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Abstract of the Dissertation

Computer Aided Segmentation and Early

Therapeutic Response Classification (CADrx)

for Glioblastoma Multiforme (GBM) Brain

Tumors with Magnetic Resonance Imaging

by

Jing Huo

Doctor of Philosophy in Biomedical Physics

University of California, Los Angeles, 2012

Professor Matthew S. Brown, Chair

Glioblastoma multiforme (GBM) is the most common and aggressive type of pri-

mary brain tumor. Magnetic resonance (MR) imaging plays an important role

in the detection of brain tumors and treatment response assessment of drugs in

clinical trials. Diffusion weighted magnetic resonance imaging (DW-MRI) has the

potential to work as surrogate biomarker to reveal early changes in the tumor

microenvironment that precede morphologic tumor changes.

In this dissertation, we developed a computer-aided therapeutic response sys-

tem (CADrx) for GBM brain tumors using T1w post-contrast MR and diffusion-

weighted (DW) MR images in clinical trials. There are two components: 1) semi-

automated segmentation of GBM brain tumors on T1w post-contrast MR images;

2) prediction of volumetric treatment response using early ADC values derived

from the DW-MRI. The first component is the main focus of the dissertation.

The overall goal is to first facilitate radiologists in the time-consuming task

of tumor contouring and generate as reproducible segmentation as possible, and

then collect potential features automatically and use machine learning techniques
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to explore patterns in the large-scale dataset. By doing this, we aim to provide

radiologists a second opinion in tumor contouring and therapy response classifi-

cation.
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CHAPTER 1

Introduction

1.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI), or nuclear magnetic resonance imaging (NMRI),

is primarily a noninvasive medical imaging technique used to visualize detailed hu-

man anatomy. MRI provides much greater contrast between the different soft tis-

sues of the body than computed tomography (CT) does, making it especially useful

in neurological (brain), musculoskeletal, cardiovascular, and oncological(cancer)

imaging. The very first MR image was produced in 1973 by Nobel Prize winner

Paul Lauterbur [Lau89].

MRI uses no ionizing radiation. Rather, it uses a powerful magnetic field to

align the nuclear magnetization of (usually) hydrogen atoms in water in the body.

Radio frequency (RF) fields are used to systematically alter the alignment of this

magnetization. This causes the hydrogen nuclei to produce a rotating magnetic

field detectable by the scanner. This signal can be manipulated by additional

magnetic fields to obtain different responses from different tissues and construct

an image of the body [WKM06].

1.1.1 Basic Principles of MRI

Generally speaking, MR images water molecules contained in the body. Each

water molecule has two hydrogen nuclei or protons. Within an external magnetic

field B0, the magnetic moments of some of these protons change, and align with

1



the direction of the field. The majority of the protons will align parallel to the field,

while the minority of the protons will align anti-parallel to the field. Therefore,

there will be a net effect. If we define the direction of the external B0 as z-axis, the

net magnetization vector is along z-direction. This is the signal to be manipulated

and measured.

A RF wave at a certain frequency is applied to flip the net vector from z-

axis to xy-plane in order to measure the signal. The “resonance” frequency is

a characteristic frequency called Larmor frequency: f = γ ∗ B0, with γ as the

gyromagnetic ratio. As the intensity and duration of the RF pulse increases,

more aligned spins are affected. After the RF pulse is turned off, the protons

precess and return to their equilibrium state. The vector can be decomposed into

two compartments. The vector in z-axis will build up from zero to full recovery,

which is called T1 relaxation, or spin-lattice relaxation. The definition of T1 is

the time that it takes for the longitudinal magnetization to reach 63% of its final

value, assuming a 90◦ RF pulse. The vector in xy-plane will decay to zero, which is

called T2-decay, T2-relaxation, or spin-spin relaxation. The definition of T2 is the

time that it takes for the transverse magnetization to decay to 37% of its original

value. The T2-decay in the xy-plane is the signal detected by MR scanners.

A magnetic gradient field applied in three directions is used to enable spatial

encoding to localize each voxel in the tomographic imaging. First, a gradient field

is applied in z-axis. The Larmor frequencies at different locations are different

due to different magnetic field strength. Then, phase-encoding and frequency-

encoding are applied by gradient magnetic field in xy-plane. The signal will be

recorded to fill in the k-space, and the inverse Fourier transform is applied to

reconstruct the spatial images. Richard R. Ernst was the first to apply Fourier

Transform to MR and was awarded the Nobel Prize for his contributions [EA66].
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1.1.2 T1-weighted Post-contrast Volumetric MRI

Structural brain anatomy with brain tumors enhanced can be imaged by T1-

weighted volumetric scans. T1 weighted image means that most of the image

contrast between tissues is due to differences in the T1 value.

In order to generate MR scans, pulse sequences are programmed to obtain

images with a certain weighting scheme. In a spin echo pulse sequence design,

first a 90◦ RF pulse is applied to flip the magnetic vector into the transverse plane,

and then a 180◦ RF pulse is applied to generate an echo signal for detection. The

time between the peak of the 90◦ RF pulse and the peak of the echo is called

the time to echo or echo time (TE), and the repetition time (TR) is defined

as the time it takes to go through the pulse sequence once. In order to obtain

image contrast weighted on T1 values, short TE and short TR are required. T1

weighted images can be acquired using either spin-echo or gradient-echo sequences.

Gradient-echo based T1-weighted sequences can be acquired very rapidly because

of their ability to use short inter-pulse TR. T1-weighted contrast can be increased

with the application of an inversion recovery RF pulse.

T1 weighted MR is one of the basic types of MR contrast commonly used in

clinical practice and tumor contrast is enhanced on the images. The blood-brain

barrier (BBB) consists of a complex of capillary endothelial cells and serves as an

effective physical barrier to the entry of toxic substances into the brain. Thus, in

the normal brain tissues, contrast agent is blocked from entering the brain region.

On the other hand, in highly vascularized malignant brain tumors, the BBB is

disturbed and the tumor capillaries leak contrast agent into the surrounding brain

tissue. The contrast agents alters the relaxation times of hydrogen protons. Con-

trast agents may be injected intravenously to enhance the appearance of blood

vessels and tumors. The most commonly used intravenous contrast agents are

based on chelates of gadolinium.
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1.1.3 Diffusion Weighted MRI

Diffusion MRI is a method that produces in vivo images of biological tissues

weighted with the local microstructural characteristics of water diffusion. The field

of diffusion MRI can be understood in terms of two distinct classes of application:

diffusion weighted MRI and diffusion tensor MRI.

In diffusion weighted imaging (DWI), the signal depends on the microscopic

mobility of water. This mobility, classically called Brownian motion, is due to

thermal agitation and is highly influenced by the cellular environment of water.

Because water diffusion is strongly affected by molecular viscosity and membrane

permeability between intra- and extracellular compartments, DW-MRI can be

used to characterize highly cellular regions of tumors versus acellular regions.

Treatment response detection can be manifested as a change in tumor cellularity,

which may precede tumor size changes. Thus, findings on DW-MRI could be

an early indicator of biologic changes. DWI is most applicable when the tissue of

interest is dominated by isotropic water movement e.g. grey matter in the cerebral

cortex and major brain nuclei, where the diffusion rate appears to be the same

when measured along any axis.

Diffusion tensor imaging (DTI) is important when a tissue, such as the neural

axons of white matter in the brain, has an internal fibrous structure leading to the

anisotropy of water diffusion. Water will then diffuse more rapidly in the direction

aligned with the internal structure, and more slowly as it moves perpendicular

to the preferred direction. This also means that the measured rate of diffusion

will differ depending on the direction of the observation. In DTI, each voxel

therefore has one or more pairs of parameters: a rate of diffusion and a preferred

direction of diffusion. The properties of each voxel of a single DTI image is usually

represented by tensor, which is calculated from six or more different diffusion

weighted acquisitions and each acquisition is obtained with a different orientation
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of the diffusion sensitizing gradients. In some methods, hundreds of measurements

are made to construct a single image data set. The high information content of

a DTI voxel makes it extremely sensitive to subtle pathology in the brain. In

addition, the directional information can be exploited at a higher level of structure

to select and follow neural tracts through the brain, a process called tractography.

The apparent diffusion coefficient (ADC) map, derived from diffusion weighted

MR images, is the physical measurement of the water molecule movement using

the following equation: ADC = −ln[S(b) − S(0)]/b, with b being the diffusion

sensitivity factor ranging between 700 and 1000 s/mm2, S(0) and S(b) being the

image intensity when b = 0 and b = 700 − 1000 s/mm2. For DWI images, three

gradient-directions are applied, sufficient to estimate the trace of the diffusion ten-

sor or “average diffusivity”. For DTI, six or more gradient-directions are applied,

and an tensor matrix is estimated for each voxel in the image. Based on the tensor

matrix, mean diffusivity could be calculated, as well as other measurements like

fractional anisotropy. Moreover, the principal direction of the diffusion tensor can

be used to infer the white-matter connectivity of the brain (i.e. tractography).

1.2 Response Assessment Criteria for High-grade Gliomas

1.2.1 Glioblastoma Multiforme (GBM)

GBM is the most common and most aggressive type of the primary brain tumor.

The current World Health Organization (WHO) classification of primary brain

tumors lists GBM as a grade IV infiltrative glioma. GBMs are the most common

primary brain tumors in adults, accounting for 12-15% of intracranial tumors and

50-60% of primary brain tumors [LHK03]. GBMs are highly malignant, infiltrate

the brain extensively, and at times may become very large before turning symp-

tomatic. The median survival time from the time of diagnosis without any treat-

ment is 3 months, but with treatment survival of 1-2 years is common [VHN10].
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Although the prognosis of GBM is uniformly poor, treating patients in an attempt

to improve the quality of life is worthwhile.

GBM treatment consists of a combination of surgical resection, radiation ther-

apy, and chemotherapy. Long-term disease-free environment is possible, but the

tumor usually reappears, often within 3cm of the original site, and 10-20% may

develop new lesions at distant sites. More extensive surgery and intense local

treatment after recurrence has been associated with improvement.

Bevacizumab (Avastin) recently received FDA approval as a single agent for

the treatment of patients with recurrent GBM following prior upfront, temo-

zolomide (TMZ) - based chemoradiotherapy [Cha11]. GBM are highly vascular-

ized cancers with elevated expression levels of vascular endothelial growth factor

(VEGF), the dominant mediator of angiogenesis. Bevacizumab is a humanized

monoclonal antibody that targets VEGF, and has been shown to improve patient

outcomes in combination with chemotherapy (most commonly irinotecan) in re-

current GBM based on the positive results in two prospective phase II studies

[Cha11].

1.2.2 Macdonald Criteria

In the past three decades, great effort has been invested in clinical trials for

malignant gliomas and brain metastases. Phase I and phase III studies, with

their respective goals of defining maximal tolerated dose and overall survival, do

not rely on neuroimaging as a primary end point. Imaging is crucial in phase II

studies, because radiographic response, in combination with clinical status, is used

to assess therapeutic effect. Phase II studies are usually conducted in patients with

progressive tumors, and serial imaging examinations are performed after initiation

of treatment and compared with a baseline pretreatment study. Radiographic

response for each patient is then determined according to pre-determined criteria
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[MCS90].

Radiographic response is often used as an end point in the phase II setting with

the assumption that it is a valid surrogate measure for improved overall survival.

After treatment, the response is described using four terms: complete response

(CR), partial response (PR), stable disease (SD), and progressive disease (PD).

Most trials for patients with malignant gliomas use the Macdonald criteria, as

shown in Figure 1.1. The table compares 1D RECIST criteria and 2D Macdonald

criteria.

The measures of response include best response (BR), time to progression

(TTP), and progression free survival (PFS). BR is the largest reduction in tumor

measurement during the study (compared with the initial measurements). TTP

is the interval between the treatment start date and a subsequent imaging study

that shows PD. PFS is the percentage of patients who have not experienced PD

at a specified time point after beginning treatment (eg, 2-month PFS or 6-month

PFS). A common end point for phase II clinical trials is 6-month PFS. Phase II

studies compare the percentage of patients with PFS to that of a historical control

group.

The definition of a measurable lesion is most important in the clinical trials

that have an imaging end point. Contrast enhancement provides the best cur-

rently available measure of tumor size. The cystic and necrotic portions of the

GBM tumor should be excluded, because they are unlikely to respond to inter-

ventions other than surgery. For multi-focal lesions, the approach is to measure

each separate enhancing lesion and the sum the measurements. 1D and 2D di-

ameter of the tumor are used for the evaluation of contrast-enhanced tumor size.

Computer-aided volumetric methods are also under consideration, which can be

more effective than diameters when the tumor contains a non-enhanced core or

irregular shape.
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Figure 1.1: Summary of Macdonald criteria - adapted from Macdonald et

al. [MCS90]

1.2.3 RANO Criteria

Recently, limitations of the Macdonald criteria have been reported and new RANO

criteria have been proposed [WMR10].

First of all, pseudoprogression could happen within three months due to radio-

therapy effects, which limits the validity of PFS as an endpoint. To address this

issue, the proposed new response criteria suggest that within the first 12 weeks of

completion of radiotherapy, when pseudoprogression is most prevalent, progres-

sion can only be determined if the majority of the new enhancement is outside of

the radiation field (for example, beyond the high-dose region or 80% isodose line)

or if there is pathologic confirmation of progressive disease.

Secondly, increased enhancement often develops in the wall of the surgical

cavity 48 to 72 hours after surgery, as a result of surgery and other therapies, not

tumor recurrence. The RANO criteria propose that a baseline MRI scan should

ideally be obtained within 24 to 48 hours after surgery and no later than 72
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Figure 1.2: Summary of RANO criteria - adapted from Wen et al. [WMR10]

hours after surgery. The inclusion of diffusion weighted imaging in the immediate

postoperative MRI scan can be helpful in determining whether new enhancement

developing in the subsequent weeks or months is caused by tumor recurrence.

Thirdly, pseudoresponse could happen with antiangiogenic agents, especially

those targeting VEGF. They can produce a marked decrease in contrast enhance-

ment, as early as 1 to 2 days after initiation of therapy, which is not always

necessarily indicative of a true antiglioma effect. As with the Macdonald criteria,

the RANO criteria suggest that radiologic responses should persist for at least 4

weeks before they are considered true responses.

Lastly, the Macdonald criteria fail to measure non-enhancing tumor. RANO

response assessment considers enlarging areas of nonenhancing tumor as evidence

of tumor progression.

The RANO criteria are summarized in Figure 1.2.

1.2.4 Bi-dimensional or Volumetric Measurement?

Bi-dimensional measurements are defined as the product of the longest diameter

and its longest perpendicular diameter, and is the methodology on which the

WHO response criteria are based. There are a few limitations with bi-dimensional

measurements.
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Bi-dimensional tumor measurements are adequate surrogates for tumor volume

only when tumors are spherical. However, such assumptions are often not true for

GBM tumors, which tend to have irregular shapes, with necrosis or surgical cavi-

ties at their core. Obviously, the bi-dimensional measurement techniques cannot

capture tumor changes along the z-axis, as the measurements are performed on a

transverse image plane according to the criteria [ZSS09].

Studies [PID09, VUB03] have shown that there is substantial inter-reader vari-

ability in bi-dimensional measurements for brain tumors. Radiologists must sub-

jectively select a single axial slice, which may differ from reader to reader. The

bi-dimensional measurement on a single-axial image also ignores the tendency of

malignant gliomas to be highly irregular in shape, to progress in a pattern of

eccentric nodular growth, and to have cystic and central necrotic areas that are

unlikely to be affected by non-surgical treatment [HUG08].

1.3 Survey of Automated Techniques in GBM Tumor Seg-

mentation

In clinical studies, manual contouring has been used to segment tumors on MR

images. For example, in a recent clinical study correlating Methylated-DNA-

protein-cysteine methyltransferase (MGMT) promoter methylation and imaging

features of GBM tumors, Drabycz et al. [DRR10] used manual contouring for

GBM brain tumor segmentation. An accurate and robust automated segmentation

system would facilitate quantitative analysis in clinical studies. In Figure 1.3, we

show a 2D slice of a T1 weighted post-contrast MR image presenting an enhancing

GBM brain tumor. On the right, we outline the active tumor region.

Automatic GBM brain tumor segmentation is a challenging task, since brain

tumors are heterogenous, and highly variable in size, location, shape and appear-

ance. They also often deform adjacent structures in the brain. Some artifacts of
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Figure 1.3: Example of the a GBM brain tumor on a T1w post contrast MR image

slice and the corresponding tumor contour

MR imaging also increase the difficulty of tumor segmentation. The imperfection

of the RF pulses and the location of RF coils may introduce non-uniformity in MR

images. Our research focuses on recurrent GBM brain tumors that develop after

surgery, many of which contain a cavity, and the enhancing portions can vary in

shape, for example, ring-shape, blob-like shape, or multiple pieces attached to the

cavity or dispersed into the brain tissues. Furthermore, when the patients were

scanned at multiple centers, with different scanners and contrast agent injection

protocols, the image intensity contrast can vary greatly among different scanners.

All these factors makes GBM brain tumor segmentations a very challenging prob-

lem in a clinical setting, and there is a lack of previous studies evaluating GBM

brain tumor segmentation methods in a large clinical dataset.

Computer-based brain tumor segmentation has remained largely experimen-

tal. Many efforts have exploited MRI’s multi-dimensional data capability through

multi-spectral analysis [PVP95, CHG98, HBG02, CSD08, DCY08, LUO05]. There

are generally several categories of techniques: knowledge-based, clustering, voxel-

based classification, level set methods, and graph-based techniques.

The knowledge-based segmentation systems typically use a brain atlas to pro-
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vide prior information. Fletcher-Heath et al. [FHG01] applied a knowledge-based

system to segment non-enhancing tumor. Prastawa [PBH04] applied outlier de-

tection to find abnormal regions, k-means clustering (k=2) to separate tumor and

edema, and then a region competition method, using level-sets to add smooth-

ness constraints. The limitation is that they use T1-weighted pre-contrast and

T2-weighted images, without contrast injection. But in clinical trials, tumor def-

inition is based on T1-weighted post contrast images. They reported that the

intra-reader consistency could be as low as 59.4% (overlap ratio between two sets

of manual segmentations).

