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ABSTRACT OF THE THESIS

Improving Multiple Sequence Alignments by Revising Sequence Families with
Alignment Scoring Approaches

by

Aleksandr Olegovich Levchuk

Master of Science, Graduate Program in Computer Science
University of California, Riverside, December 2011

Thomas Girke, Chairperson

Characterizing the functional, structural, and evolutionary relationships of bi-

ological sequences is an important task in modern genomics and computational

biology. Most of these applications involve the assembly of sequence families by

similarity searching, subsequent formation of multiple sequence alignments (MSAs)

and downstream phylogenetic analyses. Especially, MSAs play a central role in this

modeling workflow. Thus, the quality of the MSAs is of critical importance for its

success. In this study I present an approach to improve the quality of MSAs by

using a sequence family revision approach that can automatically remove false posi-

tive candidates from sequence families and then recompute an improved MSA. The

approach is able to combine sequence-level scores from two MSA scoring methods,

norMD and GUIDANCE. It automatically selects an optimized score threshold for

removing sequences from MSAs. To test the performance of this method, I devel-

oped several automated procedures to add to curated MSAs from the CDD database

controlled numbers of randomly selected nonmember sequences. Then I performed

Receiver Operating Characteristic (ROC) analysis on the classification results incor-

porating automatic threshold selection approaches. Surprisingly, the sequence-level

scores, provided by the two MSA scoring methods, were less successful than a simple

all-against-all BLAST-based pairwise alignment scoring approach. However, I was
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able to improve one of the MSA scoring methods by extending it with a dynamic

threshold selection approach. The extended method outperformed the performance

of the BLAST-based method in detecting false positives in sequence families.
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1 Introduction

Biological sequences are related through a common evolutionary history and func-

tion. The members of a family have diverged from each other by primary sequence

changes during evolution, by duplication events in the genome, or by speciation

events giving rise to related sequences in different species. Normally, diverging se-

quences maintain the same or related functions. For functional and evolutionary

analyses of sequences, it is important to identify all or most members in a family

through database searches by sequence similarity, align them, and represent their

relationships in a tree (Figure 1; Durbin et al., 1999a; Eddy, 1998; Bateman et al.,

2004).

1



1. Database Searches to Identify Family Members

Important: sequences should show significant similarity.

2. Multiple Sequence Alignment of Family Members

Important: unalignable sequence areas should be removed.

S1 FMPFSAGKRICAGEGLARMELFLFLT 450
S2 FMPFSAGKRICVGEALAGMELFLFLT 450
S3 .LAFGCGARVCLGEPLARLELFVVLT 443
S4 SLPFGFGKRSCMGRRLAELELQMALA 470
S5 YTPFGSGPRNCIGMRFALMNMKLALI 457
consensus ..PFg.GkR.C.Ge.LA.mELfl.Lt

3. Compute a Distance Matrix for Multiple Sequence Alignment

S1 S2 S3 S4 S5
S1 0.0 0.43 0.71 0.71 0.48
S2 0.0 0.57 0.57 0.39
S3 0.0 0.29 0.21
S4 0.0 0.13
S5 0.0

4. Calculate Phylogenetic Tree

Important: tree building, rooting, and bootstrapping methods.
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Figure 1: Typical Workflow for Modeling Sequence Families.

One of the best models for representing the similarities among the members of a

sequence family is a multiple sequence alignment (MSA). An MSA is a prerequisite

for most comparative sequence studies in molecular biology. Specifically, MSAs are

used for analyzing phylogenies, conserved motifs, domains and protein structures

(Penn et al., 2010). MSAs are also useful for large-scale database searches using

profiles of sequence families (Durbin et al., 1999a; Girke et al., 2004).

The construction of MSAs involves a stepwise process that models the substi-

tutions, insertions and deletions occuring over time in gene and protein sequences

(Felsenstein, 2003). Protein or DNA sequences are formed into an MSA alignment

by superimposition of three or more sequences so that the same or related residues
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are exactly aligned to one another. The most direct representation of an MSA is

a matrix of characters where gaps are inserted in order to fill the voids between

unaligned characters.

VSCDG-CGK--SNFT-GRRYKCLIC---YDYDLCADCYDSGVT--------TERHLFDHPMQCI

VSCDA-CLK--GNFR-GRRYKCLIC---YDYDLCASCYESGAT--------TTRHTTDHPMQCI

VSCDA-CLK--GNFR-GRRYKCLIC---YDYDLCASCYESGAT--------TTRHTTEHPMQCI

VSCDG-CAF--TAFA-GNRYKCLRC---SDYDLCFSCFTTKNYGDQQTIADIPIHDESHPMQLI

ATCDG-CDLWGNGIT-GCRYKCLKC---ADFDLCKSCYDAKVV--------SGRHKSEHPMQCL

VGCDS-CGM--YPIR-GKRYKCKDCTELIGFDLCEECYNTKSKLPG---RFNQHHTPDHRMELD

AGCDS-CGV--YPII-GDRYRCKDCKEEIGYDLCKDCYETPSKVPG---RFNQQHTPDHRLELA

Figure 2: A multiple sequence alignment. 7 sequences of the cd02338 protein group.

The alignment of the sequence family cd02338 (Bauer, 2011) is an example of

an MSA shown in Figure 2. In this representation every letter represents an amino

acid residue and every row is a protein sequence - a member of this sequence family.

One can use such an MSA for a wide spectrum of downstraem analysis methods.

These include the following approaches:

A profile Hidden Markov Model (HMM) (Eddy, 1998) is a model of the

conserved regions in an MSA. These domain models can be used as a search query for

finding closely and distantly related family members in a protein database. Typ-

ically, this approach will be more sensitive in finding distantly related members

than database searches based on pairwise alignment approaches, such as BLAST

(Altschul et al., 1990).

A Phylogenetic Tree can be inferred from an MSA by a vast array of tree

building methods (Felsenstein, 2003). One of these techniques is the neighbor-

joining method (Saitou and Nei, 1987) that hierarchically clusters the sequences by

their pairwise similarities while constructing a phylogram. Phyogenetic approaches

can predict evolutionary events such as ancestry and time of speciation.
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1.1 Pairwise and Multiple Sequence Alignment

Pairwise sequences alignments are the basis of most approaches for searching se-

quence databases. This includes the widely used BLAST software (Altschul et al.,

1990), which has many additional applications, including sequence clustering. When

pairs of sequences are aligned, a static evolutionary rate is assumed (e.g. a static

amino acid substitution matrix like BLOSUM-62). This is an oversimplification

because within one sequence the evolutionary rate can vary from total invariance

to extreme variability (Thompson et al., 2001). When sequences alignments are

performed on multiple related sequences, the evolutionary rates can be inferred

from MSA column statistics which are not available when only two sequences are

used. For this reason database searches, performed with sequence family models

(e.g. profile HMMs), are more sensitive.

1.2 Methods for Generating MSAs

Forming MSAs of more than two sequences is an NP-complete problem (Wang and

Jiang, 1994). Thus, approximation approaches are employed to construct MSAs in

a time-efficient manner. The progressive alignment method is a common heuristic

used by MSA Various methods are used to approximate the relationships without

aligning the sequences, for example MUSCLE aligner (Edgar, 2004b) uses the kmer

distance (Edgar, 2004a). The relationships are summarized as a tree where the leaves

represent the sequences and the branches represent the pair-wise relationships. The

sequences are then pairwise aligned in the order that is determined by the guide tree

starting with the most similar pairs. The pair-wise alignments seek to maximize an

objective function. In its pure form the progressive alignment heuristic aligns any

two sequence only once. Once set, the alignment of residues relative to each other is

4



not changed as more sequences are incorporated into a progressively growing MSA.

Iterative alignment is a strategy of refining an existing MSA in a series of it-

erations that modify the alignment in order to increase the score of an objective

function. In modern programs such as MUSCLE and MAFFT, the iterative proce-

dure is applied after preforming a progressive alignment. MUSCLE (Edgar, 2004b)

goes through two stages of progressive alignment and then refines the MSA in an

iterative stage where it applies a variation of tree-dependent restricted partitioning

(Hirosawa et al., 1995). MAFFT applies Fast Fourier transform iterative refinement

method FFT-NS-i (Katoh et al., 2002).

