
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fast and Energy Efficient Big Data Processing on FPGAs

Permalink
https://escholarship.org/uc/item/1wv8x2d2

Author
Salamat, Sahand

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wv8x2d2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Fast and Energy Efficient Big Data Processing on FPGAs

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Sahand Salamat

Committee in charge:

Professor Tajana Rosing, Chair
Professor Chung-Kuan Cheng
Professor Ryan Kastner
Professor Farinaz Koushanfar
Professor Jishen Zhao

2021

Copyright

Sahand Salamat, 2021

All rights reserved.

The Dissertation of Sahand Salamat is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2021

iii

DEDICATION

To my family and friends
for their unconditional love and support.

iv

EPIGRAPH

Everything will turn out right, the world is built on that.

Mikhail Bulgakov, The Master and Margarita

Dead yesterdays and unborn tomorrows,
why fret about it, if today be sweet.

Omar Khayyâm

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xvii

Introduction . 1

Chapter 1 FPGA Acceleration of DNNs . 6
1.1 Background and Related Work . 8
1.2 Proposed Residue-Net . 10

1.2.1 RNS Operations . 11
1.2.2 Residue-Net Architecture . 15

1.3 Experimental Result . 18
1.3.1 Experimental Setup . 18
1.3.2 System Evaluation . 19
1.3.3 Operation Evaluation . 21

1.4 Conclusion . 24

Chapter 2 Accelerating HD computing on FPGAs . 26
2.1 Background and Related Work . 27

2.1.1 Hyperdimensional Computing . 27
2.1.2 Related Studies . 32

2.2 HD2FPGA Framework Overview . 34
2.3 HD2FPGA Architecture . 35

2.3.1 HD2FPGA software program . 42
2.4 Experimental Results . 44

2.4.1 HD Classification . 46
2.4.2 HD Clustering . 52

2.5 Conclusion . 56

Chapter 3 Efficiency of ML on Multi-FPGAs . 58

vi

3.1 Related Work . 59
3.2 Motivational Analysis . 63
3.3 Proposed Method . 66

3.3.1 Workload Prediction . 68
3.3.2 Frequency Scaling Flow . 70
3.3.3 Voltage Scaling Flow . 71

3.4 Proposed Architecture . 72
3.5 Experimental Results . 74

3.5.1 General Setup . 74
3.5.2 Results . 76

3.6 Conclusion . 78

Chapter 4 Summary and Future Work . 79
4.1 Thesis Summary . 79
4.2 Future Directions . 81

Bibliography . 83

vii

LIST OF FIGURES

Figure 1.1. Resource utilization of MAC operation in conventional binary, RNS, and
Residue-Net on FPGA. 7

Figure 1.2. The RNS multiplication unit of Residue-Net. 14

Figure 1.3. (a) The proposed architecture for Residue-Net. (b) A convolutional kernel
that performs computations on the inputs and weights R4. (c) Residue-Net
proposed comparator module. (d) A fully connected neuron working in
inputs and weights R4. 15

Figure 1.4. Comparing the normalized values of power, throughput and energy con-
sumption of the FPGA baseline, Residue-Net (area-opt), and Residue-Net
(performance-opt) w.r.t the FPGA baseline for different DNNs. 21

Figure 1.5. Comparing the LUT and BRAM utilization of the FPGA baseline, Residue-
Net (area-opt), and Residue-Net (performance-opt), as well as the normal-
ized values of power, throughput and energy consumption w.r.t the FPGA
baseline for AlexNet. 22

Figure 1.6. LUT utilization and power consumption of Residue-Net building blocks in
DNNs. 23

Figure 2.1. Overview of hyperdimensional learning and inference. 30

Figure 2.2. Overview of the proposed framework, HD2FPGA. 34

Figure 2.3. The architecture of the InputStream module. 36

Figure 2.4. (a) The matrix multiplication of the projection hypervectors and the input
feature vector. (b) HD2FPGA architecture based on random-projection
encoding . 39

Figure 2.5. The partial matrix multiplication example when Dhv = 16, Div = 8, C = 2,
and R = 4. 41