Among the clustering techniques, fuzzy clustering methods are the approach

most widely employed across all tumor types. Fuzzy C-means (FCM) clustering

is used frequently, since it does not require training data. Phillip [PVP95] was

the first to apply the FCM clustering to GBM brain tumor segmentation, and

correlated the segmentation with tumor histology. The limitation is that he did

not give a quantitative validation of the method. Beevi et al. [BS10] applied ef-

ficient denoising algorithm before FCM and incorporated spatial probability to

deal with the sensitivity to the noise. The limitation is that the method was

validated on one clinical brain MR scan with unknown tumor type. Khotanlou

et al. [KCA09] performed symmetry analysis and fuzzy clustering as an initial-

ization segmentation, and combined deformable model and spatial relations to

refine it. It is not clear whether the method was evaluated on GBM tumors,

and it would be interesting to evaluate the method on images from GBM clini-

cal trials. Aside from FCM, Ahmed et al. [AM08] performed K-means clustering

combined with anisotropic diffusion denoising. The method was evaluated on

only one MR scan, and further validation on more GBM tumors is needed. Liu et

al. [LUO05] developed a semi-automated system using fuzzy-connectedness and

evaluated the overall volume accuracies for 20 patients. The weakness is that

additional efforts are need to remove attached brain structures. Clark [CHG98]
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developed a knowledge-based system including five stages, and knowledge is pri-

marily T1-weighted, T2-weighted and PD-weighted image intensities. Each stage

applies heuristic segmentation parameters. The reported performance has corre-

spondence ratio ranging from 0.43-0.85 in 16 scans with 7 patients. They use 17

slices from 3 patients to set up the heuristic parameters. It is not clear whether it

is possible to set universal parameter values in the setting of a large clinical trial,

considering the variability of GBM tumors.

Voxel-based supervised classification methods have been investigated by a

number of researchers [BHC93]. Vinitski et al. [VGK99] developed a system using

a k-nearest neighbor classifier (kNN) to segment multiple sclerosis (MS) lesions

and brain tumors from a limited number of patients. Validation with more tumor

cases is needed to apply the method in clinical trials. Jolesz et al. [WKJ98] de-

veloped an adaptive template-moderated (ATM) classification algorithm (ATS)

which incorporated a brain atlas to include spatial anatomical information into

the kNN classification system and segment the MR image into five different tissue

classes: background, skin, brain, ventricles, and tumor. Kaus et al. [KWN01] ap-

plied the algorithm to low-grade glioma and meningioma, however, it is not clear

how the ATM algorithm will perform for GBM tumors. Prastawa et al. [PBM03]

applied a system derived by Van Leemput et al. [VMV99] to GBM tumor seg-

mentation. The system used the difference between T1w pre- and post-contrast

to develop a tumor prior and an edema prior, and then form Gaussian Mixture

Model framework solved by Expectation-Maximization (EM) technique, with an

atlas prior as initialization to the EM. The performance is reported with an over-

lap ratio of 0.49-0.92 from 5 patients. The system was extended for GBM tumor

segmentation by adding the tumor and edema classes [MBV02]. One limitation

is that they did not provide a prior in the model for necrosis, cysts, or cavities.

Another limitation is that the simplified geometric model for tumor shape can-

not cope with tumors that have complex appearance and ambiguous boundaries.
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Zhang [ZME04] used a baseline scan as training and follow-up scan as testing im-

ages. The method was tested on five scans from one tumor case. The application

is limited since the GBM tumor on the baseline scan still needs to be manually

contoured. Schmidt [SLG05] developed alignment based features: spatial prior,

symmetry, intensity, multi-scale textural feature. The dataset has 10 patients

with one cavitated tumor from two sites. They reported an average overlap ra-

tio of 0.732. However, performance evaluation for active tumor volume is not

clear. Lee [LSM05] applied a Discriminative Random Fields (MRFs) model with

support vector machines (SVM) to 7 patients and reported performance of 0.53-

0.89 overlap ratio for 12 scans from 7 patients. The weakness is that they used

patient-specific training, which means training and testing voxels are from the

same patient. This is not feasible in clinical practice since the manual contouring

is still needed for each patient. Ayachi [AA09] applied support vector machine

(SVM), using 9 slices from each tumor as training, and the rest of the slices on

the same patient as testing, and reported 0.82 true positive rate for 4 cases. How-

ever, with patient-specific training, manual contouring is still needed. Zhang et

al. [ZRL09] applied multi-kernel SVM, and again the limitation is patient-specific

training.

Level set and graph-based methods were also explored for the brain tumor

segmentation. Ho [HBG02] ran a level set on probabilities derived from T1w pre-

and post-contrast difference. They reported 80-90% overlap ratio on 3 cases of

blob-like shape. However, it is not clear how the method performs for irregular

tumor shapes. Popuri et al. [PCJ09] extracted a clustered feature set, integrated

them into a level set framework and used a Dirichlet prior to exclude the sur-

rounding tissues. They showed success differentiating tumor from normal tissue

by incorporating shape information, however, it is not clear how it performs for

GBM tumors with irregular shapes. Taheri et al. [TOC10] used a threshold-based

speed function for level-set function evolution. Corso et al. [CSD08] developed
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a segmentation by weighted aggregation (SWA) approach based on graph shift

algorithm for GBM brain tumor segmentation. Dube et al. [DCY08] incorporated

texture features into the SWA framework and applied it to GBM brain tumor

segmentation on one-channel T1-weight post contrast MRI. The study achieved

70% accuracy for the majority of the cases, however, the failure cases need to

be addressed before it is ready for the clinic. Recently, other features besides

the intensity were studied, including grayscale concurrence matrix (GLCM) fea-

tures [CBS09], discrete cosine transform (DCT) features [AMN10], and Gabor

wavelets filter [Las10].

In summary, most of the literature uses multi-channel MR to segment GBM

tumors, while segmentation on a single-channel MR has only been reported infre-

quently [DCY08]. Although multi-channel MR series are useful in differentiating

brain tissues and disease, they are usually acquired at low resolutions, with slice

gaps, and images from different sequences are often not aligned. Images can be

realigned to a reference series but the re-sliced image series can suffer from lower

resolutions along the slice axis as well as slice gaps. Segmentation on a single

channel T1 post contrast isotropic data is potentially important in determining

tumor volume for therapeutic response assessment in clinical trials.

Also, most of the above literatures used small datasets of less than 10 cases to

evaluate their methods in segmenting GBM tumors. It is not clear whether they

could handle the more difficult and irregular cases inevitably arising in larger data-

sets. There is a lack of previous studies evaluating GBM brain tumor segmentation

methods in a large-scale clinical dataset.

Tumor recurrence could happen around a surgical cavity or at a distant site,

and show diffuse-pattern with anti-VEGF drugs. These factors increase the diffi-

culty of recurrent GBM tumor segmentation compared to newly-diagnosed GBM

tumors.

Given that the accuracy of fully-automated method for GBM segmentation
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is currently not satisfactory, and the challenges of segmenting GBM tumors on

a single-channel MR images, a meaningful contribution in clinical practice would

be to develop a semi-automated system with minimal user interaction and high

reproducibility. Our contribution is to build an interactive 3D segmentation tool,

incorporating machine learned results to reduce the user interaction and improve

reproducibility. To our knowledge, we were the first to improve semi-automated

segmentation using machine learning with inter-patient training for GBM tumors.

Our proposed framework has the potential to be generalized to other applications

with appropriate training data. In this study, we applied the framework to a

dataset of recurrent GBM tumors from a phase II trial, including 46 cases with

heterogeneous tumor appearance. Both recurrent and non-recurrent tumors con-

tain active tumor, necrosis and have irregular shapes, and thus the proposed

framework can be applied to both tumor types.

1.4 Overview of Malignant Gliomas Characterization Us-

ing Imaging Features

In clinical trials, tumor size change is defined based on contrast enhancement

on serial images. The limitations of the Macdonald Criteria become significant

with the use of novel treatments. Both pseudoprogression, an increase in the

nontumoral enhancing area, and pseudoresponse, a decrease in the enhancing

area, show that enhancement by itself is not a measure of tumor activity but rather

reflects a disturbed BBB [CRD11]. The most recent RANO criteria, therefore,

suggest that the nonenhancing component of the tumor also be taken into account

when making assessments of progression or response [WMR10].

Although the Macdonald Criteria have been widely used, false interpretations

of tumor size increases on post-gadolinium-enhanced T1-weighted imaging may

occur. New MR imaging and/or PET tools are needed to characterize tumors
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before initiation of therapy, depict the changes that result from treatment, and be

validated as biomarkers of treatment effectiveness [CRD11]. The three available

types of physiology-based MR imaging methods are: DWI, MR spectroscopy,

and perfusion-weighted imaging. They were applied to either predict treatment

response or accurately measure response of both enhancing and nonenhancing

tumor shortly after treatment initiation. This could allow for earlier treatment

decisions, saving patients from the adverse effects of ineffective therapies while

allowing them to try alternative therapies sooner [Cha06].

To date, no single imaging technique has been validated to recognize and ad-

equately establish a diagnosis. In spite of ongoing active research, the clinical

utility of these physiologic imaging techniques remains unproven and the meth-

ods unstandardized. Much work lies ahead to validate and prove efficacy of these

methods in improving diagnostic accuracy, affecting patient care, monitoring dy-

namic changes within brain tumor and normal brain during therapy [PYE11].

This section does not offer an exhaustive literature review, instead, a sam-

ple of the main imaging features that have been studied in the field of tumor

characterization to monitor treatment response in the past few decades.

1.4.1 Anatomy-based Imaging Features

The characterization of brain tumors on anatomical images has been an ac-

tive research area mainly in prognosis, tumor grading and disease detection.

Morphological features such as the degree of necrosis and edema, the inten-

sity of enhancement of the tumor, and the presence of large tumor cysts, were

mostly studied as potentially significant prognostic imaging variables for ma-

lignant gliomas [HSS96, MSL04, PSP05]. Texture features enables quantifica-

tion of gray-level patterns, pixel interrelationships, and spectral properties of im-

ages [KT10]. Researchers have mainly applied texture features for differentiation
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of disease and normal tissue, and for the classification of brain tumor type and

grade.

However, for monitoring treatment response, few publications were found in

the literature. It will be very interesting to investigate the significance of these

features in treatment response assessment in the future.

1.4.2 Physiology-based Imaging Features

Physiology-based MR imaging methods have played a pivotal role in the transition

of clinical MR imaging from a purely morphology-based discipline to one that com-

bines structure with function. This section will overview the imaging markers that

have been under investigation using four physiology-based MR modalities [Wal10].

1.4.2.1 MR Spectroscopy

Magnetic resonance spectroscopy (MRS) allows major metabolites to be measured

in defined regions of tumors and the surrounding brain, notably choline-containing

compounds (Cho, reflecting products of cell membrane turnover), N-acetyl aspar-

tate (NAA, found in healthy neurons and axons), lactate (a product of anaerobic

metabolism), myo-inositol (an astrocytic marker), and mobile lipid moieties (as-

sociated with necrosis).

Serial MRS has shown reduced choline levels in response to brachytherapy

and gamma-knife radiotherapy and subsequent increases in Cho that can precede

other markers of relapse [Wal10].

1.4.2.2 Perfusion Weighted MR

The use of perfusion imaging as a biomarker for response to antiangiogenic drugs

has generated significant interest. There are no validated biomarkers for antian-

giogenesis that are currently available for clinical use.
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Perfusion weighted (PW) MR imaging techniques measure the degree of tumor

angiogenesis and capillary permeability, both of which are important biological

markers of malignancy, grading, and prognosis. The strength of PW-MR is the

ability to depict changes in the internal architecture of the tumor in the setting

of no overall change in tumor size. There are two most widely used techniques

to quantify brain tumor vasculature - dynamic contrast ehanced (DCE) MR and

dynamic susceptibility-contrast (DSC) MR.

From DCE-MR imaging, there are 2 primary end points according to a con-

sensus recommendations and guidelines by a multi-disciplinary team [LBE10]:

the volume transfer constant Ktrans and the initial area under the gadolinium

concentration-time curve (IAUGC) which are obtained on a voxel-by-voxel basis

for assessment of antiangiogenic and antivascular therapeutics. From DSC-MR

imaging, relative cerebral blood flow (rCBV) is the most widely evaluated for the

assessment of therapeutic responses [PMB06].

Perfusion studies have shown longer survival in subjects with early decrease in

rCBV one week into radiotherapy, and several studies have documented short-term

increases and medium to long-term decreases in Ktrans in response to radiation

therapy in normal brain, gliomas, and meningiomas [Wal10].

As for Bevacizumab, Sawlani et al. [SRH10] found that percent change in

hyperperfusion volume (HPV) (the fraction of tumor with an rCBV above 1.00)

from baseline to first follow-up had a statistically significant hazard ratio of 1.07

when correlated with time to progression using 16 patients.

1.4.2.3 Diffusion Weighted MR

One of the most exciting potential applications of DW MR imaging has been in

measurement of the response of solid tumors to therapy prior to measurable size

change.
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Increased tumoral ADC on DWI, measured at the 3rd week from the start of

chemotherapy or radiotherapy, distinguished gliomas that subsequently showed

partial response from those with stable or progressive disease [Wal10]. One

group [MCM06a] developed a functional diffusion map (fDM) technique to take

advantage of the relationship between ADC and cell density by examining voxel-

wise changes in ADC measured in the same patient over time, and showed early

changes in tumor diffusion values were highly correlated with patient survival.

Ellingson et al. [EMR11] showed that Bevacizumab the rate of change of fDM-

classified hyper-cellular regions (low ADC) within T2w abnormality regions is an

early predictor of tumor progression, time to progression, and overall survival.

These studies reported significant findings using DW images, however, GBM tu-

mor biology after treatment is more complicated than being interpreted by only

one factor of cell density. Edema and necrosis are significant components of re-

current GBM tumors, and these two factors show opposite effects in changing the

tumor micro-environment. Thus, more sophisticated model is needed to represent

the different factors with competing effects.

Pope et al. [PKH09b] applied a two Gaussian mixture model for ADC his-

togram analysis, and found that pretreatment ADC histogram analysis can strat-

ify progression-free survival in Bevaizumab-treated patients with recurrent GBM.

In this dissertation, the same two-component model will be applied to assess the

therapeutic response.

1.4.2.4 Radiotracer

Radiotracers used in conjuction with positron emission tomography (PET) scans

can measure tissue metabolism, and provide a potential biomarker in assessing

gliomas. Chen et al. [CDS07] examined 19 patients treated with Bevacizumab

and irinotecan. Response was defined as reduction in 18F −FLT uptake by more

than 25% after six weeks. This was significant predictor of overall survival.
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1.5 Key Contributions and Outline

In this dissertation, we developed a computer-aided therapeutic response sys-

tem (CADrx) for GBM brain tumors using T1w post-contrast MR and diffusion-

weighted (DW) MR images in clinical trials. There are two main parts: 1) semi-

automated segmentation of GBM brain tumors on T1w post-contrast MR; 2)

early prediction of volumetric treatment response using ADC values derived from

DW-MRI. The first part is the main focus of the dissertation.

1.5.1 Semi-automated Segmentation of GBM Tumors

Chapter 2 describes a sampling-based ensemble method to improve the repro-

ducibility of a semi-automated method for GBM tumor segmentation. Lack of

reproducibility and consistency is usually associated with semi-automated seg-

mentation methods. In this study, we developed a new ensemble approach to

improve reproducibility and applied it to GBM brain tumor segmentation on T1-

weighted contrast enhanced MR volumes. The approach includes two novel steps:

1) Given a single user input, systematically generating a set of user input vari-

ations; 2) From all the user input variations, generating multiple segmentation

results and applying ensemble method to obtain a final segmentation result. The

reproducibility of the proposed framework was evaluated by a controlled experi-

ment on 16 tumor cases from a multi-center drug trial. The ensemble frame-

work exhibited significantly better reproducibility than the standard

semi-automated Otsu thresholding method.

Chapter 3 further studies the potential of the ensemble framework in improving

segmentation accuracy by aggregating different segmentation methods. There are

two contributions: 1) We compared three segmentation methods on a relatively

large dataset of GBM tumors (46 cases in our study vs 20 cases in the literature).

2) We showed that ensemble is not necessarily more accurate than individual
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methods. The final performance depends on the performance of the individual

methods. In order for ensemble framework to outperform, the individual methods

have to be complimentary to each other. Based on the study of Chapter 3, we

invented a novel system to ensemble semi-automated segmentation method and

fully-automated voxel classification using machine learning methods, as described

in Chapter 4. To our knowledge, we were the first to validate the methods

on a large clinical dataset. The heterogeneous nature of GBM tumors

suggests that an ensemble method may be appropriate.

In Chapter 4, we developed a novel system to to build an interactive 3D seg-

mentation tool, incorporating machine learned results to reduce user interaction

and improve the reproducibility. There are two contributions: 1) Incorporating

machine learning into the interactive segmentation framework. 2) The classifier is

trained with focused sampling strategy, instead of conventional random sampling.

Our proposed framework has the potential to be generalized to other applications.

To our knowledge, we are the first to improve semi-automated seg-

mentation using machine learning with inter-patient training for GBM

tumors.

1.5.2 Early Prediction of Treatment Response Using ADC Values

Chapter 5 develops a quantitative quality control (QC) method for

ADC values obtained from multiple centers. With our limited dataset, we

developed a tool to evaluate the variability of ADC measurement across different

sites and different scanners. The tool draws a fixed-size region of interest (ROI) on

the normal appearing brain white matter, and calculates the mean and standard

deviation (STD) of ADC values in the ROI. The tool provides quantitative qual-

ity control (QC). Future work is to validate the tool with phantom and healthy

volunteer data.
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Chapter 6 develops a computer-aided therapeutic response assessment (CADrx)

system for early prediction of drug treatment response for GBM brain tumors with

DW MR images. In conventional Macdonald assessment, tumor response is as-

sessed nine weeks or more post-treatment. This study used DWI at the 5th week

to predict the volumetric change at the 9th week. The contribution of this chapter

is to run multi-parametric analysis and apply machine learning methods to clas-

sify responders vs non-responders. The feature set includes descriptive statistical

features, Earth Mover’s Distance (EMD) to measure the difference between two

histograms, and two-modal Gaussian Mixture parameters. To our knowledge,

we were the first to publish the potential of multiple ADC parameters

using machine learning methods to classify response in GBM.
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CHAPTER 2

Sampling-based Ensemble Segmentation against

Inter-operator Variability

Abstract

Inconsistency and irreproducibility are commonly associated with semi-

automated segmentation methods. In this study, we developed an en-

semble framework to improve the reproducibility and applied to GBM

brain tumor segmentation on T1-weighted contrast enhanced MR volumes.

The proposed approach combines sampling-based simulations and ensem-

ble segmentation into a single framework; it generates a set of segmenta-

tions by perturbing user initialization and user-specified internal param-

eters, then integrates the set of segmentations into a single consensus re-

sult. Three combination algorithms are applied: majority voting, averaging

and expectation-maximization (EM). The reproducibility of the proposed

framework was evaluated by a controlled experiment on 16 tumor cases

from a multi-center drug trial. The ensemble framework had significantly

better reproducibility than the individual base Otsu thresholding method

(p < .001).