MSA programs produce alignments which may disagree with the evolutionary

correct solution. These mistakes may occur due to a variety of reasons: First,

most MSA programs implement heuristic approaches that can lead to suboptimal

solutions. Second, progressive alignment techniques also approximate the guide tree.

Third, several co-optimal solutions are common. Fourth, the objective function is

a simplification of the process of evolution. Fifth, due to the stochastic nature of

sequence evolution the biologically correct alignment may be sub-optimal. (Landan

and Graur, 2007; Penn et al., 2010). Sixth, the sequences of a family may be too

diverse to generate any reliable pairwise alignments or MSAs. In addition, one can

expect that alignment mistakes will be made more often when unrelated sequences

are provided as input (e.g. false positives). In fact when too diverse sequences are

provided as input to an MSA software, then the results are often of poor quality.

1.3 Types of Sequences

The residue sequences of DNA, RNA, and protein molecules are represented by dif-

ferent alphabets. DNA and RNA sequences have an alphabet of size four, while the

typical alphabet for protein sequences is composed of twenty characters. Specialty
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characters are sometimes used as place holders for cases when there is ambiguity in

a particular sequence position.

When comparing diverse sequences, and there is a choice of using either gene

(DNA/RNA) or protein sequences, then the use of the latter is often preferred,

because the protein alphabet is more information-rich which increases the sensi-

tivity of many analysis routines, such as similarity searching or alignment meth-

ods. Additional reasons for this preference are: (1) Amino acid substitutions in

protein sequences are functionally more relevant than nucleotide substitutions in

DNA sequences, because amino acids differ in their physicochemical and functional

properties. As a result, substitutions in protein sequences can be scored with em-

pirically derived substitution matrices, such as PAM (Dayhoff and Schwartz, 1978)

or BLOSUM (Henikoff and Henikoff, 1992; Gonnet et al., 1992) which estimate the

likelihood of one amino acid mutating into another. In contrast to this, nucleotide

substitutions are more neutral with relatively homogenous substitution frequencies.

(2) Due to the redundancy of the genetic code, differences in DNA sequences can

be synonymous, meaning they can encode the same protein sequence. (3) Protein

secondary structures can be inferred from protein sequences and used to construct

a better alignment. For example hydrophobicity patterns and other molecular con-

tent information is used by PRALINE^TM a transmembrane-aware protein aligner

(Pirovano et al., 2008). For research that deals with non-coding regions of the

genome it is often not meaningful to use the protein alphabet. This study focuses

exclusively on diverse sequences of protein encoding genes. Thus, it is restricted to

the use of protein sequences.
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1.4 MSA Improvement Strategies

After an MSA is attained from an alignment software, it can be further improved

by a number of existing methods. For phylogenetic analysis it is often important to

trim off unrelated sequence regions from the MSA, such as overhanging ends or long

gaps. TrimAl (Capella-Gutiérrez et al., 2009) is an example of an MSA trimming

method, and Gblock (Castresana, 2000) is an MSA scoring method designed for

MSA trimming. Other MSA refinement methods, such as RASCAL (Raymond

et al., 2002) operate on MSAs by shifting residues within the alignments in order

to improve poorly aligned regions. . A third type of MSA improvement strategies

is MSA scoring. Alignment scoring approaches such as norMD (Thompson et al.,

2001), GUIDANCE (Penn et al., 2010), and PSAR (Kim and Ma, 2011) can be used

to remove badly aligned or unrelated sequences from MSAs. Once the sequences

are removed, the columns that only consist of gaps are collapsed or the entire MSA

is re-computed. The current project focuses only on the latter type of cleanup by

identifying difficult to align sequences and then recomputing the MSA.

1.5 Application of MSA scoring

MSA assembly is required at early stages of a typical sequence families modeling

analysis (Figure 1). The quality of the MSA effects all downstream stages of the

analysis because all downstream stages rely on the MSA. Therefore, an MSA scoring

method is applicable to sequence family modeling for MSA quality control and MSA

quality improvement.

A particular example where MSAs scoring becomes necessary is the database

search for sequence family members as it was done in the Cell Wall Navigator

Database (CWN). The protein sequence database UniProt (UniProt Consortium,
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2011) was used by CWN to update protein groups of interesting functional, struc-

tural, or evolutionary relationships.(Girke et al., 2004). In such a scenario, man-

ual curation of the sequence families becomes infeasible due to the abundance of

available protein sequences which is growing at an exponential rate. For example,

UniProt in 2004 consisted of 1.2 million while the October 2011 version consists of

18 million protein sequences (UniProt Consortium, 2011).

1.6 Ways of introducing randomness into MSAs

In order to test MSA scoring methods, one can use manually curated MSAs of high-

quality as correct dataset (known ground-truth) into which one can inject random

residues or entire sequences to test the performance of scoring methods in identifying

true and false positives. Introducing randomness into the curated MSAs provides a

controlled experimental setup for testing MSA scoring methods. Several approaches

exist for introducing randomness into MSAs. One way is to simulate sequences and

add them to the MSAs. This simulation can be done with models that generate

amino acid frequencies which are similar to real biological sequences (Durbin et al.,

1999b). Another way is to randomly inject residues into the MSAs to purposely

create mismatches in the columns of an MSA, as it was done for testing norMD by

Thompson et al. (2001). In addition, methods exist to simulate DNA and protein

sequence evolution. For example the Dawg DNA simulation program (Cartwright,

2005) was used to asses the performance of PSAR’s MSA scoring method (Kim and

Ma, 2011). Another approach is to take existing sequences in MSAs and mutagenize

them to the desired level of randomness. Finally, real sequences can be randomly

picked from large protein databases and added to an MSA. For most test cases the

newly added sequences should not belong to the same sequence family as an MSA

under study. This latter approach is the one that was used by this project. It was

8



chosen here, because it best mimics the situation of most sequence family assembly,

alignment and modeling routines (Figure 1).

1.7 Objectives

This project has two main objectives. The first one is to test the performance of

two methods for scoring the membership of each sequence in an MSA. The scores

can be used for identifying sequences that were false positive in the upstream or

are too difficult to align to generate a meaningful MSA. The second objective is to

develop an MSA cleanup method that utilizes the scores of both methods.

2 MSA Scoring Methods

2.1 SP-score with Reference

The sum of pairs score to reference (SPS) can be used to evaluate the MSA assembly

methods when biologically correct reference MSAs are available. SPS is the count

of how many residue pairs of the test MSA are aligned exactly as the corresponding

pairs in the reference MSA.

In a test MSA of N sequences and M columns the ith column can be denoted as

Ai1, Ai2, ..., AiN . For each pair of residues Aij and Aik, define pijk such that pijk = 1

if residues Aij and Ajk are aligned in the reference MSA, otherwise pijk = 0. The

ith column score is:

Si =
n∑

j=1,j 6=k

n∑
k=1

pijk (1)

The SPS score for the whole MSA is:

SPS =
M∑
i=1

Si/
Mr∑
1

Sri (2)

9



Where Mr and Sri are the number of columns and the column score Si in the

reference MSA (Thompson et al., 1999).

2.2 SP-score without Reference

The SP-score without a reference was introduced by Carrillo and Lipman (1988)

and reintroduced for comparison to norMD by Thompson et al. (2001). For each

pair of sequences in an MSA, a score is calculated based on the similarity between

the sequences. The SP-score is then the sum of all the pairwise scores (Thompson

et al., 2001). The pairwise scores can be the count of identical residues or can be

the sum of residue similarities obtained through an amino-acid substitution matrix.

