtime exceptions [93, 92], however, method calls alone may not be sufficient to estimate

the probability of runtime exceptions. For instance, in the Before fix situation of the

example depicted in Listing 4.2, the occurrence of ArrayIndexOutOfBoundsException is not

recognizable if we only look at the method calls; it is accessing the indexes of the input array

that causes this exception. Moreover, accessing an array for once may not introduce a high

probability of exception occurrence compared to when it is accessed inside a loop. Therefore,

one may find it useful to feed all method tokens to the deep learning model and let the

model perform its inference and make the predictions. However, source code vocabulary has

been shown to be unlimited as new identifier names get introduced constantly [8, 57]; such

increase in vocabulary can make it difficult for the deep learning model to infer meaningful

representations from the input and hampers the model convergence. Therefore, we need

to derive a set of tokens from the methods that can decrease the vocabulary by removing

unnecessary elements while capturing the key elements of code that can contribute to the

occurrence of runtime exceptions. This will also help the model in learning more meaningful

representations related to exception types. As the examples in Section 4.2 showed, it is often

an interplay of different code elements that ultimately result in a specific runtime exception;

in other words, it is a specific action (such as a method call or a mathematical operation)

in a specific context (for example a for loop or a special condition in a nested if statement)

that causes a specific runtime exception. The names of the variables, for example, may not

introduce relevant and useful information here.

To address these needs, we build a special token sequence for each method, which we call

Action-Context Token Sequence (ACTS), capturing two important aspects from each method:

actions carried out in it and the context in which these actions are performed. Hence, there

are two categories of tokens: tokens capturing actions and tokens capturing contextual

information. These tokens may have identical correspondence with the tokens in code (e.g.,

method calls), or may be derived from code and presented by a literal value (e.g., ‘Cast’ to

show type casting). Details of ACTS are as follows:

66

Tokens capturing method’s actions

One set of captured tokens are the method calls invoked inside the method body. As the

example in Listing 4.2 showed, method calls (e.g., parseInt()) can serve as causes for throwing

a runtime exception (NumberFormatException). FuzzyCatch [93, 92] heavily relies on API

method calls and Barbosa et. al [25] use method calls to recommend exception handling

code. Saini et al. [115] refer to method calls as ‘Action Tokens’. They also introduce two

other action tokens: ArrayAccess for accessing the index of an array and ArrayAccessBinary

for accessing the index using an arithmetic operation (such as i+ 1). We consider these two

tokens in the ACTS as well, since as we saw in Listing 4.2, such tokens can signal for runtime

exceptions.

Another set of tokens that convey actions are the Binary and Unary operations. A simple

example is Listing 4.1 where DIVIDE operator signals for an ArithmeticException. Finally,

we capture a set of special tokens to cover the actions that were not covered by the tokens

explained so far. These tokens capture variable declarations, type-casts, object instantiations,

the usages of Null literal, accessing objects’ fields and the method’s return statement.

Tokens capturing contextual information

One aspect of the contextual information are the code blocks that define the sequence of

actions and hence, can contribute to the occurrence of exceptions; for example, consider

invoking the subString() method on a string value or accessing an array indexes; both of

these actions may be more exception prone if done inside a loop. To capture these blocks in

a high level manner, we define a set of special tokens. For example, the beginning of a loop is

captured with BeginLoop and its ending is captured by EndLoop. Similarly, the beginning

and ending of if-else blocks, try-catch-finally blocks (for checked exceptions) and switch-case

blocks are captured. The other set of relevant tokens are the data types. Barbosa et al. [25]

67

Table 4.1: Tokens in Action-Context Token Sequence

Tokens Capturing Actions Tokens Capturing Context

1. Method calls 10. BeginLoop, EndLoop (any loop block)
2. ArrayAccess, ArrayAccessBinary 11. BeginIf, Else, EndIf (if block)
3. Binary and unary operations 12. BeginSwitch, EndSwitch (switch block)
4. VarDec (variable declaration) 13. BeginTry, EndTry (try block)
5. Cast (act of type casting) 14. BeginCatch (catch in a try block)
6. New (object instantiation) 15. BeginFinally (finally in a try block)
7. Null (referencing "Null" literal) 16. Array
8. FieldAccess (access an object field) 17. Primitive data types
9. Return (method’s return) 18. Class names

use variable types for recommending exception handling code and discuss that methods using

variables of the same types are likely to implement more similar tasks. Other than this,

certain data types can correlate with certain runtime exceptions occurrence (such as the use

of numerical data types correlating with mathematical runtime exceptions). Class types also

give context to actions and can correlate with exceptions relevance; for example, class Integer

can correlate with the occurrence of NullPointerException while the primitive type int will

not. Hence, We capture all primitive types and class names as tokens. The Array token is

used to capture array types.

Table 4.1 provides a summary of tokens captured in ACTS. In this table, literal tokens (e.g.

Null) are expressed in regular font, while tokens that take values from the source code are

expressed in italic.

4.4.2 LA-BERT Model

Figure 4.3 shows the high level architecture of LA-BERT, the deep learning model of D-REX.

The model receives an input token sequence (tokens in ACTS) and the trained BERT layers

extract a high level representation from it. This representation is then fed into two networks

at the same time: a location prediction network (to predict the exception prone tokens) and

an exception prediction network (to predict the possible exception types), both of which

68

BERT Layers

Learned High Level
Representation

Input token seuqence

Location Pred Layers Exception Pred Layer

Exception Prone
Tokens Exception Types

Figure 4.3: Architecture of LA-BERT Model

consist of several fully connected layers. The BERT layers and the two prediction networks

are trained jointly in an end-to-end fashion.

In the rest of this section, we first give an introduction to BERT model [43], which serves as

the feature extractor of D-REX and discuss its difference with other deep neural network

models that can be used for this purpose. Then we explain the location awareness concept in

LA-BERT and its training paradigm.

BERT vs. Recurrent Neural Network

Recent advances in natural language modeling [43, 85, 133] have seen great success in

modeling sequence data. Among various deep learning based language models, BERT is the

state-of-the art attention based deep neural network model, which was specially designed

for extracting high level representations from sequence data. It has been proven to achieve

leading performance on a variety of natural language tasks such as question answering and

sentence prediction [108, 134]. Moreover, Devlin et al. [43] show that the pretrained BERT

69

Value

Query

Key ValueKey ValueKey ...

Attention vector

output

Figure 4.4: An Illustration of Self Attention Mechanism

model achieves impressive results after being fine-tuned with a few additional layers on the

top. In contrast to other neural network models designed for modeling sequence data, such

as recurrent neural networks (RNN) [61],

The structure of the self attention mechanism is shown in Figure 4.4. Every input element

(input token in the first layer, or the output of previous layer in the other layers) possesses

three different feature vectors: a key, a value and a query vector, all learned during the

training. The i-th attention vector is produced by the dot product between the i-th query

vector and all key vectors. This attention vector is used as a weight to get a weighted average

of the value vectors of all input elements, producing the i-th output element (shown as output

in the figure). Therefore the i-th output element is directly connected with every input

element in the self-attention layer. However, this connection is restricted in RNN layers: the

i-th output unit can only connect with the j-th input unit if j ≤ i. Further, the connection

between the i-th output unit and the j-th input unit becomes weaker and weaker as the

number of units between them increases in RNN layers.

70

Learning Sparse Location Information

In the problem of exception type prediction, there is an extra piece of information in training

data that we can exploit to provide more accurate recommendations: location information

for tokens located inside the associated try block. The exception types handled in a try-catch

block of a method are strongly correlated with the tokens appearing in the try block. Such

information is present in our training data; hence, given a try-catch block handling a runtime

exception in a method, in the training phase, we augment the input tokens sequence of

the method with location indices of tokens belonging to the try block, and use it as label

information for location prediction layer during joint training. Note that this information is

not required as input for the location prediction layers during inference.

Denote the length of the input sequence as N , and the Bernoulli random variable for

determining whether the ith token is a try block token to be zi. Then for each input sequence,

we have a vector of Bernoulli random variables

z = (z1, z2, ..., zN), where zi ∼ Bern(pi), pi ∈ [0, 1] (4.1)

for i = 1, 2, ..., N . And pi is predicted by the model. In its essence, the model is learning the

joint distribution of Bernoulli vectors z, which is sparse in typical Java source code.

Since training is done with an objective function to optimize these two prediction networks

as well as the BERT layers simultaneously, it forces the learned high level representation

to be location aware, hence, more expressive than a model without the location prediction

network, which we refer to as the plain BERT model. The plain BERT model can only

predict exception types (and not the exception prone tokens) and we compare D-REX using

LA-BERT with a version of it using plain BERT in Section 4.5.1

71

Training

During training, the loss function takes into account both the error from predicting the

exception type and the error from predicting the tokens that belong to the try block. L,

the joint objective function of exception prediction and location prediction, is formulated as

follows:

L = Lexcep + λLtryloc (4.2)

In this equation, Lexcep denotes the cross entropy loss resulting from the exception type

prediction, and Ltryloc denotes the mean value of the loss of every token in the input, where

each individual token uses a binary cross entropy loss [55]. λ is a tuning parameter between

[0, 1] balancing the magnitude of the two losses. In practice, we treated λ as a hyper parameter

and conducted a grid search in a list of values: [10−2, 5 · 10−2, 10−1, 5 · 10−1], where we found

that 10−2 yields the best performance. Note that the weight parameters in BERT layers and

in the two prediction layers are trained jointly using equation (4.2).

The number of BERT layers along with other layer specifications such as the number of units

in each layer were treated as hyperparameters, which were tuned through grid search in

the experiments. The best resulting architecture consists of 10 BERT layers with a hidden

dimension of 512 and an embedding size of 512. Both try location prediction and exception

type prediction networks are parameterized by a two-layer fully connected neural network

of width 100. With the output of these two networks, equation 4.2 is used to calculate the

overall loss. Adaptive moment estimation (Adam) [71] optimizer with learning rate 3 · 10−3

was used to minimize equation 4.2. Both plain BERT and LA-BERT models were trained for

100 epochs and the top k accuracies converged.