2.1 Introduction

In clinical practice, reproducible and repeatable segmentation is an important pre-

requisite for longitudinal study of medical images. Semi-automated segmentation

methods are often preferred in common radiographic protocols because it allows
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expert clinicians to control the segmentation quality which plays a critical role

in the final diagnostic decision. However, such semi-automated methods are also

inconsistent by design when administered by different readers and/or used with

different internal parameter values. This is a trade-off between usability and re-

peatability, posing a serious technical challenge. Our study focuses on segmenting

GBM brain tumors in T1-weigted contrast enhanced MR volumes by using the

Otsu thresholding method. GBM tumor segmentation offers an ideal test case for

our study because of the contrast-enhancing heterogeneity of the tumors makes

the current state-of-the-art methods highly irreproducible. Otsu method is used

in this study and has its advantage in efficiency, simplicity and usability, how-

ever, it also suffers from poor reproducibility due to its semi-automated design

and inhomogeneous tumor nature. Different user interaction will lead to different

thresholds and thus inconsistent segmentation results. The algorithm parameter

setup, here the number of thresholding levels, will also result inconsistent segmen-

tation results.

The main purpose of our study is to improve the reproducibility and stability

of the semi-automated Otsu thresholding segmentation applied to GBM brain

tumors. The final goal is to generate a robust and stable ensemble result given

one single manually-drawn user interaction. The proposed framework combines

sampling-based simulations and ensemble segmentation into a single framework; it

generates a set of segmentations by sampling user interaction space and algorithm

internal parameter space, then the set of inconsistent segmentations are ensembled

into a single consensus result. The algorithmic sampling of user interaction space

is designed to perturb the manual user interaction to simulate the typical inter-

operator variability, thus the fusion of all possible segmentations is expected to

be stable, reproducible and repeatable.
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2.2 Materials and Methods

The brain volumes were pre-processed by skull-stripping using FSL tools [SJW04].

As a pre-process, users define a bounding cube as the volume of interest (VOI),

and all the segmentation is done within the VOI. The user interaction is to draw

a 2D bounding box around the tumor on a 2D slice.

The base segmentation algorithm is Otsu thresholding method [Ots79] be-

cause of its efficiency, however, it suffers from poor reproducibility due to its

semi-automated design and inhomogeneous tumor nature. The concept of Otsus

thresholding method is to find the intensity threshold value that minimizes the

weighted within-class variation: σ2
w(t) = q1(t)σ

2
1(t) + q1(t)σ

2
2(t) , with i as each in-

tensity bin in the histogram p(i), the class probability defined as ql(t) =
∑t
i=1 p(i),

class variance as σ2
l (t) =

∑t
i=1[i− µl(t)]2

p(i)
ql(t)

, class mean as µl(t) =
∑t
i=1

ip(i)
ql(t)

, and

l = 1, 2 as two classes. Given an initial µl(0) and ql(0), the algorithm will do an

exhaustive search by altering the thresholding value t to find the optimal thresh-

olding value topt = argmax σ2
w(t). The idea can be generalized to multiple classes.

The segmentation process using the base method is described as follows. First,

given a 2D bounding box around the tumor, intensity values within the box are

collected to form a histogram p(i), and Ostu thresholding method is applied to

find the optimal threshold topt, with the assumption that the number of classes

within the bounding box is L = 2 or L = 3. Then, the 3D VOI is thresholded with

the highest thresholding value, followed by successive application of a connected

component analysis, morphological opening and closing. The structuring element

used for morphological operations is [0,1,0;1,1,1;0,1,0].

In this study, we proposed an ensemble segmentation framework, and the

goal is to generate a robust and stable ensemble result given one manually-drawn

2D box. There are two steps in the proposed ensemble framework: 1) a set

of inconsistent segmentations are generated by sampling user interactions and
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Figure 2.1: Pipeline of automated sampling of user inputs to simulate inter-oper-

ator variability

algorithm internal parameters; and 2) the set of inconsistent segmentations are

fused into a single consensus result.

2.2.1 Sampling User Interactions

The purpose of this step is to automatically sample a set of 2D bounding boxes

on different slices that simulate typical inter-operator variability, given one 2D

bounding box drawn by the user manually on one single slice.

First, given the manually-drawn 2D input box, a 3D segmentation result is

generated using the base method. Among all the slices occupied by the 3D seg-

mentation, N slices are sampled uniformly. On each of the N slices, one 2D box

of the tumor is generated by acquiring the bounding box of the tumor contour.

In the end, the set of N 2D bounding boxes is generated as the user interaction

variation set. This sampling pipeline is shown in Figure 2.1.

2.2.2 Sampling Internal Algorithm Parameters

The internal parameter to for Otsu method is the number of intensity thresholding

levels within a user input box. The difficulty of this parameter setup comes from

the GBM tumor appearance. GBM brain tumors may be composed of various

tissue types, such as necrosis, tumor cells and edema, which present different
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Figure 2.2: Two slices of one tumor: left: 3-object problem; right: 2-object

problem

levels of enhancement, but not always present within the same tumor. Figure 2.2

shows two example cases of L = 3 (left) and L = 2 (right). Apparently it is

not accurate to set a universal number of levels for all 2D user interaction boxes.

Thus, we run the base method with both L = 2 and L = 3 in this study.

2.2.3 Ensemble Segmentation

The automatically sampled N user interaction boxes in Figure 2.1 are used to

perform independent 3D Otsu segmentations, and two intensity levels (L = 2 and

L = 3) are applied to each user interaction box. As a result, 2N inconsistent 3D

segmentation results are generated. In this step, the 2N inconsistent segmentation

results will be fused into a final ensemble segmentation result.

We compared three ensemble methods: 1) majority voting [KHD98], 2) av-

eraging and 3) STAPLE-EM algorithm [WZW04], to fuse the 2N inconsistent

segmentation results. The averaging rule is defined as follows: PM(i, j, k) =

1
N

∑N
n=1 Segn(i, j, k), with PM as the probability map (PM) and Segn as the bi-

nary segmentation for n-th individual segmentation result for each voxels (i, j, k).

The majority voting rule is to threshold the PM with 0.5 into a binary segmen-

tation. For the details of STAPLE-EM, readers are referred to [WZW04]. Both

averaging and EM method generate a probability map, which is thresholded into

binary segmentations by 0.3. This value of 0.3 was determined empirically.

In a summary, the ensemble framework takes a single manual 2D box as the
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Figure 2.3: The complete ensemble segmentation pipeline

input, and generates one ensemble 3D segmentation as the output. The complete

framework is shown in Figure 2.3. In this study, we set N=8.

2.3 Experiments and Results

We randomly selected 16 GBM tumor cases from our research database with T1-

weighted post-contrast volumetric MR images (voxel size 0.9*0.9*1mm).

The reproducibility of the proposed ensemble framework was evaluated by a

controlled experiment. For each tumor, one lab technician manually drew eight 2D

bounding boxes on 8 uniformly-sampled slices across the whole tumor volume. For

each of the manually-drawn box, the base method and the ensemble framework

were applied respectively for comparison. The overlap ratio of the 8 base Otsu

results and that of 8 3D ensemble results were calculated and compared. Overlap

ratio is defined as OR = A∩B
A∪B , with A and B as binary segmentation results.

Figure 2.4 compares the individual results and ensemble result with averaging

rule. The averaging ensemble method showed significantly better reproducibility

than the base Otsu method with L = 3 (p < .001) and L = 2 (p < .001).

Figure2.5 compared the three ensemble rules. Although there was no statistically

significant difference with this dataset (p > 0.05), STAPLE-EM was slightly better
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Figure 2.4: Reproducibility comparison between individual Otsu and averaging

ensemble

than averaging and voting visually.

The accuracy of the proposed framework was evaluated by calculating F1-

measure [Rij79] between the ground truth and the semi-automated methods.

F1−measure = 2∗ precision ∗ recall
precision+ recall

, with precision =
tp

tp+ fp
, recall =

tp

tp+ fn

, with tp as true positive, fp as false positive, and fn as false negative. For our

dataset, with eight manually-drawn boxes for each of the 16 tumor cases, there

were in total 128 boxes. For each user interaction box, the accuracy was shown

in Figure 2.6. All three ensemble methods showed significant improvement over

the Otsu method with L = 3 (p < .001), but no difference from Otsu method

with L = 2 (p > .05). There was no statistically significant difference between the

three ensemble methods in accuracy (p > .05) as shown in Figure 2.7.

Figure 2.8 and Figure 2.9 showed an example comparing the segmentation

results using different manually-drawn user interaction boxes between the base

Otsu method and the ensemble framework with the averaging rule. Different

rows show different manually-drawn user interaction boxes; while columns show
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Figure 2.5: Reproducibility comparison between the three ensemble rules

different slices of the same tumor. Figure 2.8 demonstrated that the base Otsu

segmentations are inconsistent using different manually-drawn boxes. Figure 2.9

illustrated that the ensemble segmentations are consistent. Even at the presence

of the user interaction variability, the similarity of results within each column

indicates the consistency.

2.4 Discussion and Conclusion

We developed an ensemble framework aiming to improve the reproducibility of

the semi-automated segmentation, and applied the framework to GBM brain tu-

mor segmentation on T1w post contrast images. First, we invented an automated

sampling of user interactions that simulated typical inter-operator variability, as

well as sampling internal algorithm parameters. Then, we generated the incon-

sistent segmentation set using the sampled user interaction boxes and ensemble

them into a final segmentation. We evaluated the performance on a difficult task

of the single-channel GBM brain tumor segmentation.

Ensemble results were worse than the individual results for the first two cases as
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Figure 2.6: F-measure of the individual methods and the averaging ensemble

Figure 2.7: F-measure of the three ensemble methods

shown in Figure 2.6, because the majority of the individual results did not include

the ”fuzzy” part of the tumor when the contrast enhancement is heterogeneous.

For cases No. 4, 6, 12, and 15, it is clearly shown that ensemble is more consistent

and accurate than the individual segmentation results.

The limitation of the study is that generating multiple segmentations is com-

putationally expensive, thus the proposed system has limited feasibility to be

applied in clinical practice. To overcome this problem, parallel computing can be

applied to run multiple segmentation algorithms, and can be realized by graphics

processing unit (GPU).
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Figure 2.8: Segmentation results from the base Otsu method using different man-

ually-drawn user interactions. Columns are 6 different slices of the same tumor;

rows are result from different manually-drawn user interaction boxes

In conclusion, the proposed automated user interaction sampling and ensem-

ble framework significantly improved the reproducibility compared to the base

method on our dataset on GBM brain tumor segmentation with comparable over-

all accuracy. Reproducibility is crucial for semi-automated segmentation methods,

the proposed framework shows potential in improving the consistency and repro-

ducibility.
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Figure 2.9: Segmentation results from the ensemble framework using different

manually-drawn user interactions. Columns are 6 different slices of the same

tumor; rows are result from different manually-drawn user interaction boxes
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CHAPTER 3

Ensemble Segmentation for GBM Brain Tumors

on MR Images Using Confidence-based

Averaging

Abstract Typically there exists no single segmentation method that outper-

forms others for all cases in a given application domain. Ensemble segmen-

tation methods run multiple algorithms and combine the results with the

goal of achieving better robustness and accuracy. The goal and contribution

of this study is to develop an ensemble segmentation framework for GBM

tumors on single-channel T1w post-contrast MR images, and evaluate the

performance on a relatively large dataset of 46 subjects including different

types of tumor appearances in a pharmaceutical drug trial. Three base

methods were evaluated in the framework: fuzzy connectedness, GrowCut,

and voxel classification using support vector machine. A confidence map

averaging (CMA) method is used as the ensemble rule. The results showed

that the CMA ensemble is consistently close to the best performed base

method for each case.

3.1 Introduction

In this study, we investigate an ensemble approach to GBM tumor segmentation

that combines results from three general-purpose segmentation algorithms, aim-

ing to achieve high accuracy in GBM tumor segmentation while maintaining the
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generalizability to other applications.

There has been active research on combining multiple segmentation results. In

the field of supervised learning, Kittler [KHD98] summarized the different schemes

for combining results from multiple classifiers. In the field of unsupervised cluster-

ing, Ghaemi [GSI09] performed a survey of methods in clustering ensembles. As

far as applications in the medical imaging field, Wattuya et al. [Gra06, WRP08]

developed an algorithm to combine multiple segmentation results using the ran-

dom walker method. Rohlfing et al. [RRM04] studied atlas-based segmentation of

biomedical images. They proposed to estimate the performances of the base clas-

sifiers and combine their respective outputs by weighting them according to their

estimated performance. This method is a multiclass extension of an EM algorithm

for ground truth estimation from a binary classification based on decisions of mul-

tiple experts [WZW04]. Aljabar et al. [HHA06, AHH09] applied a majority voting

rule [KHD98] to combine segmentation results from an atlas-based segmentation

and presented a thorough evaluation on brain MR images.

In this study, we propose an ensemble technique, applied to semi-automated

GBM brain tumor segmentation on T1w post-contrast volumetric MR images,

and evaluate the performance on a dataset with 46 tumor cases from a clinical

trial research database. There are two steps involved. The first step is to generate

input segmentation candidates from different algorithms. Three general-purpose

segmentation methods were applied to generate input segmentations: fuzzy con-

nectedness [LUO05], GrowCut [VK05], and voxel classification using support vec-

tor machines (SVM) [DHS00]. The second step is to combine them to generate

a final result. The ensemble scheme was confidence-based averaging (CMA). The

CMA method was adopted based on the assumption that the majority of the

base methods are correct, and errors from each method are independent so that

they will be averaged out in the ensemble result. To our knowledge, we are the

first to investigate ensemble segmentation for GBM tumor segmentation on single-
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channel MR images (T1w post contrast), and to evaluate base methods and their

ensemble on a dataset of 46 GBM tumors including different types of GBM tumor

appearance patterns. Previous studies reported in the literature have used smaller

datasets of 5-20 cases.

3.2 Materials and Methods

3.2.1 Input Segmentations

We explored three algorithms as base methods including two semi-automated

methods and one learning-based: fuzzy connectedness, GrowCut, and voxel clas-

sification using SVM. The fuzzy connectedness method was selected because it

was validated to work well for semi-automated GBM brain tumor segmentation

by Liu et al. [LUO05]. The GrowCut method was chosen due to its simple user

interaction, straightforward implementation, and promising performance in our

pilot study [HRO11]. The learning-based segmentation method was chosen here

so that the general-purpose method can be adopted to this specific application by

learning from examples.

3.2.1.1 Fuzzy Connectedness

The Fuzzy Connectedness (FC) segmentation framework assigns fuzzy affinities to

the target object during segmentation. The fuzzy connectedness captures global

fuzzy “hanging togetherness”. In practice, the first step computes an “affinity”

map, a local fuzzy relation, which quantifies the connectedness of any pixel pair

in the original image; the second step calculates the “fuzzy connectedness”, the

global fuzzy relation with one specific (designated) pixel belonging to the object

of interest.

We implemented the algorithm following Liu’s work [LUO05] since it has been

37



previously applied to the GBM brain tumor segmentation task. First, the affinity

between any two voxels c and d, denoted by µk(c, d), is given by:

µk =


1 if c=d

0 if c and d are not 6-adjacent

h1(f(c), f(d)) ∗ h2(f(c), f(d)) otherwise

where f(c) and f(d) denote voxel intensity values at c and d, respectively.

The functional forms for h1 and h2 are chosen as follows,

h1(f(c), f(d)) = exp

(
(−1/2)

[(∣∣∣∣∣f(c)− f(d)

f(c) + f(d)

∣∣∣∣∣−m1

)
/s1

])

h2(f(c), f(d)) =


0 if f(c) + f(d) < a1

f(c)+f(d)−a1
a2−a1 if a1 < f(c) + f(d) < a2

1 if f(c) + f(d) > a2

m1 is set to the mean of the relative intensity differences |f(c)− f(d)/(f(c) + f(d)|

computed for all 6-adjacent voxel pairs (c, d) within the region. s1 is set to two

times the standard deviation of this relative difference within the user input seeds.

a1 is set to [mean−two times the standard deviation of intensity sums f(c) + f(d)

of all 6-adjacent voxel pairs (c, d) within the region]. a2 is set to [ mean + (two

times the standard deviation of intensity sums f(c) + f(d) of all 6-adjacent voxel

pairs (c, d) within the region ]. Second, the strength of the fuzzy connectedness

is calculated by dynamic programming. There are numerous paths between any

two given voxels c and d. In each possible path, the “strength of connectedness”

is simply the smallest pairwise neighboring fuzzy affinity along this path. Among

all possible paths, the one with the largest strength is the fuzzy connectedness of

the two voxels c and d. In the end, the pool O of voxels with non zero membership
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Figure 3.1: Pseudo code of the cellular automata evolution rule - adapted from

[VK05]

value in the fuzzy subset satisfies all of the following conditions: (1) all seed vox-

els are in O; (2) for any two voxels c and d in O, their strength of connectedness

S(c, d) > θ; (3) for any voxels c in O and d not in O, S(c, d) < θ.

3.2.1.2 GrowCut

The GrowCut method [VK05] (GC) is based on cellular automata theory. For-

mally, a cellular automaton (CA) is a triple (S,N, δ), where S is the state set, N

is the neighborhood, and δ : SN − > S is the local transition function, where

SN indicates the states of the neighborhood cells at a given time, while S is the

state of the central cell at the next time step. In the GrowCut method, the cells

correspond to image voxels, and the cell state S = (C, l, θ) for each voxel consists

of the image feature vector C, typically the voxel intensity, the label l indicating

which category the voxel belongs to, and the strength θ in the continuous range

[0, 1] representing the confidence in the current labeling.

39



The GrowCut method uses CA theory to interactively label the image volume

using user supplied seeds. The user starts the segmentation by specifying the seeds

on both tumor and background voxels, the seeds’ labels are set to the respective

category labels, and their strength is set to 1. This sets the initial state of the

cellular automaton. Strengths for unlabeled cells are set to 0. In each iteration t,

each cell tries to “attack” its neighboring voxels by calculating the local intensity

similarity; accordingly, the label map and the strength map are updated until

convergence. The algorithm converges to a stable configuration, where no cells

change state. The pseudo code for the GrowCut algorithm is shown in Figure 4.4,

where N(p) is 26-neighborhood system of a voxel p in 3D, and g is a monotonous

decreasing function bounded to [0,1],

g(x) = 1− x

max||C||2

3.2.1.3 Voxel Classification Using SVM

The support vector machine (SVM) [DHS00] is a supervised learning algorithm.