In addition, the SP-score includes costs for insertions or deletions in MSA. Gaps

can also be penalized according to a number of schemes. Thompson et al. (2001)

compared norMD to the SP score which was calculated using the same amino-acid

substitution matrix as used in norMD, Gonnet 250 (Benner et al., 1994). SP-score

was computed with affine gap penalties (Altschul and Erickson, 1986) with manually

set gap opening and a gap extension parameters. The SP-score was defined as:

SP =
M∑
i=1

M∑
j=1

M∑
l=1

C(Ail, Ajl)− (gn + hl) (3)

where g and h are the manually set parameters (gap opening and a gap extension

penalty). In the alignment of a pair of sequences i, j as subset from the MSA, n is

the total number of gaps and l is the sum of the total lengths of the gaps among

the sequence pair. It was shown that the highest SP-scores scores are obtained

for MSAs with a large count of long sequences, irrespective of the quality of the

MSA.(Thompson et al., 2001).
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2.3 norMD

Normalized Mean Distance score (norMD) is an MSA scoring method with is based

on MSA column statistics and ab inito MSA properties. The top level formula of

norMD is:

norMD =
MD −GAPCOST

MaxMD ∗ LQRID
(4)

The MD component involves consulting an amino-acid substitution matrix for

every pair of residues of a given MSA column. The scores of residues pairs are down-

weighted by the percent identity (PCID) between the two sequences. The pairs that

belong to sequences that have a higher PCID contribute less to the overall score.

Then all the pair scores are added to form one column score. The column scores are

then normalized by multiplying by the number of sequences that have a non-gap in

that column. The resulting MD score is the sum of all the column scores.

The purpose of the MaxMD is to counteract the effect of MSAs with longer

sequences getting higher MD values. MaxMD is the maximum attainable MD score

given the sequences’ length of the scored MSA. GAPCOST charges the MSA a

penalty for opening a gap plus a gap length penalty. In the official norMD imple-

mentation the default GAPCOST is 0. The purpose of the lower quartile range of

the pairwise hash score (LQRID) is to make the whole MSA score independent from

how closely or distantly related are the members of the sequence group. LQRID

avoids a bias towards a particular alignment method by using an alignment inde-

pendent metric. To estimate the percent identity between sequences LQRID uses

hash scores (Wilbur and Lipman, 1983) which calculated by extracting diagonals

from dot-plots (Thompson et al., 2001).
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2.4 Neighbor-joining tree assisted norMD sequence removal

A modified norMD integrated with the neighbor-joining tree building method (Saitou

and Nei, 1987) was suggested to produce a method that removes badly aligned or

unrelated sequences form MSAs. This method was introduced as an addition to

the norMD MSA scoring method by Thompson et al. (2001). However, the use of

this method is out of scope of this project because this method is unable to provide

per-sequence scores (discussed in section 7).

2.5 GUIDANCE

GUIDe tree based AligNment ConfidencE (GUIDANCE) (Penn et al., 2010) mea-

sures and per-residue robustness of a progressive MSA aligner to guide tree pertur-

bations when aligning protein groups.

1. GUIDANCE uses a progressive MSA software to construct an alignment. For

this step it uses MAFFT (Katoh et al., 2002) and the resulting MSA is used

as base-result for the downstream permutation steps. The guide tree used to

construct the base-alignment is also extracted.

2. A bootstrapping approach (Felsenstein, 1985) is used to generate 100 per-

turbed versions of the guide tree.

3. The MSA is ran again on the original protein group but this time the 100

perturbed guide trees are used to generate 100 separate MSAs.

4. The 100 perturbed MSAs are compared to the base MSA to obtain the scores.

In order to estimate the robustness of each to guide tree perturbations GUID-

ANCE calculates the SP-score to a reference (Thompson et al., 1999) placing the

perturbed MSAs as subjects and the base MSA as the reference. To get column
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scores GUIDANCE calculates a Sum-of-Pairs column score (SPC) which is equiv-

alent to the score Si for the ith column in Equation 1. The average SPC over all

perturbed MSAs is the GUIDANCE CS column score. In addition a GUIDANCE

residue pair score is calculated for each residue pair in the base MSA. One is assigned

to a pair in a perturbed MSA when the corresponding pair is aligned in the base

MSA, zero is assigned to all other pairs. The GUIDANCE residue pair score is the

average score over all perturbed MSAs. In addition to per-column scores the soft-

ware package provides MEAN COL SCORE and MEAN RES PAIR SCORE for the

entire MSA . Finally, the software package provide per-sequence scores (Privman,

2011a).

The GUIDANCE website provides a means for “removal of sequences that cause

errors in the MSA because their alignment with the rest of the sequences is unre-

liable” (Privman, 2011b). It allows the user to choose a threshold bellow which a

sequence will be removed but the website also notes that “There is no specific recom-

mended value for this cutoff because its effect on the alignment varies considerably

among datasets. The web server provides a list of cutoffs with their respective effects

on the remaining proportion of sequences and users are encouraged to experiment

with several cutoffs.” (Privman, 2011b)

2.6 Gblocks

Gblockes (Castresana, 2000) is designed to remove badly aligned and divergent

regions in an MSA. It provides are score of 1 or 0 to every column on the alignment.

The set of rules used to determine the score are very simple and are based on the

number of exactly aligned residues, length of the aligned regions, and conservation of

the flanking positions. The method does not use an amino-acid substitution matrix,

instead looking only at the number of identical residues.
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2.7 PredictedSP

The predicted sum-of-pairs (Ahola et al., 2008) is a statistical model which was

trained on the SP-score-to-reference (Equation 1) measurements using the Homstrad

database as reference. When evaluating the score the model only considers the

conservation level ConsAA (Ahola et al., 2006), the percent identity, the number

of sequences, and the length of the MSA. Based on this information, PredictedSP

predicts the SP-score-to-reference. This method has been shown to outperform

norMD (Ahola et al., 2008). I was not able to evaluate this method because the

implementation was not available since September 2010 and I was not able to reach

the author due to email change of the primary contact for Ahola et al. (2008).

Recently the author made the implementation available.

2.8 PSAR

PSAR (Kim and Ma, 2011) is an MSA scoring method based on probabilistic sam-

pling of suboptimal alignments. It obtains a number of suboptimal MSAs and com-

pares them with the input MSA. The computation of the score against the input

MSA is very similar to and inspired by GUIDANCE. In simulations of DNA MSAs

the authors show that PSAR outperforms GUIDANCE. PSAR does not support

protein sequence. Validation was done only on DNA. However, there seems to be

no inherent obstacles for implementing protein sequence support.
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2.9 Scoring Methods Summary Table

I indiscriminately studied and expanded a collection of literature about MSA scor-

ing methods. Two MSA scoring methods needed be chosen for testing their ca-

pability to revise sequence families. I looked for several criteria to try to increase

my chances of building an automatic classifier that can detect unrelated or poorly

aligned sequences in MSAs: (1) Scoring should be done on protein sequences and

utilize amino-acid substitution matrices in order increase sensitivity of the involved

sequence family analysis routines as discussed in section 1.3; (2) Scoring should not

require a reference ground-truth MSA; (3) Scoring should be independent of ab ini-

tio parameters of the MSA such as number or length of sequence; (4) Per-sequences

scoring capability is preferable; (5) Scoring should either be trivial to implement or

a working implementation should be available.

Protein Sub Per-MSA Per-Seq Size-Indep Fast
Reference SP Yes No Yes No* Not Known Yes
SP-score Yes Yes Yes No* No Yes
norMD Yes Yes Yes No* Yes Yes
NJ norMD seq. remover Yes Yes No No Yes Yes
Gblocks Yes No No No Yes Yes
GUIDANCE Yes Yes Yes Yes Yes No
PredictedSP Yes Yes Yes No* Yes Yes
PSAR No Yes Yes Yes Yes No

Table 1: MSA Scoring methods comparison Protein indicates the capability
to score protein sequences; Sub indicates the capability to utilize a character
substitution or similarity matrix for comparing residues; Per-MSA indicates the
capability to produce a score for an entire MSA; Per-Seq indicates the capability
to produce a score for each sequence in the MSA; Size-Indep indicates that the
method is mostly independent of ab initio parameters of the MSA such as number
or length of sequences; Fast are the tools that take one or more orders of magnitude
less running time to commute the score than to it would take to re-generate the
MSA that is being scored.

No* indicates that although the method cannot provide sequence-level (Per-
Seq.) scores, the sequences-level scores can be inferred from the MSA-level scores
(Per-MSA).
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3 Methods

3.1 Experimental Strategy

By using expert curated MSAs, one can assume nearly no false positive sequences

contained in these families as well as a very low number of badly aligned members.