72

4.5 Evaluation

In this section, we present the results of evaluating D-REX’s exception type and exception

prone token predictions. The ground truth exception types in these experiments are the

runtime exceptions handled by developers in try blocks. For the exception prone token

predictions, we present quantitative and qualitative analyses by looking at the top-k predictions

by D-REX. In quantitative analysis, the ground truth for the exception prone tokens are

the tokens inside each try block. In all experiments, for each try block of interest in each

method, we removed the keyword try and any code provided for exception handling with the

try block. This way we ensured that the input to our model does not contain any tokens

related to the exception handling code.

4.5.1 Exception Type Prediction

Baselines

In order to compare D-REX with the existing methods of exception type prediction, we

searched for available tools in this area. Although there have been much work in recommending

exception handling strategies, the only approach we found that can predict runtime exceptions

is FuzzyCatch [93, 92]. The core of this approach is a statistical model that works based on

the co-occurrences of the API method calls and exception types. As mentioned by their paper,

FuzzyCatch’s model has been trained and tested using a set of Android projects. Hence, there

are two issues that make a direct comparison between D-REX and FuzzyCatch not valid: (1)

The FuzzyCatch model was trained exclusively on Android code, while the dataset used for

training our D-REX model is based on randomly selected Java projects and does not focus

on Android projects. This matters, because there is considerable divergence of vocabulary

between Android APIs and regular Java APIs: a model trained on one vocabulary may not

73

do well on the other. (2) FuzzyCatch is offered as IntelliJIdea and AndroidStudio plugins,

and expects a human in the loop; unlike D-REX, it is not possible to run FuzzyCatch headless

on a large source code dataset. Since a direct comparison with this tool is not feasible, we

developed a baseline inspired by their technique that works based on the co-occurrences of all

method calls and the exception types and is trained it on the 200k train set. We name this

baseline Method-Exception-Frequency (M-E-F). For each method, M-E-F collects all method

calls in it and then queries the train dataset for the co-occurrences of each method call and all

exception types. Using a fuzzy union formula (presented in [93, 92]), it then aggregates the

results for all method calls and recommends the possible exceptions sorted by their predicted

probability.

To compare the LA-BERT component of D-REX with other deep learning models that are

potentially suitable for our purpose, we trained two other models: (1) a bidirectional LSTM

model [117] (Bi-LSTM), a variant of recurrent neural network models, and (2) a plain BERT

model (P-BERT) (which we described in Section 4.4.2). For each of these, LA-BERT in

D-REX is replaced with the corresponding model and top k predictions are collected.

All baselines are trained on 200k train dataset and their accuracy is compared with D-REX’s

accuracy on 200k test dataset and a separate set of unseen java projects.

Accuracy Comparison on 200k Test Set

We first evaluate D-REX and other baselines on the hold out test portion of the 200k projects

dataset presented in Section 4.33. The results of these experiments are shown in Table 4.2.

In this table, we present the accuracy of each approach on its Top 1, Top 2, Top 3, Top 5 and

Top 10 recommendations. Top 1 accuracy, for example, presents the proportion of the Top 1

recommendations by each approach that matches the set of true runtime exceptions present
3Input file prepared for D-REX for this step is uploaded in supplementary materials.

74

in the dataset. More formally, if m is a method and Em is the set of runtime exceptions

caught by a try block in m, and ÊK,m is the list of top K runtime exceptions predicted by an

approach for m, sorted based on the descending order of the predicted scores, then TopK

accuracy over a dataset of N samples is defined as:

1

N

N∑
m=1

1(Em∩ÊK,m 6=∅) (4.3)

where 1(Em∩ÊK,m 6=∅) is an indicator function that equals 1 when Em∩ÊK,m 6= ∅ and 0 otherwise.

This measurement is similar to the accuracy measurement used by FuzzyCatch and as they

have also pointed out, we are not able to evaluate the results using Precision due to the

lack of negative examples: given a piece of code, it is almost impossible to determine that a

specific runtime exception will never happen for it. As for the recall number, the top k recall

depends on the number of the true exceptions in a method, which varies method by method.

However, if there is only one exception in the method, then our top 1 accuracy is equivalent

to recall.

As the table shows, D-REX has been able to achieve the highest accuracy across all categories

of Top K predictions. The difference, however, is mostly notable in the Top 1 results which is

of utmost importance as the Top 1 prediction is the one that developers pay more attention

to. In particular, D-REX has ≈81% accuracy in its Top 1 predictions, compared to Plain

BERT which is the second best one with ≈79% Top 1 accuracy. This indicates that the extra

information about the tokens inside the try block helps D-REX to achieve better results

in the exception type prediction. It also implies that the exception prone token prediction

loss, Ltryloc in equation 4.2, has a regularization effect for the LA-BERT model to alleviate

the over-fitting during training, leading to an improvement in exception type prediction on

the test set. M-E-F has the third rank in Top 1 accuracy with ≈12% of difference with

D-REX. The Bi-LSTM model was not able to achieve comparable results which can attest

75

Table 4.2: Exception Prediction Accuracy on 200k Test Set

Top 1 Top 2 Top 3 Top 5 Top 10

M-E-F 69.67% 81.37% 86.30% 92.38% 96.46%
Bi-LSTM 59.32% 71.71% 78.56% 85.76% 93.12%
Plain BERT 79.39% 87.49% 90.67% 93.74% 96.68%
D-REX 81.09% 88.91% 91.70% 94.52% 97.08%

the effectiveness of LA-BERT model over it.

Accuracy on Unseen Projects

In order to understand the effectiveness of D-REX on a variety of projects and those that

were not included in the 200k dataset, we downloaded a separate set of open-source Java

projects from GitHub, shown in Table 4.34. For all these projects, we downloaded their default

branch’s version. In the table, the column“URL” shows the GitHub URL, “Last commit date”

shows the date of the last commit on the repository when we downloaded it, “LOC” shows

the number of source code lines calculated with IntellijIdea’s Statistic plugin 5 and “#Samp”

shows the number of samples (try-catch blocks with runtime exceptions) fetched from the

project. To select these projects, we first downloaded and processed the set of Java projects

used by Hindle et al. [60]. After parsing, we included the ones with 100 or more samples to

make sure that the evaluation is done on large enough datasets. The first 4 rows of Table 4.3

show the projects selected in this step. Then, to expand the comparison to more projects,

we queried the database provided by Lopes et al. [77] for projects that are not included in

200k dataset and have more than 5,000 files, and selected 8 more projects from this set. The

rest of the projects listed in Table 4.3 were selected in this step. All of these projects are

large projects with various developers contributing to them, hence, we expect them to have

sufficiently high quality exception handling code, and therefore, evaluating our approach on

them can give us more confidence about the performance of our approach.
4D-REX’s input files for these project are uploaded in supplementary materials.
5https://plugins.jetbrains.com/plugin/4509-statistic

76

Table 4.3: Downloaded Java Projects Summary

Project URL Last commit LOC #Samp.

Batik apache/xmlgraphics-batik Jan 12, 2021 190,597 172
Lucene apache/lucene-solr Jan 29, 2021 1,350,727 411
Xalan apache/xalan-j May 23, 2019 170,574 218
Cassandra apache/cassandra Jan 29, 2021 464,594 211
SonarQube SonarSource/sonarqube Feb 17, 2021 516,101 203
Camel apache/camel Feb 17, 2021 1,539,888 213
IntelliJ IDEA CE JetBrains/intellij-community Feb 17, 2021 4,095,728 789
Hibernate ORM hibernate/hibernate-orm Feb 17, 2021 779,538 333
Object Teams eclipse/objectteams Jan 14, 2021 1,868,449 371
MPS JetBrains/MPS Feb 17, 2021 1,872,299 162
Ignite apache/ignite Feb 16, 2021 1,170,332 333
CloudStack apache/cloudstack Feb 12, 2021 661,128 283

Table 4.4 shows the the exception prediction accuracy of D-REX and other baselines on each

of these projects, and overall on all of them, for the Top 1 to 3 predictions. In general, we

see that D-REX is achieving the highest accuracy compared to all other baselines in Top 1

predictions, except for two of them: Hibernate ORM and MPS. For MPS, M-E-F achieves a

better accuracy, with a difference of ≈3%. And for Hibernate ORM, M-E-F performs better

by a margin of ≈6%. However, all models are performing bad on this project, so we looked

at it more closely and found out the the exception type distribution of this project is very

different from the training set; for example, NumberFormatException, the most frequent

exception in training data, has only 33 occurrences in this project, which can explain the

lower accuracy of D-REX. On other projects, D-REX has an accuracy improvement over

P-BERT in a range of ≈0.2% to ≈8%, and an improvement over M-E-F in a range of ≈3%

to ≈30%. We see a similar trend of D-REX performing better than other baselines in Top-2

and Top-3 predictions for the majority of projects. In the overall results aggregated over

12 projects, D-REX is performing the best in Top 1 and Top 2 predictions, and in Top 3

predictions, P-BERT has slightly better accuracy by a margin of less than 0.5%.

77

Table 4.4: Exception Prediction Accuracy Comparison on Unseen Java Projects

Project Top 1 Top 2 Top 3

D-REX P-BERT Bi-LSTM M-E-F D-REX P-BERT Bi-LSTM M-E-F D-REX P-BERT Bi-LSTM M-E-F

Batik 81.40% 73.26% 51.74% 51.79% 84.88% 82.56% 58.72% 54.17% 87.21% 84.88% 65.70% 57.14%
Lucene 64.08% 60.44% 45.50% 52.27% 73.06% 73.03% 59.12% 70.20% 76.70% 77.43% 69.83% 75.00%
Xalan 88.53% 88.07% 28.90% 76.70% 92.20% 91.74% 45.87% 80.10% 94.04% 93.58% 87.16% 81.55%
Cassandra 60.38% 54.72% 54.03% 48.82% 71.70% 71.23% 66.35% 59.24% 77.36% 75.00% 74.41% 65.88%
SonarQube 69.46% 62.56% 45.81% 53.20% 76.85% 71.43% 70.44% 70.44% 83.74% 79.31% 82.27% 82.76%
Camel 61.03% 53.05% 47.89% 49.29% 74.18% 73.71% 68.54% 72.99% 84.04% 78.87% 75.12% 77.73%
IntelliJ IDEA CE 60.71% 60.58% 49.68% 51.39% 71.23% 71.48% 60.58% 69.25% 75.41% 76.30% 69.33% 73.47%
Hibernate ORM 36.94% 39.34% 38.44% 43.37% 68.47% 61.86% 63.66% 59.04% 74.77% 78.38% 81.68% 71.69%
Object Teams 59.30% 58.76% 41.51% 56.76% 74.12% 77.63% 49.87% 72.37% 79.25% 82.21% 56.87% 78.08%
MPS 46.91% 43.83% 45.06% 49.04% 63.58% 51.85% 62.35% 68.15% 66.05% 70.37% 72.22% 71.34%
Ignite 63.06% 61.56% 37.54% 52.58% 71.47% 68.17% 52.85% 65.96% 75.68% 72.37% 68.47% 75.68%
CloudStack 87.63% 86.57% 65.37% 71.53% 93.29% 94.35% 76.68% 91.24% 95.05% 96.47% 81.98% 95.62%

Overall 62.75% 61.34% 46.09% 55.33% 74.78% 73.91% 60.61% 65.96% 79.29% 79.78% 72.48% 75.68%

4.5.2 Exception Prone Tokens Prediction

The other output of D-REX is the set of tokens that can be responsible for the predicted

exceptions, in the order of their predicted probability. We evaluate the correctness of these

predictions in two ways: a quantitative analysis to measure the precision of these predictions

with respect to the tokens in the ground truth try blocks, and a qualitative analysis aimed

at investigating the relevance of predictions with the possible exceptions through a manual

analysis.