Figure 2.6. The proposed architecture of the Search unit for (a) HD Classification and
(b) HD clustering. 41

Figure 2.7. Encoding time of CPU and HD2FPGA. 47

Figure 2.8. Retraining time of CPU and FPGA for 50 epochs. 48

Figure 2.9. End-to-end Training (encoding + 50 epochs retraining) time of CPU and
HD2FPGA. 49

viii

Figure 2.10. End-to-end Training (encoding + 50 epochs retraining) energy consumption
of CPU and HD2FPGA. 50

Figure 2.11. Inference (encoding + associative search) time of CPU and HD2FPGA. . . 51

Figure 2.12. Inference (encoding + associative search) energy consumption of CPU and
HD2FPGA. 52

Figure 2.13. Accuracy and latency (number of cycles) of HD2FPGA versus DNN accel-
erator of [1]. 53

Figure 2.14. End-to-end latency and performance improvement of HD2FPGA versus
DNN accelerator of [1]. 53

Figure 2.15. Energy comparison of HD2FPGA versus DNN accelerator of [1]. 54

Figure 2.16. Inference (encoding + associative search) time of CPU and HD2FPGA. . . 55

Figure 2.17. Inference (encoding + associative search) energy consumption of CPU and
HD2FPGA. 55

Figure 2.18. End-to-end performance improvement of HD2FPGA versus Kmeans accel-
erator of [2]. 56

Figure 2.19. Energy comparison of HD2FPGA versus Kmeans accelerator of [2]. 57

Figure 3.1. Delay of FPGA resources versus voltage . 61

Figure 3.2. Dynamic power of FPGA resources versus voltage. 62

Figure 3.3. Static power of FPGA resources versus voltage. 62

Figure 3.4. Comparing DVFS techniques in different workloads. 65

Figure 3.5. Comparing DVFS techniques in different critical paths. 66

Figure 3.6. Comparing DVFS techniques in different BRAM power rates. 67

Figure 3.7. Overview of an FPGA-based datacenter platform. 68

Figure 3.8. Example of Markov chain for workload prediction. 69

Figure 3.9. (a) the architecture of the proposed energy-efficient multi-FPGA platform.
The details of the (b) central controller, and (c) the FPGA instances. 71

Figure 3.10. Comparing the efficiency of different voltage scaling techniques under a
varying workload for Tabla framework. 75

ix

Figure 3.11. Voltage adjustment in different voltage scaling techniques under the varying
workload for Tabla framework. 76

Figure 3.12. Power efficiency of the proposed technique in different acceleration frame-
works. 77

x

LIST OF TABLES

Table 1.1. Accuracy of the Residue-Net as compared to the full precision and quantized
to 6 bits networks. 19

Table 1.2. LUT overhead of using Residue-Net in executing DNNs. 24

Table 2.1. Comparing the accuracy and memory requirement of each encoding method
in various edge sensing applications. 30

Table 3.1. Post place and route resource utilization and timing of the benchmarks. . . . 75

Table 3.2. Comparison of power efficiency of different approaches. 77

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Professor

Tajana Rosing. During my Ph.D., Tajana has been an extremely supportive advisor, insightful

teacher, and considerate friend. Without her guidance and support, my Ph.D. journey would not

be as successful and memorable as it is. I would like to thank the rest of my doctoral committee

members, Prof. Chung-Kuan Cheng, Prof. Farinaz Koushanfar, Prof. Ryan Kastner, and Prof.

Jishen Zhao for their support, thoughtful comments, and invaluable guidance that have improved

the quality of this work.

I would also like to express my sincere appreciation to Dr. Yang Seok Ki from Samsung

Semiconductor and my colleagues Dr. Armin Haj Aboutalebi, Dr. Joo Hwan Lee, Dr. Hui

Zhang for their keen knowledge and insights. I am grateful to all my lab-mates who are

amazing colleagues and real friends: Dr. Mohsem Imani, Dr. Yeseong Kim, Dr. Saransh

Gupta, Anthony Thomas, Behnam Khaleghi, Derek Jones, Fatemeh Asgarinejad, Haichao Yang,

Jaeyoung Kang, Jason Ma, Justin Morris, Kazim Ergun, Michael Ostertag, Minxuan Zhou, Onat

Gungor, Rishikanth Chandrasekaran, Weihong Xu, Xiaofan Yu, and Uday Mallappa. I would

like to especially thank Mohsen and Behnam for their collaboration and help in many of my

projects.

