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Mechanisms and Minimization of False Discovery
of Metabolic Bioorthogonal Noncanonical

Amino Acid Proteomics

Chao Liu,1,* Nathan Wong,1,* Etsuko Watanabe,1,* William Hou,1 Leonardo Biral,1 Jonalyn DeCastro,2

Melod Mehdipour,1 Kiana Aran,2 Michael J. Conboy,1 and Irina M. Conboy3

Abstract

Metabolic proteomics has been widely used to characterize dynamic protein networks in many areas of
biomedicine, including in the arena of tissue aging and rejuvenation. Bioorthogonal noncanonical amino
acid tagging (BONCAT) is based on mutant methionine-tRNA synthases (MetRS) that incorporates met-
abolic tags, for example, azidonorleucine [ANL], into newly synthesized proteins. BONCAT revolutionizes
metabolic proteomics, because mutant MetRS transgene allows one to identify cell type-specific proteomes
in mixed biological environments. This is not possible with other methods, such as stable isotope labeling
with amino acids in cell culture, isobaric tags for relative and absolute quantitation and tandem mass tags. At
the same time, an inherent weakness of BONCAT is that after click chemistry-based enrichment, all
identified proteins are assumed to have been metabolically tagged, but there is no confirmation in mass
spectrometry data that only tagged proteins are detected. As we show here, such assumption is incorrect and
accurate negative controls uncover a surprisingly high degree of false positives in BONCAT proteomics. We
show not only how to reveal the false discovery and thus improve the accuracy of the analyses and
conclusions but also approaches for avoiding it through minimizing nonspecific detection of biotin, biotin-
independent direct detection of metabolic tags, and improvement of signal to noise ratio through machine
learning algorithms.

Keywords: bioorthogonal, metabolic, proteomics, mass spectrometry, antibody array, false positive, machine
learning, biotinylated proteins

Introduction

Metabolic proteomics revolutionized biomedi-

cine, by enabling the shift from static analyses of
proteomes to monitoring their dynamics. Stable isotope la-
beling combined with mass spectrometry (MS) analysis is
a powerful technology, which allows one to precisely
measure changes in protein levels over time and between
different treatments.1 However, they do not reveal the
proteins that are produced just by one cell type in an or-

ganism, or the proteins that are produced by young animal
in heterochronic parabiosis because the entire proteome is
metabolically labeled.

Bioorthogonal noncanonical amino acid tagging (BONCAT)
enables such cell-fate or age-specific detection of proteomes in
mixed biological environments and at a specific experimental
time. Moreover, coupling the downstream technologies,
BONCAT MS and BONCAT antibody arrays have demon-
strated the potential for generating important data on cell-specific
and age-specific changes in de-novo synthesized proteomes.2,3
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BONCAT revolutionizes metabolic proteomics, because
mutant methionine-tRNA synthases (MetRS) transgene al-
lows one to identify cell-type-specific proteomes in mixed
biological environments.4 This is not possible with other
methods, such as stable isotope labeling with amino acids in
cell culture, isobaric tags for relative and absolute quanti-
tation, and tandem mass tags.5,6 In BONCAT-MS, the tag-
ged proteome is purified with clickable dibenzocyclooctyne
(DBCO) beads or by biotin-affinity, after azide-alkyne li-
gation (‘‘click chemistry’’) between biotin and the amino
acid analog’s (azidonorleucine [ANL]/azidohomoalanine
[AHA]/homopropargylglycine) azide moiety.3,7,8

BONCAT-MS has been used to identify the cell-type-
specific proteins, exemplified by the proteome of hippo-
campal excitatory neuron, as well as protein determinants of
neural regeneration, spatial memory formation and age-
specific proteomes in settings of heterochronic parabio-
sis.9–14 Alternative to MS methods developed by us and
recently adapted by others are antibody arrays that use a
biotin Click instead of protein biotinylation.2,15,16

It has been assumed that all proteins after affinity puri-
fication are tagged with the noncanonical amino acids.
However, there is no confirmation in the BONCAT-MS data
that only tagged proteins are detected, and it is not feasible
to profile ANL/AHA tagged proteins directly, because the
salt-adducts of methionine make its molecular weight very
similar to the tag (Supplementary Fig. S1a).14 In MS, the
negative controls of ANL administered to wild-type (WT)
mice or cells are lacking and the results do not clearly
discern the degree of nonspecific binding of unlabeled
proteins to the DBCO, or avidin, etc. affinity columns.9,17,18

An unknown degree of false positives complicates the
analysis, reducing reproducibility and introducing potentiating
erroneous conclusions and interpretations. The approaches to
enhance the accuracy of BONCAT-MS results start from sta-
tistical analysis and algorithmic improvement that assume that
the data themselves are on the metabolically tagged proteins,
for example, ignoring the possibility that the results are already
contaminated by the noise of untagged proteins.19–21

In this work, we focused on revealing and minimizing the
false discovery of BONCAT-MS and BONCAT-antibody
array. Our results uncover and characterize problematic
false positives of BONCAT-MS, for example, broad classes
of proteins could be misinterpreted as being tagged and
show that this false discovery rate is not affected by protein
molecular weight or methionine content, but that protein
abundance might increase it. Our data show that there are
also false positives in BONCAT-antibody arrays, which are
due to physiologically biotinylated proteins and can be re-
duced with biochemical approaches.

Moreover, we describe the antibody array application
of biotin-independent direct detection of ANL/AHA-
tagged proteome (termed Cy3-direct BONCAT), which
eliminates the false positives and greatly increases the
resolution, and dynamic range of the metabolic pro-
teomics. Finally, we developed a novel computational
image segmentation platform, which reduces the artifacts
and increases the sensitivity of comparative proteomics.
Together these technologies enable accurate studies
with capacity to distinguish even subtle proteome chan-
ges, as needed for early diagnosis of pathology, the de-
tection of age-imposed, genetically, or environmentally

induced alterations, and for monitoring responses to
treatments in clinic or to various experimental conditions
in the laboratory.

Materials and Methods

Mouse genotyping

All procedures were performed in accordance with the
administrative panel of the Office of Laboratory Animal
Care. The protocol was approved by the UC Berkeley An-
imal Care and Use Committee. Genotyping was performed
as previously described.2 Genomic DNA from ear clips was
extracted by using the digestion buffer (100 mM Tris-HCl
(pH 8.5), 5 mM ethylenediaminetetraacetic acid (EDTA),
0.2% sodium dodecyl sulphate (SDS), 200 mM NaCl,
100 lg/mL proteinase K) for 1 hour at 95�C. Then DNA
samples were precipitated with isopropanol and then dis-
solved in Tris-EDTA buffer.