The SVM constructs a separating hyperplane in a N-dimensional space where

class data can be viewed as sets of feature vectors, and the hyperplane maxi-

mizes the margin between the data sets. To calculate the margin, two parallel

hyperplanes are constructed, one on each side of the separating hyperplane, which

are “pushed up against” the data sets. Considering a two-class problem, a good

separation is achieved by the hyperplane that has the largest distance to the

neighboring data points of both classes, since in general the larger the margin the

lower the generalization error of the classifier. Given a set of n labeled data points

(x1, y1), (x2, y2), ..., (xn, yn) where yi = ±1 and xi is the feature vector, and SVM

searches for a optimal separating hyperplane < w, x > + b = 0, where where
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w ∈ Rn, x ∈ Rn, and b ∈ R. The object function to minimize is as follows:

1

2
∗ ||w||2, subject to yi(< w, xi > + b) ≥ 1

The optimization problem can be solved by Lagrange multipliers method. This

method introduces an unknown scalar variable αi for each constraint and forms

the object function as follows:

f(x) =
n∑
i=1

n∑
i=1

αiαjyiyjxixj

It often happens that the sets to be discriminated are not linearly separable

in the original feature space. For this reason, SVM can map the data into a high

dimensional nonlinear feature space, and construct an optimal linear hyperplane

in this space. This mapping is performed by the kernel function ϕ(x). The object

function can be further formed as:

f(x) =
n∑
i=1

n∑
i=1

αiαjyiyjϕ(xi)ϕ(xj)

One common kernel function ϕ(x) is radial basis function:

ϕ(x, y) = exp(−γ||x− y||2)

There are two stages classifying image voxels with supervised learning: a train-

ing stage in which the system is developed using the ground truth voxels, and a

testing stage where the system is applied to unknown voxels.

In the training stage, voxels from manually contoured tumors were used as

positive (tumor) examples, and an equal amount of voxels sampled outside the

tumor were used as negative (background) examples. For each training sample, a

set of imaging-based features was calculated: intensity, gradient magnitude, first-

order Gaussian derivatives (in three directions), second-order Gaussian derivatives

(six in total), and the three eigenvalues of the Hessian matrix. These features are
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calculated on three different scales - 1, 2, and 4 pixels. In total, we have 42

features derived from images as the feature vector to train the SVM classifier.

To apply the voxel classification to the test scan, the set of 42 features is

calculated for each voxel and fed into the trained classifier, and for each voxel a

probability that it belongs to a tumor will be assigned.

3.2.2 Combining Input Segmentations

Confidence maps (CM) is defined for the labeling by each base method. For the

SVM method, the output probability map was used as the CM. For the Grow-

Cut method, a strength map was generated by the algorithm, and we transform

the strength map into the confidence map by linearly re-scaling the foreground

strength to [0.5,1] and the background strength to [0, 0.5]. For the fuzzy connect-

edness method, the membership value is linearly re-scaled to [0,1] as the CM.

The three base methods (N=3) are combined by confidence map averaging

(CMA). The output of the ensemble is the average of the three confidence maps

generated by the three base methods, weighting each of the three methods equally.

In order to obtain the binary segmentation, the CMA result is later thresholded

to obtain a binary segmentation.

CMA(i, j, k) =
1

N

N∑
n=1

CMn(i, j, k)

3.3 Experiments

We have 46 GBM tumors from 45 patients in this study from a 60-subject multi-

center clinical trial database. The 15 patients were excluded due to either lack of

manual tumor drawing, anisotropy of voxel size, or variation in image resolution.

The imaging protocol for T1w is 3D volumetric acquisition in the axial plane
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with flip angle-spoiled gradient echo sequence (FSPGR) or magnetization-prepared

rapid gradient-echo (MP-RAGE) sequence with 1mm slice thickness, 0.9mm by

0.9mm pixel size, and 256*256 in-plane resolution.

The ground truth for the segmentation was manually contouring by a board-

certified neuroradiologist with 10 years of experience, facilitated by a semi-automated

segmentation tool [Ots79] from an in-house software system QIWS (Quantitative

Imaging Work Station).

The brain volume was preprocessed to remove non-brain matter and obtain

consistent image intensities across all subjects for the given MR channel by the

following steps: (1) skull-stripping - using FSL [SJW04]; (2) B1 field correction

and intensity normalization - using Freesurfer [SZE98] to standardize the intensity

of MR images acquired from different medical centers.

In order to reduce the processing time, we applied the algorithms in a pre-

defined volume of interest (VOI). For each 3D MR volume, the user visually

identifies the start and end slice of the tumor, and provides manual seeds on the

center slice of the tumor to initialize the GrowCut method. With this information,

the VOI can then be generated. First, the bounding box of the input seeds on

the tumor center slice is extended 25mm along each in-plane direction to enclose

the whole tumor; then, the bounding box is extended in the z-direction to the

start and end slice to obtain the VOI. Calculation time is thereby reduced by

applying the segmentation framework only within the VOI instead of the whole

brain volume.

We applied the proposed framework with the following parameter setup. For

GrowCut, users were required to click 3-5 points in the foreground and background

structures respectively on the center slice of the tumor. The FC algorithm used

the same foreground seeds as GrowCut, and the s1,m1, a1, and a2 were chosen as

described in the Method Section. Voxel classification using SVM did not utilize

any user seeds. The SVM was trained for each leave-one-tumor-out iteration,
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resulting in 45 runs.

To obtain binary segmentation results, the outputs of the SVM, fuzzy con-

nectedness, and the CMA ensemble were thresholded adaptively using the Otsu

method [Ots79]. The binary segmentations from SVM and CMA were further

processed by a connected component analysis to remove speckle noise. The post-

processing analysis has two features: 1) the components smaller than 27 voxels

are removed; 2) the components including background seeds but no foreground

seeds are removed.

The accuracy of the segmentation result was evaluated by calculating the F1-

measure (ranging from 0-1) [Rij79] between the semi-automated segmentation

result and the ground truth.

F1−measure = 2∗ precision ∗ recall
precision+ recall

, with precision =
tp

tp+ fp
, recall =

tp

tp+ fn

3.4 Results

We calculated the F1-measure for all 46 cases to evaluate the accuracy of the

segmentation results against the ground truth, and to compare the performance

of the three base methods and our ensemble method. We present the F1-measure

plot in Figure 3.2. Not a single base algorithm beats the other two algorithms in

all 46 cases. GC performed best for 34 cases, while FC and SVM performed best

for 7 and 5 cases, respectively. Our ensemble method was close to the best base

result, even though the best base method varied for each case.

The ensemble method improved the F1-measure by about 0.04 (0.04 ± 0.02)

compared to the highest individual accuracy for eleven cases (No. 4, 8, 11, 12, 13,

14, 18, 36, 41, 43, 45), shown in Figure 3.2. Two main reasons for the improvement

are observed. One is that when the tumor is inhomogeneously enhanced, the
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Figure 3.2: F1-measure of three base methods and the ensemble method for all 46

cases

ensemble method included more tumor pieces than each base method. The other

is that necrosis was often incorrectly included as tumor by GrowCut and FC

method, but correctly removed by our ensemble method. Figure 3.6 shows an

example (index No. 12).

The ensemble method performs similarly, improving the F1-measure by 0.0006±

0.01 compared to the best performing method for twenty-one cases (No. 1, 2, 3, 5,

6, 7, 15, 16, 17, 19, 21, 27, 29, 30, 31, 32, 34, 35, 39, 42, 46), shown in Figure 3.2.

We observed that one base method (GrowCut) performs relatively well for these

cases, while the other two methods do not provide much additional value to our

CMA method. In such cases, the tumor usually appears as a well-enhanced and

single component, as shown in Figure 3.7 with index No. 31. Also, CMA selects

more true positive voxels compared to the base methods, but also includes more

false positive voxels. The cancelation leads to no overall improvement.

The ensemble method reduced the F1-measure (−0.13±0.14) of the individual

methods in fourteen cases (No. 9, 10, 20, 22, 23, 24, 25, 26, 28, 33, 37, 38, 40,

44), shown in Figure 3.2. The reason is that the ensemble either missed more true
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Figure 3.3: F1-measure of three base methods and the ensemble method for the

subgroup of multi-focal tumors

positive voxels, included more false positive voxels, or the number of false positive

voxels exceeded true positive. For example, case No. 8 shown in Figure 3.8, had

reduced the performance was reduced because many partial volume voxels are

missed by our ensemble method.

Cases 43-46 in Figure 3.2 are multi-focal tumors, and are shown expanded

in Figure 5.2. Multi-focal tumors are those with more than one lesion site, as

defined by intervening areas of normal brain signal, including or excluding the

primary site, all with a well-defined or mostly well-defined border [PXP11]. For

this sub-group, GC missed unconnected tumor pieces and SVM included all tumor

pieces. Our ensemble method improved the performance over the GC method by

0.08 ± 0.01, improved over the SVM method by 0.04 ± 0.04, and improved over

the FC method by 0.26± 0.25. The ensemble method exhibited promising results

that improve upon the best overall base method (GrowCut) in multi-focal tumors.

In general, the F1-measure for all 46 cases is lower than 0.9, because the

partial volumed voxels tend to be missed by the automated methods. Thus, the
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Figure 3.4: An example of multi-focal GBM tumor with red arrows pointing to

the contrast enhanced multi-focal tumors

F1-measure cannot exceed 0.9 even when the segmentation result is reasonably

accurate by visual inspection.

The box plot of the the F1-measure for all 46 cases is shown in Figure 3.5.

The statistics of the F1-measure over all 46 cases are summarized in Table 3.1

comparing base methods and the ensemble method. The median of the CMA

method is slightly higher than that of all three base methods. We ran a paired

t-test to compare the three base methods and the CMA ensemble method, and

the results are shown in Table 3.2. It shows that GC, SVM and CMA are all

significantly better than the FC method, and there is no significant difference

between GC, SVM and CMA methods.

3.5 Discussion and Conclusion

In this study, we proposed an ensemble framework for GBM brain tumor seg-

mentation on high-resolution T1w post contrast MR images. Instead of devel-

oping a customized method for this specific application, the proposed ensemble
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Figure 3.5: Box plot of F1-measure for three base methods (FC, GrowCut and

SVM) and the ensemble (CMA)

Table 3.1: Statistics of F1-measure over 46 cases for different methods

Different methods Mean Median STD IQR

FC 0.51 0.59 0.22 0.35

GrowCut 0.64 0.65 0.16 0.18

SVM 0.50 0.51 0.17 0.22

CMA 0.63 0.7 0.18 0.27

method combines existing general-purpose segmentation algorithms to compen-

sate for their respective advantages and weakness.

To our knowledge, we are the first to investigate ensemble segmentation for

GBM tumor segmentation. In addition we evaluate the base methods and en-

semble method on a dataset of 46 GBM tumors including different types of GBM

tumor appearance patterns, which is substantially larger than reported 5-20 cases

in the literature. It is necessary to evaluate the GBM tumor segmentation over

a large dataset, because the appearance of GBM tumors on the images can vary

substantially from case to case. GBM brain tumor segmentation is challenging
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Table 3.2: Comparing different methods using paired t-test

FC GrowCut SVM CMA

FC N/A p < 0.001 p < 0.05 p < 0.001

GrowCut p < 0.001 N/A p < 0.001 p > 0.05

SVM p < 0.05 p < 0.001 N/A p < 0.001

CMA p < 0.001 p > 0.05 p < 0.001 N/A

problem due to tumor heterogeneity, inhomogeneous intensity profiles, variable

shapes and sizes, and different recurrent patterns after surgery. For example,

there may or may not be necrosis/cavity/cyst present in the middle of the tumor;

the tumor recurrence may occur in the primary site or at a distant site; the tumor

may show a vivid enhancement or diffuse pattern; and the tumor could have a

blob shape or irregular shapes. Thus, it is crucial to evaluate the segmentation

method on a large dataset in a clinical setting. Liu et al. [LUO05] and Corso et

al. [CSD08] are the only two studies in the literature that evaluated their systems

on a dataset of 20 cases. In our study, we included 46 tumors, including cases

with all the clinical conditions mentioned above. This study is thus significant in

elucidating the range of tumor types to be addressed and thereby suggests that

an ensemble approach may be appropriate.

To our knowledge, we are also the first to investigate ensemble segmenta-

tion on single-channel MR images (T1w post contrast) for GBM brain tumor

segmentation. Most of previous studies developed fully-automated segmentation

using multi-channel MR images (T1w, T2w, FLAIR, etc.), and we only find one

publication, where Dube et al. [DCY08] did a preliminary study of automatic

segmentation on this task using a dataset of 7 patients. In the setting of GBM

tumor clinical trials, radiologists manually contour contrast-enhanced tumors on

a single-channel T1w post contrast images to measure the tumor size change.

Therefore, semi-automated segmentation on a single-channel T1w MR volume is
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relevant in a drug trial that uses radiographic response as a surrogate endpoint.

We compared the performance of different base segmentation algorithms on the

application of GBM brain tumor segmentation. In the literature, many algorithms

were proposed as general-purpose segmentation methods; however, it is hard to

compare their performance since they were applied to different dataset. In this

study, we evaluated three base algorithms on the same dataset, which serves as a

reference to compare their performances and makes a useful contribution to the

segmentation of GBM brain tumors.

Our study investigates a general-purpose segmentation framework, even though

our ensemble method was tested for a specific application of GBM tumor segmen-

tation. In the context of tumor drug clinical trials where radiographical response

is used as a surrogate endpoint, imaging core labs need a general-purpose segmen-

tation method for medical image segmentation, and the ensemble framework is a

potential solution. This is because imaging core labs collect and process data from

different trials with different diseases and image modalities (CT, MRI, PET, etc.).

On one hand, it is tedious work for radiologists to manually contour the tumors;

on the other hand, it is expensive and inefficient to design a specific segmenta-

tion algorithm for each application. Therefore, a general purpose segmentation

framework becomes necessary in this context. However, medical image segmen-

tation is not a trivial task due to the nature of medical image acquisitions and

of heterogeneity of human diseases. An ensemble framework can take advantage

of different and arbitrary segmentation algorithms. Its potential to serve as a

general-purpose segmentation framework can be further studied and evaluated in

other applications in the future to test the generalizability of the methods.

There are a couple of limitations in the present study design. One of them is

that we only had one radiologist’s reading as the ground truth. In the future, we

will have multiple reader markings as ground truth, and compare the performance

of the ensemble framework in terms of inter-reader reproducibility. The other
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limitation is that the number of input seeds for FC and GrowCut methods were

not strictly controlled among all cases. For future work, we will design a tightly-

controlled rule for the input seeds to compare the two methods, and vary the

number of seeds to study their repeatability.

Future work could also be done to improve our CMA ensemble method. One

possibility is to assign different weights to each base segmentation algorithm.

Currently, all algorithms are equally weighted. In the future, we will explore

ways to associate different confidence coefficients to each base method. Another

possibility is to include additional base methods to explore whether more base

methods can improve the segmentation performance.

In summary, we compared three base segmentation methods and our ensemble

method on a GBM dataset of 46 cases, and found that ensemble segmentation

does not necessarily improve segmentation accuracy upon base methods if the base

methods have similar advantages and are not complementary to each other. In

such a case, we found that the ensemble segmentation result is very similar to the

best performed method (GrowCut). This provided motivation to make ensemble

segmentation a future potential solution for GBM tumors which have a variety of

appearances. With properly selected base methods which are good at segmenting

different type of tumor appearances, an appropriate ensemble method may sustain

the accuracy from the best “performer” for different tumor appearance and achieve

an overall improvement over the base methods.
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Figure 3.6: Illustrative example of the segmentation results of the tumor with

index number 12. Rows show results on different slices; columns show results

using different segmentation methods: yellow - the ground truth; orange - FC;

dark green - GC; light blue - SVM; dark blue - CMA ensemble
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Figure 3.7: Illustrative example of the segmentation results of the tumor with

index number 31. Rows show results on different slices; columns show results

using different segmentation methods: yellow - the ground truth; orange - FC;

dark green - GC; light blue - SVM; dark blue - CMA ensemble
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Figure 3.8: Illustrative example of the segmentation results of the tumor with

index number 8. Rows show results on different slices; columns show results using

different segmentation methods: yellow - the ground truth; orange - FC; dark

green - GC; light blue - SVM; dark blue - CMA ensemble
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CHAPTER 4

Improving Semi-automated Segmentation by

Integrating Learning with Focused Sampling

Abstract

Interactive segmentation algorithms such as GrowCut usually require nu-

merous user interactions to perform well for complex tumors, and have poor

reproducibility with different initialization. In this study, we developed a

technique to boost the performance of the interactive segmentation method

involving: 1) a novel focused sampling scheme for supervised learning, as

opposed to conventional random sampling; 2) boosting GrowCut using the

machine learned results instead of additional manual inputs. We applied

the proposed technique to glioblastoma multiforme (GBM) brain tumor

segmentation, and evaluated the technique on a preliminary dataset of ten

randomly-selected cases from a multi-center pharmaceutical drug trial. The

results showed that the proposed system has the potential to reduce user

interaction while maintaining similar segmentation accuracy, and improved

reproducibility.

4.1 Introduction

Two weaknesses common to interactive segmentation algorithms include the need

for excessive user interactions and a lack of repeatability. The lack of repeatability

is due to user interaction variations. Excessive user interaction means that a large

number of user inputs are required to obtain satisfactory results, reducing the
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usability. To overcome these problems, we developed a method to boost an exist-

ing interactive segmentation algorithm (specifically GrowCut [VK05]) with ma-

chine learning results using focused sampling, and applied the proposed method to

glioblastoma multiforme (GBM) brain tumor segmentation on T1w post-contrast

images.

GBM brain tumors usually consist of three parts: active tumor, necrosis and

edema. In this study, the goal is to segment the active tumor part, which is

contrast-enhancing component on T1w post-contrast MR images, as used in the

RANO criteria [WMR10] for treatment response evaluation. The goal is the same

as in Chapter 2 and Chapter 3.

4.1.1 Limitations of GrowCut on GBM Segmentation

The GrowCut method [VK05] is an interactive segmentation technique using the

cellular automata theory, and it is explained in details in Chapter 3.2.1.2. There

are several problems when applying GrowCut to GBM tumor segmentation as

shown in Figure 4.1. With limited user input seeds on an active tumor compo-

nent, first, the necrosis as the dark core is incorrectly labeled; second, for multi-

focal tumors where there are unconnected tumor pieces, GrowCut cannot detect

all of them. Furthermore, on post-contrast MR images, both active tumors and

non-target vessels and dura have similar bright intensity, thus, GrowCut fails to

differentiate between them, as shown in Figure 4.1. So for the GrowCut method,

users often need to manually place numerous additional seeds to update the Grow-

Cut segmentation results and generate accurate results.