I am able to control the amount of randomness that I add to these MSAs by spiking

in unrelated sequences. This will provide a setup with known member and non-

member sequences that can be used to explore the ability of MSA scoring methods

to discriminate between protein sequences belonging to a family. In addition, I will

have control over the amount of added nonmembers and can use that to explore

how the MSA scores change as a function of the amount of added noise.

Some MSA scoring methods can provide per-sequence scores and for others one

can build ways of inferring per-sequence scores from the whole MSA scores. I build

a binary linear classifier by choosing a cutoff among sequence scores. By looking

at all possible cutoffs I can plot a Receiver Operating Characteristic (ROC) for the

classifier and use the area under the curve (AUC) to directly compare classifiers. I

have one classifier for every MSA scoring method. In addition, I analyze combined

classification approaches.

An automatic cleanup of a sequence group can be performed by scoring the

group’s MSA and removing sequences which bring the score bellow a threshold.

This project explores and analyzes methods for selecting optimum thresholds.

3.2 Member and Nonmember Sequences

Sequence family modeling aims to determine the membership of sequences to a

functional, structural, or evolutionary protein family. For many reasons sequences

can be placed into protein groups incorrectly, for example due to a false positive
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identified by a sequence similarity search against protein databases. When badly

aligned sequences are present in an MSA it may not be possible to determine

without external knowledge if the sequence is related to the group. On the other

had, a correct alignment of the sequence can provide evidence for relatedness to a

sequences family.

I will control and track sequences that are unrelated to protein groups. A se-

quence is termed nonmember sequence when it is unrelated to the protein group.

All other sequences in the protein groups will originate from curated datasets of

protein families, I term those sequences as member sequences. When evaluating the

performance of the automatic classifier sequences will be called true positives, false

positives, true negatives, or false negatives. Sequences whose scores fall bellow the

selected threshold will be classified as predicted member sequences. If the classifica-

tion is correct then those sequences will be counted as true positives. Nonmembers

incorrectly classified as member sequences will be counted as false positives.

3.3 Separation of Sequence-level MSA scores

To better understand the behavior of scoring methods, I look at score density plots

of member and nonmember sequences. Removal of badly aligned or nonmember

sequences was one of the design goals of MSA scoring methods that I investigate. It

is expected that member sequences will be enriched on one side of the density plot

and the nonmember sequences on the other side. However, I do not expect a clear

separation between the two because many diverse protein families show a continuum

of detectable to non-detectable similarities within the evolutionary sequence space.

(Rost, 1999)

Nevertheless, for some test cases it can be informative to test the MSA scoring

methods not only on very diverse families, but also on more homogeneous families
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where all sequence members share relatively high similarity. For a more homoge-

neous dataset of member sequences, one can usually expect a clearer separation of

the member and nonmember sequences in the score density plots. For the latter

case I used sequence subfamilies where all members shared at least 50% identity.

Then I add nonmember sequences in the same way as for the diverse families (please

refer to the Methods section 3.4).
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3.4 Spiking: Adding Nonmembers to Sequence Families

To test the different MSA scoring methods, I developed an automatic procedure

to add to the curated MSAs from CDD (member sequences) controlled numbers of

nonmember and randomly selected sequences from UniProt. The number of member

sequences will vary from 19 to 200 per MSA. To be independent of the number

of sequences in each MSA, I measure the amount of nonmember sequences to be

added in percent. To also prevent the nonmember sequences from creating unaligned

overhangs, I spike-in sequences of the same length as observed in the original MSA.

This poses some restrictions on how I can control the nonmember spike-in amounts.

Since the smallest number of sequences in our MSAs is 19, a convenient increment

to use is 1 sequence or 5% in residues. I will aim to add 5%, 10%, 15%, 20%, and

25% nonmember ratios. The nonmember ratio is bound to be less then the targeted

ratio within 5% residues. Every time a set of nonmember sequences is added I run

an MSA program on the combined protein group to generate a new MSA. In the

following these modified MSAs are called “Spiked MSAs”.

3.5 Datasets

As member sequences (please refer to section 3.2), I used sequences from MSAs

of the Conserved Domain Database (CDD) (Marchler-Bauer et al., 2011). This

databases contains 20,196 MSAs in the August 2011 release (version v2.31). I did

preprocessing as described at the end of this section. Preprocessing reduced the

database to 18,486 MSAs. I randomly sampled these 18.4 thousand MSAs to obtain

3 samples of 100 MSAs. I will refer to these samples as Sample 1, Sample 2, Sample

3. Only the assignments of sequences to families was used from CDD, but not the

MSAs.
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As nonmember sequences, I used sequences from UniProt (UniProt Consor-

tium, 2011). This databases contains 16,504,022 proteins in version 2011-08. I

did per-processing as later described in this section, which reduced the database

to 12,802,581 protein sequences. I developed and used a routine that scans these

12.8 million sequences to obtain random samples for a given number and length of

sequences (please refer to section 3.4). I apply this routine to obtain five different

amounts of nonmember sequences for each sequence family in Sample 1, Sample 2,

and Sample 3. Amounts of 5%, 10%, 15%, 20%, 25% of nonmember sequences were

added to the three random samples.

Both databases CDD and UniProt consist of real biological data. UniProt is the

largest publicly available collection consisting of two sections: UniProtKB/Swiss-

Prot and UniProtKB/TrEMBL. The first section set of sequences that are manually-

annotated from literature. UniProtKB/TrEMBL is a set of computationally ana-

lyzed sequences. CDD is likely the largest collection (Shameer, 2011) of MSAs from

various databases that are focused on structural and functional sequence family

modeling. CDD consisting of the following databases: NCBI CDD curation effort

(Marchler-Bauer et al., 2011), SMART (Letunic et al., 2009), PFAM (Finn et al.,

2010), COGs (Tatusov et al., 2003), PRK (Klimke et al., 2009), TIGRFAM (Haft

et al., 2003).

Alignment software has a limit on the number and length of sequences that can

be aligned within a few hours of an up to date CPU. In order to process samples

within a reasonable amount of time I filtered out all CDD entires that had sequences

with more than 1000 residues and alignments with more than 200 sequences or more

than 100,000 residues total.

CDD has non-unique sequence identifiers in protein groups and this poses a

problem for some downstream software (e.g. BLAST). I make the identifiers unique
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without loosing information by adding unique prefixes to the CDD identifiers.

From Uniport I needed to be able to randomly sample sequences that can be

added into existing protein groups without altering the average sequence length of

the protein group. In order to perform such additions I split Uniport into files each

containing sequences of a given length. I was able to have at least 1000 proteins

for any given length between 9 residues and 999. Length of 8 and 1000 is was for

841 and 999 proteins respectively. All lengths from 8 to 1000 were included in the

dataset.

3.6 Scoring with GUIDANCE

The protein family scoring method GUIDANCE was used to score each of the spiked

MSAs. Default parameters of GUIDANCE were used. Since GUIDANCE provides

per-sequence scores, all I need for classification was run GUIDANCE on Samples 1,

2, and 3 (please refer to section 3.5), parse the sequence-level score values from the

GUIDANCE results files, and choose a threshold (please refer to section 3.11) for

dividing the sequence-level scores into member and nonmember classes (please refer

to section 3.2).

3.7 Scoring with norMD

To obtain MSAs, I align the spiked protein groups with MAFFT, using the same

parameters as used by GUIDANCE. The norMD scoring method provides MSA-

level scores. Additional processing steps are required to extract its sequence-level

scores. For this, I run norMD on each MSA generated by MAFFT. If N is the

number of sequences in an MSA, then I have one run for the whole MSA and N

runs for the MSA, leaving one sequence out. I use only the Modified-norMD score
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(Equation 8) in which it is obtained from the verbose mode of the norMD as I

found that the modified variant is more sensitive to nonmember sequences (please

see the Results section). I obtain the sequence-level scores by subtracting the MSA-

level score from the score with the sequences left out. Then I choose a threshold

(please refer to section 3.11) for dividing the sequence-level scores into member and

nonmember classes (please refer to section 3.2). An alternative approach is discussed

in section 7.