PCR conditions consisted of denaturing at 95�C for 5
minutes; 30 cycles at 95�C for 30 seconds, 60�C for 30
seconds, and 72�C for 30 seconds; with a final extension of
72�C for 5 minutes. PCR products and DNA Ladder
(N0467S; New England BioLabs, Ipswich, MA) were sep-
arated on an 1.5% agarose gel stained with ethidium bro-
mide for 50 minutes at 100 V. Gel images were acquired
using a ChemiDoc� XRS imaging system (Bio-Rad La-
boratories, Hercules, CA). Primer synthesis was by Elim
Biopharmaceuticals Inc. (Hayward, CA).

Click-Western blot

To identify the ANL-labeled proteins, Click-western
blotting was performed. ANL was purchased from Jena
Biosciences (Cat. No. CLK-AA009). ANL was in-
traperitoneal (IP) injected into mice at the indicated dose.
Blood samples were collected by heart puncture. The blood
was allowed to clot for 30 minutes at room temperature
before centrifugation at 5000 g for 5 minutes, then blood
serum was aliquoted and stored at -80�C. For in vitro ex-
periment, Primary mouse tail fibroblasts were derived from
MetRSL274G mice or C57/B6 mice. In brief, tail snips were
incubated for 0.5 minutes in 70% ethanol, then minced and
digested with collagenase for 2 hours at 37�C. The tissue
was filtered through a 100 lm cell strainer (BD Falcon�
352360) and washed with Dulbecco’s modified Eagle’s
medium (DMEM) (D5796; Sigma-Aldrich).

The cell pellets were resuspended, cultured, and expanded
in DMEM containing 10% Bovine Growth Serum (BGS), 1%
penicillin-streptomycin (PS) at 37�C with 5% carbon dioxide
(CO2), and cells were passaged with 0.05% trypsin when
culture reaches around 70%–80% confluency (days 6–7 of
culture). The second passage of fibroblasts was used in this
experiment. The cells were treated with 2 mM ANL (6-zaido-
L-lycine HCL; Cat. No. CLK-AA009-500; Jena Bioscience
GmbH) for 2 days, and the medium was refreshed daily.

Serum and fibroblasts were clicked with biotin labeled
alkyne according to manufacturer’s protocol (Click-iT�

Protein Reaction Buffer Kit, Molecular Probes C10276,
Thermo Fisher Scientific). The Click-iT reaction was carried
out for 20 minutes at room temperature and then the proteins
were precipitated from the reaction mixture by methanol/
chloroform following the manufacturer’s instruction.
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After air dry, the resulting pellet was solubilized in
Laemmli buffer and boiled at 100�C for 10 minutes, then
separated through SDS-polyacrylamide gel electrophoresis
(PAGE) on 4%–20% Mini-PROTEAN TGX Precast Gels
(Cat. No. 456-1095; Bio-Rad). Transferred polyvinylidene
difluoride membranes were blocked with AdvanBlock�-PF
Protein-Free Blocking solution (R-03023-D20; Advansta,
San Jose, CA) and Peroxidase Labeled Streptavidin (474-
3000; KPL, Gaithersburg, MD) were applied, bands were
visualized using the WesternBright� ECL (Cat. No. K-
12045-D50; Advansta) following manufacturer’s protocols.

BONCAT-mass spectrometry

For in vivo experiment, ANL was I.P. injected into
MetRS mice (6 months old) or C57/B6 mice (6 months old)
for 7 days at 0.2 mmol/kg. Protein extraction was carried
out by homogenizing liver samples in cell lysis buffer (Cat.
No. 90408; Thermo Scientific) with Protease Inhibitor
(Halt� Protease and Phosphatase Inhibitor Cocktail), then
different methods (Methods 1–4, Supplementary Data)
were used for protein purification, reduction, alkylation,
and digestion.

For in vitro experiments, primary mouse tail fibroblasts were
derived from MetRSL274G mice or C57/B6 mice. In brief, tail
snips were incubated for 0.5 minutes in 70% ethanol, then
minced and digested with collagenase for 2 hours at 37�C. The
tissue was filtered through a 100lm cell strainer (BD Falcon
352360) and washed with DMEM (D5796; Sigma-Aldrich).
The cell pellets were resuspended, cultured, and expanded in
DMEM containing 10% BGS, 1% PS at 37�C with 5% CO2,
and cells passaged at 70%–80% confluency with 0.05% trypsin.
The cells were treated with 2 mM ANL (6-zaido-L-lycine HCL;
Cat. No. CLK-AA009-500; Jena Bioscience GmbH) for 3 days,
and the medium was refreshed daily.

Protein extraction was carried out by homogenizing cells in
cell lysis buffer (Cat. No. 1863073; Thermo Scientific) with
Protease Inhibitor (Halt Protease and Phosphatase Inhibitor
Cocktail), then 10 mM dithiothreitol (DTT; SC-29089; Santa
Cruz Biotechnology) was added to 1 mL homogenates and
kept at room temperature for 20 minutes, following with
100 mM chloroacetamide (Cat. No. C0267; Sigma-Aldrich) at
room temperature for 30 minutes in the dark. Twenty-four
micromolar sulfo-DBCO-biotin (Cat. No. 760706; Sigma-
Aldrich) was added to the lysates with 15 minutes shaking at
room temperature. Then 100 mM ANL was added to quench
the reaction for 30 minutes at room temperature.

The biotinylated protein samples were incubated with
Streptavidin Magnetic Beads (Cat. No. S1420S; New
England BioLabs) at room temperature for 1 hour with
mixing. Beads were collected with a magnetic stand, then
beads were washed five times with IP-MS wash buffer
(Cat. Nos. 1863056 and 1863058; Thermo Scientific),
after elution, the samples were dried in a speed vacuum
concentrator. Then 100 lL 6 M freshly made urea solu-
tion was added to the sample and vortex to denature
protein, followed by adding 2 lL 500 mM DTT for 30
minutes at 60�C. Solution was cooled before adding 6 lL
500 mM iodoacetamide (IAA) for 45 minutes in the dark
at room temperature. For digestion, 100 ng trypsin/LysC
(V5073; Promega) was added and incubated at 37�C
overnight.