Quantitative Analysis

We define our ground truth for evaluating the correctness of the exception prone tokens

predictions with this procedure: for each try-catch block present in the dataset that handles

a runtime exception, we consider the method’s ACTS tokens that are inside the try block as

the true tokens responsible for the exception. The reason is that when developers implement

try-catch blocks, they form the try block around the portion of code that they believe can

cause the exception being handled. We evaluate the correctness of theses predictions with

precision: for each sample, we measures the percentage of the top k predictions that are

included in the ground truth try block. We do this evaluation for k = 1, 2, 3 and report the

mean value precision (MeanPrecision) across all of the samples in the 200k test set and the

78

Table 4.5: Exception Prone Tokens Prediction: MeanPrecision

Dataset k = 1 k = 2 k = 3

200k test set 75% 71% 69%

Unseen projects 57% 56% 56%

also, on the all samples of the unseen projects dataset explained in Section 4.5.1. For each

value of k, we evaluate D-REX on the samples that have a try block consisting of more than

k tokens and a method body length of more than than 2 ∗ k tokens. The former is done since

it is not meaningful to look at top k predictions if the true try block has less than k tokens.

The latter is done to eliminate the cases where the number of tokens in method is close to k

and hence, D-REX has a high a chance of having its top k predictions to be true predictions.

Hence, it will help us look at more meaningful results.

Table 4.5 shows the results of evaluating the top k predictions (where k = 1, 2, 3) on the

two datasets. It can be seen from the table that for 200k test set, MeanPrecision of top 1

predictions (k = 1) is 75%, suggesting that 75% of the times, the top 1 predicted token has

actually been located in the try block. This value is 57% for the unseen projects dataset.

The MeanPrecision values for k = 2 and k = 3 are also very close to the values reported for

the MeanPrecision when k = 1. This is promising results as it can help developers to identify

the source of exceptions by looking at the top 3 predictions.

It is worth mentioning that we did not measure recall here since while the length of try

blocks can vary, D-REX always produces top k predictions. Therefore, when a method has

a long try block with many tokens, recall will be dominated by the length of try block no

matter how accurate the prediction is. Also, in predicting the exception prone tokens, it is

the precision of top K predictions that matters most to the developer, not the fraction of all

tokens in the true try block that are captured. There can be tokens in the true try block

that are not directly related to the exception but has been placed in the try block because

they form a code construct.

79

1

2

3

4

5
6 ArrayAccessBinary

ArrayAccess

ArrayAccess

ArrayAccessBinary

PLUS

0.41

0.15

0.12

Exception Prone Tokens
ArrayIndexOutOfBoundsExcep

IndexOutOfBoundsExcep

NullPointerExcep

0.9

0.05

0.01

Exception Types

(a) Example 1

Cast

1

2

3

4

5
6

7

Cast

get

getIdMap

0.18

0.14

0.12

Exception Prone Tokens
ClassCastExcep

NullPointerExcep

SecurityExcep

0.94

0.02

0.02

Exception Types

(b) Example 2
1
2

3

4

5

6

7
8
9

gets

parse

of

0.38

0.36

0.06

Exception Prone Tokens

DateTimeParseExcep

IllegalMonitorStateExcep

IllegalArgumentExcep

0.3

0.12

0.06

Exception Types

(c) Example 3

Figure 4.5: Qualitative Analysis Examples

Qualitative Analysis

To gain a deeper insight on the quality of D-REX’s predicted exception prone tokens and

their usability in real coding scenarios, we picked a number of methods from the 200k test

dataset and manually investigated D-REX’s predictions for them. Figure 4.5 shows three

of these methods, where in each example, the left half shows the method with predicted

exception prone tokens circled, and the right half shows the predicted exception types and

exception prone tokens with their probability scores.

The example in Figure 4.5a shows a method that can throw ArrayIndexOutOfBoundsException.

The top 3 token predictions are ArrayAccess, ArrayAccessBinary and PLUS (pointing to plus

operator). We see that dir, used as index for accessing the array, is a parameter whose value

is determined at runtime, and hence, using it to access the array index at line 3 can throw

the predicted exception. Even if the exception does not happen at this line, it is possible to

happen at line 5 when the array index is accessed by doing a mathematical operation on dir.

Hence, this access to array which points to an ArrayAccessBinary and the plus operator used

80

in it are true exception prone tokens.

Figure 4.5b presents a method susceptible to ClassCastException. The top 1 predicted token

is Cast (a derived token corresponding to the type casting implemented at line 4) which

is a true prediction. The next two predicted exception prone tokens are getIdMap() and

get(). At first look, they both seem to be false positive predictions, however, a close look

shows that the second predicted exception type is NullPointerException (although with low

probability) and these tokens can throw such exception. This case shows that although the

focus is often on the top 1 predicted exception prone token, the next prediction gives insights

to the developer as well.

We also looked at examples where the top 1 prediction of D-REX is incorrect, as shown in

Figure 4.5c. This method is prone to DateTimeParseException with the top 2 exception

prone tokens predicted as: gets() and parse(). Note that parse() is directly related to the

predicted exception and the top 1 prediction is not a true positive. A reason can be that

DateTimeParseException is a rare exception, with only 357 appearances in the whole 200k

dataset. As a result, D-REX has not seen many examples of the tokens accompanied by this

exception. Although it predicted the true token responsible for the exception, this token is in

the second rank. An important note here is that the top 1 and top 2 predicted tokens have a

close predicted probability showing that they were close choices for D-REX.

The above examples suggest that D-REX is able to produce meaningful predictions favoring

the potentially exception prone tokens. Therefore, it can help the developer in making better

judgements on the causes for exceptions in their code.

81

4.6 Related Work

Java exceptions and exception handling. A very recent related work is FuzzyCatch [92,

93], which focuses on recommending both exception types exception handling code in Android

Ecosystem. The recommendation of exception types is based on the co-occurrences of API

method calls and exception types in their dataset. D-REX is different than FuzzyCatch as

D-REX works for Java (in general) and can predict exception prone tokens as well. Also, we

do not focus on recommending exception handling code.

Barbosa et al. [25, 26] propose heuristic strategies based on the code context (structural

information of code) to search for exception handling code. Rahman et al.’s approach [106]

recommends exception handling code by doing a code search on a number of popular GitHub

open source repositories. EH-Recommender [76] leverages program context in recommending

exception handling code, where program context can be exceptional, architectural or functional.

Maestro [84] recommends the StackOverflow post mostly related to a runtime exception using

a special code representation, called Abstract Program Graph. Our work is different than

these as we recommend relevant runtime exception types and exception prone code elements,

not the exception handling code or post.

Nakshatri et al. [91] studied practices and patterns of handling checked exceptions revealing

exception types higher in the class hierarchy being handled more than the concrete ones.

Sena et al. [118] studied exception handling practices on a set of 656 Java libraries, finding

a large portion of undocumented runtime exceptions in the studied libraries, and finding

API runtime exception handling to be more frequent than API checked exception handling.

Nguyen et al. [94] studied 246 exception related bugs from Android apps, finding 51% of them

to be thrown by Android API method calls and that runtime exception are more prevalent

than checked ones.

Source code representation learning. Another line of related work is source code

82

representation learning. As discussed by Chen et al. [33], these approaches can largely be

divided into learning token level and function (or method) level embeddings. In Code2Vec [12]

and Code2Seq [11], authors propose to learn the ’code embedding’ as continuous distributed

vectors, which is similar to our goal. However, they rely on decomposing the method into a

collection of paths in its abstract syntax tree (AST), and learn the representation vector for

each path, as well as the the amount of attention to put in each paths. In contrast, D-REX

simplifies this process and only needs to pre-process the code into a single sequence, then it

leverages the representation learning ability of the state-of-art BERT model to summarize the

context of the source code. Moreover, since one of our goals is to predict the exception prone

likelihood of each token in the input sequence, a finer grained embedding at the token level is

needed. Therefore the AST path level embedding may be less effective to infer whether each

token is exception prone. Another recent work in building contextual embeddings of source

code is CuBERT [69], which directly uses the architecture of BERT [43] and hence, is similar

to our plain BERT model. However, CuBERT is not specifically adapted for exception type

recommendation in Java. Moreover, it does not leverage the information about the tokens in

the try block and does not recommend exception prone tokens.

4.7 Discussion

Runtime exceptions and try blocks used in training and evaluation of this work are extracted

from a set of Java open source repositories from GitHub. We did not validate these exceptions

and their associated try blocks with respect to their correctness, however, we used enough

projects (200k) to address for any inaccuracy possible in the projects. We used Java Parser

to parse these projects and any errors in this tool may affect the results. We aimed for

comparing D-REX with the state-of-the-art tool, FuzzyCatch, however, since FuzzyCatch is

exclusively trained on Android ecosystem, we were not able to perform a direct comparison.

83

We implemented a baseline inspired by FuzzyCatch’s approach to mitigate this issue.