4.1.2 Literature

There has been little investigation into improving interactive segmentation with

machine learning methods. Miller et al. [VM11] used active learning to reduce
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Figure 4.1: Limitations of GrowCut algorithm: left - ground truth segmentation;

right - GrowCut segmentation result with a single seed

the GrowCut user interaction. This approach automatically suggest placement of

user interactions for the user to review. Top et al. [VM11] incorporated active

learning in order to assist the user in choosing where to provide interactive input

by automatically suggesting the the plane of maximal uncertainty. Both systems

focus on suggesting more informative voxels or planes for user to provide input,

while our system focuses on automatically generating seeds to eliminate the need

for additional user input.

4.1.3 Contributions

In this study, we developed a novel method to boost the original GrowCut method.

The goal is to reduce the amount of user input and improve the segmentation re-

producibility. First, we applied machine learning methods to provide additional

automatic seeding. Second, in building the machine-learned classifier, we devel-

oped a focused sampling scheme, in contrast to conventional random sampling.
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Focused sampling involves collecting a larger number of difficult training voxels

and a smaller number of easy training voxels. The hypothesis is that by integrat-

ing machine learning with focused sampling, the boosted GrowCut will reduce the

user interaction while maintaining similar accuracy, and improve reproducibility.

To our knowledge, ours is the first to employ focused sampling to aid interactive

segmentation for medical images.

4.2 Methods: Boosting GrowCut with Learning Results

from Focused Sampling

The brain volume was first preprocessed to remove non-brain matter and obtain

consistent image intensities across all subjects for the given MR channel by the

following steps: (1) skull-stripping - using FSL [SJW04]; (2) B1 field correction

and intensity normalization - using Freesurfer [SZE98] to standardize the intensity

of MR images acquired from different medical centers. The pre-processing pipeline

is the same as in chapter 2 and chapter 3.

4.2.1 Supervised Learning with Focused Sampling

4.2.1.1 Training Set Collection by Focused Sampling

We define focused sampling as focusing on difficult sub-classes during the training

sample collection. In conventional random sampling, a certain number of tumor

voxels are randomly sampled within the ground truth tumor region and equal

number of voxels are randomly sampled from the rest of the brain tissue. The

background class includes sub-classes of brain white matter, gray matter, dura,

vessel, cerebrospinal fluid (CSF), etc. Within these subclasses, CSF, white matter

and gray matter are relatively easy to be differentiated from tumors, while dura

and vessels are difficult. Sufficient training samples from difficult subclasses are
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Figure 4.2: Example of difference between the random sampling (left) and focused

sampling (right).

necessary to build an effective classifier. However, Conventional random sampling

cannot guarantee enough training samples from each subclass. Thus, we developed

the focused sampling scheme, by which we intentionally build a training set with

more weight given to difficult sub-classes and less weight to easy sub-classes. This

involves collecting more training voxels for difficult sub-classes, and less training

voxels for easy sub-classes. Figure 4.2 shows one example of the difference between

random sampling and focused sampling.

The idea of focused sampling is inspired by active learning. In active learn-

ing, the machine learned classifier automatically picks the difficult samples and

requires the oracle (eg, a human annotator) to provide annotation; while in our fo-

cused sampling scheme, readers inherently collect difficult samples for the machine

learner, while using interactive segmentation method to be boosted.

4.2.1.2 Collecting Focused Samples

Focused sample collection is achieved naturally by users of the original GrowCut

method. Users need to follow four steps to use the GrowCut method: 1) Manually

click one seed on an active tumor part and one seed on the background; 2) Run the

GrowCut method; 3) Review the segmentation result, and successively place more

seeds on the false-segmented structures or seeds on missed tumor components, re-

run GrowCut and update the result; 4) Repeat step 3 until the user finds nothing
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more to modify. Figure 4.3 shows one example of using the original GrowCut

method and providing additional seeds to achieve final accurate results.

For focused sampling, all the seeds user clicked and painted during the pro-

cedure are collected as the training set. As described in step 3), the user needs

to manually paint additional seeds either on the false-segmented structures or on

missing components to correct the segmentation results. Thus, these additional

seeds are from the difficult structures that original GrowCut could not handle and

thus naturally become focused samples.

The advantage of using collected focused samples for training is that they are

the most representative samples of the difficult structures for GrowCut. Instead of

sampling from the entire brain, we focus on the structures which are most difficult

for the GrowCut method. Therefore, the proposed classification system will not

do a simple tumor versus non-tumor classification, instead, it is the classification

of tumor vs difficult non-tumor structures.

4.2.1.3 Feature Calculation

For each training sample, a set of features were calculated: intensity, gradient mag-

nitude, first-order Gaussian derivatives (in three directions), second-order Gaus-

sian derivatives (six in total), and the three eigenvalues of the Hessian matrix on

scales 1, 2, and 4, and derived features using the three eigenvalues, resulting in

73 features in total.

The three eigenvalues of the Hessian matrix are represented as λ1, λ2, and

λ3, and are ranked according to their absolute value |λ1| > |λ2| > |λ3|. The

derived features based on the three eigenvalues are calculated to describe the

local shape [OGA07]: the magnitude of the eigenvalues,
√
λ21 + λ22 + λ23, and the

ratios between the eigenvalues (λ2/λ1, λ3/λ1,
|λ1|−|λ2|
|λ1|+|λ2| , and |λ3|√

|λ1λ2|
).

Multiscale analysis is performed by computing the Hessian matrix (and eigen-
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Figure 4.3: Illustration of providing additional seeds required for accurate seg-

mentation results using GrowCut method. The red dots are tumor seeds and the

blue dots are background seeds. The red contour is the segmentation result. The

left column shows the user inputs at each step, and the right column shows the

segmentation result based on the user input on the left.

values) at multiple scales. The scale σ is the standard deviation of the Gaussian

smoothing kernel. In this study, σ = 1, 2, 4 pixels. The range of scales allows the

shape of both larger and smaller objects to be detected and quantified. At lower

scales, the shape of larger structures may not be accurately captured due to noise

and small inhomogeneities in the structure. At higher scales, the shape of smaller

objects may be distorted as neighboring structures are smoothed together. The

shape features are computed at each scale along with the max and min (based on

magnitude) of the feature over all scales. In total, we have 73 features calculated

for each voxel.
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4.2.1.4 Classifier

We ran a leave-one-tumor-out cross validation for the classifier. In each run, we

applied principle component analysis (PCA) [DHS00] to reduce the feature dimen-

sionality, and train a linear discriminate classifier (LDC) [DHS00] to differentiate

tumor voxels from non-tumor voxels. We used the LDC classifier implementation

in prtools [Dui00].

4.2.2 Boosting GrowCut with Learning Results from Focused Sam-

pling

4.2.2.1 Original GrowCut

The GrowCut method [VK05] is an interactive segmentation technique using the

cellular automata theory, and it is explained in detail in Chapter 3.2.1.2. The

method starts from user-clicked seeds on both object and background. For each

voxel, it allows the neighboring voxels to attack, and the strength of attacking is

based on the local neighbor similarity. The neighbor with the strongest attacking

strength will update the current voxel with the same label. The pseudo code in

each iteration is shown in Figure 4.4. The method converges when the label map

and strength map do not change any more. The method assigns each voxel both a

label and a strength value. The label indicates the class, while the strength shows

how confident it is about the labeling.

4.2.2.2 Boosting GrowCut Algorithm

Given a new GBM tumor case, there are two phases to run the boosting GrowCut

algorithm: first, apply the machine learned LDC classifier on the new test case;

second, the reader paints initial seeds and runs the boosting GrowCut method

as described in Algorithm 1 of Figure 4.5. We described our algorithm using the
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Figure 4.4: Original GrowCut algorithm - adapted from Vezhnevets et al. [VK05]

same format as in the original GrowCut paper for comparison, and our boosting

steps are highlighted in red, where g(x) is a monotonically decreasing function

bounded to [0, 1].

4.2.2.3 Automatic Soft Seeding

We use the machine learned probability to automatically generate seeds to refine

the segmentation results instead of manual input seeds. Soft seeding means that

we set the strength of the automatic seeds to be the machine learned probability,

in contrast to setting the strength of the manual input seeds to be 1.0. Line 14

in Algorithm 1 defines the rules for automatic soft seeding based on the machine

learned results. The details are explained as follows.

Pp > 0.9 and lp == 0 : Voxels with high probability of being tumor are selected

as automatic tumor seeds. For these voxels, update the label map to be tumor,
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Figure 4.5: Boosting GrowCut algorithm

and update the strength map to be the LDC probability. The goal is to add

unconnected tumor components which are easily missed by the original GrowCut.

Pp < 0.1 and lp == 1 and mask == 1: Voxels with low probability of being

tumor within a mask region are selected as automatic background seeds. For these

voxels, we update the label map to be non-tumor and update the strength map to

be ( 1−LDC probability). The mask is the automatically detected dural region,

which will be explained in the next section. The goal is to remove dural or vessel

structures.

lp == 1 and Cp < 100: Voxels with intensity lower than brain white matter are

selected as automatic background seeds. The goal is to remove necrotic regions.
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4.2.2.4 Automatic Detection of Dural Region Mask Using Hough Trans-

form

The dura appears to have high image intensity after contrast injection and is

indistinguishable from tumors by the original GrowCut method. We automatically

detect dural regions to limit the search region for automatic soft seeding.

The dura is the outermost of the three layers of the meninges surrounding

the brain and spinal cord. The dura surrounding the brain and the spinal cord

is responsible for keeping in the cerebrospinal fluid [DVM09]. In this study, we

focus on the dural regions either in between the two cerebral hemispheres (also

known as falx cerebri) or covering the surface of the brain. For the dura located

in the longitudinal cerebral fissure between the hemispheres, we run the Hough

transform to detect it. For the dura covering the brain surface, we erode the skull

stripping results, and the eroded region is saved as the dural region.

The Hough transform is the technique used to detect a certain shape in an

image. In this study, we use it for line detection. Consider a point (xi, yi) and the

general equation of a straight line in slope-intercept form, yi = axi + b. However,

writing this equation as b = −xi ∗ a + yi and considering the parameter space

yields the equation of a single line for a fixed pair (xi, yi). Furthermore, a second

point (xj, yj) also has a line in parameter space associated with it, and this line

intersects the line associated with (xi, yi) at (a, b), where a is the slope and b is

the intercept of the line containing both (xi, yi) and (xj, yj) in the xy plane. In

fact, all points contained on this line have lines in parameter space that intersect

at (a, b). A problem with using equation y = a ∗ x + b to represent a line is that

both the slope and intercept approach infinity as the line approaches the vertical.

Thus, one can use the normal representation of a line: xcos(θ)+ysin(θ) = ρ. Then

subdivide the parameter space into so-called accumulator cells, where (θmin, θmax)

and (ρmin, ρmax) are the expected range of slope and intercept values. The cell
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at coordinate (i, j), with accumulator value A(i, j), corresponds to the square

associated with parameter space coordinates (θi, ρi). Initially, these cells are set

to zero. Then, for every point (xk, yk) in the image plane, we let the parameter

θ equal each of the allowed subdivision values on the theta axis and solve for the

corresponding ρ using the equation ρ = xk ∗ cos(θ) + yk ∗ sin(θ). The resulting

ρ is then rounded off to the nearest allowed value in the ρ axis. If a choice of θi

results in solution ρi, we let A(i, j) = A(i, j) + 1. At the end of the procedure, a

value of M in A(i, j) corresponds to M points in the xy plane lying on the line

ρ = xk ∗ cos(θ) + yk ∗ sin(θ). The accuracy of the collinearity of these points is

determined by the number of subdivisions in the θρ plane.

There are two steps to detect the centerline of the brain using the Hough

transform. First, 2D centerlines are detected slice by slice for certain slices of

images located in the upper half of the brain. These slices are currently manually

selected for each brain volume, and will be automated in the future using physical

locations of the image slices. Then the points on the detected lines are fitted by a

3D plane using the least mean square method. The 2D line detection on one slice

is performed by the following steps: 1) The 2D image is rotated by 30 degrees

for better detection because the centerline is originally almost vertical. 2) The

Canny edge detector is run on the 2D image and edges are detected and output as

a binary mask. 3) Next, the Hough transform is applied to detect lines. 4) Post

processing is applied to remove those lines that are not center lines. The rules are:

the slope must fall into the range [1,2]; after rotating the line to strictly vertical,

the x-coordinate has to fall into the range 120± 8. Lines that do not obey to the

rules are discarded. The 3D points on the detected lines are collected, and 3D

plane is fitted to the 3D point cloud using the least mean square technique.

For the dataset of 10 cases, 4 cases have excellent results by visual inspection, 5

have good results, and one fails because the dura is not well enhanced. The failing

case is not a problem, since dura is not enhanced and thus is distinguishable from
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Figure 4.6: Examples of automatically detected dural regions

tumors. Figure 4.6 shows two examples of detected dural regions.

4.3 Experiments and Results

We have 10 GBM tumor cases from three medical centers in this study, randomly

selected from our in-house research database. The ground truth for the segmen-

tation is manually contoured by a board-certified neuroradiologist with 10 years

of experience, with the facilitation of a semi-automated segmentation tool [Ots79]

from an in-house software system QIWS (Quantitative Imaging Work Station).

The imaging protocol for the T1w sequence is 3D volumetric acquisition in the

axial plane with flip angle-spoiled gradient echo sequence (FSPGR) or magnetization-

prepared rapid gradient-echo (MP-RAGE) sequence with 1mm slice thickness,

0.9mm by 0.9mm pixel size, and 256*256 in-plane resolution.

The brain volume is preprocessed to remove non-brain matter and obtain con-

sistent image intensities across all subjects for the given MR channel by the fol-

lowing steps: (1) skull-stripping - using FSL [SJW04]; (2) B1 field correction and

intensity normalization - using Freesurfer [SZE98] to standardize the intensity of

MR images acquired from different medical centers. The pre-processing is the

same as described in Chapter 3.
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Figure 4.7: Learning results with focused sampling. Rows: examples of tumors;

Columns: original MR image slice and the classifier probability output. Red

arrows show the dura.

In order to reduce the processing time, we apply the algorithms in a pre-defined

volume of interest (VOI). The protocol for determining the VOI is described in

the Appendix.

We run a leave-one-tumor-out cross validation, that is, we randomly select 9

cases as training set, and use the rest one as a test case. During the training phase,

for each of the 9 training cases, 2 voxels from each stroke of a user’s paintings

are randomly sampled to add into the focused training set. For the one test case,

we extract the same imaging features for each voxel, input the feature vector into

the trained classifier, and then obtain the posterior probability of being a tumor

voxel.

Figure 4.7 illustrates the LDC classification result using focused sampling. The

images on the left column show two examples of T1w post contrast MR image with

red arrows pointing at the non-target brain structure (dura). The images on the

right show the relevant classifier outputs from focused sampling - the probability of

labeling a particular voxel as tumor. The dura has similar contrast enhancement

to tumors and thus can not be correctly segmented by the original GrowCut, and
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voxel classification with random sampling cannot differentiate dura from tumor

because there are not enough training samples from the dura. On the other hand,

voxel classification with focused sampling can distinguish tumors from the dura,

by assigning tumor high probability and dura low probability, because of the local

shape features and the sufficient training samples from the dura structure by

focused sampling.

After we obtain the posterior probability, we incorporate it into the boosting

GrowCut method. We evaluate the boosting GrowCut method by comparing

the proposed boosting GrowCut and the original GrowCut. We gradually add

user seeds (two seeds at a time) and plot the segmentation accuracy versus seed

number. The accuracy of the segmentation is evaluated by calculating the overlap

ratio (as defined in Chapter 2 as OR = A∩B
A∪B ) between the ground truth and the

segmentation results, with A and B as binary segmentation results.

The original GrowCut and boosting GrowCut are evaluated independently

using the following experiment. First, the segmentation is initialized by one tumor

seed and one non-tumor seed. Original GrowCut (or boosting GrowCut) is applied

respectively. Second, one additional seed for tumor and one for non-tumor is

added to update the segmentation result using original GrowCut (or boosting

GrowCut). Then, additional seeds are contiguously added in the same fashion

for ten iterations, and the segmentation accuracy in each iteration is plotted for

original GrowCut and boosting GrowCut as shown in Figure 4.8, where the y-axis

is the overlap ratio, and the x-axis is the number of seeds, with blue plots as

the original GrowCut and red plots as the boosting GrowCut. The experiment

is repeated 20 times to generate the error bars on the plot in Figure 4.8. The

average overlap ratio of the 10 cases is presented in Figure 4.9, and paired t-

test shows there that boosting GrowCut method is significantly better than the

original GrowCut (p < 0.001). Examples of the segmentation results of cases 3,

4, and 1 are illustrated in Figure 4.3.
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The ideal way of obtaining seeds would be a user placing manual additional

seeds in each of the 10 iterations, however, in this preliminary study, we let the

computer generate simulated seeds using the ground truth tumor contours. The

initial simulated seeds are randomly picked from tumor and non-tumor regions,

excluding the “band region” which is defined as the region between the 3-voxel

erosion and 3-voxel dilation of the tumor contour, in order to avoid partial volume

voxels. The additional simulated seeds are randomly picked according to the

difference between the result of segmentation and the ground truth excluding the

“band region”.

4.4 Discussion

In this study, we developed a framework for boosting GrowCut, which incorpo-

rates machine learning results into the original GrowCut method to reduce the

amount of manual user interaction and improve the algorithm consistency. First

of all, a machine learned classifier is trained using focused samples, in contrast

to conventional random sampling. Second, for a new brain tumor, we apply the

trained classifier to the new case to obtain the posterior probability. The boost-

ing GrowCut is still used as interactive segmentation method and initialized by

user input seeds. It incorporates machine learning results to generate automatic

additional seeds. We evaluated the boosted GrowCut method to segment GBM

tumors on T1w post contrast MR images.

Semi-automated segmentation may be useful for GBM brain tumor in clinical

practice. There are quite a few full-automated methods but the accuracy is not

satisfactory since GBM tumor has a large variation in the appearance and shape.

The contrast enhancement is quite heterogeneous within the same tumor. These

factors make GBM tumor segmentation a very challenging task and make it hard

for a fully automated method to achieve good accuracy. Manual contouring is a
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(a)

(b)

Figure 4.8: Comparing the original GrowCut (blue dots) and the boosting Grow-

Cut (red squares). At each iteration, one tumor and one background seed is added

to improve the segmentation result. The error bars are generated by 20 runs of

random initialization. (continued)
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(c)

(d)

Figure 4.8: (continued) Comparing the original GrowCut (blue dots) and the

boosting GrowCut (red squares). At each iteration, one tumor and one back-

ground seed is added to improve the segmentation result. The error bars are

generated by 20 runs of random initialization.
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(e)

(f)

Figure 4.8: (continued) Comparing the original GrowCut (blue dots) and the

boosting GrowCut (red squares). At each iteration, one tumor and one back-

ground seed is added to improve the segmentation result. The error bars are

generated by 20 runs of random initialization.
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(g)

(h)

Figure 4.8: (continued) Comparing the original GrowCut (blue dots) and the

boosting GrowCut (red squares). At each iteration, one tumor and one back-

ground seed is added to improve the segmentation result. The error bars are

generated by 20 runs of random initialization.
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(i)

(j)

Figure 4.8: (continued) Comparing the original GrowCut (blue dots) and the

boosting GrowCut (red squares). At each iteration, one tumor and one back-

ground seed is added to improve the segmentation result. The error bars are

generated by 20 runs of random initialization.
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Figure 4.9: The average overlap ratio of 10 cases

very tedious task. Thus, we develop this semi-automated framework to allow for

user interaction to edit the segmentation, and add machine intelligence to further

reduce the user interaction.