Mass spectral data were acquired by the QB3/Chemistry
Mass Spectrometry Facility at the University of California,
Berkeley.

Data analysis of BONCAT-MS

Five different previously published methods of BONCAT
MS were tested: Methods 1–4 compared proteins found
in vivo in ANL-treated B6 mice with those found in ANL-
treated MetRS mice and Method 5 compared proteins found
in vitro in ANL-treated B6 fibroblasts with those found in
ANL-treated MetRS fibroblasts. The ANL-treated C57/B6
mice and fibroblasts are referred to as the negative control
and the ANL-treated MetRS mice and fibroblasts are re-
ferred to as the experimental group. Every protein was an-
alyzed in six replicates. The Normal Spectral Count (NSC)
values of each replicate were given. The p-value of the
statistical difference between the NSC values of the exper-
imental group and the negative control group were calcu-
lated using a two-tailed heteroscedastic t-test.

For each protein analyzed, the mean was taken of the
NSC values of the experimental group to yield an Average
Spectral Count Value (ASCV) of the experimental group.
The same was done with the negative control’s NSC values.
Proteins with a negative control ASCV equal to 0, an ex-
perimental group ASCV >0, and p < 0.05 (and separately,
p < 0.01) were assigned to the experimental group in Venn
diagrams. Proteins with a negative control ASCV >0, an
experimental group ASCV equal to 0, and p < 0.05 (and
separately, p < 0.01) were assigned to the false positive
group in Venn diagrams. Proteins that were found in both
the negative control and the experimental groups with above
determinations of p < 0.05 (and separately, p < 0.01) were
shown in the Venn diagrams’ overlap.

The overlapping proteins (between the negative control and
the experimental BONCAT MS) were subsequently analyzed,
as described below. It is important to note that the magnitude
of false-positive discovery in BONCAT MS supersedes just
these overlapping protein pools, for example, there were
hundreds to thousands false positive putatively ANL-tagged
proteins in the negative control C57/B6 tissues and cells.

In the false-positive group with Venn diagrams overlays
between the MetRSL274G and C57.B6, we found 162 pep-
tides that correspond to 118 genes; these contributed to the
false discovery in all methods of BONCAT tag-enrichment
before MS. Gene Ontology (GO) open-source Enrichment
Tool was used to determine the Biological Processes as-
cribed to these 118 genes, with the 10 largest Fold Enrich-
ment values being generated using the Python data science
library. The Molecular Function and the Cellular Compo-
nent were also found for these common false positives.

To examine whether there is a preference in false-positive
discovery for larger proteins and/or those with more methionine
residues, 162 peptides were profiled through the UniProt data-
base and by FASTA for their molecular weights and methionine
content (as a percent of the amino acid chain). The FASTA
sequences of these proteins were inputted into BlastKOALA for
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
The molecular weight and methionine content were also com-
pared between the 162 common false-positive proteins and all
BONCAT MS-yielded proteins by UniProtKB, using an itera-
tive algorithm. The molecular weight and methionine content
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data for all proteins were aggregated and compared to the
molecular weight and methionine content data of the common
false-positive 162 proteins, using histograms (Molecular
weight—Fig. 1d, Methionine content—Fig. 1e).

Finally, we analyzed the degree of false-positive discov-
ery that comes from tissue abundant proteins. The liver
protein database from PAXdb lists the 460 proteins most
abundant in the liver. For Methods 1–5, we determined how
many of the false-positive proteins of each method were
present in the top 460 most abundant liver proteins; and this
process was repeated with the 162 commonly found false-
positive proteins (Fig. 1f).

BONCAT antibody array

Antibody arrays (Mouse L308 Array; RayBiotech AAM-
BLG-1-2) were used to profile the proteins circulating from
mouse samples. The samples were run on three different
arrays. The experiment was performed by following by
manufacturer’s protocol with modifications below. The
mean values for each of the 308 proteins were compared

between the mutant and the WT results for all proteins; and
those found to be elevated by twofold in the mutant with
p < 0.05 were considered to be significant.

Heart tissue was clashed using grinder using liquid Ni-
trogen for 3 minutes. Then tissue was homogenized from
heart tissues with Lysis buffer (50 mM Tris-HCl, pH 8.0,
150 mM NaCl, 1% Triton X-100, 0.5% Sodium Deox-
ycholate, with protease inhibitor) using grinder. The protein
extracted was homogenized using homogenizer for 2 min-
utes. Proteins (100 lg) were clicked with biotin labeled al-
kyne as indicated above with fresh Click reagents.

After the methanol precipitation, precipitated protein
was dissolved in Lysis buffer with 0.2% TritonX-100 and
3M Urea (Protein solution 1). After centrifuge, the pro-
tein Ppt was again dissolved with Formic acid and this
solution was mixed with protein solution 1. The total
protein solution was dissolved again with sonication
completely. The bicinchoninic acid assay analysis was used
to quantify the clicked product. These protein solutions were
dialyzed with 1 · phosphate buffered saline with 0.2% Tri-
ton X-100 and 0.1% Glycerol for overnight. After dialysis,

FIG. 1. False-positive discovery of BONCAT MS. (a) The schematics of the negative control of ANL-tagging of the
proteome in vivo, and detection by BONCAT MS in C57.B6 tissues that do not express MetRSL274G. (b) Hundreds to
thousands of false positives are revealed ( p < 0.05 MS threshold), using various published methods of affinity-purification of
metabolically tagged proteins and subsequent BONCAT MS. (c) Click western on MetRSL274G and C57.B6 fibroblasts that
were tagged with ANL. Clear signal to noise is detected, with some expected background in the C57.B6 negative control
cells. (d) Histograms of molecular weight and the methionine content for the 162 false-positive proteins that are shared
between the published Methods 1–5, and all false positives ( p < 0.01). (e) Stacked bar chart of false-positive proteins in each
method and the 162 shared false-positive proteins. Percent of the top 460 most abundant mouse proteins—yellow, percent of
the top 460 most abundant mouse liver proteins—orange, other proteins—blue (***p < 0.01). ANL, azidonorleucine;
BONCAT, bioorthogonal noncanonical amino acid tagging; DBCO, dibenzocyclooctyne; HRP, horseradish peroxidase;
MetRS, methionine-tRNA synthases; MS, mass spectrometry.
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the protein solution was again solubilized using sonication
and also pH was adjusted to pH 8.5 with 2M Tris to dissolve
the precipitation.