3.8 Scoring with BLAST

MSAs capture more information about the evolution of the aligned proteins then

pairwise alignments. However, pairwise sequence alignment should be usable for

detecting unreliable or badly aligned sequences within a protein group. For this

study, I have developed and tested the following MSA cleanup method based on

BLAST (Altschul et al., 1990).

In each group the protein sequences are aligned in an all-against-all fashion using

the blastp mode of the blastall executable. Only the hits with an E-value below

0.01 are recorded. The final score of a sequence is the number of pairwise hits below

this threshold to the other sequences in a family. After the sequence-level scores

were obtained, I perform classification of sequences by choosing a threshold (please

refer to section 3.11) for dividing the sequence-level scores into the member and

nonmember classes (please refer to section 3.2).

3.9 Classifier Evaluation

Having the MSA scoring methods, I build a simple classifier that will predict which

sequences are members and which are nonmembers based on the MSA scores. Se-

22



quences with a score bellow a specific threshold T are predicted to be nonmembers

(to be removed) and all other sequences are predicted as members (to be kept).

The performance of the classifier can be tested because the true memberships of all

sequences is known.

More than one classifier is build in this way because there are several scoring

methods and several ways to do combined classification. Please refer to the Com-

bined Classification section in Methods. Every classifier that I build is evaluated on

a random sample of MSAs from CDD with various amounts of nonmember sequences

added from UniProt. For details, please consult the “Datasets” section. Each eval-

uation is visualized in the form of Receiver operating characteristic (ROC) curves.

To generate a ROC curve, all thresholds that generate unique predictions must

be considered. Given N scores in sorted order I need to evaluate up to N + 1

thresholds: one threshold between every two adjacent scores and two threshold on

the extremes. The number of thresholds that I need to consider may be less than

N + 1 only if some scores are not unique.

In order to compare the performances of classifiers at different sensitivity /

specificity levels, I superimpose ROC curves. This representation makes perfor-

mance comparisons among different methods possible because in the ROC curves

the thresholds for different classifier evaluations become mapped into a normalized

0 to 1 range which is independent of the particular scores and thresholds. Any point

represents a True Positive Rate and a True Negative Rate. The overall performance

of each method can be expressed by the area under the ROC curve (AUC). I use

the AUC to compare the classifiers in an automated way.
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3.10 Combined Classification

The scoring methods norMD and GUIDANCE measure different aspects of MSAs.

norMD uses conservation in MSA columns and ab initio information such as the

total number of sequences and the length of the longest sequence. GUIDANCE

measure the resistance of the alignment to controlled perturbations of the progres-

sive alignment guide tree. This difference lends itself to combined a classification

approach.

One way of combining GUIDANCE and norMD scores, is to add the two scores

together. For example a sequence may have a low GUIDANCE score and a high

norMD but the sum will be higher than the cleanup threshold and the sequence will

not be removed. This way of combining the score can be better understood when

each sequence is plotted as a point in two-dimensional space. Any partitioning

of this space in two parts would be a binary classification. Items falling into one

partition are classified as nonmembers (e.g. remove sequences), whereas items in the

other partition are classified as members (e.g. keep the sequences). In this project I

resort to one of the simplest types of such partitioning in which the space is divided

by a straight line. Without combined classification the classifier would divide our

two-dimensional space in half by a horizontal or a vertical line (depending on which

scoring method is used). When using combined classification by adding the two

scores the lines is a diagonal (please see Figure 12 for an example). I use only 3 tilts

of the dividing line: horizontal, vertical, and diagonal. The threshold that I use will

effect the positioning of the dividing line.
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3.11 Threshold Selection

In the methods that I surveyed on removing nonmember or badly aligned sequences

from MSAs (please refer to section 2) no automatic methods were described for

selecting thresholds. Nevertheless, automatic score threshold selection is a necessary

component for automatic MSA cleanup.

3.11.1 Limits of Static Threshold Selection

It is often an arbitrary decision to settle on one static threshold for all MSAs because

the existing MSA scoring methods will assign scores to sequences with a bias to the

overall quality of the MSA and a bias to the amount of nonmember or badly aligned

sequences in the alignment.

I explore the dependency of static thresholds on the variance of the amounts

of nonmember sequences in MSAs. In addition, I test the performance of static

thresholds at set amounts of nonmember sequences. I have control over the amount

of nonmember sequences (please refer to the Methods section 3.4). I regenerate the

MSAs of protein groups after adding the nonmember sequences. As I have such

control, it becomes possible to select and analyze thresholds for various amounts of

nonmember sequences added. To evaluate the results, I plot the obtained thresholds

against the added amounts of nonmember sequences. To explore the performance

of static thresholds I train the thresholds (described later in this section) on one

random sample of a fixed amount of nonmembers. Then I apply those thresholds

to another random sample with the same amount of nonmember.

I look for a reasonable way to select a static threshold in a random sample

for a known added amount of sequences using the known member and nonmember

information. Even when the ground-truth is known, a sequence removal threshold

on MSA scores is a compromise between the true positive rate (TPR) and the true
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negative rate (TNR). The only clear situation is when the MSA scoring method

has done a perfect job at separating members and nonmembers - in that case a

threshold exists where all members will be retained and nonmembers will be removed

(TPR=1 and TNR=1). However in most cases there is a compromise: moving the

threshold down will increase TPR while decreasing TNR. Moving the threshold up

will decrease TPR while increasing TNR. I do not know in advance if a high TPR

or a high TNR is preferential, so I would like to settle on a threshold that is a good

balance of TRP and TNR.

A measure that may be able to strike such a balance is the Matthews correlation

coefficient:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

All MSAs of the sample are placed into one pool as a flat list of sequences.

Each sequence of the MSA will have a numeric score. I create one pool of scored

sequences per each amount of added nonmembers. Then I test all unique thresholds

to find one threshold where the MCC has its maximum. For example, a particular

pool will have 100 MSAs consisting of about 6,000 sequences and 5% in residue

counts will be nonmember sequences. I then analyze the TPR and TNR rates that

this threshold gives when applied to other samples.

3.11.2 Dynamic Threshold Selection

In the previous section, for MSA clean-up I used the MCC coefficient (Equation 5)

for making automated decisions on the static thresholds. One threshold was selected

for the entire pool of MSAs. However, if an MSA has an overall low quality then

all sequences appear badly aligned. This poses a problem to objective scoring of
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sequences in MSAs. The quality of the MSA changes proportionally to the amount

of nonmember sequences in the alignment (Figures 3 and 4). However, when MSA

cleanup needs to be performed, it is not known how much nonmember or badly

aligned sequences are present. Consequently, sequences that are related to the

protein group will have a score that is dependent on the overall quality of the MSA.

This dependency is a problem for threshold selection because at a set threshold

sequences may be removed or kept for reasons other then their true membership

to the group. This challenge calls for a threshold that is adjusted to the specific

properties of an MSA. I term this approach dynamic threshold selection. A dynamic

threshold selector will make an automated decision without the knowledge about

the sequences and it will utilize the information of individual MSAs.

3.11.3 Limits of Dynamic Threshold Selection

Before attempting to develop a method that can select dynamic thresholds ab ini-

tio, I test what are the limits of dynamic thresholding given that I know which

sequences are nonmember. I have the scores of sequences in a given MSA and I

know which of these sequences are members and nonmembers. I then calculate the

MCC coefficient for every possible outcome of partitioning the sequences via linear

binary classification. The threshold that produces the highest MCC value is then

chosen.

To evaluate the performance of classification based on this threshold method,

I compare the TRP and TNR rates to other classification methods. I normalize

all sequences scores using the thresholds to make further inquiries and comparisons

such as (1) ROC curves / AUC values, (2) score separation density plots, and (3)

placement of sequences in a two-dimensional plane of different scoring methods.
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In case of the Perfect-Balance method, the information on the nonmember se-

quences was used to select the threshold where the largest MCC value (Equation 5)

is observed. The scores were then normalized for each MSA on the threshold T

using the R Code 2.

min1 <- min(scores)

scores <- scores - min(scores)

max1 <- max(scores)

scores <- scores / max(scores)

T <- T - min1

T <- T / max1

scores[scores > T] <- 1 - (1 - scores[scores > T]) / (2 - 2 * T)

scores[scores <= T] <- scores[scores <= T] / (2 * T)

Code 2: Scaling scores around a threshold T. This code normalizes the scores to a
range of 0-1. Two bifurcations are produced by using T to separated the scores.