Runtime exception handling is an important and challenging task that requires understanding

the runtime state of programs. We proposed D-REX to ease this task by simultaneously

achieving two goals: 1) prediction of the relevant exception types given un-labeled code, and

2) prediction of the exception prone parts of the code. These two objectives are optimized at

the same time by training D-REX from end to end. For training and evaluation of D-REX,

we created a benchmark dataset which will be made publicly available. We demonstrated

through experiments that D-REX significantly outperforms multiple non-BERT baselines on

200k test dataset, and on the unseen projects dataset.

Our next step is to package D-REX as an IDE plugin: developers will be able to ask for

possible exceptions as they code and the corresponding exception prone code elements will

be highlighted. We also aim to integrate D-REX with a component for recommending

fixes to the predicted exceptions. Further, it is interesting to explore other tasks that can

utilize the the location awareness of LA-BERT. One example is code refactoring where the

location awareness can be used to find parts of code that need refactoring. More generally,

D-REX provides a way to leverage any kind of extra information in the training data, and its

application is not limited to using the try block information in the exception prediction task.

84

Chapter 5

Conclusion and Future Work

We have seen three successful approaches to facilitate the learning of sparse representation,

where deep neural networks have shown to be useful to model various kinds of sparse

distributions.

First, we demonstrated a variational inference algorithm of Bayesian variable selection with

non-local prior (Chapter 2). As the variational inference is becoming increasingly popular

due to its parallelizability and users can leverage off-the-shelf deep learning packages for

automatic differentiation, a promising future direction is to explore different kinds of flexible

variational distributions parameterized by neural networks. Further, this can be useful for a

more principled approach to neural network compression [78, 135] with desirable capability

to incorporate proper prior information for hardware efficiency on edge devices. Another

important range of the applications for the variational variable selection is neural image

compression [23, 80], where a sparse representation of the latent code is crucial in achieving

the best rate-distortion performance.

Second, we showed a generative model for sparse images generation in high energy physics

(Chapter 3). A stable, flexible, as well as parameter efficient model of the sparse distribution is

85

the key to generate high quality sparse images. Therefore, future work on flexible distributions

will greatly benefit this line of research. Another interesting direction for generation of larger

sparse images is to extend the current model to generate image patches in an auto-regressive

pattern. This will further speed up the generation and can be potentially used for generating

sparse 3D objects or videos.

Lastly, we described a sparse location aware model for exception handling in software

engineering (Chapter 4). There, we showed the sparse location information of the try block

tokens in a JAVA code snippet is helpful to recommendation of exception and beneficial to

the exception type predictions. A promising future direction is to extend the current model

to predict the complete exception handling code.

86

Bibliography

[1] Best (and worst) java exception handling practices. https://able.bio/DavidLandup/
best-and-worst-java-exception-handling-practices--18h55kh. Accessed: 2020-
08-15.

[2] Beware the dangers of generic exceptions. https://www.infoworld.com/article/
2073800/beware-the-dangers-of-generic-exceptions.html. Accessed: 2020-08-
15.

[3] Java parser. https://javaparser.org/. Accessed: 2020-06-03.

[4] LHCb calorimeters: Technical Design Report. Technical Design Report LHCb. CERN,
Geneva, (2000).

[5] G. Aad et al. The ATLAS Simulation Infrastructure. Eur. Phys. J. C, 70, 2010.

[6] S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth. A, 506,
2003.

[7] Kara Agster and Rebecca Burwell. Cortical efferents of the perirhinal, postrhinal, and
entorhinal cortices of the rat. Hippocampus, 19:1159–86, 12 2009.

[8] Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive
scale using language modeling. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 207–216. IEEE, 2013.

[9] Timothy A. Allen, Daniel M. Salz, Sam McKenzie, and Norbert J. Fortin. Nonspatial
sequence coding in ca1 neurons. Journal of Neuroscience, 36(5):1547–1563, 2016.

[10] Leandro G. Almeida, Mihailo Backović, Mathieu Cliche, Seung J. Lee, and Maxim
Perelstein. Playing Tag with ANN: Boosted Top Identification with Pattern Recognition.
JHEP, 07:086, 2015.

[11] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences
from structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

[12] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. CoRR, abs/1803.09473, 2018.

87

https://able.bio/DavidLandup/best-and-worst-java-exception-handling-practices--18h55kh
https://able.bio/DavidLandup/best-and-worst-java-exception-handling-practices--18h55kh
https://www.infoworld.com/article/2073800/beware-the-dangers-of-generic-exceptions.html
https://www.infoworld.com/article/2073800/beware-the-dangers-of-generic-exceptions.html
https://javaparser.org/

[13] Saúl Alonso Monsalve and Leigh Whitehead. Image-Based Model Parameter Optimiza-
tion Using Model-Assisted Generative Adversarial Networks. IEEE Transactions on
Neural Networks and Learning Systems, PP:1–6, 03 2020.

[14] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations. JHEP, 07:079, 2014.

[15] D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of
the Royal Statistical Society: Series B (Methodological), 36(1):99–102, 1974.

[16] Martín Arjovsky and Léon Bottou. Towards Principled Methods for Training Generative
Adversarial Networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, (2017).

[17] Artin Armagan, David B. Dunson, and Jaeyong Lee. Generalized double pareto
shrinkage. Statistica Sinica, 23 1:119–143, 2013.

[18] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K Roy, and Kevin A
Schneider. How developers use exception handling in java? In 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), pages 516–519. IEEE,
2016.

[19] P. Baldi. Deep Learning in Science: Theory, Algorithms, and Applications. Cambridge
University Press, Cambridge, UK, (2020). In press.

[20] Pierre Baldi, Kevin Bauer, Clara Eng, Peter Sadowski, and Daniel Whiteson. Jet
Substructure Classification in High-Energy Physics with Deep Neural Networks. Phys.
Rev., D93, 2016.

[21] Pierre Baldi, Jianming Bian, Lars Hertel, and Lingge Li. Improved Energy Recon-
struction in NOvA with Regression Convolutional Neural Networks. Phys. Rev. D, 99,
2019.

[22] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for Exotic Particles in
High-Energy Physics with Deep Learning. Nature Communications, 5:4308, 2014.

[23] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image
compression. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[24] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-
based null safety for java. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 740–750, 2019.

88

[25] Eiji Adachi Barbosa, Alessandro Garcia, and Mira Mezini. Heuristic strategies for
recommendation of exception handling code. In 2012 26th Brazilian Symposium on
Software Engineering, pages 171–180. IEEE, 2012.

[26] Eiji Adachi Barbosa, Alessandro Garcia, and Mira Mezini. A recommendation system
for exception handling code. In 2012 5th International Workshop on Exception Handling
(WEH), pages 52–54. IEEE, 2012.

[27] James Barnard, Edmund Noel Dawe, Matthew J. Dolan, and Nina Rajcic. Parton
Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks. Phys.
Rev., D95(1):014018, 2017.

[28] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112(518):859–877,
2017.

[29] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In COMP-
STAT, (2010). https://leon.bottou.org/publications/pdf/compstat-2010.pdf.

[30] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for
High Fidelity Natural Image Synthesis. In International Conference on Learning
Representations ICLR, (2019).

[31] Federico Carminati, Maurizio Pierini Gulrukh Khattak, Benjamin Hooberman
Amir Farbin, Wei Wei, Matt Zhang, Vitória Barin Pacela, Sofia Vallecorsafac, Maria
Spiropulu, and Jean-Roch Vlimant. Calorimetry with Deep Learning: Particle Classifi-
cation, Energy Regression, and Simulation for High-Energy Physics. Deep Learning for
Physical Sciences, Workshop at the 31st Conference on Neural Information Processing
Systems (NeurIPS), 2017.

[32] Carlos M. Carvalho, Nicholas G. Polson, and James G. Scott. Handling sparsity
via the horseshoe. In David van Dyk and Max Welling, editors, Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of
Proceedings of Machine Learning Research, pages 73–80, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.

[33] Zimin Chen and Martin Monperrus. A literature study of embeddings on source code.
CoRR, abs/1904.03061, 2019.

[34] S. Chintala. How to train a GAN? In Workshop on Generative Adversarial Networks,
2016.

[35] Josh Cogan, Michael Kagan, Emanuel Strauss, and Ariel Schwarztman. Jet-Images:
Computer Vision Inspired Techniques for Jet Tagging. JHEP, 02, 2015.

[36] Kyle Cranmer, Stefan Gadatsch, Aishik Ghosh, Tobias Golling, David Rousseau
Gilles Louppe, Dalila Salamani, and Graeme Stewart on behalf of the ATLAS Collabo-
ration. Deep generative models for fast shower simulation in ATLAS. Bayesian Deep

89

https://leon.bottou.org/publications/pdf/compstat-2010.pdf

Learning, Workshop at the 32nd Conference on Neural Information Processing Systems
(NeurIPS), 2018. http://bayesiandeeplearning.org/2018/papers/24.pdf.

[37] J. de Favereau et al. DELPHES 3, A modular framework for fast simulation of a generic
collider experiment. JHEP, 1402:057, 2014.

[38] Luke de Oliveira, Michael Kagan, Lester Mackey, Benjamin Nachman, and Ariel
Schwartzman. Jet-Images — Deep Learning Edition. Journal of High Energy Physics,
2016.

[39] Luke de Oliveira, Michela Paganini, and Benjamin Nachman. Learning Particle Physics
by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis.
Comput Softw Big Sci, 2017.

[40] K. Deja, T. Trzciński, and Ł. Graczykowski. Generative Models for Fast Cluster
Simulations in the TPC for the ALICE Experiment. In Information Technology,
Systems Research, and Computational Physics, pages 267–280, Cham, (2020). Springer
International Publishing.

[41] S. Delaquis, M.J. Jewell, I. Ostrovskiy, M. Weber, T. Ziegler, J. Dalmasson, L. Kaufman,
T. Richards, J.B. Albert, G. Anton, I. Badhrees, P.S. Barbeau, R. Bayerlein, D. Beck,
Vladimir Belov, M. Breidenbach, Thomas Brunner, G.F. Cao, W.R. Cen, and O.Ya
Zeldovich. Deep Neural Networks for Energy and Position Reconstruction in EXO-200.
Journal of Instrumentation, 13, 2018.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In Conference on Computer Vision and Pattern
Recognition, (2009). http://www.image-net.org/papers/imagenet_cvpr09.