The protein solution was analyzed using Click western
blot and after confirmation of the Click reaction, the arrays
were blocked with blocking solution overnight. Array was
incubated with clicked protein (33 lg), washed and detected
with Cy3 labeled streptavidin (SA), as recommended by the
manufacturer. Arrays were scanned using genePix 4000B
scanner (Molecular Devices, Sunnyvale, CA) at 532 nm.

Feature extraction was done using genePixpro6.1 software
(Molecular Devices). The normalization method Opening of
GenePix software was used to subtract the fluorescence back-
ground, after which, for each protein, duplicate spots on each
array were averaged, local background fluorescence was sub-
tracted, and resulting fluorescence signal was normalized by the
internal positive controls on the arrays. Average signals from all
4 arrays (4 experiments for positive and negative samples) were
set to 1.

Molecular weight and methionine content analysis

Text files containing the primary data were processed using
Microsoft Excel. Each of the 644 spots on the array slide
represents an antibody ligand site, and each antibody has a
duplicate, summing up to a total of 308 antibody sites that bind
uniquely to a protein. First, each protein value was divided by
the geometric mean of the Total Intensity of Array-built neg-
ative controls. Then, these values were averaged by their array
duplicates and further normalized, as geometric mean of Array-
built Positive 2 values. These normalized by assay internal
negative and positive controls data were then used for com-
paring the protein expression levels between the cohorts.

We selected the proteins with a normalized fold change
>2 and a p-value of <0.01 from the two-tailed Student’s
t-test, and looked up their molecular weights and amino acid
sequences on UniProt database. With this information, we
used GraphPad Prism (version 8.4.3, San Diego), normal-
ized the molecular weight, and calculated methionine con-
tent level separately by setting the maximum value as 100%
and the minimum value as 0%, and presented in frequency
histograms and pie diagrams.

Streptavidin magnetic beads treatment

Streptavidin magnetic beads (S1420S; New England
Biolabs) were washed by lysis buffer for three times and
then after the removal of buffer, protein lysis solution was
mixed together and rotated for 1 hour at room temperature.
After purification of biotin labeled proteins, using magnetic
stands, the SA beads were removed. For isolation of biotin-
labeled proteins, beads were boiled with 2 · SDS-sample
buffer for 5 min for 95�C.

In-gel detection of newly synthesized cell proteome

To verify the feasibility of Cy3-direct method, we detected
ANL-labeled proteins by conjugation to Cy3-Alkyne and sub-
sequent SDS/PAGE–in-gel fluorescence scanning. MetRSL274G

or C57BL/6 mouse myoblast were treated with 2 mM ANL for 4
days. Cells were washed with PBS for three times and lysed with
radioimmunoprecipitation assay (RIPA) buffer and protease
inhibitor cocktail (Thermo Fisher Scientific). Lysates collected

were analyzed for protein concentration by BCA assay. Then, a
click chemistry reaction was performed using the Click-iT
Protein Reaction Buffer Kit (C10276; Thermo Fisher Scientific)
to bind the protein with Cy3-alkyne following manufacturer’s
instructions. After separation by SDS-PAGE, gel images were
acquired using Typhoon FLA 9500 (GE Healthcare).

Cy3-direct antibody array

Myoblasts were treated/untreated with 2 mM ANL for
4 days. The cells were lysed with RIPA buffer. Then, cell
lysate was reacted with biotin-alkyne using the Click-iT
Protein Reaction Buffer Kit (Cat. No. C10276; Thermo
Fisher Scientific) following the manufacturer’s protocol, and
dialysis against PBS buffer were performed twice afterward.
The array slides were blocked in blocking buffer at room
temperature for 1 hour. After aspirating the blocking buffer,
the sample is placed on each subarray and incubated at 4�C
for 16 hours with gentle shaking. The array slides were then
washed with washing buffer.

After washing, the slides were dried in the hood for 1 hour
and then the signals were detected using genePix 4000B
scanner (Molecular Devices) at 532 nm. To show the positive
spots in the array slides after washing, 1· Cy3-conjugated SA
supplied in the Antibody Array kit was added to each subarray
and incubated at room temperature for 2 hours with gentle
shaking. After washing, the slides were dried in the hood for
1 hour and then the signals were detected using genePix
4000B scanner (Molecular Devices) at 532 nm.

K-means multilevel thresholding/Otsu thresholding

Otsu’s method for image thresholding has the objective of
minimizing intraclass variance. This can be expressed
mathematically as minimizing the variance contained within
the filters (cluster centers).

r2 � x(t)¼x0(t) � r2
0(t)þx1(t) � r2

1(t)

x0 and x1 are the probabilities of 2 classes separated by
threshold t. r0 and r1 are the variances of these 2 classes.

x0(t)¼ +
t� 1

i¼ 0

p(i)

x1(t)¼ +
t� 1

i¼ 0

p(i)

Objective of k-means (minimize J):

J¼ +
k

j¼ 1

+
n2Cj

(xn�lj)
2

r2
x¼ +

M

j¼ 1

+
tj

i¼ tj� 1 þ 1

(i� lj)
2pi

Supplementary Figure S8c shows the raw images parsed
with just the green channel, and Supplementary Figure S8d
shows the sample output of the k-means intensity threshold
segmentation.22
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Machine learning applied to image segmentation filters
(trainable segmentation)

First, we will discuss the procedure used to process the
raw antibody array image.

1. Top and left padding is automatically computed based on
the distance from the top and bottom to the first significant
well (which is defined after k-means quantization).

2. Around 644 40 · 40 patches are obtained by applying a
40 · 40 identity kernel with a stride of 40.

3. For each 40 · 40 patch, apply standard image seg-
mentation filters, such as scale-invariant feature
transform, to compute feature the image.

4. Split the entire dataset into 80/20 for training/test (with
random shuffling).

5. If doing trainable segmentation: Flatten each 40 · 40
patch into a 1600-size 1-dimension vector, and apply a
classification algorithm (e.g., random forest) to classify
whether each pixel is considered signal or background.

Using Python-skimage, pixelwise features are computed,
such as Gaussian blurring, Sobel filters, Hessian, and Dif-
ference of Gaussians.