I am additionally thankful to my dearest friends, who will always have a special place

in my heart, for their kindness and support in my life: Amir, Amirali, Niloofar, Mohammad,

Siavash, Behrooz, Sina, Elham, Elahe, Kazem, Bahram, Ali, Ashkan, Saina, Ehsan, Mohsen,

and Reza. Beyond all, I want to express my most sincere appreciation to my family, Saeed,

Roshanak, Ronak, and Misagh for their unconditional love and support.

My research was made possible by funding from the National Science Foundation (NSF)

Grant 2003279, 2028040, 1527034, 1619261, 1730158, 1826967, 1911095, DARPA, CRISP, one

of six centers in JUMP, an SRC program sponsored by DARPA. The material in this dissertation

is, in part, based on the following papers that are published or are under review.

Chapter 1 contains material from “Residue-Net: Multiplication-free Neural Network

xii

by In-situ No-loss Migration to Residue Number Systems”, by Sahand Salamat, Sumiran

Shubhi, Behnam Khaleghi, and Tajana S. Rosing, which appears in IEEE Asia and South Pacific

Design Automation Conference (ASP-DAC), 2021 [3]. The dissertation author was the primary

investigator and author of this paper.

Chapter 2 contains material from “HD2FPGA: Automated Framework for Accelerating

Hyperdimensional Computing on FPGAs”, by Sahand Salamat, Behnam Khaleghi, and Tajana S.

Rosing, which is still in preparation. The dissertation author was the primary investigator and

author of this paper.

Chapter 3 contains material from “Workload-Aware Opportunistic Energy Efficiency in

Multi-FPGA Platforms”, by Sahand Salamat, Behnam Khaleghi, Mohsen Imani, and Tajana S.

Rosing, which appears in IEEE/ACM International Conference On Computer Aided Design

(ICCAD), 2019 [4]. The dissertation author was the primary investigator and author of this paper.

xiii

VITA

2017 B. Sc. in Electrical Engineering, University of Tehran, Iran

2017-2021 Graduate Research Assistant, University of California, San Diego

2018 Graduate Teaching Assistant, University of California, San Diego

2021 Ph. D. in Computer Science and Engineering, University of California, San Diego

PUBLICATIONS

S. Salamat, N. Moshiri, T. Rosing ”FPGA Acceleration of Pairwise Distance Calculation for
Viral Transmission Clustering,” The 2021 IEEE Biomedical Circuits and Systems Conference
(BIOCAS), 2021.

S. Salamat, H. Zhang, Y. S. Ki, T. Rosing “NASCENT2: Generic Near-storage Sort Accelerator
for Data Analytics on SmartSSD,” ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), 2021.

S. Salamat, A. H. Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki, T. Rosing ”NASCENT: Near-
Storage Acceleration of Database Sort on SmartSSD,” The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2021.

M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and T. Rosing. ”Re-
visiting hyperdimensional learning for fpga and low-power architectures,” IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

S. Salamat, J. Kang, Y. Kim, M. Imani, N. Moshiri, T. Rosing ”FPGA Acceleration of Protein
Back-Translation and Alignment,” Design, Automation Test in Europe Conference Exhibition
(DATE). IEEE, 2021.

Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli, Y. Kim, T. Rosing. ”HyperRec:
Efficient Recommender Systems with Hyperdimensional Computing,” 26th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.

S. Salamat, S. Shubhi, B. Khaleghi, T. Rosing ”Residue-Net: Multiplication-free Neural Network
by In-situ No-loss Migration to Residue Number Systems,” 26th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2021.