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[44] Benoit Gaudin, Emil Iordanov Vassev, Patrick Nixon, and Michael Hinchey. A control
theory based approach for self-healing of un-handled runtime exceptions. In Proceedings
of the 8th ACM international conference on Autonomic computing, pages 217–220, 2011.

[45] Edward I. George and Robert E. McCulloch. Variable selection via Gibbs sampling.
Journal of the American Statistical Association, 88(423):881–889, 1993.

[46] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked
Autoencoder for Distribution Estimation. CoRR, abs/1502.03509, 2015.

[47] Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Structured variational learning of
Bayesian neural networks with horseshoe priors. In Jennifer Dy and Andreas Krause, ed-
itors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 1744–1753, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

90

http://bayesiandeeplearning.org/2018/papers/24.pdf
http://www.image-net.org/papers/imagenet_cvpr09

[48] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence
and Statistics, 2010.

[49] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks.
In Advances in Neural Information Processing Systems 27. Curran Associates, Inc.,
(2014).

[50] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra.
Deep AutoRegressive Networks. In Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
1242–1250, Bejing, China, 22–24 Jun (2014). PMLR.

[51] D. Guest, J. Collado, P. Baldi, S. Hsu, G. Urban, and D. Whiteson. Jet flavor
classification in high-energy physics with deep neural networks. Physical Review D,
94:112002, 2016.

[52] Daniel Guest, Julian Collado, Pierre Baldi, Shih-Chieh Hsu, Gregor Urban, and Daniel
Whiteson. Jet Flavor Classification in High-Energy Physics with Deep Neural Networks.
Physical Review D, 94, 2016.

[53] Song Han, Huizi Mao, and W. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149,
2016.

[54] Bobak Hashemi, Nick Amin, Kaustuv Datta, Dominick Olivito, and Maurizio Pierini.
LHC analysis-specific datasets with Generative Adversarial Networks. CoRR, 2019.

[55] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[56] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, (2016).

[57] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best
choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 763–773, 2017.

[58] Dan Hendrycks and Kevin Gimpel. Bridging Nonlinearities and Stochastic Regularizers
with Gaussian Error Linear Units. CoRR, abs/1606.08415, 2016.

[59] Lars Hertel, Julian Collado, Peter Sadowski, Jordan Ott, and Pierre Baldi. Sherpa:
Robust Hyperparameter Optimization for Machine Learning. SoftwareX, 2020. In press.
Software available at: https://github.com/sherpa-ai/sherpa.

91

[60] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In 2012 34th International Conference on Software
Engineering (ICSE), pages 837–847. IEEE, 2012.

[61] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[62] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural
autoregressive flows. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 2078–2087, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

[63] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural
Autoregressive Flows. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 2078–2087,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul (2018). PMLR. http://proceedings.
mlr.press/v80/huang18d/huang18d.pdf.

[64] John Ingraham and Debora Marks. Variational inference for sparse and undirected
models. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1607–1616, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[65] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. CoRR, abs/1611.01144, 2016.

[66] Shujuan Jiang, Hongchang Zhang, Qingtan Wang, and Yanmei Zhang. A debugging
approach for java runtime exceptions based on program slicing and stack traces. In
2010 10th International Conference on Quality Software, pages 393–398. IEEE, 2010.

[67] Valen E. Johnson and David Rossell. On the use of non-local prior densities in bayesian
hypothesis tests. Journal of the Royal Statistical Society Series B, 72(2):143–170, 2010.

[68] Valen E. Johnson and David Rossell. Bayesian model selection in high-dimensional
settings. Journal of the American Statistical Association, 107(498):649–660, 2012.

[69] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and
evaluating contextual embedding of source code. Vienna, Austria, 2020.

[70] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego, 2015.

[71] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

92

http://proceedings.mlr.press/v80/huang18d/huang18d.pdf
http://proceedings.mlr.press/v80/huang18d/huang18d.pdf

[72] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd
International Conference on Learning Representations, ICLR, (2014).

[73] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1
convolutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
10215–10224. Curran Associates, Inc., 2018.

[74] Patrick T. Komiske, Eric M. Metodiev, and Matthew D. Schwartz. Deep learning in
color: towards automated quark/gluon jet discrimination. JHEP, 01:110, 2017.

[75] Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution Estimator.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learning Research, pages 29–37, Fort
Lauderdale, FL, USA, 11–13 Apr (2011). PMLR. http://proceedings.mlr.press/
v15/larochelle11a/larochelle11a.pdf.

[76] Yuhang Li, Shi Ying, Xiangyang Jia, Yisen Xu, Lily Zhao, Guoli Cheng, Bingming
Wang, and Jifeng Xuan. Eh-recommender: Recommending exception handling strategies
based on program context. In 2018 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS), pages 104–114. IEEE, 2018.

[77] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. Déjàvu: a map of code duplicates on github. Proceedings
of the ACM on Programming Languages, 1(OOPSLA):1–28, 2017.

[78] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep
learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 3290–3300, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[79] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural
networks through l0 regularization. In International Conference on Learning Represen-
tations, 2018.

[80] Y. Lu, Yinhao Zhu, Y. Yang, A. Said, and T. Cohen. Progressive neural image
compression with nested quantization and latent ordering. ArXiv, abs/2102.02913,
2021.

[81] Yadong Lu, Julian Collado, Kevin Bauer, Daniel Whiteson, and Pierre Baldi. Sparse
Image Generation with Decoupled Generative Models. In Neural Information Processing
Systems, Machine Learning and the Physical Sciences Workshop, (2019). https:
//ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_161.pdf.

[82] Yadong Lu, Julian Collado, Daniel Whiteson, and Pierre Baldi. Sarm: Sparse autore-
gressive model for scalable generation of sparse images in particle physics, 2020.

[83] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. CoRR, abs/1611.00712, 2016.

93

http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_161.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_161.pdf

[84] Sonal Mahajan, Negarsadat Abolhassani, and Mukul R Prasad. Recommending stack
overflow posts for fixing runtime exceptions using failure scenario matching. In Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1052–1064, 2020.

[85] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc.,
2013.

[86] Valen E. Johnson Minsuk Shin, Anirban Bhattacharya. Scalable bayesian variable
selection using nonlocal prior densities in ultrahigh-dimensional settings. arxiv, 2017.

[87] T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 83(404):1023–1032, 1988.

[88] P. Musella and F Pandolfi. Fast and Accurate Simulation of Particle Detectors Using
Generative Adversarial Networks. Computing and Software for Big Science, 2018.

[89] Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, and
Jan M. Kratochvil. CosmoGAN: Creating High-fidelity Weak Lensing Convergence Maps
using Generative Adversarial Networks. Computational Astrophysics and Cosmology, 6,
2019.

[90] Vaishnavh Nagarajan and J. Zico Kolter. Gradient descent GAN optimization is locally
stable. In Advances in Neural Information Processing Systems 30, pages 5585–5595.
Curran Associates, Inc., (2017).

[91] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception handling
patterns in java projects: An empirical study. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pages 500–503. IEEE, 2016.

[92] Tam Nguyen, Phong Vu, and Tung Nguyen. Recommending exception handling code. In
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 390–393. IEEE, 2019.

[93] Tam Nguyen, Phong Vu, and Tung Nguyen. Code recommendation for exception
handling. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, pages
1027–1038, 2020.

[94] Tam The Nguyen, Phong Minh Vu, and Tung Thanh Nguyen. An empirical study
of exception handling bugs and fixes. In Proceedings of the 2019 ACM Southeast
Conference, pages 257–260, 2019.

[95] Nikiforos Nikiforou. Performance of the ATLAS Liquid Argon Calorimeter After
Three Years of LHC Operation and Plans For a Future Upgrade. In 3rd International

94

Conference on Advancements in Nuclear Instrumentation Measurement Methods and
their Applications, (2013).

[96] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and Checker-
board Artifacts. Distill, 1(10), October 2016. http://distill.pub/2016/
deconv-checkerboard.

[97] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural
Networks. In Proceedings of The 33rd International Conference on Machine Learning
ICML, volume 48 of Proceedings of Machine Learning Research, pages 1747–1756, New
York, New York, USA, (2016). PMLR.

[98] Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks,
Caspar van Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, and Rob Verheyen.
Event Generation and Statistical Sampling for Physics with Deep Generative Models
and a Density Information Buffer. CoRR, 2019.

[99] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. CaloGAN: Simulating
3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with
Generative Adversarial Networks. Phys. Rev. D, 97, 2018.

[100] Trevor Park and George Casella. The bayesian lasso. Technical report, 2005.

[101] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS 2017 Workshop on Autodiff, 2017.

[102] Juho Piironen and Aki Vehtari. On the Hyperprior Choice for the Global Shrinkage
Parameter in the Horseshoe Prior. In Aarti Singh and Jerry Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pages 905–913. PMLR, April 2017.

[103] Nicholas G. Polson, James G. Scott, Bertrand Clarke, and C. Severinski. Shrink Globally,
Act Locally: Sparse Bayesian Regularization and Prediction, volume 9780199694587.
Oxford University Press, January 2012.

[104] G. r. Khattak, S. Vallecorsa, and F. Carminati. Three Dimensional Energy Parametrized
Generative Adversarial Networks for Electromagnetic Shower Simulation. In 2018 25th
IEEE International Conference on Image Processing (ICIP), pages 3913–3917, 2018.
https://ieeexplore.ieee.org/document/8451587.

[105] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. CoRR, 2015.

[106] Mohammad Masudur Rahman and Chanchal K Roy. On the use of context in recom-
mending exception handling code examples. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, pages 285–294. IEEE, 2014.

95

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://ieeexplore.ieee.org/document/8451587

[107] Rahmat Rahmat, Rob Kroeger, and Andrea Giammanco. The Fast Simulation of The
CMS Experiment. Journal of Physics: Conference Series, 396, 2012.

[108] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas,
November 2016. Association for Computational Linguistics.

[109] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1530–1538, Lille, France, 07–09 Jul 2015. PMLR.

[110] David Rossell and Donatello Telesca. Nonlocal priors for high-dimensional estimation.
Journal of the American Statistical Association, 112(517):254–265, 2017.