These pixelwise features are then used to train a vanilla
classifier, such as random forest (50 trees, depth of 2). In
this random forest classifier, we seek to minimize the gini
impurity between our labels (from the ground truth mask)
and projected inference in each tree of the forest. The
sample output of the trainable segmentation pipeline is
shown in Supplementary Figure S8e.

Deep convolutional network (U-Net
architecture inspired)

Please refer to Supplementary Figure S8b and e. A deep
convolutional network with residual connections was used
to generate a pixel-by-pixel mask.

Results

Well-controlled BONCAT MS uncovers a large number
of false positives

The most popular methods for profiling ANL, AHA, and so
on, methionine analog-tagged proteins are based on biotin-SA
(or similar high affinity) interactions following click chemistry
tagging of biotin to ANL, AHA, and other noncanonical
amino acids in polypeptides.11,23 After this purification, the
protein pool is digested and subjected to MS, assuming that all
the recovered peptides are metabolically labeled, as there is no
independent confirmation in the MS step that the profiling is
performed only on the ANL- or AHA-tagged proteome.

To test if there could be unlabeled proteome detected by
this method, we used the appropriate negative control: ANL
that was administered to C57.B6 mice or their derived cells,
where there is no MetRSL274G and no capacity to incorpo-
rate ANL, and all tested current methods of affinity purifi-
cation (DBCO-based and biotin-based) yielded high levels
of false positives by MS (Fig. 1a, b). Click western blotting
comparing homozygous transgenic MetRSL274G and C57.B6
cells (Fig. 1c) and mice (Supplementary Fig. S1b–d) that
were treated with ANL confirmed a good signal to noise
ratio (MetRSL274G to C57.B6).

Thus, the problem of false-positive discovery does not
stem from the efficiency of ANL-tagging, but from the en-
richment and downstream MS steps, for example, affinity
enrichment and an erroneous assumption that all column-
eluted proteins are metabolically tagged. In this regard, a
nonspecific background in Click westerns is typically de-
tected (Fig. 1c; Supplementary Fig. S1) in agreement with
the recorded false positives from biotin-clicked enriched MS
analysis.2,12

We next performed bioinformatics and computational
analysis of the false-positive proteins using five reported
BONCAT MS methods. We identified several hundreds to
several thousands of false-positive proteins that were pres-
ent in all five methods. While the false-positive proteins
varied, we found 162 specific proteins that were determined
to be false positive in all the tagged proteome purification
methods. GO and KEGG analysis demonstrated that the
false-positive proteins for each method tended to be in-
volved in genetic information processing, cellular processes,
environmental information processes, and carbohydrate
metabolism (Supplementary Fig. S2), in other words, a va-
riety of functions.

To examine whether there is a preference in false-positive
discovery for larger or smaller proteins or those with more
or less methionine residues, the molecular weights and
methionine content (Fig. 1d) of the false positives were
analyzed. It was found that the average molecular weights of
the 162 shared false-positive proteins were lower than the
molecular weights of all false-positive proteins, with a
significance of p < 0.01. There was no statistically signifi-
cant difference between the methionine content of the 162
shared and all false-positive proteins.

Finally, we looked for a correlation between false-
positive discovery and protein abundance in a given tissue.
Namely, for Methods 1–5, we determined how many of the
false positives (total and the shared 162) were in the top
460 most abundant overall and most abundant liver pro-
teins (PAXdb) (Fig. 1e). Of the 162 shared false-positive
proteins, 20.34% were in the top 460 most abundant
overall mouse proteins compared to 5.65%, 6.22%, 9.10%,
8.77%, and 12.68% for Methods 1, 2, 3, 4, and 5, respec-
tively, with a statistical significance of p < 0.01. Of the 162
shared false-positive proteins, 37.29% were in the top 460
most abundant mouse liver proteins compared to 10.14%,
10.52%, 18.09%, 25.23%, and 22.46% for Methods 1, 2,
3, 4, and 5, respectively, with a statistical significance of
p < 0.01.

The 162 proteins that are false positives for all 5 methods
are significantly more abundant than the overall false posi-
tives, both in terms of the whole mouse proteome and the
mouse liver proteome. In general, therefore, and perhaps not
surprisingly, the more abundant proteins are more likely to
be seen as false positive.

Summarily, biotin purification-based MS yields a large
fraction of false-positive proteins of variable molecular
weight and methionine content, and which have a variety of
protein functions in different cell processes.

False positives of BONCAT antibody arrays

The detection of specific proteins-of-interest is more
straightforward and needs much less starting sample with
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antibody arrays than MS. We were the first to adopt an-
tibody arrays for metabolic proteomics in the ANL-
MetRSL274G system, and reported statistically significant
differences between ANL-tagging the C57.B6 strain (the
negative control that reveals the false positives), and ANL-
tagging the MetRSL274G transgenic strain (the experimental
data).2 Here, we rigorously investigated the false discovery
of metabolic antibody arrays in both AHA and ANL label-
ing set-ups.

Several negative controls were applied to the BONCAT
arrays: Hank’s balanced salt solution (HBSS), FPLC-
purified mouse serum albumin, lysates of C57.B6 primary
myoblasts treated with ANL, different protein concentra-
tions, and Click and no-Click detection. Interestingly, each
of these controls demonstrated false-positive detection, even
though C57.B6 does not express MetRSL274G and is not
capable to incorporate ANL during translation; some of the
controls had no tag at all (Fig. 2).

The false positives were defined as twofold SA Cy-3
signal intensity over the array-built negative control, the
same cutoff for the data in the antibody array experi-
ments.24–26 Eighteen false positives out of 308 array pro-
teins were found in 7 independent control experiments (no-tag
and C57.B6+ANL). The number of false positives varied be-
tween individual control experiments (Fig. 2; Supplementary
Fig. S3).