B. Khaleghi, S. Salamat, T. Rosing ”Revisiting FPGA Routing under Varying Operating Condi-
tions,” International Conference on Field-Programmable Technology (ICFPT). IEEE, 2020.

xiv

B. Khaleghi, S. Salamat, A. Thomas, F. Asgarinejad, Y. Kim, T. Rosing ”SHEARer: highly-
efficient hyperdimensional computing by software-hardware enabled multifold approximation,”
Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design.
2020.

S. Salamat, M. Imani, T. Rosing ”Accelerating hyperdimensional computing on fpgas by exploit-
ing computational reuse,” IEEE Transactions on Computers 69.8 (2020): 1159-1171.

M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, T. Rosing ”Quanthd:
A quantization framework for hyperdimensional computing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39.10 (2019): 2268-2278.

B. Khaleghi, S. Salamat, M. Imani, T. Rosing ”Fpga energy efficiency by leveraging thermal
margin,” 2019 IEEE 37th International Conference on Computer Design (ICCD). IEEE, 2019.

S. Salamat, B. Khaleghi, M. Imani, T. Rosing ”Workload-aware opportunistic energy efficiency
in multi-fpga platforms,” 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019.

M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, T. Rosing, ”Sparsehd: Algorithm-
hardware co-optimization for efficient high-dimensional computing,” 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
2019.

S. Salamat, M. Imani, B. Khaleghi, T. Rosing, ”F5-hd: Fast flexible fpga-based framework for
refreshing hyperdimensional computing,” Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2019.

M. Imani, S. Salamat, S. Gupta, J. Huang, T. Rosing, ”Fach: Fpga-based acceleration of hyperdi-
mensional computing by reducing computational complexity,” Proceedings of the 24th Asia and
South Pacific Design Automation Conference. 2019.

S. Salamat, M. Imani, S. Gupta, T. Rosing, ”Rnsnet: In-memory neural network acceleration
using residue number system,” 2018 IEEE International Conference on Rebooting Computing
(ICRC). IEEE, 2018.

M. Ahmadi, S. Salamat, B. Alizadeh. ”A dynamic timing error avoidance technique using pre-
diction logic in high-performance designs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27.3 (2018), 734-737.

S. Salamat, M.R. Azarbad, B. Alizadeh. ”High-level Synthesis of Non-Rectangular Multi-
Dimensional Nested Loops using Reshaping and Vectorization,” 2018 IEEE International Con-
ference on Rebooting Computing (ICRC). IEEE, 2018.

xv

S. Salamat, M. Ahmadi, B. Alizadeh, M. Fujita, ”Systematic approximate logic optimization
using don’t care conditions,” 18th International Symposium on Quality Electronic Design
(ISQED). IEEE, 2017.

xvi

ABSTRACT OF THE DISSERTATION

Fast and Energy Efficient Big Data Processing on FPGAs

by

Sahand Salamat

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2021

Professor Tajana Rosing, Chair

With the rapid development of the Internet of things (IoT), networks, software, and

computing platforms, the size of the generated data is dramatically increasing, bringing the dawn

of big data era. These ever-increasing data volumes and complexity require new algorithms and

hardware platforms to deliver sufficient performance. Data from sensors, such as images, video,

and text, contributed to 2.5 quintillions (2.5× 1018) bytes generated every day in 2020. The

rate of generating data is outpacing the computational capabilities of conventional computing

platforms and algorithms. CPU performance improvement has been stagnating in recent years,

which is one of the causes of the rise of application-specific accelerators that process big data

applications. FPGAs are also more commonly used for accelerating big data algorithms, such as

xvii

machine learning.

In this work, we develop and optimize both the hardware implementation, and also

algorithms for FPGA-based accelerators to increase the performance of machine learning ap-

plications. We leverage Residue Number System (RNS) to optimize the deep neural networks

(DNNs) execution and develop an FPGA-based accelerator, called Residue-Net, to entirely

execute DNNs using RNS on FPGAs. Residue-Net improves the DNNs throughput by 2.8×

compared to the FPGA-based baseline. Even though running DNNs on FPGAs provides higher

performance compared to running on general-purpose processors, due to their intrinsic computa-

tion complexity, it is challenging to deliver high performance and low energy consumption using

FPGAs, especially for the edge devices. Less complex and more hardware-friendly machine

learning algorithms are needed in order to revolutionize the performance at and beyond the edge.