For cases 1 and 2, boosting GrowCut improves the accuracy over the original

GrowCut because the tumor is attached to the dura mater on the brain surface,

which is very hard to distinguish using intensity for original GrowCut, thus re-

quires numerous amount of manual seeds, shown in the third column of Figure 4.3.

On the contrary, the machine learned classifier is able to distinguish the dura on

the brain surface from tumors by the use of the local shape features and the col-

lection of focused training samples, and is able to provide automatic seeds in this

dura area. Thus the boosting GrowCut reduces user manual seeds.

For cases 3 and 4, boosting GC improves the accuracy upon original GrowCut

with minimum seeds (2 seeds in this study) and converges to the accuracy of orig-

inal GrowCut with approximately 20 seeds. The reason is that these cases either

included necrosis, dura or an additional unconnected tumor piece. Those struc-

tures cannot be correctly segmented by the original GrowCut, whereas they are

correctly segmented by boosting GrowCut. As shown in case 3(the first column)

of Figure 4.3, the original GrowCut mistakenly segments the connected dura and
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Figure 4.10: Examples of segmentation results. Columns: Case 3, 4 and 1; rows:

the ground truth (black contour), the original GrowCut results with one tumor

seed and one background seed (blue contour) and the boosting GrowCut results

(red contour)

can not remove necrosis, while boosting GrowCut successfully overcomes both

problems. In case 4 (the second column) of Figure 4.3, the tumor piece shown is a

second unconnected component and is completely missed by the original GrowCut,

whereas it is correctly segmented by boosting GrowCut.

For cases 5, 6 and 8 boosting GrowCut does not show obvious improvement.

The main reason is that the image contains an isolated and contiguous tumor

which does not include any of the structures mentioned above and original Grow-

Cut generates good results as shown in Case 5 (the third column) of Figure 5.

For cases 7 and 10, boosting GrowCut improves the performance. In case

7, the contrast enhancement is fuzzy compared to the brain tissue, there is an
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unconnected component, and the tumor is attached to the brain surface dura. In

case 10, the tumor has very irregular shape, the enhancement has thin connected

pieces, and there are multiple necrosis. These problems can be handled by machine

learning.

There are a few limitations in this study. First, we applied a linear classi-

fier in the training phase to differentiate tumor class from the non-tumor class in

the feature space. Future studies could apply a non-linear classifier to investigate

whether a non-linear decision boundary improves performance. Additionally, mul-

tiple classifiers can be applied and compared to reduce the classifier bias. Second,

to evaluate the interactive boosted GrowCut framework, we simulated additional

seeds. In the future, it will be interesting to conduct a reader study and compare

the amount of user interaction and the accuracy and consistency of the segmen-

tation between original GrowCut and the proposed boosting GrowCut. Third,

for automatic soft seeding, we applied an automatic detection of the dural region

mask to limit the search region. In the future, we can investigate the use of brain

atlas as prior information to replace the dural region detection.

The proposed framework shows potential in reducing the user interaction, im-

prove accuracy and improve consistency in the preliminary dataset of 10 GBM

tumor cases with different variations in tumor appearance. In the future, we will

evaluate the method in a larger dataset of GBM tumor cases.

In conclusion, the preliminary results shows that fewer simulated seed points

are needed for boosting GrowCut method to reach the same or better overlap

ratio. It suggests that the accuracy may be improved and user interaction reduced.

The error bars on the overlap ratio from multiple simulations are smaller for the

boosted GrowCut method. It indicates that the result is more consistent when

seed points are varied, and suggests that the reproducibility is improved. The

framework for improving semi-automated segmentation using machine learning

has the potential to be generalized to other applications.
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4.5 Appendix: User Interaction Protocol to Collect Train-

ing Samples

• Scroll up and down of the tumor, find all tumors. Start from the biggest

primary tumor.

– If it is a gross tumor in the center slice, paint red in the middle of

the tumor, find the farthest rim of the tumor, and paint blue in the

background in the neighborhood of farthest rim.

– If it is a ring shape in the center slice, red seeds have to be provided at

3 oclock, and 9 oclock directions. Blue seeds are still provided in the

farthest rim of the tumor.

• For each tumor, go to the center slice of this tumor (or the slice with the

biggest 2D diameter).

• A 3D sphere VOI will be generated.

• User has to scroll up and down to see whether the whole tumor is enclosed

in the VOI.

– If the missing piece is part of the gross tumor, user goes to the far-

thest slice of the missing piece, paint red on tumor parts and blue on

neighboring non-tumor structures.

– If the missing piece is a ring shape, go to the farthest slice and the

farthest rim of the tumor, paint red on ring tumor and paint blue in

both neighboring necrosis and brain tissues.

– Repeat the last two steps till the primary brain tumor is completely

enclosed.

– If there is a 2nd, 3rd, 4th, tumor, if it is distant pattern, consider it as

a separate tumor, and segment it later; if it is multi-focal, repeat the

first two items till it is enclosed.

Distant: single new focus of enhancement or a qualitative assessment of recur-

79



Figure 4.11: Two examples of user input seeds

rence centered more than 3 cm from the primary site resection cavity or margin

of the primary residual tumor, which is mostly or all well defined.

Multifocal: more than one lesion site with each lesion having a mostly or

completely well defined border with intervening areas of normal brain signal.

Figure 4.5 shows two examples of initial seeds suggested on the MR images

with brain tumors.
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CHAPTER 5

Between-scanner and Between-visit Variation in

Normal White Matter Apparent Diffusion

Coefficient Values in the Setting of a

Multi-center Clinical Trial

Abstract

Purpose: To study the between-scanner variation and the between-visit re-

producibility of brain ADC measurements in the setting of a multi-center

chemotherapy clinical trial for GBM. Methods and Materials: ADC maps

of 52 patients at six sites were calculated in-house from DW MR images ob-

tained by seven individual scanner models of two vendors. The median and

coefficient of variation (CV) of normal brain white matter (WM) ADC val-

ues from a defined region of interest (ROI) were used to evaluate the differ-

ences among scanner models, vendors, magnetic fields, as well as successive

visits. Results: For baseline median ADC, no significant difference was ob-

served between the different scanner models, different vendors, and different

magnetic field strengths. For baseline ADC CV, a significant difference was

found between different scanner models (p = 0.0002). No between-scanner

difference was observed in ADC changes between two visits. For between-

visit reproducibility, significant difference was seen between the ADC values

measured at two successive visits for the whole patient group. Conclusion:

The CVs varied significantly between scanners, presumably due to image

noise. Consistent scanner parameter setup can improve reproducibility of
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the ADC measurements between visits.

5.1 Introduction

Quantification of the reproducibility of measures based on diffusion weighted imag-

ing is a prerequisite for the design of quantitative clinical studies using this modal-

ity. In the setting of a multi-center, multi-scanner chemotherapy clinical trial, it

is necessary to evaluate the reproducibility of ADC measurements in order to

reliably use them as a biomarker to evaluate GBM tumor treatment response.

The aims of our study were to evaluate between-scanner and between-visit

variation of ADC measurement in the setting of a real-world multi-center drug

trial where multiple centers and multiple scanners were involved. Even following

radiation and variable chemotherapy, these patients still appear to have consistent

normal brain WM ADC values by radiologist visual inspection. In our study,

we evaluated quantitatively whether a variety of clinical MRI scanner models

produce consistent measures of brain white matter ADC, and additionally, to

evaluate the scan-rescan reproducibility in measured ADC at two visits between

different scanner models. We examined not only absolute ADC values, but also

the dispersion, as measure by the coefficient of variation (CV) of ADC measures.

Data was obtained from a multi-center clinical trial for treatment of GBM.

5.1.1 Related Work

Different factors can introduce variations in ADC measurements, including pa-

tient age, number and strength of diffusion sensitizing gradients, field strength,

location and size of the ROIs used for analysis, signal-to-noise ratio, and number

of diffusion-sensitizing gradient directions. In a multi-center clinical trial, different

scanner models may introduce variation too.

The effect of age is under debate. [EPP00] reported that advancing age is
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associated with a small but statistically significant increase of water diffusivity in

brain white matter using 38 patients. However, another study [HSP02] using 80

healthy volunteers reported no difference among different age groups.

As for the number and strength of diffusion sensitizing gradients, [MIJ00]

studied with one water phantom and 10 healthy volunteers scanned on one ma-

chine with b = 0−800s/mm2 using ROIs at different locations of the brain. They

reported a significant decrease in the ADC values with increasing strength of dif-

fusion sensitization, which can be explained, in part, by a more pronounced direct

effect of microcirculatory perfusion on measures of water diffusivity at low b val-

ues. The study reported a significant difference when using a different number of

b-values, but it may be due to the use of a low b-value. [BER98] compared a

two-point and six-point calculation with 10 subjects using b-values between 0 and

1000s/mm2, and reported a high correlation between the two techniques. [HSP02]

did another study with high b-values (1000-3000), and found a high correlation

between the two-point and multi-point methods, and little error in estimating

ADCs calculated by the two-point method using high b-value. Steens et al exam-

ined different b-values and scan-rescan reproducibility on the whole-brain ADC

histogram [SAS04].

[LFJ07] studied the effects of diffusion schemes and reported that the opti-

mized PE6, PE10, PE15 and Jones30 schemes tested in their study have com-

parable precision. This means that they have comparable power to discriminate

normal from abnormal. The observed differences in the DTI contrast due to dif-

ferent DW schemes are shown to be small relative to intra-session variability. This

result suggests that typical clinical studies, which use similar protocols but dif-

ferent DW schemes, are readily comparable within the experimental precision.

[HBM06] also concluded that the number of diffusion directions did not have a

significant effect on reproducibility.

[HMS01] studied the influence of magnetic field strength and concluded that
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at a value greater than the SNR threshold of 20, there is no significant differ-

ences in mean diffusivity between 1.5 and 3.0 T. Their results suggest that as

long as this threshold is observed, there is a negligible effect on mean diffusivity

between diffusion- tensor MR imaging studies at 3.0 and 1.5 T. Inconsistent with

[HMS01]’s study, [HLB06] reported that ADC values for gray and white matter

were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla. Com-

parative clinical studies using ADC values should consequently compare ADC or

FA results with normative ADC values that have been determined for the field

strength used. The field-strength-related SNR gain they observed was in the range

of 20% comparing 1.5 with 3.0 Tesla.

Location and size of the ROI may introduce the intra-reader or inter-reader

variation of ADC measurement. [BU04] conducted a study involving two readers

placing ROIs on eight different anatomical structures for 27 patients. They found

that ADC values are found to be unreliable for assessing brain disease in some

specified areas of the brain owing to interobserver variance and different ROI

sizes [HBM06]. The reliability of ROI measurements has also been shown to

vary regionally. The reproducibility worsens on the edge of structures and it is

recommended that small-sized ROIs should preferably be drawn on areas of high

anisotropy away from the edges.

The studies above are all single-scanner studies, however, it is essential to

evaluate the multi-center reproducibility in a clinical trial. Sasaki et al. [SYW08]

obtained DW images with nearly identical parameters at 1.5 and 3.0T from 12

healthy volunteers at seven institutions by using 10 magnetic resonance (MR) im-

agers provided by four different vendors. They demonstrated that absolute ADC

values can substantially vary among different coil systems, imagers, vendors, and

magnetic field strengths. One study [KBC09] reported that ADC measurements

were highly reproducible in a two-center clinical trial and appear promising for

evaluating the effects of drugs that target tumour vasculature.
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5.2 Methods and Materials

5.2.1 Patient Group

A total of 68 patients with GBM brain tumors from six medical centers were

obtained.

The patient selection criteria were: 1) no visible T2-weighted signal change

in the white matter used for ROI analysis as determined by a neuro-radiologist;

2) no significant magnetic susceptibility artifacts and 3) normal brain structures

clearly identifiable on the ADC map. Eleven patients did not satisfy the criteria.

As a result, we had 57 patients with usable baseline scans.

The scanner selection criteria were: 1) scanners which scanned at least five

patients, to increase substantial statistical power; 2) scanners which scanned the

same patient at least 2 times (for the between-visit variation study).

As a result, we included 52 patients (31 men and 21 women; age range 19-

78 years old; mean age, 52 years old) by 7 scanner models for between-scanner

variation study, and 40 patients by 5 scanner models for the between-visit ADC

reproducibility study. Patient age ranges for the seven scanners are: 1) 26-71; 2)

48-69; 3) 36-63; 4) 19-64; 5) 37-70; 6) 39-69; 7) 25-78. These patients were treated

with radiation and chemotherapy, with normal appearance of brain white matter

by visual assessment.

5.2.2 Scanner Protocol

Seven scanners from six centers with variability in scanner parameters provided

a real-world ADC variation study. The seven scanners included two 3T scan-

ners (Siemens TrioTim at two sites) and five 1.5T scanners (GE SIGNA HDx at

two sites, GE SIGNA EXCITE, Siemens Avanto, Siemens Symphony). The pro-

tocol required use of a DW spin-echo (SE) echo-planar imaging (EPI) technique
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Scanner Model Number of patients Field Strength DWI or DTI Number of Diffusion Directions In-plane Image Resolution Slice Thickness

1 GE SIGNA HDx at site 1 8 1.5T DWI or DTI 6 for DTI and N/A* for DWI 256*256 5mm

2 GE SIGNA HDx at site 2 7 1.5T DWI N/A* 256*256 5mm

3 GE SIGNA Excite 5 1.5T DWI N/A* 256*256 5mm

4 Siemens Symphony 5 1.5T DTI 6 128*128 or 256*256 5mm

5 Siemens Avanto 9 1.5T DTI 6 256*192 or 256*256 5mm

6 Siemens TrioTim at site 3 10 3T DTI 30 128*128 5mm

7 Siemens TrioTim at site 4 8 3T DWI 3 128*128 7mm

Table 5.1: Detailed protocols of the MR scanners

(TR=4000-12000ms, TE=60-110ms) using a b-factor between 700 and 1000s/mm2.

22-36 axial slices were acquired, with FOV = 220-240mm, slice gap 5-7mm, slice

thickness 5-7mm, and in-plane image resolution 128*128, 256*192, or 256*256.

The number of diffusion sensitization directions was from 3-30. The details of the

scanner parameters are shown in Table 5.1. The data were anonymized and col-

lected in the digital imaging and communications in medicine (DICOM) format.

5.2.3 Image Computation

All ADC maps were calculated from DW images with the same in-house soft-

ware using a two-point method as shown in the following equation: ADC =

− lnS(b)−lnS(0)
b

with b being the diffusion sensitivity factor ranging between 700

and 1000s/mm2, and S being the image intensity when b = 0 or 700s/mm2, and

b = 1000s/mm2. DW, trace DW or DT images were used to derive ADC values

based on their availability. For DWI trace images, we calculated ADC maps from

DW images by the equation above. For DTI, we calculate ADC for each orien-

tation and average them to produce the final ADC map. Figure 5.1 shows two

example ADC maps.

5.2.4 Study Design

A fixed size circular 2D ROI (radius = 7 pixels) was manually drawn on the

normal-appearing brain white matter above the ventricles and confirmed by a
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Figure 5.1: Two example ADC maps with brain WM ROIs. The window level

and width are set to 2800 and 1500 ∗ 10−6mm2/s, respectively. The median and

CV for each ROI is as follows: (A) median = 721 ∗ 10−6mm2/s, CV = 0.11; (B)

median = 884 ∗ 10−6mm2/s, CV = 0.18.

board-certified neuro-radiologist. For each ROI, the ADC median and coefficient

of variation (CV) were calculated. Median ADC value was used to represent the

whole ROI ADC measurements to compare the absolute ADC value across differ-

ent scanner models. CV, defined as the ratio of standard deviation (STD) to the

mean, was used to evaluate the dispersion of the whole ROI ADC measurements.

Median was used rather than mean to lessen the influence of random noise. CV

was used instead of standard deviation (STD), because the STD of data should

be understood in the context of the mean of the data. Figure 5.1 shows two im-

ages with different image quality, and thus different CVs and medians. Yasemin

Bilgili et al. [BU04] reported that varying ROI sizes in brain WM did not yield

statistically different ADC values.

Baseline ROI median and CV were used to explore the ADC variation across

different scanners. Furthermore, the median change and CV change between two

visits (typically 5-7 weeks apart) were calculated for each brain WM ROI, and

differences across scanners were compared. What is more, between-visit repro-

ducibility of ROI median and CV were evaluated for the whole patient group.
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5.2.5 Statistical Analysis

Box-Cox transformation followed by the Shapiro-Wilk normality test were used to

ensure the normality assumption in ADC median and CV were met. For baseline

inter-scanner variation analysis, differences in baseline ROI ADC median and CV

were examined by the ANOVA test among different scanners, different magnetic

fields, and different scanner manufactures.

For the between-visit ADC change analysis, differences in the ROI ADC me-

dian change and CV change among different scanners were examined by the

ANOVA test. Between-visit ADC measurement agreement was examined using

an intra-class correlation coefficient (ICC), and difference in ADC between the

two visits was evaluated by using a paired t-test.

5.3 Results

The Shapiro-Wilk normality test showed that the ROI ADC median (p = 0.0014)

and CV (p = 0.0065) were not normally distributed. After log transformation of

CV and inverse transformation of the median based on the Box-Cox model, data

were normally distributed and thus eligible for the ANOVA test.

The results showed that there was no significant difference in median ADC

(p = 0.165) between any two of the seven scanner models. However there was a

significant difference in CV (p = 0.0002). Multiple comparison test by Tukey’s

HSD method was conducted. The result showed that the differences came from

the following scanner pairs with significance levels: 1-7(p = 0.033), 2-7(p = 0.002),

3-7(p = 0.00007), 5-7(p = 0.009), 6-7(p = 0.023), with the scanner index numbers

corresponding to those in Table 5.1. Figure 5.2 displays the box plots of the seven

patient groups.