[111] Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. Queen’s School of Computing TR, 541(115):64–68, 2007.

[112] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a Metric
for Image Retrieval. International Journal of Computer Vision, 40, 2000. https:
//link.springer.com/article/10.1023/A:1026543900054.

[113] Peter Sadowski, Julian Collado, Daniel Whiteson, and Pierre Baldi. Deep learning,
dark knowledge, and dark matter. In Proceedings of the 2014 International Conference
on High-Energy Physics and Machine Learning - Volume 42, HEPML’14, page 81–97.
JMLR.org, 2014.

[114] Peter Sadowski, Julian Collado, Daniel Whiteson, and Pierre Baldi. Deep Learning,
Dark Knowledge, and Dark Matter. In Proceedings of the NIPS 2014 Workshop on High-
energy Physics and Machine Learning, volume 42 of Proceedings of Machine Learning
Research, pages 81–87, Montreal, Canada, (2015). PMLR. http://proceedings.mlr.
press/v42/sado14.html.

[115] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V
Lopes. Oreo: Detection of clones in the twilight zone. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 354–365, 2018.

[116] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++:
Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other
Modifications. CoRR, 2017.

[117] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. Trans. Sig.
Proc., 45(11):2673–2681, November 1997.

[118] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. Understanding
the exception handling strategies of java libraries: An empirical study. In Proceedings

96

https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/article/10.1023/A:1026543900054
http://proceedings.mlr.press/v42/sado14.html
http://proceedings.mlr.press/v42/sado14.html

of the 13th International Conference on Mining Software Repositories, pages 212–222,
2016.

[119] Ilsoo Seong, Lars Hertel, Julian Collado, Lingge Li, Nitish Nayak, Jianming Bian,
and Pierre Baldi. Convolutional Neural Networks for Energy and Vertex Recon-
struction in DUNE. In 33rd Conference on Neural Information Processing Systems
(NeurIPS), Machine Learning and the Physical Sciences Workshop, (2019). https:
//ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_77.pdf.

[120] Viraj Shah, Ameya Joshi, Sambuddha Ghosal, Balaji Sesha Sarath Pokuri, Soumik
Sarkar, Baskar Ganapathysubramanian, and Chinmay Hegde. Encoding Invariances in
Deep Generative Models. CoRR, 2019.

[121] Babak Shahbaba, Lingge Li, Forest Agostinelli, Mansi Saraf, Gabriel A. Elias, Pierre
Baldi, and Norbert J. Fortin. Hippocampal ensembles represent sequential relationships
among discrete nonspatial events. bioRxiv, 2019.

[122] Chase Shimmin, Peter Sadowski, Pierre Baldi, Edison Weik, Daniel Whiteson, Edward
Goul, and Andreas Søgaard. Decorrelated Jet Substructure Tagging using Adversarial
Neural Networks. Physical Review D, 96, 03 2017.

[123] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and Mary Jean
Harrold. Fault localization and repair for java runtime exceptions. In Proceedings of the
eighteenth international symposium on Software testing and analysis, pages 153–164,
2009.

[124] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and
Manual. JHEP, 0605:026, 2006.

[125] Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Ed-
uard H. Hovy. SPINE: sparse interpretable neural embeddings. CoRR, abs/1711.08792,
2017.

[126] Fei Sun, J. Guo, Yanyan Lan, Jun Xu, and X. Cheng. Sparse word embeddings using
l1 regularized online learning. In IJCAI, 2016.

[127] Robert Tibshirani. Regression shrinkage and selection via the lasso. JOURNAL OF
THE ROYAL STATISTICAL SOCIETY, SERIES B, 58:267–288, 1994.

[128] Michalis K. Titsias and Miguel Lázaro-Gredilla. Spike and slab variational inference for
multi-task and multiple kernel learning. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 2339–2347. Curran Associates, Inc., 2011.

[129] Jakub M. Tomczak and Max Welling. Improving variational auto-encoders using
householder flow. CoRR, abs/1611.09630, 2016.

[130] Francesco Tonolini, Bjorn Sand Jensen, and Roderick Murray-Smith. Variational sparse
coding, 2019.

97

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_77.pdf
https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_77.pdf

[131] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural
autoregressive density-estimator. In Advances in Neural Information Processing Systems
26, pages 2175–2183. Curran Associates, Inc., (2013).

[132] Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling.
Sylvester normalizing flows for variational inference. In Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California,
USA, August 6-10, 2018, pages 393–402, 2018.

[133] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc., 2017.

[134] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, November
2018. Association for Computational Linguistics.

[135] Ying Wang, Y. Lu, and Tijmen Blankevoort. Differentiable joint pruning and quantiza-
tion for hardware efficiency. ArXiv, abs/2007.10463, 2020.

[136] Ying Wang, Yadong. Lu, and Tijmen Blankevoort. Differentiable joint pruning
and quantization for hardware efficiency. European Conference on Computer Vision,
abs/2007.10463, 2020.

[137] Menno P. Witter, Thanh P. Doan, Bente Jacobsen, Eirik S. Nilssen, and Shinya Ohara.
Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with
some comparative notes. Frontiers in Systems Neuroscience, 11:46, 2017.

[138] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse representation for natural
image deblurring. In CVPR, pages 1107–1114. IEEE Computer Society, 2013.

[139] Kai Zhou, Gergely Endrődi, Long-Gang Pang, and Horst Stöcker. Regressive and
Generative Neural Networks for Dcalar Field Theory. Phys. Rev. D, 100:011501, 2019.

[140] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. CoRR, 2017.

98

Appendix A

Supplementary Material for Chapter 2

A.1 Derivation of the Evidence Lower Bound for non-

local priors

Suppose y ∈ RD is our observed data, the model defines the likelihood function f(y|β, z)),

where β ∈ RM is the model parameter, and z ∈ RM is the Bernoulli mask over β. It is

equivalent to a spike and slab prior on β̃ = β � z, where � is the element-wise product and

β and z are independently distributed. The general form of Evidence Lower Bound (ELBO)

follows the following form:

99

ELBO =Eqπ(z)qη(β|z) logP (y|β, z,x))− Eqπ(z)qη(β|z) log
qπ,η(β, z)

p(β, z)
(A.1)

=Eqπ(z)qη(β|z) logP (y|β, z,x))− [qπ(z = 0) log
qπ(z = 0)

pπ(z = 0)
+ (A.2)

qπ(z = 1) log
qπ(z = 1)qη(β|z = 1)

pπ(z = 1)pη(β|z = 1)
]

=Eqπ(z)qη(β|z) logP (y|β, z,x))− [
M∑
i

KL(qπi(zi)||p(zi))+ (A.3)

M∑
i

qπi(zi = 1) ·KL(qηi(βi|zi = 1)||p(βi|zi = 1))]

From the second equation to the third, we adopt Mean Field assumption which allows the

factorization of qη(β|z) =
∏

i qηi(βi)qπi(zi).

In practice we use the hard concrete relaxation [], s̄ to approximate the Bernoulli random

variable z, to allow for gradient based optimization:

s = Sigmoid((log u− log(1− u) + α)/λ), u ∼ Uniform(0, 1)

s̄ = s(ζ − δ) + δ

(A.4)

Hence we have the approximation: γj = p(zj = 1) ≈ q(s̄ 6= 0) = Sigmoid(αj − λ log −δ
ζ

),

where we set δ = −0.1, ζ = 1.1, λ = 2
3
as hyperparameters. Under this relaxation:

β̃j = βj · zj ≈ βj · s̄j (A.5)

Since for concrete random variable sj, we have

lim
λ→0

Esj = Sigmoid(αj) (A.6)

100

in [?]. Thus:

lim
λ→0

Es̄j = (ζ − δ)Sigmoid(αj) + δ (A.7)

Therefore at test time, we use the expectation limλ→0Es̄j as our estimated approximate

value for Ezj.

Next we prove when the expected value of hard concrete variable limλ→0Es̄j > 0,

the gradient always points to the direction such that it pushes limλ→0Es̄j to zero.

A.2 Proof of Theorem 1

Lemma 1. The absolute value of the derivative of KL(pzj ||pzj) with respect to αj : |
∂KL(pzj ||pzj)

∂αj
|

is bounded by a constant C > 0.

Proof.

∂KL(pzj ||pzj)
∂αj

=
∂γj
∂αj

∂KL(pzj ||pzj)
∂γj

(A.8)

=
∂γj
∂αj

∂γj log
γj
γ0j

+ (1− γj) log
(1−γj)
(1−γ0j)

∂γj
(A.9)

=
∂γj
∂αj

(log
γj

1− γj
+ log

(1− γ0)

γ0

) (A.10)

=(1− γj)γj log
γj

1− γj
+ (1− γj)γj log

(1− γ0)

γ0

(A.11)

Since 0 ≤ (1−γj)γj ≤ 1/4, the second term is bounded. And since limγj→0(1−γj)γj log
γj

1−γj =

limγj→1(1−γj)γj log
γj

1−γj = 0, and (1−γj)γj log
γj

1−γj is continuous. when γj ∈ (0, 1). Therefore

by Extreme Value Theorem, |(1− γj)γj log
γj

1−γj | < C for some constant C.

Theorem 2. Consider a linear regression model, where the data is generated by: Y = Xβ+ε,

101

where y ∈ RN , β ∈ Rp, ε ∼ N(0, φ2I), X ∼ N(0,Σ), where max(Σij) < C0. If the ground

truth value of βj,true = 0, denote maxj 6=j′ |βj′ β̃j| = C1, we have

E
∂L
∂αj′

< −2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)] +
C

N

where C > 0 is a positive constant defined in Lemma 1.

Remark: when N > C

2
∂s̄j′
∂αj′

[σ2β2
j′ s̄j′−C0C1(M−1)]

, we have E ∂L
∂αj

< 0.

Proof. In linear regression setting, the ELBO in (A.1) can be expressed as:

L =
1

N
ELBO

= − 1

N

N∑
i=1

(yi −
M∑
j=1

xijβ̃j)
2 − 1

N

M∑
j=1

[γj log
γj
γ0j

+ (1− γj) log
(1− γj)
(1− γ0j)

+ (A.12)

γjKL((qηj(βj|zj = 1)||p(βj|zj = 1))]

where γj = q(zj = 1) is the variational approximation probability, and γ0j = p(zj = 1) is the

prior probability of zj = 1. From (4) it is easy to get ∂γj
∂αj

= γj(1− γj) ≥ 0.