Hyperdimensional computing (HD) is a great example of a very efficient paradigm for

machine learning. HD is intrinsically parallelizable with significantly fewer operations than

DNNs, and thus can easily be accelerated in hardware. We develop an automated tool to generate

an FPGA-based accelerator, called HD2FPGA, for classification and clustering applications,

with accuracy that is comparable to the state of the art machine learning algorithms, but orders of

magnitude higher efficiency. HD2FPGA achieves 578× speedup and 1500× energy reduction in

end-to-end execution of HD classification compared to the CPU baseline. HD2FPGA, compared

to state-of-the-art DNN running on an FPGA, delivers 277× speedup and 172× energy reduction.

As the volume of data increases, a single FPGA is not enough to get the desired perfor-

mance. Thus, many cloud service providers offer multi-FPGA platforms. The size of the data

centers workloads varies dramatically over time, leading to significant underutilization of com-

puting resources such as FPGAs, while consuming a large amount of power, which is a critical

contributor to data center inefficiency. We propose an efficient framework to throttle the power

consumption of multi-FPGA platforms by dynamically scaling the voltage and hereby frequency

at run time according to prediction of, and adjustment to the workload level, while maintaining

the desired Quality of Service (QoS). Our evaluations by implementing state-of-the-art deep

xviii

neural network accelerators revealed that, providing an average power reduction of 4.0×, the

proposed framework surpasses the previous works by 33.6% (up to 83%).

xix

Introduction

Direct communication between the smart devices, sensors, and computational platforms

in the IoT era has revolutionized the data generation and data processing tasks. IoT devices

generate an unprecedented volume of data from heterogeneous sources [5, 6]. The size of

the yearly generated data is growing exponentially, thanks to the development of IoT sensors

and computation platforms. In 2020, 64.2 zettabytes of data was generated globally, which

is almost three times the data generated in 2018 [7]. Processing this amount of data requires

more advanced algorithms, as well as fast and energy-efficient computation platforms. Machine

learning algorithms have significantly improved processing and extracting meaningful knowledge

from the data [8]. However, running machine learning algorithms requires a tremendous amount

of computation. The lack of significant advancement in current general processing units (CPUs

and GPUs) motivates the ever-increasing adoption of application-specific accelerators in both

edge devices and cloud platforms for running machine learning algorithms [9, 10, 11].

Machine learning algorithms have been widely used to process a wide range of applica-

tions [12] such as image and video processing [13, 14, 15, 16, 17], voice recognition [18, 19],

robotics [20, 21, 22], and bioinformatics data [23, 24], to name a few. Deep Neural Networks

(DNNs), thanks to their ever-increasing accuracy, are widely exploited for such data analysis.

However, the accuracy of DNNs is highly dependent on the complexity of the model. Certain

applications can afford to sacrifice the classification accuracy to achieve higher performance

or reduce energy consumption whereas plenty of applications, e.g., autonomous driving work-

loads, require the highest accuracy to avoid fatal consequences of misprediction. Even in these

applications, as DNNs are running on resource-constrained platforms, the energy usage and

1

performance to process hundreds of inputs per second is of the utmost importance.

Quantizing the floating-point weights and activations (i.e., outputs of network layers) to

fixed-point numbers with lower precision is a widely applied technique to lower the memory

footprint and computational complexity of DNN inference [25, 26, 27]. Previous works have

shown that DNNs can be quantized, depending on the application, without affecting the accuracy

of the results [28, 29]. Quantizing the network weights and activations simplifies the computation

of the multiplication and accumulation (MAC) operations, which contribute to more than 99% of

operations of DNN inference [30]. However, exploiting network quantization requires flexibility

in processing cores to execute operations with customized data widths.