For inter-vendor difference, we combined the three 1.5T GE scanners (No.
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Figure 5.2: Box plots of the baseline brain WM ADC (units of 10−6mm2/s)

median and CV: (A) Brain WM ROI median; (B) Brain WM ROI CV.

1, 2, 3) patients into one group and the two 1.5T Siemens scanners (No. 4, 5)

patients into another. We applied the ANOVA test to compare the difference in

ROI median and CV between the two groups. There was no significant difference

in either the median (p = 0.30) or CV (p = 0.21) for the two groups. Figure 5.3

displays the box plots of the aggregated groups.

We also evaluated the intra-vendor difference in ADC values when different

magnetic field strength were used. We combined the two 1.5T Siemens scanners

into one group and the two 3.0T Siemens scanners into another. The ANOVA test

showed that there was no significant difference in terms of brain WM ROI median

(p = 0.16). However, the test demonstrated a significant difference in brain WM

ROI CV between different magnetic fields (p = 0.04). Figure 5.4 shows the box

plots of the two groups.

For the between-visit reproducibility analysis, we had 39 patients by 5 scan-

ners models with both baseline and follow-up data usable. The days between two

visits are 34.35 ± 6.42, and the range is 27. For each patient, we calculated the

ADC changes in ROI median and CV, and compared the difference across differ-

ent scanners. The ANOVA test showed that there was no significant difference
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Figure 5.3: Box plots of the baseline brain WM ADC (units of 10−6mm2/s)

median and CV for all 1.5T GE and all 1.5T Siemens scanners: (A) Brain WM

ROI median; (B) Brain WM ROI CV.

among the five scanners in median change (p = 0.62), and CV change (p = 0.71).

Figure 5.5 displays the box plots of the five patient groups.

When the 39 patients were combined, a paired t-test showed that there was no

significant difference between baseline and follow-up ADC values in CV (p = 0.44),

but a significant difference in median (p = 0.01). The intra-class correlation

coefficient (ICC) was 0.58 for the median, and 0.56 for the CV. Figure 5.6 shows

the Bland-Altman plot of the ADC values measured at two time points before

and after treatment. Assuming that normal WM is relatively unaffected by the

treatment, the plot indicates that [-102.77, 150.51] is the range of normal ADC

measurement variation.

Three of the patients from Scanner 1 did not have consistent acquisition pa-

rameters (number of diffusion sensitization directions) for baseline and follow-up

scans. With these three patients excluded, the paired t-test between baseline and

follow-up median ADC values showed that the significance level of p = 0.05 for

the rest 36 patients. Figure 5.7 shows the box plot of the remaining 36 patients.
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Figure 5.4: Box plots of the baseline brain WM ADC (units of 10−6mm2/s)

median and CV by magnetic field strength for all Siemens scanners: (A) Brain

WM ROI median; (B) Brain WM ROI CV.

5.4 Discussion

In this study, we compared brain WM ADC measurements of patients with GBM

tumors among different scanner models from different vendors at different medical

sites with different field strengths and different acquisition styles. We acquired

patient scans from a GBM drug clinical trial. The treatment of radiation and

chemotherapy may affect the ADC values and cause them to change over time,

reflecting real-world conditions in which patient treatment can be highly variable.

Others have found a small but significant difference in ADC values between

scanners [SYW08]. We did not observe a significant difference in median ADC

values across different scanner models. The power calculation showed that 52%

power was achieved at the 0.05 level of alpha to detect differences in median ADC

values among scanners, and that we needed 13 patients per scanner to have enough

statistical power to detect the difference in ROI median. Therefore, we cannot

conclude whether our observation arose because there was truly no difference, or

because we did not have enough statistical power to detect a small change.
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Figure 5.5: Box plots of the ADC changes for each patient between two visits:

(A) Brain WM ROI median change by scanner; (B) Brain WM ROI CV change

by scanner. The number of patients involved here are: Scanner 1: n=7; scanner

2: n=7; scanner 5: n=8; scanner 6: n=9; scanner 7: n=7. Scanners number

corresponds to Table 5.1

In contrast to median ADC, we found a significant difference in CV of ADC

measurements. This may be due to variability in image noise. Image noise can

stem from many factors. First of all, different scanners from different vendors have

different RF coil designs which can affect the accuracy of ADC values [SYW08].

Second, different magnetic field strength will lead to different signal to noise ra-

tios, and thus different image quality (see below). Moreover, different acquisition

techniques may result in different sensitivity. For instance, the DTI technique

applies six or more gradient orientations to obtain the images, while the DWI

technique uses three gradient orientations and obtains the averaged signal. Ad-

ditionally, the total number of diffusion sensitization directions may also affect

the accuracy of ADC measurement. In this study, there were both DWI and DTI

scans with the number of diffusion sensitization directions varying from 3 to 30, as

shown in Table 5.1. Moreover, different fields of view and slice thicknesses mean
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Figure 5.6: Bland-Altman plot to visualize the agreement between the ADC val-

ues measured at two time points before and after treatment: (A) median, Mean

difference = 23.87, Upper agreement limit = 150.51, Lower agreement limit =

-102.77; (B) CV, Mean difference = -0.004, Upper agreement limit = 0.06, Lower

agreement limit = -0.07.

that a single voxel represents a different physical volume, resulting in a different

signal-to-noise ratio. Lastly, image post processing, including image interpolation,

filtering to improve image quality, etc may have variable effects.

For inter-manufacture variability, we compared the 1.5T Siemens scanners and

1.5T GE scanners and did not observe significant difference in median or CV

of ADC measurements. Our observation agrees with the report by Koizumi et

al [KMK03]. Koizumi et al also reported a good relationship in ADC values

between scanners given a proper b factor in their phantom study [KMK03].

For ADC variability between different magnetic field strengths, we compared

the 1.5T and 3T scanners from the same manufacture (Siemens). We observed no

difference in median ADC values, consistent with prior studies [BU04, SYW08].

However, we observed that CV of ADC measurements from 1.5T Siemens scan-

ners was larger than 3.0T Siemens scanners, which meant, ADC measurements
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Figure 5.7: Box plots of the brain WM ROI median changes by scanner between

two visits with 36 patients

from 1.5T scanners were more dispersed than 3.0T scanners. The result is logical

since signal to noise ratio (SNR) increases with higher magnetic field strength,

resulting in less noise and less dispersion. Interestingly, with our pooled data, the

1.5T Siemens scanners used a DTI acquisition technique and post-processed the

images with interpolation, while the 3.0T Siemens scanners used a DWI acquisi-

tion technique without interpolating the raw images. Both of these factors may

affect the dispersion of the brain WM ADC values. With our data, we were not

able to evaluate their separate effects.

Besides analyzing between-scanner ADC variation with baseline data, we also

explored the between-visit ADC variation among multiple scanners and ADC

reproducibility between two successive visits. The interval between two visits

ranged from 5-7 weeks. We found no significant difference across different scanner

models in median change or CV change between successive visits.

As for the between-visit reproducibility, ADC measurements did not show high

reproducibility for the whole 39 patients group. Three of the patients from scanner

1 did not have consistent acquisition parameters (number of diffusion sensitization

directions) for baseline and follow-up scans. With these three patients excluded,
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the paired t-test between baseline and follow-up median ADC values showed that

the level of significance was decreased from 0.01 to 0.05 for the remaining 36

patients. We conclude that consistent scanner parameters are necessary to achieve

good between-visit reproducibility.

These data suggests that ADC measurements can have good reproducibility

between two successive visits with exactly the same scanner parameters. The

between-visit ADC change does not vary significantly among scanners.

The primary limitation of our study was that relatively few patients were avail-

able for each scanner model, diminishing the statistical power of our analysis, and

thus the ability to detect small changes. For future studies, a larger subject

population is required to increase statistical power to detect more pairwise dif-

ferences. Moreover, we were not able to assess the degree of between-scanner

ADC variation due to a lack of a controlled (phantom) study. Lastly, inconsistent

between-scanner parameters (DW gradient orientations, number of b-factor, and

in-plane image resolution) may introduce bias. However, in a real-world multi-

center clinical trial, it is possible that scanner parameters are set differently among

different medical sites.

In conclusion, we performed a comparison study in a real-world clinical trial

to determine if ADC measurements were consistent across different scanners be-

tween different visits. For between-scanner ADC variation, the results showed a

significant CV difference in ADC measurements across different scanners. Median

difference of ADC measurements may be found given more patients and more sta-

tistical power. Moreover, CV difference was reported for different magnetic field

strength and CV was smaller for 3T than 1.5T. For between-visit ADC variation,

the ADC measurements can have good reproducibility with consistent scanner

parameters between two successive visits 5-7 weeks apart. Furthermore, the ADC

measurement changes did not vary significantly across scanners in terms of both

median change and CV change. This implies that ADC changes before and after
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treatment have potential as a surrogate endpoint. For studies using baseline ADC

as treatment predictors, we suggest evaluating image quality by use of brain WM.
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CHAPTER 6

CADrx for GBM Brain Tumors: Predicting

Treatment Response from Changes in

Diffusion-Weighted MRI

This chapter is based on the manuscript ”CADrx for GBM Brain Tumors: Pre-

dicting Treatment Response from Changes in Diffusion-Weighted MRI”, by J.

Huo, K. Okada, H.J. Kim, W.B. Pope, J.G. Goldin, J.R. Alger and M.S. Brown,

in Algorithm, 2009, 2(4), 1350-1367.

Abstract

The goal of this study was to develop a computer-aided therapeutic

response (CADrx) system for early prediction of drug treatment re-

sponse for glioblastoma multiforme (GBM) brain tumors with diffusion

weighted (DW) MR images. In conventional Macdonald assessment,

tumor response is assessed nine weeks or more post-treatment. How-

ever, we will investigate the ability of DW-MRI to assess response ear-

lier, at five weeks post treatment. The apparent diffusion coefficient

(ADC) map, calculated from DW images, has been shown to reveal

changes in the tumor’s microenvironment preceding morphologic tu-

mor changes. ADC values in treated brain tumors could theoretically

both increase due to the cell kill (and thus reduced cell density) and

decrease due to inhibition of edema. In this study, we investigated

the effectiveness of features that quantify changes from pre- and post-
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treatment tumor ADC histograms to detect treatment response. There

are three parts to this study: first, tumor regions were segmented

on T1w contrast enhanced images by Otsu thresholding method, and

mapped from T1w images onto ADC images by a 3D region of in-

terest (ROI) mapping tool using DICOM header information; second,

ADC histograms of the tumor region were extracted from both pre-

and five weeks post-treatment scans, and fitted by a two-component

Gaussian mixture model (GMM). The GMM features as well as stan-

dard histogram-based features were extracted. Finally, supervised ma-

chine learning techniques were applied for classification of responders

or non-responders. The approach was evaluated with a dataset of 85

GBM patients under chemotherapy, in which 39 responded and 46 did

not, based on tumor volume reduction. We compared adaBoost, ran-

dom forest and support vector machine classification algorithms, using

ten-fold cross validation, resulting in a best accuracy of 69.41% and

corresponding area under the curve (Az) of 0.70.

6.1 Introduction

Computer aided diagnosis (CADx) can be defined as a diagnosis that is made

by a radiologist who uses the output from a computerized analysis of medical

images as a “second opinion” in detecting lesions and for making diagnostic de-

cisions [Gig00]. One aim of a typical CADx system is to extract and analyze

the characteristics of lesions in an objective manner to aid the radiologist. Here,

the “diagnostic” decision relates to treatment response and early classification

of drug responders versus non-responders, and we name our proposed system a

computer-aided therapeutic response assessment (CADrx) system.

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary
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brain tumor in humans. Anti-angiogenesis drugs are increasingly being explored

in clinical trials as therapeutic options. In a phase II in vivo clinical trial, the con-

ventional way to assess treatment response is tumor size change after chemother-

apy or radiotherapy based on Macdonald criteria and evaluated on T1-weighted

contrast enhanced (T1wCE) MR images. However, efficacy can only be evaluated

at least 8-10 weeks after treatment.

Diffusion weighted magnetic resonance imaging (DW-MRI) has the potential

as a surrogate biomarker to reveal changes in the tumor microenvironment that

precede morphologic changes [RML03]. DW-MRI depends on the microscopic

mobility of water. This mobility, classically called Brownian motion, is due to

thermal agitation and is highly influenced by the cellular environment of water.

Because water diffusion is strongly affected by molecular viscosity and membrane

permeability between intra- and extracellular compartments, DW-MRI can be

used to characterize highly cellular regions of tumors versus acellular regions.

Treatment response can be manifested as a change in tumor cellularity, which

may precede tumor size changes. Thus, findings on DW-MRI can be an early sign

of biologic changes [PLM09].

The purpose of this study is to use the apparent diffusion coefficient (ADC),

derived from DW-MR images, for early prediction of the tumor volume change

on a later scan. Once GBM brain tumors are segmented on T1wCE images, the

tumor ROI is mapped onto derived ADC maps and the histogram of tumor ADC

values is extracted for automatic treatment response prediction.

Diffusion MRI has been explored for early detection of GBM brain tumor

treatment response before the tumor size changes. Table 6.1 presents a review of

the recent studies that used DWI for GBM early prediction of treatment response.

Ross et al [RML03] reported a significant ADC value increase in effective thera-

peutic intervention in pre-clinical studies and presented two patients to support

this hypothesis in a preliminary clinical study. Mardor et al. [MPS03] applied
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Authors Method Number of patients

Chenevert et al. [CST00] mean ADC 2

Ross et al. [RML03] mean ADC 2

Mardor et al. [MPS03] mean ADC, diffusion index 10

Moffat et al. [MCM06b] functional diffusion map 20

Hamstra et al. [HCM05] functional diffusion map 34

Table 6.1: Summary of related methods in GBM tumor treatment response using

DWI

both low and high b-value and used mean ADC and diffusion index for treat-

ment response evaluation. Moffat et al [MCM06b] calculated voxel-by-voxel tumor

ADC value changes over time and displayed them as a functional diffusion map

for correlation with clinical response. They reported that the number of voxels

with increased ADC is related to treatment efficacy. Our previous work [HKP09]

showed promising results for using ADC histogram analysis, and in this chapter

we further explore a more sophisticated classifier and designed experiments to

evaluate the two-component histogram modeling.

Machine learning and statistical pattern recognition have made contributions

to the biomedical community because they can improve the sensitivity and/or

specificity of detection and diagnosis of disease, while at the same time increasing

objectivity of the decision-making process [Saj06]. The need for machine learning

is perhaps greater than ever given the dramatic increase in medical data being

collected, with new detection and diagnostic modalities being developed, as well

as the complexity of the data types and importance of multimodal analysis. Ma-

chine learning can provide new tools for interpreting the high-dimensional and

complex datasets with which the clinician is confronted [Saj06]. In our study,

we explored three different classification methods: AdaBoost, random forest, and

support vector machine.
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The AdaBoost algorithm, introduced by Freund and Schapire [FS99], is an

iterative algorithm that can boost weak classifiers into a strong classifier and

improve the final accuracy. In each iteration, a feature is used within a weak

classifier and the best feature is selected to minimize the average training error.

Then, the weights on training samples are redistributed in such a way that the

weight of accurately classified samples will be reduced while the weight of mis-

classified samples is raised. Therefore, AdaBoost focuses on the most difficult

samples [DHS00]. The final classifier aggregates the selected weak classifier from

each iteration, and the weight for each weak classifier depends on its error rate.

However, AdaBoost can be sensitive to noise and may introduce overfitting.

Random forests (RF) is an ensemble classifier that consists of many decision

trees and outputs the class that is the mode of the classes output by individual

trees [Bre01]. Each tree is built with sampling the training cases with replacement.

For each node of the tree, a subset of the features are randomly chosen to calculate

the best split at that node. Each tree is fully grown and not pruned. Breiman

suggests the generalization error for forests converges to a limit as the number of

trees in the forest becomes large [Bre01]. The error of a forest of tree classifiers

depends on the strength of the individual trees in the forest and the correlation

between them. Using a random selection of features to split each node yields error

rates that compare favorably to Adaboost but are more robust with respect to

noise.

Support vector machines (SVMs) are a set of related supervised learning meth-

ods used for classification and regression [Vap82, Bis95]. Viewing input data as

two sets of vectors in an n-dimensional space, an SVM will construct a separating

hyperplane in that space, one which maximizes the margin between the two data

sets. To calculate the margin, two parallel hyperplanes are constructed, one on

each side of the separating hyperplane, which are ”pushed up against” the two

data sets. Intuitively, a good separation is achieved by the hyperplane that has
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the largest distance to the neighboring data points of both classes, since in general

the larger the margin the lower the generalization error of the classifier. SVMs

have been reported to work well for pharmaceutical data analysis [BTB02].

There are two main challenges in this work. One challenge is the two competing

effects in ADC changes after treatment. In general, water movement inside cells

is more restricted than outside. Thus, increased cell density tends to lower ADC

values, whereas increased edema (more interstitial water) results in higher ADC

values. Therefore, theoretically, ADC values in treated brain tumors could not

only increase due to the cell kill (and thus reduced cell density), but also decrease

due to inhibition of edema. None of the listed studies above have specified the

separate effects. Addressing this issue, we applied a two-component model to fit

the tumor ADC histogram [PKH09a]. The other challenge is that it is difficult

to directly identify GBM brain tumors on ADC maps. We developed a semi-

automated framework to achieve this goal.

There are several contributions in this work. First, we developed a computer-

aided method to semi-automatically identify tumors on ADC maps. Second, we

explored the changes of different statistical features of the whole tumor ADC his-

togram. Moreover, we applied two-component Gaussian mixture modeling to fit

the tumor ADC histogram to characterize the two competing effects. Next, we

used the earth mover’s distance (EMD) to directly measure the distance between

the pre- and post-treatment tumor ADC histograms. Finally, we introduced a

machine learning technique to perform feature selection and classification to dif-

ferentiate responders and non-responders.
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6.2 Image Acquisition

6.2.1 Patient Cohort

A total of 85 patients with GBM treated by anti-angiogenesis drugs were included

in our preliminary study from our research database. Images in this database were

acquired as part of a multicenter GBM treatment trial. Tumors were diagnosed

by board-certified radiologists as responders or non-responders to drugs based

on the Macdonald criteria from follow-up scans (8-10 weeks after baseline). The

Macdonald criteria define tumor response by use of tumor size change, steroids,

and neurological function. There are four response categories: complete response

(CR): disappearance of enhancing tumors, off steroids, and neurologically stable

or improved. Partial response (PR): > 50% reduction in size of enhancing tumor,

steroids stable or reduced, neurologically stable or improved. Progressive disease

(PD): > 25% increase in size of enhancing tumor or any new tumor, or neuro-

logically worse, and steroids stable or increased. Stable disease (SD): all other

situations. In our study, we used tumor volume to evaluate tumor size. More

than 50% increase in volume is considered to be PD based on neuro-radiologists

recommendations [HMB99]. Since GBM is a rapidly progressing disease, we clas-

sified PD as non-responders and CR, PR and SD as responders. As a result, 39

were responders and 46 were non-responders. The DW-MRI scans were performed

5-7 weeks apart between baseline and follow-up scans.