3.11.4 Dynamic Threshold Selection by Min/Max Scaling

scores <- scores - min(scores)

scores <- scores / max(scores)

predicted_nonmember_sequences <- which(scores <= 0.5)

predicted_member_sequences <- which(scores > 0.5)

Code 3: MSA sequence score scaling A simplistic dynamic threshold selection proce-
dure. The R code vector “scores” is scaled to a 0-1 range and classified into member
and nonmember sequences.

T = min(scores) +
max(scores)−min(scores)

2
(6)

I perform dynamic threshold selection in order to reduce the dependency of the

scores to the MSA-level quality (please refer to the discussion in section 3.11.1).

A method that can potentially achieve this effect is to linearly scale the sequence
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scores against their minimum and maximum so that they are in a 0-1 range. I

use Code 3 in my analysis. This code sales the scores. After scaling the scores,

the threshold 0.5 is equivalent to the threshold defined by Equation 6 for unscaled

scores. I chose to scale all the scores over using a single threshold T because scaling

made it possible to compare scores of different sequence families. At this point

the threshold selection has been completed. The inferred threshold has now been

scaled to the new absolute universal value of 0.5 which can be used statically in

downstream analysis. A z-score normalization would be another possible approach

for the task at hand. By looking at ROC performance of the these scaled scores I

evaluate the improvement obtained from this dynamic threshold selection procedure.

This method will produce false negatives when there are no nonmember sequences

in the dataset because the scaling formula will always place at least one sequence

bellow the threshold.

3.11.5 Dynamic Threshold Selection by Balancing MCC

The scaling method in the previous section only looks at minimum and maximum

scores to select a threshold. A different method that looks at all sequence scores

is tested. This method contrasts the GUIDANCE and norMD scoring methods.

The methods operates similar to my static threshold selection approach but is not

ground-truth aware.

The method is a greedy algorithm which iterates over all possible thresholds for

the two scoring methods. A total of N2 thresholds are checked, where N is the

numbers of sequences. For our dataset N2 does not exceed 2002. Let the set of

sequence scores of the first scoring method be called Subject Scores and the set of

scores of the second method the Base Scores. A threshold in the Base set is taken as

the known ground-truth for the MCC calculation (Equation 5), a threshold in the
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Subject set is taken as the prediction of member and nonmembers for TP, TN, FP,

FN counts. The results are two thresholds that lead to the maximum MCC among

all N2 thresholds.

Algorithm 1 Dynamic Threshold Selection by Balancing the MCC

scuts ← all the unique thresholds of the Subject scores set
bcuts ← all the unique thresholds of the Base scores set
maxmcc ← −1
maxmcc scut ← nothing yet
maxmcc bcut ← nothing yet
for bc in bcutts do

for sc in scuts do
predicted member ← all Subject sequences with scores > sc
predicted nonmember ← all Subject sequences with scores < sc
tp ← number of sequences in predicted member with scores > bc
tn ← number of sequences in predicted nonmember with scores < bc
fp ← number of sequences in predicted member with scores < bc
fn ← number of sequences in predicted nonmember with scores > bc
mcc ←

(tp× tn)− (fp× fn)√
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

(7)

if mcc >= maxmcc then
maxmcc ← mcc
maxmcc scut ← sc
maxmcc bcut ← bc

end if
end for

end for
return maxmcc scut, maxmcc bcut

The method iterates over all possible thresholds among the two sets of score

values produced by the two scoring methods. I arbitrary pick one of the two sets of

scores and define it as Subject Scores. The remaining set of scores gets defined as

Base Scores which I temporally assume as the ground-truth within each iteration

over a specific threshold. Having a pair of threshold and a temporally assumed

ground-truth, I can calculate the resulting TP, TN, FP, FN counts for the Sub-
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ject Scores. Using the TP, TN, FP, FN counts I compute the MCC correlation

(Equation 5). Two thresholds that lead to the maximum MCC among all pairs of

thresholds is the answer returned by the algorithm (please see Algorithm 1). The

choice of which set to define as subject scores is irrelevant because

The running time of this algorithm is bounded because for our dataset the com-

bination of all pairs of thresholds does not exceed 40, 000 (N2 for N = 200).

In my test experiments, I used the above algorithm with the following two addi-

tions: (1) MCC will normally produce values from -1 to 1, but there may be cases

with zero in the denominator and negative numbers under the square root. I handle

these cases as follows: If FP=0 and FN=0 then I take 2 as the value. If TP=0 or

FP=0 or the product under the square root is negative in MCC then -1 is used. (2)

To handle that fact that there may be more than one maximum MCC value, in the

extension to the above algorithm all co-optimal solutions are captured. The ties are

resolved by checking which threshold among several options has the largest distance

to the nearest sequence score. The final solution is the threshold with the largest

distance among the co-optimal solutions.
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4 Results and Discussion

4.1 Scores of Entire MSAs

When adding increasing amounts of nonmember sequences to the MSAs the corre-

sponding GUIDANCE and norMD scores change proportionally. Figures 3 and 4

show the scores for entire MSAs for GUIDANCE and norMD, respectively, using a

sample set of 100 MSAs from CDD with various amounts of nonmember sequences

from UniProt.

Figure 3: GUIDANCE MSA-level scores MSAs were scored with GUIDANCE using
Sample 2 of size 100 (please refer to section 3.5). Scoring was performed with
various amounts of nonmember sequences from UniProt added. In addition, the
CDD protein groups were scored without adding. Box plots of raw MSA scores are
shown.

A monotonic decline can be seen in the scores as I increase the amount of non-

members. Another conclusion of this result is that it is not straight forward to
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derive a formula that would estimate the amount of nonmember sequences from the

MSA-level scores because the decline of scores has a smaller slope at higher amounts

of nonmember sequences.

Figure 4: norMD whole MSA scores. Alignments were scored with norMD. Box
plots of raw MSA scores are shown. Details are given in the caption of Figure 3.

For norMD the pattern is less regular than the one for GUIDANCE. The slight

uptick of norMD’s MSA-level scores at 10% nonmembers can be clearly seen in the 3

samples of the experiment. Please refer to the supplements section. A more regular

decline in GUIDANCE is most likely related to the difference of the features that

norMD and GUIDANCE are measuring. norMD is sensitive to changes in column

conservation and MSAs parameters such as number of sequence. On the other

hand, GUIDANCE measures a single high-level feature, robustness of the alignment

to guide tree perturbation.
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4.2 Score Separation

To asses the ability of the scoring methods to separate member and nonmember

sequences, I plot the distribution of unnormalized scores (Figure 5). The member

and nonmember assignments of sequences are defined in the Methods section 3.2.

Figure 5: Separation of sequence-level scores. The y-axis shows the number of
sequences scored within a bin of width 0.01 for GUIDANCE and 0.00025 for norMD.
Blue bars represent the results of MSAs with 5% of nonmembers added. For visibility
reasons, the height of nonmembers was multiplied making nonmember and member
areas equal. The long tail of norMD extends beyond the plot.

The concentration of norMD scores around 0 is related to the way the sequence-

level scores are derived from the MSA-level scores, as described in section 3.4. A

sequence score of 0 means that the presence of a sequence in an MSA does not result

in a change of the MSA-level score. Nonmember sequences mostly fall on the left of

the distribution because their presence correlates with the decline of the MSA-level

score. However, in large MSAs the presence of one nonmember sequence will result

in a minor change of the whole MSA score, thus the placement will be close to zero

on the distribution plot.
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4.3 Score Separation on Families with Highly Related Mem-

bers

To evaluate the score separation on MSAs where all sequence members share rela-

tively high similarity, I subset the existing samples by taking only those sequences

that have more than 50% identity among them. Then I add nonmember sequences

and re-generate the MSAs (Please see Section 3.3).