FPGAs have become an attractive platform to accelerate DNNs as they provide high

flexibility in design, performance, and energy efficiency [31]. Several works have developed cus-

tomized FPGA-based accelerators for DNNs with various hardware and software optimizations,

including quantization [26, 32, 33]. The main advantage of network quantization results when

the multiplication operations are replaced with more hardware friendly operations (e.g. XOR,

shift, addition). Even though quantizing the network weights and activations to binary or ternary

values simplifies the multiplications [26], these networks have significant accuracy degradation

in many applications [34, 28].

In chapter 1, instead of quantizing the network to binary or ternary, we leverage a

modified number representation, Residue Number System (RNS), that simplifies the MAC

operations without significant impact on the accuracy of the networks. We additionally propose

an FPGA-based accelerator, called Residue-Net, to fully utilize the advantage of using RNS

to accelerate DNN inference. RNS is an unorthodox number representation developed based

on the Chinese Remainder Theorem (CRT) where each number is represented with residues of

dividing the number by a set of predefined modulis[35]. Residue-Net quantizes DNN weights

and activations to 6 bits, which has been shown to be sufficient to achieve good accuracy in many

application [28]. It then uses this six-bit RNS representation to execute DNNs and deliver the

excellent accuracy while significantly simplifying the DNN operations.

2

As DNNs are computationally complex in nature, to achieve real-time learning on

resource-constrained devices, we need to utilize more lightweight and hardware-friendly machine

learning algorithms. Hyperdimensional (HD) computing is a novel computational approach

that builds upon imitating the brain functionality in performing cognitive tasks [36, 37]. It

has been shown that the brain computes with high dimensional and sparse patterns of neural

activity, which can be realized as points in a hyperdimensional space, called hypervectors.

By leveraging a non-complex and parallel set of operations on such ultra-wide vectors, HD

affords promising capabilities in learning various types of applications such as classification,

clustering, regression, recommendation systems, and reinforcement learning, to name a few

[38, 39, 40, 41, 42, 43, 44, 45]. In addition to its inclusive cognitive application space and

comparatively simpler computation model than other learning paradigms [46], HD computing is

inherently robust against failures as the information in a hypervector is distributed over all of its

comprising dimensions [36].

The first step in HD classification and clustering is encoding the input data to hypervectors.

Encoding data into the hyperdimensional space provides simple classification and clustering

schemes. In HD classification, each class is represented by adding all the hypervectors belonging

to the class. Similarly, in HD clustering, all the encoded hypervectors in a cluster are aggregated

to represent the centroid hypervector. Inference (classification or clustering) in HD computing is

analogous; the encoded hypervector passes through an associative search (a.k.a similarity check)

with the representative hypervectors to identify the associated class/cluster [36]. The encoding,

training, and inference stages of HD computing require a substantial number of bit-level addition

and multiplication operations, which can be effectively parallelized [47]. Such characteristics of

HD computing inimitably matches with the intrinsic capabilities of FPGAs, making these devices

a unique solution for accelerating these applications. However, implementing applications on

FPGAs is a time consuming process [46].

In chapter 2 we propose HD2FPGA, an automated tool that generates an FPGA-based

accelerator for HD classification and clustering to hide the implementation complexities from

3

the user and reduce the associated time invested in designing the hardware. HD2FGPA generates

a synthesizable Verilog implementation of HD accelerator while taking the high-level user

and target FPGA parameters into account. It is a flexible and highly optimized tool capable

of generating a fast and energy-efficient accelerator considering the user’s constraints (viz.,

performance, and power). HD2FPGA supports end-to-end training, retraining, and inference for

both HD classification and clustering while delivering significantly higher performance compared

to state-of-the-art DNNs running on FPGA.

With the emergence and prevalence of big data, the majority of large businesses are

running machine learning algorithms on cloud services [48]. In 2010, data centers accounted

for 1.1-1.5% of the world’s total electricity consumption [49], with a spike to 4% in 2014 [50]

raised by the move of localized computing to cloud facilities. The energy consumption of data

centers is expected to double every five years [51]. The huge power consumption of cloud data

centers has led to the wide deployment of FPGAs in data centers due to their high performance

and energy efficiency [52, 53, 54]. Cloud service providers offer FPGAs as Infrastructure as a

Service (IaaS) or use them to provide Software as a Service (SaaS). Cloud service providers

offer multi-FPGA platforms for cloud users to implement their applications. They also provide

applications as a service, e.g., convolutional neural networks [55], search engines [56], text

analysis [57], etc. running on multi-FPGA platforms.