The patients in this study were pooled from six medical centers scanned on 9

different scanner models (GE/Siemens) including both 1.5T and 3T scanners. The

imaging protocol for T1wCE is 3D volume in the axial plane with flip angle-spoiled

gradient echo sequence (FSPGR) or magnetization-prepared rapid gradient-echo

(MP-RAGE) sequence, 1-5 mm slice thickness, 0.9375 mm by 0.9375 mm pixel

size, and 256*256 in-plane resolution. The imaging protocol for the DW images is

either DWI or DTI, 700−1000s/mm2 for b-value, 3-30 for the number of diffusion
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Figure 6.1: (a) An example of the tumor segmented on a T1wCE image; (b) An

example of the tumor ROI mapped from T1wCE to ADC map; (c) An example

of the tumor ADC histogram fitted by two-component Gaussian mixtures.

sensitization probing directions, 5-7 mm slice thickness, 1.797mm by 1.797 mm

pixel size, and 256*256 or 128*128 in-plane resolution.

6.2.2 ADC Map Derivation

All ADC maps were calculated from DW-MR images with the same in-house

software using a two-point method as shown in the following equation: ADC =

−
ln[

S(b)
S(0)

]

b
, with b being the diffusion sensitivity factor ranging between 700 and

1000s/mm2, S(0) and S(b) being the image intensity when b = 0 and b = 700 −

1000s/mm2. For DWI images, we calculated ADC maps from DW images by the

previous equation. For DTI, we calculated ADC for each orientation and averaged

them as the final ADC map. The calculation is the same as mentioned in Section

1.1.3. Figure 6.1(b) shows an example of a derived brain ADC map.

6.3 Semi-Automated Image Analysis on ADC Maps

All patients were scanned by both T1wCE MR images and DW-MR images. Since

it is difficult to segment tumors accurately on derived ADC maps, we segmented

tumors on T1wCE images first, and then mapped the 3D tumor contours onto

the corresponding ADC maps.
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6.3.1 Tumor Segmentation on T1wCE MR Images

All tumors were segmented on T1wCE images via a semi-automated method using

the Otsu thresholding algorithm [Ots79] and seeded region growing [AB94]. First,

radiologists drew a line from the inside of the tumor to the outside of the tumor

on the approximate center slice of the tumor. Then intensity values along the line

were collected to form a bimodal histogram, and the Ostu thresholding method

was used to find the optimal thresholding value. Afterwards, 3D seeded region

growing was applied to obtain refined segmentation results. Threshold-based seg-

mentation methods are a standard approach to calculate tumor volume.

The Otsu thresholding method finds the threshold that minimizes the weighted

within-class variation: σ2
w = q1(t)σ

2
1(t) + q1(t)σ

2
2(t) , with the class probability as

q1(t) =
∑t
i=1 p(i), class variance as σ2

1(t) =
∑t
i=1[i − µ1(t)]

2 p(i)
q1(t)

and class mean

as µ1(t) =
∑t
i=1

ip(i)
q1(t)

. Given an initial µi(0) and qi(0), the algorithm does an

exhaustive search by altering the thresholding value to find the optimal threshold.

Afterwards, seeded region growing [AB94] using the optimal threshold was

applied to obtain the tumor contours in the 3D volume. Radiologists reviewed

the results and made manual corrections when necessary. Figure 6.1(a) shows an

example of a segmented tumor on a T1wCE image.

6.3.2 Tumor Mapping from T1wCE Images to ADC Maps

It is difficult for radiologists to directly delineate the tumor contours on ADC

maps, and the scanner-provided T1w images and the derived ADC maps are not

inherently co-registered, because they have different slice thickness, different field

of view (FOV), and different image resolutions. Therefore, a 3D ROI mapping

tool was developed to map the tumor ROIs from T1wCE images onto ADC maps

based on the scanner geometry. Compared to the co-registration technique, the

mapping tool only transformed voxels within the tumor ROI rather than the whole
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image volume; thus it was more computationally efficient. However, the mapping

tool could not correct for patient motion; thus a board-certified radiologist was

required to visually check the mapped contours and perform manual corrections

when necessary.

The mapping tool used an affine transformation with the parameters extracted

from the DICOM header based on physical locations. Equation 3 shows the calcu-

lation of the 3D physical location voxelwise. ∆i,j,k is the physical voxel size read

from the tag “pixel spacing” and calculated from “slice location”; Xx,y,z and Yx,y,z

are image orientation, read from the same tag “image orientation” which specifies

the orientation of the image frame rows and columns, Zx,y,z is the z-direction orien-

tation calculated from Xx,y,z, Yx,y,z, Sx,y,z is read from the tag “patient position”

which specifies the physical location of the patients anterior-left-upper corner;

i, j, k are voxel index; and Px,y,z are the calculated physical location of the voxel

in millimeters. The transformation matrices are calculated for both the source and

target ROIs respectively. For each voxel in the source ROI, the physical location

is first calculated, and then the inverse operation is performed to calculate the

corresponding voxel coordinates of the target ROI. Finally, radiologists visually

check the contours on ADC maps and manually correct the tumor contours on

ADC when necessary. Figure 6.1(b) shows an example of the mapped tumor ROI

on the ADC map from the T1wCE image.
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6.4 Feature Extraction and Classification

The differences between the features extracted from pre- and post-treatment tu-

mor ADC histograms are used as the input to a tumor response classifier.

6.4.1 Observations

Figure 6.2 shows examples of tumor ADC histograms for both pre- and post-

treatment from responders and non-responders. The upper histograms show the

ADC distribution before the drug treatment, while the lower ones show the ADC

distribution after the drug treatment. On the left is an example of a volumetrically

responding tumor, while on the right is an example of a non-responding tumor.

From the figure, we observe that not only the location but also the shape of

the responder histogram changes after treatment. The two Gaussian mixture

components change as well.

6.4.2 General Histogram Features

Different statistical features from tumor ADC histograms were extracted. Accord-

ing to clinical studies [CST00, RML03, MPS03, MCM06b, HCM05], ADC values

should change after effective treatment. In our data set, we observed that the

histograms exhibit changes not only in location, but also in shape. Therefore,

we introduced the extraction of different ADC histogram features and explored

changes in their pattern. The features are: mean, standard deviation, skewness,

kurtosis, median, IQR (interquartile range), 25th percentile, and 75th percentile.

6.4.3 Features from GMM

Two-component Gaussian mixture modeling was applied to each tumor ADC his-

togram and the respective features were extracted. Due to the competing effects of
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Figure 6.2: Examples of histograms from two tumors and two time points: (a),(c):

example of a responding tumor for pre- and post-treatment respectively; (b),(d):

example of a non-responding tumor for pre- and post-treatment respectively.

tumor cell density and edema, we made the assumption that the obtained tumor

ADC histogram was composed of two components relating to tumor cellularity

and edema. We assumed that the component with lower peak is influenced by

tumor cellularity, and the component with higher peak by edema effects. We used

a two component GMM to fit the ADC histogram for both baseline and follow-up

scans and applied the EM algorithm to estimate GMM parameters, with x as the

intensity values, αi as the weight of the components, µi and σi as the Gaussian

parameters.

f(x) =
2∑
i=1

αiGi, Gi(x) =
1√

2πσi
e

(x−µi)
2

2σ2
i
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The EM algorithm can be used to estimate the parameters of a parametric mixture

model distribution: the weight of the components αi, the Gaussian parameters

µi, and σi. It is an iterative algorithm with two alternating steps: an expectation

step (E-step) and a maximization step (M-step) [DLR77].

In the E-step, with the current parameter estimates of the mixture compo-

nents, the algorithm calculates the expected values for the membership variables

of all data points. At the m+ 1 iteration, the expectation is:

pm+1
ni =

αmi G
m
i∑2

i=1 α
m
i G

m
i

In the M-step, the algorithm maximizes the expectation value and updates the

corresponding parameters. The following solutions can be developed:

µm+1
i =

∑N
n=1 xnp

m+1
ni∑N

n=1 p
m+1
ni

, (σm+1
i )2 =

∑N
n=1(xn − µm+1

i )2pm+1
ni∑N

n=1 p
m+1
ni

, αi =
N∑
n=1

pm+1
ni

The features we obtained from the GMM-EM were named as lower peak mean

(LPM), lower peak variance (LPV), lower peak proportion (LPP), higher peak

mean (HPM), higher peak variance (HPV) and higher peak proportion (HPP).

Figure 6.2 shows examples of tumor ADC histograms fitted by GMM with low

ADC and high ADC curves overlaid.

Combining GMM features with the statistical features, we obtained 14-dimensional

feature vectors for both pre- and post-treatment tumor histograms. Then, we

calculated the rate of change between the pre- and the post-treatment tumor

histogram. Therefore, we computed a 14-dimensional difference feature vector.

6.4.4 Earth Mover’s Distance

We applied the earth mover’s distance (EMD) [RTG98, LO07] as a metric to

directly evaluate the distance between the pre- and post-treatment tumor ADC

histograms. Informally, if the histograms are interpreted as two different ways

of piling up a given amount of dirt over the region D, the EMD is the minimum
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cost of turning one pile into the other; where the cost is the amount of dirt moved

times the distance by which it is moved. The calculated EMD value was appended

as the 15th element in the difference feature vector. The resulting 15-dimensional

vector is used as the classification input for making our diagnostic decision.

6.4.5 Classification

We compared three representative classification techniques with different char-

acteristics: AdaBoost, random forests (RF) and support vector machine (SVM)

(as described in Section 3.2.1.3). We employed three classifiers to avoid biasing

the results by selecting a single classification method. The reason we chose them

is that the first two classifiers both include a feature selection mechanism. By

applying these two classification techniques, we are seeking the best features that

separate responders from non-responders. Moreover, SVM is reported to outper-

form several of the most frequently used machine learning techniques in structure

activity relationship (SAR) analysis [BTB02]. In this study, all classifiers were

implemented by using the open source data mining software Weka [WF05]. Their

performance was evaluated using 10-fold cross validation.

Three analyses were performed. First, the conventional method of using mean

ADC for treatment response classification was applied [RML03]. Second, the

difference feature vectors of general statistical histogram features without GMM

features were used. The AdaBoost, RF classifier, and SVM were applied, and

results from the three classifiers were compared. Finally, all statistical features

including the GMM features were used. The three classifiers were applied, and

the results were compared. The results of accuracies from different classification

techniques were compared with conventional method of ADC mean changes by

the test of proportions.
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Overlap Ratio 100% 95-100% 90-95% 80-90% 60-80% 0-60%

Number of patients 10 7 3 2 5 4

Table 6.2: Distribution of overlap ratios

6.5 Results

6.5.1 Segmentation Performance

Figure 6.3 shows four examples of segmentation on T1wCE images and the mapped

results on the derived ADC maps.

For quantitative evaluation of the tumor segmentation mapping results, we

randomly selected 31 subjects’ baseline data. The 31 tumors are from an ADC

mapping database, 20 of which have different image resolutions between the

T1wCE and ADC images in all three dimensions and 11 of which have exactly

the same 3D image resolution in both modalities. We calculated the overlap ratio

between the mapped ROI generated automatically by the tool and an ROI cor-

rected by a neuro-radiologist. The overlap ratio (OR) is defined as follows, where

A and B are two tumor ROIs and size(.) is the number of voxels in that ROI.

2 ∗ size(A ∩B)/(size(A) + size(B))

The results are shown in Table 6.2 with 20 out of 31 ROIs (64.5%) having an

overlap ratio over 90%.

6.5.2 Classification Performance

Using the conventional method of mean ADC change (subjects with a mean

ADC increase classified as responders and those with an ADC decrease as non-

responders) [RML03, CST00], the accuracy is 29.4% (25/85), with a sensitivity of

17.95% and a specificity of 60.87% (see Table 6.3).

The experiment with AdaBoost involved 10 learning iterations. The RF classi-
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Classifier Sensitivity Specificity Accuracy Az

Mean ADC change 17.95% 60.87% 29.4% 0.33

Table 6.3: Performance of conventional way

Classifier Sensitivity Specificity Accuracy Az

AdaBoost 45.45% 75% 63.53% 0.61

Random Forest 54.55% 73% 65.88% 0.66

SVM 27.27% 92.3% 67.06% 0.60

Table 6.4: Performance comparison among three classifiers without GMM features

fier was composed of 10 trees, each of which is constructed considering five random

features. The SVM classifier used non-linear polynomial kernels and normalized

all features.

The results for the experiment using only the general histogram features with-

out GMM are shown in Table 6.4 with sensitivity, specificity, accuracy and area

under the ROC curve (Az). The accuracies of the three classifiers are significantly

different (p < .0001) comparing with accuracy of Table 6.3. The ROC curves are

shown in Figure 6.4. The curve using conventional mean ADC was plotted by

varying the threshold of the mean ADC change used for the classification, while

the curve using the three ML techniques were plotted by Weka. Weka plots the

ROC curves by varying the threshold on the probability assigned to the positive

class.

With GMM features added, the three classifiers with the same parameter se-

tups were applied to the data. The results are shown in Table 6.5 with sensitivity,

specificity, accuracy and area under the curve (Az) of the ROC curve. The accu-

racies of the three classifiers are not significantly different (p > .0001) comparing

with accuracy of Table 6.4. The ROC curves are shown in Figure 6.5.
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Classifier Sensitivity Specificity Accuracy Az

AdaBoost 39.39% 80.77% 64.7% 0.60

Random Forest 51.52% 80.77% 69.41% 0.70

SVM 27.27% 92.3% 67.06% 0.60

Table 6.5: Performance comparison among three classifiers with GMM features

6.6 Discussion

Compared to using only the mean ADC value, the quantitative statistical his-

togram features and the proposed classification system tremendously improved

the accuracy from 29.4% to 69.41% (Az increased from 0.33 to 0.70). The sta-

tistical analysis indicates that all three classifiers are significantly different from

the conventional mean ADC method with our dataset. Compared to general

statistical histogram features, the classification with GMM features using the

random forest technique slightly improved the accuracy from 65.88% to 69.41%,

while adaBoost and RF classifiers generated the same accuracy no matter whether

GMM features were included. There is no significant difference between the three

machine-learned classifiers.

The conventional mean ADC method performs worse than a random classifier

(Az < 0.5). The reason is that conventionally researchers hypothesized that mean

ADC increases because the tumor cell density decrease after an effective treatment.

This assumption may not be valid for our dataset, because it involves in an anti-

angiogenesis drug, which suppresses the cancer cell growth without necessarily

killing tumor cells (decreasing their density) at an early stage (5-7 weeks). Another

possible reason is that in our dataset many of the GBM tumors are recurrent and

necrotic. The treatment tends to reduce necrosis and edema, which will diminish

ADC. Essentially there are two competing processes at work: cell density, edema

and necrosis [PKH09a].
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Another recent study included features that capture spatial information in tu-

mor heterogeneity features. Functional diffusion maps (fDM) [HCM05, MCM06b]

are a popular technique using the ADC value increase or decrease voxel-by-voxel.

Moffat et al. applied fDMs to 20 patients, classified patients into three categories

(PR, SD and PD), and reported 100% accuracy [MCM06b]. However, the thresh-

old they used for classification was determined from a single dataset of 20 patients

used for both training and testing, while in our experiments, a cross validation

analysis was performed. In Moffat et al’s study, they explored the assessment of

fractionated radiation therapy for different types of brain tumors with 20 patients

scanned on the same scanner [MCM06b]. However, in our study, we focused on the

GBM brain tumors treated by anti-angiogenesis drugs, which suppress the blood

supply for the tumor cells and may not directly decrease the tumor cellularity.

The difference in accuracy may come from the different treatment mechanism.

Additionally, our dataset is from GBM drug trials across multiple sites, thus our

preliminary study is an important contribution for exploring DWI as an early

imaging biomarker in a real pharmaceutical drug trial. In future work, we will

extract texture feature to include spatial information, and shape features will be

extracted as well. By introducing richer feature set, we aim to include more in-

formation about tumors and further improve the performance of the classification

system.

One limitation of this study is that we classified CR, PR and SD as responders

for the ground truth to achieve a binary classification. Since SD and PR may

have different patterns in terms of their ADC histogram change, a multi-category

classification system will be explored in future work. Another limitation of the

study is that we used the Macdonald criteria at the eighth or tenth week after

treatment for determining treatment response. In future work, time-to-progression

and survival time will provide a better endpoint to classify treatment response.

Another limitation comes from the 3D ROI mapping tool. This tool is more

114



computationally efficient compared to the co-registration techniques, but it cannot

correct for patient motion. Therefore, in our study, a board-certified radiologist’s

visually checked and edited all segmentation results as needed. In the future,

a more sophisticated registration method with an image similarity measure may

improve the accuracy of the tumor contours on ADC maps, and consequently

improve the accuracy of the extracted features and the classifier performance.

ADC values obtained on pre-operative MRI scans are reported to be of prog-

nostic value in patients with glioblastoma [PKH09a]. The term “prognosis” refers

to predicting the likely outcome of an illness. ADC, reported to be inversely

proportional to tumor cellularity, is gaining interest in predicting GBM tumor

prognosis. Our proposed framework now uses changes in DW-MRI as an early

surrogate outcome biomarker; however, the framework with feature extraction

and machine learning technique could be generalized to pre-treatment DW-MRI

as a predictive biomarker.

In this study, we developed a CADrx framework with machine learning tech-

niques to automatically predict tumor treatment response before size change using

DW-MRI. In our preliminary study, our major contributions are extracting sta-

tistical ADC histogram features, applying GMM to model the ADC histogram to

interpret the competing effects of cellular density and edema, and applying ma-

chine learning techniques using all the extracted features. Changes in cell density

and edema may be reflected in ADC values before size changes are apparent on

standard MRI sequences. Therefore, ADC holds promise as a biomarker, in de-

termining both which tumors are more likely to respond to treatment and which

tumors are actually responding.

In conclusion, this work shows that a CADrx system using quantitative ADC

histogram features and a machine-learned classifier has better performance in

treatment response assessment over conventional analysis using only a mean ADC

value. This will have major implications for clinical trials.This work has potential
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clinical significance for early treatment response assessment in GBM.
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Figure 6.3: (a)-(d) and (i)-(l) show four examples of tumor segmentations on

T1wCE images; (e)-(h) and (m)-(p) show the corresponding mapped tumor con-

tours on ADC maps.
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Figure 6.4: ROC curve for three classifiers without GMM features

Figure 6.5: ROC curve for three classifiers with GMM features
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