Figure 6: Separation of norMD scores of 50% identity sequences Sample 2 subset.
Details are given in the legend of Figure 5.

When compared to the scores separation without the 50% identity subsetting

(Figure 5), both MSA scoring method produce a more tightly grouped set of scores

for member sequences (Figure 6). This is consistent with the characterization of

the twilight zone of protein sequence alignments where it was shown that pairs

of protein sequences above 30% identity produce alignments that unambiguously

detect protein homology (Rost, 1999).
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The overall effect of the 50% identity subsetting results in a better separation

between the scores than MSAs with more diverse sequences. From this observation

it is evident that liner classifier for MSA cleanup by sequence removal would perform

significantly better if more than 50% identity was present amount all sequences in

the MSA (Figure 7).

Figure 7: GUIDANCE and norMD sequence-level scores of MSAs with highly related
member sequences and 5% nonmembers. In sample 2 (please refer to section 3.5)
when highly related member sequences are retained in the MSA, the separation
of member and nonmember sequences is greater than the separation observed for
complete groups of member sequences (please refer to Figure 6).

36



4.4 Static Threshold Selection

Amount of nonmembers GUIDANCE norMD BLAST
5 % 0.399 -0.000571 4.5
10 % 0.224 -0.000395 8.5
15 % 0.357 -0.000184 6.5
20 % 0.184 -4.99e-05 8.5
25 % 0.145 -1.75e-05 10.5

Table 4: Static Thresholds Threshold values for sample 1 (section 3.5) are plotted.
“Amount of nonmembers” is the added amount of nonmember sequences. Listed are
the thresholds that were obtained from training on the GUIDANCE, norMD, and
BLAST sequence-level scoring methods were used as described in sections 3.6, 3.7,
and 3.8 respectively. The method used for static threshold selection is described in
section 3.11.1.

To explore the performance of static thresholds selection to varying amounts of

nonmember sequences in MSAs I used a ground-truth aware method for select-

ing thresholds (Table 4). I placed all sequences of one sample into one pool and

calculated MCC for all unique thresholds (Please refer to section 3.11.1). For all

three methods the thresholds has a consistent upward or downward trend along the

increasing added amount of nonmember sequences (Figure 8).

Thresholds that result in a maximum MCC in sample 1 are applied to sample 2

(please refer to section 3.5) and the true positive / negative rates are evaluated for

correctness of sequence membership identification. It is observed that true positive

/ negative rates remain similar across samples. In Sample 1, the highest number of

MSAs in the top 1% TPR and top 1% TNR was observed for the BLAST methods.

The MCC based method chooses threshold values that increase for norMD at

larger amounts of nonmember sequences, but for GUIDANCE the threshold de-

creases at larger amounts of nonmembers (Table 4). From this result one can con-

clude that the optimum separation threshold of scores for related and nonmember
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sequences moves for norMD toward higher scores at larger amounts of nonmembers

while for GUIDANCE the optimum separation value shows a trend toward lower

scores. This conclusion is also supported by the score separation density plots (Fig-

ure 5) and the box plots for MSA-level scores (Figure 3). This explains why at a

given static threshold the count of false positives will increase for norMD for larger

amounts of nonmembers but it shows the opposite trend for GUIDANCE where the

count of false negatives increases at larger amounts of added nonmembers (Figure 9).

Figure 8: Static Thresholds Added amounts of nonmember sequences are show in
percent on the horizontal axis. Threshold values for sample 1, 2, and 3 are shown
on the vertical axis. The color and width of the lines indicates which sample the
value was obtained from. Details are given in legend of Table 4.
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Figure 9: Counts of mistakes in static MCC threshold selection Static thresholds
from Table 4 are applied to different amounts of added nonmember sequences in
sample 2 (please refer to section 3.5). Red columns (labeled FP) show counts of
false negatives. Blue columns (labeled FN) show counts of false positives. The
outer horizontal axis shows three sequence-level scoring methods BLAST, norMD,
and GUIDANCE. The outer vertical axis (labels on the right of each bar plot) the
nonmember amount used to lookup the threshold in Table 4. The inner horizontal
axises (labels on top) show the nonmember amount in the test random samples.
The values on the horizontal axis are counts of mistakes (FP or FN counts).
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4.5 Dynamic Threshold by Calibration of Two Scoring Meth-

ods

When studying the behavior of scoring methods, I sorted by value the results of

the norMD (section 3.7) and GUIDANCE (section 3.6) sequence-level scores for

visual inspection. I generated one list for each sample (please refer to section 3.5).

I organized the lists by the scoring method and the amount of added nonmembers

(please refer to section 3.2). By having the member and nonmember sequences

labeled alongside the sorted lists of score values it was clear from visual inspection

of the lists that, with few mistakes, the scoring methods are able to separate the

member and nonmember sequences. This ability is also evident from ROC (e.g.

Figure 14) and density plots (e.g. Figure 5).

However, the point where the separation occurred was different for different

sequence families. To find the point of separation automatically, I developed several

approaches. One of the approaches was a heuristic that can select thresholds without

the knowledge of the ground-truth. It uses norMD and GUIDANCE and finds two

thresholds that provide the highest MCC between the two sets of scores (please

refer to section 3.11.5). I evaluated the performance of my heuristic and observed

that it makes less mistakes than the ground-truth aware static threshold selection

(section 3.11.1) as shown in Figure 10 and Figure 11.
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Figure 10: Dynamic threshold selection. Using both GUIDANCE and norMD
sequence-level scores, our algorithm predicts thresholds for each MSA . The cor-
rectness of the threshold is evaluated using the sequences scores of both methods.
The vertical axis shows the number of MSAs of Sample 2 for each TPR/TNR bin
of size 0.01.

Figure 11: Performance of the static threshold selection method. Static thresholds
that maximized MCC for Sample 1 were applied to Sample 2 per-sequence scores.
On the vertical axis count of MSAs of Sample 2 are shown for each TPR/TNR bin
of size 0.01.
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4.6 Dynamic Threshold Selection by Min/Max Scaling

In previous section I discussed evaluating the dynamic threshold selection heuris-

tic. In addition, I also found a much simpler method which works surprisingly well.

This method is to linearly scale the sequence scores so a 0-1 range as defined in

section 3.11.4. For 5% added nonmembers, dynamic threshold selection by scaling

achieves a surprisingly good separation between the scores of member and non-

member sequences. The separation of scores before and after scaling is shown in

Figure 12. In other random samples (not shown) and for 10%, 15%, 20%, 25% added

nonmembers (not shown) I observed similar improvements in score separation. By

design this method will produce false negatives when there are no nonmember se-

quences in the dataset because the scaling will always place at least one sequence

bellow the threshold.

Figure 12: Dynamic threshold selection by scaling. The GUIDANCE and norMD
sequence-level scores are plotted on the same plane for Sample 2 with 5% added
nonmember sequences. The raw scores on the left show only limited separation. The
scaled scores on the right show a much better separation with a defined threshold
for separating members from nonmembers (the diagonal from [1,0] to [0,1]).
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4.7 Scoring with BLAST

Figure 13: Comparison of BLAST and combined GUIDANCE+norMD scores. The
scores were calibrated using the Perfect-Balance approach for dynamic threshold
selection on MSA sample 1 (please refer to section 3.5) with 5% of nonmembers.
The BLAST-based sequence level scores are on the horizontal axis. The combined
norMD and GUIDANCE calibrated scores are on the vertical axis. Each darker
circle is a member sequences. Each lighter triangle is a nonmember.