There were false positives that appeared in all negative
controls, including HBSS (FS-7-associated surface protein;
Matrix metalloproteinase-24 protein; Fig. 2) apparently
array-specific artifacts. Not only the prevalence but also the
identity of the false positives was variable between the ex-
periments, and as expected, more was seen with increased
photomultiplier tube (PMT) settings of the laser slide
scanner and or increasing the brightness of acquired images
(Fig. 2; Supplementary Fig. S3). Proteins with a molecular
weight between 10 and 50 kDa contributed to 66.67% of the

FIG. 2. False-positive discovery of the BONCAT antibody arrays. (a) Representative images of BONCAT antibody array
for the negative controls: HBSS, Mouse Albumin, C57.B6 primary myoblasts treated with ANL (with and without Click
reaction). False positives become more visible with more protein lysate being added to the arrays (30 lg) and with increased
brightness/contrast. Array-built negative controls (ellipses); array built-in positive controls are shown in rectangles. (b)
Frequency histograms of the molecular weight and methionine content of the false positives that are defined as <2-fold over
the array-built negative controls. The computational comparison established that proteins with a molecular weight 10–
50 kDa are 66.67% of the total 18 false positives, 60–100 kDa—27.78%, and 110 kDa and above are 5.55%. The methionine
content frequency distribution was found to be roughly symmetric, with a peak centered at 1.5% methionine in the encoded
amino acid sequences of the false positives: 0.0%–1.5% to be 61.11%, 2.0%–3.0% to be 33.33%, and above 3.0% to be
5.56%. Protein information was compiled from UniProt database (The UniProt Consortium. UniProt: the universal protein
knowledgebase in 2021. Nucleic Acids Res 2021;49:D480–D489). HBSS, Hank’s balanced salt solution.
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false positive, 60–100 kDa to 27.78%, and 110 kDa and
above to only 5.55% (Fig. 2b). The methionine content
frequency distribution was found to be roughly symmetric,
with peak centered at 1.5% (Fig. 2b).

These results demonstrate a *5% false-positive discovery
rate of antibody arrays, which is similar to typical optical
protein profiling methods, fluorescence-activated cell sorting
and immunofluorescence microscopy, for example.

Mechanism of the false positives of BONCAT
antibody arrays

The false positivity of the antibody arrays is surprising,
because the samples are applied to the arrays directly
(no biotin enrichment columns), and only AHA or ANL
residues are capable of linking biotin through Click chem-
istry (total protein biotinylation is omitted in the BONCAT
array), and only Clicked biotin can be detected by SA-Cy3.
So how was the false-positive signal generated?

We postulated that antibody arrays detect physiologic
naturally biotinylated proteins, which reacts with the SA-
Cy3 and are misinterpreted as experimentally biotinylated or
AHA/ANL tagged.27 The variable presence of these proteins
in different samples might account for the variability of the
false-positive detection (Fig. 3a). Removal of the naturally
biotinylated proteins with SA-beads before the Click of bi-
otin to AHA or ANL residues should reduce this false-
positive background (Fig. 3a).

To characterize the naturally biotinylated proteome, we
used Streptavidin magnetic beads to enrich for these pro-
teins in tissue lysates that were derived from C57.B6 brain,
heart, liver, and blood serum. Moreover, young and old
animals were compared in their naturally biotinylated pro-
teomes, considering our long-standing scientific interest in
comparative age-specific protein analyses.28–30

Western blotting on the purified naturally biotinylated
proteins were performed, using horseradish peroxidase-SA
detection, without biotinylation or Click chemistry (Fig. 3b).
The physiologic biotinylated proteome was detected in all
tissues studied; the levels of naturally biotinylated proteins
were variable from sample-to-sample but were elevated in
the brains of old mice, compared to young (Fig. 3b).

Click westerns on ANL tagged proteins have notorious
nonspecific band(s), the identity of which was not previ-
ously explained.2,9 In agreement with our hypothesis, such
nonspecific bands were diminished after removal of natu-
rally biotinylated proteins with streptavidin magnetic beads,
and even more so by also adding IAA, which blocks non-
specific Click reactions at cysteine thiols (Fig. 3c).31,32

Moreover, removal of the naturally biotinylated proteins
with SA beads significantly reduced the false positives in the
in vivo tagged proteome of MetRSL274G and C57.B6 mice.
Multiple independent experiments with AHA/ANL tagging
of MetRSL274G and C57.B6 mice and profiling the de novo
synthesized heart tissue proteome demonstrated that re-
moval of naturally biotinylated proteins before Click greatly
reduces false positives and background noise in the no-tag
and C57.B6+ANL negative controls (Fig. 3d, e). As ex-
pected, out of the 308 profiled proteins, only some were
expressed and tagged during the AHA/ANL treatment.

In this regard, we focused BONCAT arrays and the
characterization of false positives on the heart, because of

the highly efficient metabolic labeling of this tissue, com-
pared with blood, brain, skeletal muscle, and liver (Sup-
plementary Fig. S3 and previous publication).2

As expected, removal of naturally biotinylated proteins
resulted in a clearer pattern of proteins that are resolved by
the BONCAT arrays and reduced experimental noise
(Fig. 3a, d, e). These results also confirmed that AHA in-
corporation into the newly synthesized proteins by the WT
MetRS in C57.B6 mice is more robust than ANL tagging by
the MetRSL274G (Fig. 3d, e).

Interestingly, while in the more robust AHA method, the
removal of naturally biotinylated proteome reduced the
number of hits, in the weaker orthogonal MetRSL274G+ANL
tagging system, the number of de novo synthesized proteins
that are detected became increased when the background
was reduced, due to a better signal to noise resolution
(Fig. 3e).

in addition, the resolution of the antibody arrays was
improved and artificial variability between the samples was
reduced, through improving the methods of sample prepa-
ration, such as enhancing the solubility of proteins with
formic acid, urea, pH adjustment, and sonication (Supple-
mentary Fig. S4). It was found to be prudent to test the
starting sample by Click westerns for protein quantity,
quality, and tagging efficiency before applying to the arrays
(Supplementary Fig. S4).

These data provide an explanation for false-positive dis-
covery in the antibody arrays, suggest that varying sample
levels, tissue levels, and age-specific abundance of a natu-
rally biotinylated proteome might introduce variation in the
data, and provide chemical and biochemical steps for im-
proving the quality of the starting samples. Finally, these
results compare the side-by-side BONCAT efficiency be-
tween the AHA-C57.B6 and ANL-MetRSL274G.

Cy3-direct BONCAT arrays eliminate false positives
and improve resolution of comparative proteomics

In published approaches, biotin-tagged proteins are puri-
fied on their SA-affinity, or bind to cognate antibodies on
the arrays, which is followed by their detection with MS
and/or SA-conjugated fluorescent dye on the Ar-
rays.2,4,9,16,33,34 As established above, these methods have
inherent false positives stemming from natural biotinylation,
which is not completely solved by removing the physio-
logically biotinylated proteins, because this also discards the
proteins, which are both experimentally tagged and natu-
rally biotinylated.