∂L
∂αj′

=
1

N

N∑
i=1

2xij′βj′
∂s̄j′

∂αj′
(yi −

M∑
j=1

xijβ̃j)−
1

N
[
∂KL(pzj′ ||pzj′)

∂αj′
−KL(pβj′ ||pβj′)] (A.13)

where the KL divergence denotes KL(pzj′ ||pzj′) = γj′ log
γj′

γ0j′
+ (1− γj′) log

(1−γj′)
(1−γ0j′)

. And we

102

have:

N∑
i=1

2xij′βj′
∂s̄j′

∂αj′
(yi −

M∑
j=1

xijβ̃j) =
N∑
i=1

2xij′βj′
∂s̄j′

∂αj′
(
M∑
j=1

xijβj,true −
M∑
j=1

xijβ̃j + εi)

=
N∑
i=1

2xij′βj′
∂s̄j′

∂αj′
(
M∑
j 6=j′

xij(βj,true − β̃j) + xij′(βj′,true − β̃j′) + εi)

(A.14)

Since Exij = 0 for all i, j, Exijxij′ = |Σjj′ | < C0. Now let’s consider the expectation of each

term in equation (A.14), when βj′,true = 0. For j 6= j′:

E
M∑
j 6=j′

2xij′xijβj′(βj,true − β̃j)
∂s̄j′

∂αj′
≤ 2C0

∂s̄j′

∂αj′
|
M∑
j 6=j′

βj′ β̃j|

And for j = j′:

E2x2
ij′βj′(βj′,true − β̃j′)

∂s̄j′

∂αj′
= −2σ2β̃2

j′ s̄j′
∂s̄j′

∂αj′

For the remaining term related to εi, the expectation is equal to zero.

As a summary, using the above derivations, equation (A.13) can be re-written as follows:

E
∂L
∂αj′

≤ 1

N

N∑
i=1

[2
∂s̄j′

∂αj′
(C0|

M∑
j 6=j′

βj′ β̃j| − σ2s̄j′ β̃
2
j′)]−

1

N

∂γj′

∂αj′
[
∂KL(pzj′ ||pzj′)

∂γj′
−KL(pβj′ ||pβj′)]

(A.15)

We then look at the second term of equation (A.15). Since KL divergence is always greater

or equal to zero, we have −KL(pβj′ ||pβj′) < 0. Further, we have:

103

∂γj′

∂αj′

∂KL(pzj′ ||pzj′)
∂γj′

=
∂γj′

∂αj′
log

γj′

1− γj′
(A.16)

=(1− γj′)γj′ log
γj′

1− γj′
(A.17)

is bounded above by a constant according to Lemma 1.

Combining the above computation, and assuming maxj 6=j′ |βj′ β̃j| = C1, equation (A.15) can

be re-written as:

E
∂L
∂αj′

≤ −2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)]− 1

N

∂γj′

∂αj′
[log

γj′

1− γj′
+ KL(pβj′ ||pβj′)]

≤ −2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)]− 1

N

∂γj′

∂αj′
log

γj′

1− γj′
(A.18)

< −2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)] +
C

N
(A.19)

Therefore, when

N >
C

2
∂s̄j′

∂αj′
[σ2β2

j′ s̄j′ − C0C1(M − 1)]
(A.20)

we have E ∂L
∂αj′

< 0. This completes the proof.

Remark: As a special case when C0 = 0, and

N >
C

2
∂s̄j′

∂αj′
σ2β2

j′ s̄j′
(A.21)

we have: E ∂L
∂αj′

< 0

104

Appendix B

Supplementary Material for Chapter 3

B.1 2D Toy Example

We simulate a dataset containing pairs of two variables x0 and x1, such that x0 ∼ p(x0|x1)

and x1 ∼ p(x1). In this toy example we show that the autoregressive model is still able

to learn to generate the joint distribution of x0 and x1, even though during training it is

forced to learn x0 ∼ p(x0) first, and then to learn the dependency p(x1|x0). The simulated

training data contains 1000 pairs of {x0, x1} according to x1 ∼ N(0, 1) and x0 = x1 + ε,

where ε ∼ N(0, 1), a standard normal distribution independent of x1. The joint distribution

of x0, x1 is shown in figure B.1. The toy autoregressive model learns to generate x0 using two

learnable parameters, µ0 and log(σ0), corresponding to the mean and log standard deviation

of x0. It has a single linear layer for predicting µ0 and log(σ0), which corresponds to the mean

and log standard deviation of x1. The model is trained for 5000 iterations, by maximizing the

likelihood p(x0, x1). During the generation stage, the model generates x0 without knowing

x1. Since the goal of the model is to generate the joint distribution of (x0, x1) ∼ P (x0, x1),

to do this it only needs to learn the marginal distribution, which is x0 ∼ N(0, 2) and the

105

4 2 0 2 4

x0

4

3

2

1

0

1

2

3

x 1

6 4 2 0 2 4

x0

3

2

1

0

1

2

3

4

x 1

Figure B.1: Left: Density plot of training data. Right: Density plot of generated data. The
two distributions are very close, showing the ARM is able to learn the joint distribution of x0

and x1 well.

relationship x1 = x0 − ε. figure B.1 shows the result of training this model and we can see it

correctly learns the means and variances of {x0, x1} along with the data distribution despite

the fact that it has to generate x0 before generating x1.

B.2 MADE Structure

The MADE structure enforces the auto-regressive property on fully connected layers by using

a carefully selected binary mask on the weights of the layer. The joint likelihood of the MADE

structure can be evaluated in one forward pass of the network during training, which is not

possible in other models like Pixel-RNN [97] and Pixel CNN++ [116]. This allows MADE to

take advantage of the GPU acceleration. In our SARM implementation, we consider a simple

MADE structure with input x and a stack of multiple hidden layers h(x), where each h(x)

106

follows:

h(x) = f
(
b +

(
W �MW

)
x
)

θ = f
(
c +

(
V �MV

)
h(x)

) (B.1)

Here θ is the output, and f is the activation function of the hidden layer. In practice,

we found Gaussian Error Linear Units (GeLU) [58] works better in our experiments than

other activations such as Sigmoid and tanh. Both W and V are weight matrices, with

corresponding masks: the hidden mask MW, and the output mask MV. Each matrix is

multiplied element-wise with each mask.

Suppose x ∈ RD, it can be shown that for the input mask:

MW
k,d = 1k mod D≤d =

 1 if k mod D ≤ d

0 otherwise
(B.2)

Likewise, suppose h(x) ∈ RH , then for the output mask:

MV
k,d = 1k mod D<d =

 1 if k mod D < d

0 otherwise
(B.3)

Then the output θ satisfies autoregressive structure: for any i, θi only depends on xj<i. As

shown in figure 3.3, the parameter θi is used to generate the ith pixel during generation. For

example, if the likelihood is a logistic distribution, then θi = [µi, si], where µi, si corresponds

to the mean and scale of a logistic distribution.

During generation, at step i we take the previously generated x0, x1, . . . , xi−1 and pad the

remaining xi, . . . , xD−1 with zeros. Then we input this vector in the MADE structure so that

107

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Si
gn

al

SARM-2 (D+C)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

SARM-2 (D+D)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Pixel CNN++

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

LAGAN

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Ba
ck

gr
ou

nd

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

6

4

2

0

2

4

6

6

4

2

0

2

4

6

Figure B.2: Error measured by subtracting of the pixel-wise average of the images created
by each generative model and the pixel-wise average of the images generated with Pythia.
The SARM models have lower error than both Pixel CNN++ and LAGAN with most of the
errors are concentrated in the center of the image.

the output θi depends only on x0, . . . , xi−1. Finally, we sample the pixel xi conditioned on θi

and repeat this process until every pixel is generated.

B.3 Further Analysis of the Jet Structure Study

Figure B.2 shows the subtraction between the pixel-wise average of the images from each

generative model and the pixel-wise average from Pythia. Notice the differences are concen-

trated in the middle of the images where there are higher value pixels. The images generated

by both SARM models have small differences compared to the ones generated by LAGAN

for both signal and background and by Pixel CNN++ for background. Also, Pixel CNN++

has higher errors in background images compared to signal images.

Figure B.3 shows the distribution of pixel values across all the generated images. For the

signal images, all the models match the Pythia distribution for pixel values below 200 but

the models have difficulties at higher values. SARM-2 (D+D) and LAGAN have the closest

match at high pixel values while SARM-2 (D+C) and Pixel CNN++ overestimate them. For

108

0 50 100 150 200 250 300
Pixel Intensity

100

101

102

103

104

105

106

107

Nu
m

be
r o

f P
ix

el
s

Signal

Pythia
LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

0 50 100 150 200 250 300
Pixel Intensity

100

101

102

103

104

105

106

107

Nu
m

be
r o

f P
ix

el
s

Background

Pythia
LAGAN
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

Figure B.3: Distribution of aggregated pixel intensity in the generated images for jet sub-
structure study. Notice most of the differences happen at high pixel values where there are
fewer events. LAGAN also has a harder time replicating the distribution of background
images across all pixel values compared to the other models.

the background images, most of the models accurately predict low value pixels, but LAGAN

slightly overestimates pixels in the range 50 to 100 and underestimates them afterwards. For

high pixel values, Pixel CNN++ strongly over-estimates pixels in the range 250-300 while the

other models remain reasonably close to Pythia. In both cases the models have difficulties

learning the high value pixels, which is expected since there are very few pixels in this range

in the Pythia distribution.

B.4 Further Analysis of the Muon Isolation Study

B.4.1 LAGAN

Despite our best efforts, the LAGAN model performed poorly every time it was trained on

the muon isolation dataset. As seen in Figures B.4 and B.5 the pixel-wise average image

doesn’t capture the radial structure present in the dataset and some of the pixels with high

values seem to be present in many of the images. This seems to be due to a low amount of

variability in the generated images, typical of mode collapse in GANs. This performance is

109

0 10 20 30

0

5

10

15

20

25

30

Signal

0 10 20 30

0

5

10

15

20

25

30

Background

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Pi
xe

l E
T (

Ge
V)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Pi
xe

l E
T (

Ge
V)

Figure B.4: Typical muon images generated using LAGAN. The figures are plotted in log
scale, where the white space represents pixels with value zero.