I compare the all-to-all pairwise BLAST scoring method with the combined GUID-

ANCE+norMD scoring method (please see Figure 13). Scores for both methods were

normalized with a ground-truth aware named Perfect-Balance dynamic threshold se-

lection. For all samples, BLAST (Altschul et al., 1990) and GUIDANCE+norMD

scoring make only a small number of prediction mistakes. For sample 1, out of 6,041

predictions both methods had 12 false assignments (11 false negatives and 1 false

positive). Interestingly, with the exception of single cases, all mistakes are unique to

BLAST or the MSA scoring methods. Only 1 common false positive and 2 common

false negatives were observed.
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4.8 Comparing Scoring Methods with ROCs

In order to compare the performances of classifiers at different sensitivity / specificity

levels, I superimpose ROC curves on the same plot. I then compare the AUC (area

under the curve) values for a number of approaches to cleanup sequences families

from nonmembers. Tests with raw, scaled, and Perfect-Balance norMD variants

showed lower AUC values than the corresponding variations of the BLAST and

GUIDANCE methods. All-to-all pairwise alignment BLAST method has same or

better performance at detecting nonmember sequences than the performance of all

tested approaches based on raw MSA sequence-level scores (shown in Figure 14).
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Figure 14: ROC for norMD, GUIDANCE, and BLAST without threshold selection.
All sequence-level scores of Sample 1 with 5% nonmember sequences were combinded
in one pool. All unique thresholds in this pool were evaluated to generate the ROC.
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Name Acronym in Figures Section
Raw GUIDANCE rG 3.6
Raw norMD rN 3.7
Raw BLAST rB 3.8
Scaled GUIDANACE sG 3.11.4
Scaled norMD sN 3.11.4
Scaled BLAST sB 3.11.4
Perfect-Balance GUIDANACE pG 3.11.3
Perfect-Balance” norMD pN 3.11.3
Perfect-Balance” BLAST pB 3.11.3

Table 5: Acronyms of Test Approaches. A list of all approaches that were studied
in this project. Acronyms are provided as they are used in Figures 15 and 16. In
addition, sections describing the methods are provided.

All-to-all pairwise alignment BLAST method also performed better at detecting

nonmember sequences than the combined raw MSA sequence-level scores (shown in

Figure 15). This trend is persistent across all tested amounts of added nonmember

sequences (5%, 10%, 15%, 20%, and 25%). This a surprising finding because BLAST

is only aligning pairs of sequences so it is able to use the rich information that

is available to the MSA scoring methods when families of multiple sequences are

aligned (please refer to section 1.1).
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Figure 15: Comparison of Area Under the ROC curve (AUC) for different methods
ROC curves were generated for various scoring methods and combined versions of
the scores. Areas under the curves of the ROC are show for all amounts of added
nonmember sequences. For abbreviations “r”, “s”, “p” denote raw, scaled, and
perfect respectfully. “G”, “N”, and “B” denote GUIDANCE, norMD, and BLAST
respectfully. “+” indicates combined classification. Details are provided in Table 4.8
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4.9 BLAST-based and GUIDANCE-based cleanup methods

GUIDANCE sequence-level scores combined with my method of dynamic threshold

by scaling (please refer to section 3.11.4) had significantly better performance of

identifying nonmember sequences than the BLAST-based method (please refer to

section 3.8). As can be seen in Figure 16, all three samples that were tested (please

refer to section 3.5) had higher AUC values for my improved method (shown as scaled

GUIDANCE ) then for the all-to-all pairwise alignment BLAST method (shown as

raw BLAST ). This trend is persistent across all tested amounts of added nonmember

sequences (5%, 10%, 15%, 20%, and 25%) as can be seen in Figure 15.

Figure 16: AUC Zoom-ins for best results from Figure 15. Areas under the ROC
curve are shown for 9 methods that gave the best AUC performance for sequence
families with 5% of nonmember sequences. Details are given in the caption of
Figure 15.
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5 Conclusions

An important finding of this study is that the MSA scoring methods considered here

- norMD and GUIDANCE - show only moderate to poor performance in identifying

nonmember contaminations in protein families. They are outperformed by simple

all-against-all BLAST comparisons. This could be due to the fact that it is easier

to generate pairwise alignments resulting in robust scores, while MSAs are much

more complex. BLAST is highly optimized for homology detection between pairs of

sequences and has a robust threshold systems (the e-values) that can be set statically

to separate two non-homologous sequences. In contrast to this, the MSA scoring

methods depend on the quality of the MSAs. If an MSA is of poor quality for both

member and nonmember sequences then it is expected to misclassify them more

often than a pairwise rescoring approach with BLAST. This aspect greatly reduces

the effectiveness of static MSA scoring methods for removing nonmember sequences.

While the BLAST-based cleanup method consistently outperformed the other

methods when using static thresholding on raw and combined scores, I was able to

improve the GUIDANCE method by implemening a dynamic thresholding approach

that exceeded the performance of the BLAST method. This improved GUIDANCE

approach is now my tool of choice for revising MSAs in applied research projects

where the identifiction of nonmembers is an important step in modeling protein

families.
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6 Contributions

This project makes the following contributions to the field of sequence family mod-

eling through MSA quality assessment: (1) I developed and applied a framework for

automated evaluation and comparison of sequence-level-capable MSA scoring meth-

ods. (2) I discovered that sequence cleanup techniques based on GUIDANCE and

norMD are outperformed a BLAST-based method. (3) I developed a modified se-

quence family cleanup approach that outperforms the BLAST-based approach. The

classifier that achieving this performance is a dynamic threshold selection technique

applied to the sequence-level scores from GUIDANCE.
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7 Future work

It would be interesting to try to adapt a norMD variant assisted with a neighbor-

joining generated phylogeny as recommended by Thompson et al. (2001). The use

of the NJ assisted norMD method is outside of the scope of this project because

this method is unable to provide per-sequence scores. I was not able to include the

NJ assisted norMD method in the comparisons because sequence-level scores are

required to perform the score separation, threshold selection, and ROC analysis that

were done in this project. The second limitation of the NJ assisted norMD method

is the requirement of a cutoff value to be specified by the user. Automatic threshold

is difficult because no information is provided by the NJ assisted norMD method

without an a priory specification of the threshold. To overcome these limitations

I propose extracting the sequence-level scores from the NJ assisted norMD method

via the following procedure:

1. The NJ tree assisted norMD sequence removal method will be applied at

various thresholds. Some number X will be added to the whole MSA NorMD

score as the next threshold to be tested. I do not yet know how to assign

values to X but the solution should be possible.

2. Run the NJ tree assisted sequence removal method. As the cutoff parameter

supply the modified norMD score (Equation 8) of entire MSA plus X.

norMD =
MD −GAPCOST

MaxMD
(8)

3. Increment X so that only one sequence will be removed. Assign the used

cutoff to the removed sequence. Repeat the incremental and removal until all

sequences are scored.
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8 Implementation

Software was designed, tested, debugged, and refined to run all experiments and

analysis in this project. In addition, housekeeping procedures were developed to:

preprocess data into usable datasets, randomly sample data, apply MSA scoring

methods to the datasets, and collect scores of all runs into uniform tables. “Trials”

isolated data of particular set of upstream Uniprot and CDD versions.

All code was organized into individual steps which are executed on the command

line. These utilities automatically determine what is the most up to date trial

so no configuration is required. Each step is preconfigured for the correct set of

local upstreams (other steps that are executed prior to the current step). On the

command line the utilities will ask for the sample size as that is the only parameter

that connects the whole run into a single pipeline. Smaller sample sizes can be used

to test the software.

Three programming languages were used as best fits for various types of analysis:

GNU Bourne-Again SHell (Bash) 70%, R 29%, and Ruby 1%.

Requirements Included Packages
GNU Linux environment MAFFT v6.857 (Katoh et al., 2002)
R (R Development Core Team, 2011) GUIDANCE v1.1 (Penn et al., 2010)
Ruby norMD 1 3 (Thompson et al., 2001)
Bioperl (needed by GUIDANCE) GNU Parallel v20110822 (Tange, 2011)
dos2unix (needed by GUIDANCE) bio3d 1.1-3 (Grant et al., 2006)
ROCR (Sing et al., 2005) (R package)
ggplot2 (Wickham, 2009) (R package)

Table 6: External and Internal dependencies

Tested on Debian GNU/Linux 6.0 (Lenny). One command does the complete

build of all necessary components. Simply type: make. Should take about 4 minutes.

Installs everything in <project>/opt - the local project directory.
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9 Availability

• Code https://github.com/alevchuk/ms

• Data http://biocluster.ucr.edu/projects/GROUPBALANCER/gbdata-1.0

10 Supplements

Supplements are available at: http://biocluster.ucr.edu/~alevchuk/thesis-supplements
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