To eliminate the biotin-reliance of comparative pro-
teomics, we replaced the biotin-alkyne click chemistry
(Biotin-SA) with directly clicked to ANL/AHA Cy3-alkyne
(termed, Cy3-Direct). The effects of this approach on the
minimization of false positives and on the resolution of
metabolic proteomics were examined with Click westerns
and BONCAT arrays (Fig. 4).

Primary myoblasts were derived from MetRSL274G and
C57BL/6 mice and all the cells were metabolically labeled
with ANL in culture (4 days, 2 mM ANL). Protein lysates
from these MetRSL274G and the negative control, C57BL/6,
myoblasts were clicked with either Cy3-Alkyne or biotin-
Alkyne, as described in Materials and Methods section. The
tagged proteome was resolved with in-gel fluorescence
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(Cy3-Alkyne click) or chemiluminescence (biotin-Alkyne
click) and with BONCAT arrays (Fig. 4a schematically
depicts this study).

Cy3-Direct robustly detected the azido-labeled proteins
with low-to-no background, when comparing MetRSL274G

cell lysate to the negative control, for example, C57/B6 cell
lysate, after identical administration of ANL to all the cells
(Fig. 4b). The nonspecific bands and other background noise
that are typical for the biotin-based Click westerns and are
present in the biotin-SA Chemiluminescence blotting were
eliminated with the Cy3-Direct (Fig. 4b).2,4,11,34–36 Similar
results were seen for the AHA labeling system (Supple-
mentary Fig. S5).

Next, we compared the Cy3-Direct and biotin-SA in
multiple independent experiments that culminated with the
BONCAT antibody arrays (Figs. 4c, d). These studies
demonstrated that in BONCAT arrays, Cy3-Direct resolves
ninefold more proteins than the biotin-SA (Fig. 4c, d). This
much improved resolution was simultaneous with the
greatly diminished false positives (Fig. 4c, d; Supplemen-
tary Fig. S6).

Specifically, 197 proteins were resolved by the Cy3-
Direct BONCAT arrays, compared to only 18 by the biotin-
SA BONCAT arrays. Thirty-five false positives (C57/
B6+ANL proteins) were detected with the biotin-SA
BONCAT arrays, compared to four false positives in the
Cy3-Direct method.

Confirming that naturally biotinylated proteins are a
major source of false positives, SA-Cy3 array reagent that is
added after the Cy3-Direct protein lysates are incubated
with the arrays, increases the false positives of the C57/B6
samples, which become at the same level, as in the biotin-
SA method (Fig. 4e; Supplementary Fig. 7). This is self-
explanatory, because SA-Cy3 binds to all biotin-containing
proteins, be they naturally biotinylated or clicked. In con-
trast, when this SA-Cy3 array reagent is added first to
highlight the arrays-built positive controls; for example,
before any proteins are present, and the Cy3-Direct protein
lysates are added after the SA-Cy3 is washed away, the false
positives are greatly minimized (Fig. 4c–e; Supplementary
Figs. S6 and S7).

These data establish the Cy3-Drect BONCAT array
method, which eliminates the reliance on biotin, conse-
quentially increasing the accuracy of signal detection and
minimizing the false positives, while also decreasing the
experimental time and simplifying the assay.

Semantic image segmentation for noise reduction
in optical outputs

Another persistent problem with the optical detection
of antibody arrays’ data is the noise of nonspecific
fluorescence that at times significantly masks specific
signals. To address this problem and thus increase the

FIG. 4. Cy3-direct eliminates false positives and enhances the resolution of comparative proteomics (a) Schematic of
Cy3-direct method, compared to the biotin-SA method. (b) In-gel fluorescence scanning and SDS/PAGE detection of
copper-catalyzed conjugation of Cy3-Alkyne to ANL-labeled proteins derived from the MetRSL274G and C57BL/6 myoblast
lysates (all cells were treated with ANL). (c) Representative images of BONCAT antibody arrays with Cy3-direct and
biotin-SA methods. Less false positives (C57.B6) and higher signal detection (MetRSL274G) are visible. (d) Heat map of the
proteome that was resolved in multiple Cy3-direct and biotin-SA BONCAT antibody arrays demonstrate significant de-
crease in the false positives (MetRSL274G vs. C57BL/6 myoblast treated with ANL), which is accompanied by the sig-
nificant increase in the detection of the studied 308 proteins. N = 4–6, p < 0.05 MetRSL274G versus C57BL/6. (e) Heat map of
the proteome comparing application of SA-Cy3 before versus after hybridization of Cy3-clicked protein lysates to the
arrays. SDS/PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
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reliable interpretation of the antibody array experiments,
we used computational analysis and computer vision
approaches.

The problem of denoising antibody array images can be
reduced to a semantic image segmentation problem. There
are many approaches available for image segmentation, in-
cluding Otsu’s intensity thresholding and pixel-by-pixel or
segment feature extraction.22,37,38 Here, we applied different
data segmentation methods (Supplementary Fig. S8) and
compared their efficiencies in clarifying the results of anti-
body arrays, using the Jaccard overlap metric score.39

Moreover, several computer vision approaches were used,
including utilizing baseline models, to compare effica-
cy.40,41 One unsupervised learning approach was k-means
intensity thresholding, an extension of Otsu’s method.22 The
threshold was varied based on the relative intensities of all
other pixels in a 40 · 40 patch.

All other approaches involved pixel masks, for example,
the manual content of signals—dots, that were generated as
input labels for weakly supervised learning. Traditional
machine learning methods, such as a random-forest classi-
fier, were used to learn the mask from the input image pixel-
by-pixel. The results were compared against deep learning
methods to learn the same problem. In self-supervised
learning, Gaussian noise was introduced into the input im-
age, and the algorithm objective was for an autoencoder to
reconstruct the original image from the deliberately noisy
one. Figure 5a shows the supervised training pipeline.

In Figure 5b, we see a representative image of a noisy
antibody array where nonspecific fluorescence interferes
with the positive and negative array-built controls and with
the experimental signals. The image segmentation and ma-
chine learning approaches visibly reduced this nonspecific
fluorescence.

The Jaccard scores are computed for all the methods and
are compared between training and validation data for de-
tecting the signal and the background (Fig. 5c). The Con-
volutional Neural Network (CNN) architecture is described
in Supplementary Figure S8, which also provides the overall
workflow, additional examples of arrays with nonspecific
fluorescence and their denosing through our machine
learning approaches.