0 10 20 30

0

5

10

15

20

25

30

Signal

0 10 20 30

0

5

10

15

20

25

30

Background

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Pi
xe

l E
T (

Ge
V)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Pi
xe

l E
T (

Ge
V)

Figure B.5: Pixel-wise average of muon images from LAGAN for signal and background. The
average images generated by LAGAN fail to reproduce the radial structure present in the
average Monte Carlo images (figure 3.11).

also reflected in the distributions of PT and mass (figure B.6) and the respective Wasserstein

distances which are one order of magnitude worse than the values for the other models (table

B.1).

SARM vs Pixel CNN++

Figure B.7 shows the subtraction between the pixel-wise average of the images from each

generative model and the pixel-wise average from Pythia in the muon isolation dataset. For

the signal data, all models show very small differences, evenly distributed across the radial

structure of the images. In particular, Pixel CNN++ is over-representing most of the pixels

110

0 5 10 15 20
Mass [GeV/c2]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Signal
Monte Carlo
SARM-2 (D+D)
LAGAN

0 5 10 15 20
Mass [GeV/c2]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a

Background
Monte Carlo
SARM-2 (D+D)
LAGAN

0 20 40 60 80 100
PT [GeV/c]

0.00

0.01

0.02

0.03

0.04

0.05

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Monte Carlo

SARM-2 (D+D)
LAGAN

0 20 40 60 80 100
PT [GeV/c]

0.00

0.02

0.04

0.06

0.08

0.10

Un
its

 n
or

m
al

ize
d

to
 u

ni
t a

re
a Monte Carlo

SARM-2 (D+D)
LAGAN

Figure B.6: Comparison of the mass and PT distributions of the images generated by LAGAN,
SARM-2 (D+D), and the Monte Carlo simulations for both signal and background muons.

in the artificial checkerboard pattern noted before. For the background data the errors are

slightly higher for all models. The SARM models have more difficulties with the pixels in the

center and tend to over-represent them while Pixel CNN++ under-represents the center and

over-represents the periphery.

Figure B.8 shows the distribution of pixel values across all the generated images. For

both signal and background the Pixel CNN++ model is under-representing pixels with

high intensity, while the SARM models match the distribution quite well. Like in the jet

substructure study, most of the errors correspond to pixels with high intensity values, which

is expected since these values are rare in the training data, making it difficult to correctly

learn their distribution.

111

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
Si

gn
al

SARM-2 (D+C)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

SARM-2 (D+D)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Pixel CNN++

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Ba
ck

gr
ou

nd

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Figure B.7: Subtraction between the pixel-wise average of generated images vs Monte Carlo
images. The errors are evenly distributed in the signal images, while they are concentrated in
the center for the background images. In the center there is larger number of high intensity
pixels.

0 20 40 60 80
Pixel Intensity

101

103

105

107

Nu
m

be
r o

f P
ix

el
s

Signal
Monte Carlo
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

0 20 40 60 80 100
Pixel Intensity

101

103

105

107

Nu
m

be
r o

f P
ix

el
s

Background
Monte Carlo
Pixel CNN++
SARM-2 (D+C)
SARM-2 (D+D)

Figure B.8: Distribution of pixel intensity for muon isolation study. Pixel CNN++ under-
represents the distribution while the SARM models miss the high pixel values where there
are fewer events.

112

Table B.1: Wasserstein distance of the physical constituents jet PT and mass distributions
between the original muon images from the Monte Carlo generator and the images created
by the generative models. A small distance signifies a good agreement. SARM-2 (D+D) is
the two-stage SARM model with a discrete mixture.

PT Mass
Signal Background Signal Background

LAGAN 4.81 10.88 1.81 2.17
SARM-2 (D+D) 0.56 0.93 0.17 0.31

B.5 Architecture and Hyperparameter Optimization

We performed a search over the architectures of the SARMs including the number of hidden

layers structure, the size of the central area for the two-stage approach and the size of

the intermediate upsampling layer using SHERPA [59]. We also conducted search of the

transformation parameter p with values [1, 1.1, 1.2, 1.3, 1.5, 2] for the D+D models. All models

were implemented in Pytorch [101], and were trained for 300 epochs with outward spiral

(CCW) order using the Adam optimizer [70] with learning rate 3e-4, decreased by half every

100 epochs and mini-batch size 128.

For the jet substructure study, the best SARM-2 configuration had a center area of side length

3. For the D+D models, we used 5 hidden layers with an upsampling layer of size 10 and

found that a power transformation with p = 1.0 yields slightly better results. For the D+C

models, we found that the model with 3 hidden layers and a mixture of 5 truncated logistic for

the C component works well for both signal and background images. In the generation order

experiments, similarly we used SARM-1 (D+D) models with 5 hidden layers, an upsampling

layer of size 10 and a power transformation with p = 1.0, effectively no transformation. And

all models are trained with identical settings: learning rate of 3e-4, decreased by half every

100 epochs and mini-batch size 128. For the LAGAN model we used the publicly available

version of LAGAN optimized by the original authors.

113

For the muon isolation study, the best model we found had 5 hidden layers, and a center

area of side length 7 for both D+D and D+C models. For the SARM-2 (D+D), we used an

upsampling layer of size 10 and found that a power transformation with p = 1.2 for signal

and p = 1.3 for background provided the best results. And for the D+C models, we found

again that a mixture of 5 truncated logistic for the C component works well for both signal

and background images.

For the classification tasks, we trained five convolutional neural networks with the same

structure on each of the datasets. We randomly split the data into a 90% subset for training

and a 10% subset for validation. The validation set is used for early-stopping during training

to avoid over-fitting. The convolutional neural network model has 2 convolutional blocks,

2 fully connected layers with 100 rectified linear units, and a sigmoid unit at the end to

predict the probability of the image being signal. Each convolutional block contains two

convolutional layers with 3x3 kernels and 30 filters with rectified linear units followed by

a maxpooling layer with 2x2 kernel. All models were trained in PyTorch using the Adam

optimizer, with a learning rate of 0.001 and a batch size of 128.

B.6 Complexity Analysis

Next we compare the number of parameters for the different models in table B.2. Note that

the original Pixel CNN++ model [116] uses 160 convolutional filters. With all these filters,

each forward pass takes more than 1 second on 4 NVIDIA TITANX GPU cards, resulting in

a generation speed that is one order of magnitude slower than the traditional Monte Carlo

methods, thus defeating the original purpose. Therefore, in our implementation of the Pixel

CNN++ model, we limit the number of its filters to 20 to speed up the generation process

and reduce the memory requirements.

114

0 5 10 15 20

0

5

10

15

20

Si
gn

al

Pythia

0 5 10 15 20

0

5

10

15

20

SARM-2 (D+C)

0 5 10 15 20

0

5

10

15

20

SARM-2 (D+D)

0 5 10 15 20

0

5

10

15

20

Pixel CNN++

0 5 10 15 20

0

5

10

15

20

LAGAN

0 5 10 15 20

0

5

10

15

20

Si
gn

al

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

Si
gn

al

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20Ba
ck

gr
ou

nd

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20Ba
ck

gr
ou

nd

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20Ba
ck

gr
ou

nd

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)

10 6

10 4

10 2

100

102

Pi
xe

l p
T (

Ge
V/

c)
Figure B.9: Additional typical images from the jet substructure study

B.7 Sample Images

In this section, we show more generated images from both the jet substructure study and the

muon isolation study in figure B.9 and figure B.10.

115

Table B.2: Model complexity comparison in terms of the number of parameters.

Model Num. of Parameters
Pythia [39] -
Pixel CNN++ 0.7M
SARM-2 (D+D) 21M
SARM-2 (D+C) 7M
LAGAN 5M

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Si
gn

al

Monte Carlo

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SARM-2 (D+C)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

SARM-2 (D+D)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Pixel CNN++

0 5 10 15 20 25 30

0

5

10

15

20

25

30

LAGAN

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Si
gn

al

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Si
gn

al

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ba
ck

gr
ou

nd

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ba
ck

gr
ou

nd

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Ba
ck

gr
ou

nd

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

10 6

10 4

10 2

100

102

Pi
xe

l E
T (

Ge
V)

Figure B.10: Additional typical images from the muon isolation study

116

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Outline and Contributions
	Variational Sparse Learning via Non-local Priors
	Sparse Autoregressive Models for Scalable Generation of Sparse Images in Particle Physics
	Detecting JAVA Runtime Exceptions using Sparse Location Information.

	Variational Sparse Learning via Non-local Priors
	Background
	Non-local Priors for variable selection
	Variational Inference for Non-local Prior selection
	Learned Hard Concrete Relaxation
	A Factorizable Normalizing Flow as Flexible Variational Distribution
	Derivation and Optimization of ELBO
	Convergence Analysis

	Related Work
	Experiments
	High Dimensional Linear Regression
	Identifying informative neurons and electrodes in rodent odor recognition

	Discussion

	SARM: Sparse Autoregressive Models for Scalable Generation of Sparse Images in Particle Physics
	Background
	Datasets
	Jet Substructure Study
	Muon Isolation Study

	Autoregressive Models (ARMs)
	Sparse Autoregressive Models (SARMs)
	Sparse Images Likelihood Models
	Multi-Stage Generation for Heterogeneous Areas

	Evaluation Methods
	Results
	Jet Substructure Study
	Muon Isolation Study

	Discussion

	Detection of JAVA Runtime Exceptions with Sparse Location Information
	Background
	Motivation and Goal
	Dataset
	Proposed Approach
	Action-Context Token Sequence
	LA-BERT Model

	Evaluation
	Exception Type Prediction
	Exception Prone Tokens Prediction

	Related Work
	Discussion

	Conclusion and Future Work
	Bibliography
	Appendix Supplementary Material for Chapter 2
	Derivation of the Evidence Lower Bound for non-local priors
	Proof of Theorem 1

	Appendix Supplementary Material for Chapter 3
	2D Toy Example
	MADE Structure
	Further Analysis of the Jet Structure Study
	Further Analysis of the Muon Isolation Study
	LAGAN

	Architecture and Hyperparameter Optimization
	Complexity Analysis
	Sample Images