In Figure 5d, saliency maps were computed by taking the
absolute value of the gradient of our CNN model scores with
respect to the input for every pixel. As can be seen from this
figure, the model is the region of pixels, which estimates the
location of the signal, in agreement with the published
work.42 These results, as well as the compressed represen-
tations of antibody arrays (Fig. 5e; Supplementary Fig. S8c),
demonstrate that our residual CNN and Deep Convolutional
Generative Adversarial Network (DCGAN) are the best
models for this task. The residual CNN architecture is out-
lined in Supplementary Figure S8b. The main structure of
this network is developed from U-Net, with modifications
made to the number of hidden layers for a faster and more
lightweight model, which is suitable for our problem.

Our trained CNN model has a validation Jaccard accuracy
score of 71% and DCGAN of 66.5% in coverage of iden-
tifying positive signals. This vastly improves on a simple
k-means thresholding and other traditional computational
and machine learning approaches. Note that k-means
thresholding is additionally used as a baseline (30% accu-

racy against the user-defined mask), which can be valuable
in evaluating the accuracy of the user-defined mask.

Summarily, these novel computer vision approaches de-
noise the raw optical data of the antibody arrays, enabling
more accurate interpretation of the results of comparative
proteomics.

Discussion

MS and antibody arrays are two analytical tools that are
commonly used to profile proteomes, but as this study
shows, in application to BONCAT, both have inherent false-
positive tendencies. The false discovery is more obvious in
the antibody arrays, which have internal positive and neg-
ative controls and where the signal of the external negative
controls (HBSS, no tag, etc.) can be compared with the
experimental outcome, setting up a detection threshold, for
instance, twofold higher with p < 0.05. In contrast, the false
discovery of BONCAT MS is not as obvious for AHA
tagging, and while some error is revealed through compar-
ing with the MetRS274G ANL labeling, there is no easy way
to objectively distinguish the binding artifacts of the biotin
affinity steps from the experimental outcomes, for example,
the true metabolically tagged proteome.

Indeed, our results uncover that BONCAT MS generates
hundreds to thousands of cryptic false positives using pub-
lished methods, which we found by applying appropriate
negative control of tagging C57.B6 mice with ANL (Fig. 1).
Proteins with diverse biological functions, sizes, and me-
thionine contents were revealed as false positive, cautioning
the interpretations in various fields of research. As expected,
the higher abundance proteins are more likely to contami-
nate the enrichment columns.

The main sources of data contamination appear to be the
naturally biotinylated proteome and the nonspecific binding of
untagged proteins to the biotin affinity purification, DBCO
beads, etc. columns. In support of this conclusion, a clear signal
to noise increase, yet, still some background, are typically de-
tected after the biotin Click step in Click western (Fig. 1,
Supplementary Figs. S1 and S3, and in published work).2

In this regard, another proteomics method using apta-
mers also relies on biotin and affinity-based enrichment for
specific protein-aptamer complexes. Thus, controls for
nonspecific binding might be prudent, particularly because
even low false-positive discovery in aptamer proteomics
will be amplified in the NextGen sequencing, and there are
no negative controls like nonspecific IgG, which even in
case of antibody-antigen interactions that have much
higher affinity, typically yield some false-positive non-
specific binding.43,44

BONCAT antibody arrays offer a feature of increasing
PMT exposure during the scans and/or increasing the image
brightness/contrast, which better reveals the false positives,
that otherwise might appear as faint dots (Fig. 2 and pre-
vious publication).16 Such no-tag signal is a given conse-
quence of the naturally biotinylated proteome and our data
demonstrate that preclearing with SA beads reduce these
false positives (Fig. 3).27

Importantly, even though some proteins that were natu-
rally biotinylated and metabolically tagged are expected to
be diminished, the number of ANL tagged experimentally
detected proteins were increased when the nonspecific noise
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and artificial variability between the samples were reduced.
Rigorous profiling of proteins in comparative proteomics
relies on the signal-to-noise sensitivity, thus approaches
which increase the distinction between the true signal and
nonspecific signal allow one to identify more proteins
(Fig. 3; Supplementary Fig. S4).

In another interesting observation, a side-by-side com-
parison between the AHA and ANL tagging demonstrated
that the bioorthogonal transgenic MetRSL274G does not
perform as effectively as the native MetRS (Fig. 3). Thus,
while the bioorthogonal transgenic metabolic labeling en-
ables many more experimental possibilities for specific cell-
fate, cell age, and so on, proteome labeling might miss some
of the newly synthesized proteins, compared to the WT-
based AHA system.9,23,31,45,46

At the same time, MetRSL274G ANL tagging helps to
avoid a potential caveat of comparative proteomics that
follows blood heterochronicity or administration of proteins
into host animals and tracing these to different organs. In
contrast to MetRSL274G approach, where WT animals are
incapable of integrating ANL into their proteome, biotiny-
lation, or AHA/biotin click, etc., similar methods do not
distinguish between primary and secondary (after protein
degradation and amino acid recycling) incorporation of the
labels into the host proteome.47–50

Strengthening the conclusion of misinterpreting naturally
biotinylated proteome for the metabolically labeled proteins,
we demonstrate that Cy3-Direct BONCAT eliminates the
false positives of the biotin-reliant Click Chemistry pro-
teomics. Cy3-Direct BONCAT technology greatly improves
the accuracy and resolution of protein detection, enhances
the sensitivity and dynamic range of comparative pro-
teomics (Fig. 4; Supplementary Figs. S5–S7), and in addi-
tion, makes the assays simpler and faster. In confirmation of
the paradigm, SA-Cy3 reagent that highlights the naturally
biotinylated proteins on the arrays and negates the biotin-
independence, increases the nonspecific noise.

To further improve the signal to noise resolution, our
computational analysis (computer vision) uses machine
learning and data segmentation to significantly reduce the
nonspecific fluorescence, thereby increasing the resolution
and accuracy of BONCAT arrays (Fig. 5; Supplementary
Fig. S8). This computational paradigm can be applied to any
optical data, such as conventional antibody arrays, quanti-
tative immunofluorescence, in situ sequencing, and so on.

Conclusions

Summarily, this work provides comprehensive charac-
terization of false discovery of the BONCAT metabolic
proteomics, and it establishes the technologies for mini-
mizing and avoiding these undesirable outcomes.
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