In spite of the benefits offered by FPGAs, underutilization of computing resources is

still the main contributor to the energy loss in data centers. Data centers are expected to provide

the required Quality of Service (QoS) of users while the size of the incoming workload varies

temporally. Typically, the size of the workload is less than 30% of the users’ expected maximum,

directly translating to the fact that servers run at less than 30% of their maximum capacity [58].

A straightforward technique to lower the energy costs is to adjust the operating frequency in

tandem with workload variation where all nodes are still responsible for processing a portion

of the input data. This reduces the dynamic power consumption proportional to the workload,

and resolves the problem of wake-up and reconfiguration time that come with power gating of

4

nodes. Nonetheless, as all nodes are active, the static power remains a challenge, especially in

elevated temperatures near FPGA boards in data centers [56] due to exponential increase the

leakage current with temperature.

In chapter 3, we optimize the energy consumption of multi-FPGA data center platforms,

accounting for the fact that the workload is often considerably less than the maximum anticipated.

We leverage this opportunity to use the available resources while dynamically scaling the voltage

and frequency of the entire system so that the projected throughput (i.e., QoS) is delivered. We

utilize a light-weight predictor for proactive estimation of the incoming workload and incorporate

it to our power-aware timing analysis framework that adjusts the frequency and finds optimal

voltages, keeping the process transparent to users.

The rest of the dissertation is organized as follows, in chapter 1 we propose and FPGA-

based accelerator for DNNs utilizing RNS. In chapter 2, we develop an automated tool to

automatically generate highly optimized FPGA-based accelerator for HD classification and

clustering. In chapter 3, we optimize the energy efficiency of multi-FPGA platforms while

delivering the user’s desired QoS with specific focus on the machine learning tasks. Chapter 4

summarizes the dissertation and discuss the possible next steps.

5

Chapter 1

FPGA Acceleration of DNNs

Deep neural networks (DNNs) are used to solve a wide range of problems from edge-

sensing applications to autonomous driving. The accuracy of these networks is usually propor-

tional to their complexity. One strategy to improve their performance and lower the energy cost

is to use quantization of model parameters (i.e., weights) and/or activations. General purpose

processors cannot benefit from custom data types as their computation core is designed and

optimized for certain data types (e.g. 32-bit, 16-bit, or 8-bit integers). FPGAs can efficiently

execute quantized networks as they provide flexibility in design and execution of customized

data types. Network quantization simplifies DNN operations, the majority of which are MACs,

by reducing the bit-width of the operands. A number of publications sacrifice accuracy to get

higher performance and energy efficiency by quantizing the network weights and activations to

binary [46] or ternary values [59, 60, 61] to omit multiplications.

Figure 1.1 shows the efficacy of quantization in reducing the complexity of DNN infer-

ence (particularly MAC operations) on FPGA. Quantizing 32-bit fixed-point weights to six bits

reduces the number of Look-up Tables (LUTs) by 97%, without adverse impact on the accuracy

of the network after re-training. LUT count for 32-bit operands is not shown due to differences

in scale, though the ∝ n2 trend can be discerned from the figure. Although reducing the bit-width

below six bits saves area, its results in significantly lower accuracy that is not affordable for the

majority of real-world applications [28].

6

0

20

40

60

80

100

1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8 bit

L
U

T
 C

o
u

n
t

Conventional RNS Residue-Net

Figure 1.1. Resource utilization of MAC operation in conventional binary, RNS, and Residue-
Net on FPGA.

In this chapter, we propose Residue-Net, a multiplication-free accelerator for neural

networks that uses Residue Number System (RNS) to achieve substantial energy reduction.

RNS is an unorthodox number representations that breakdown large numbers into multiple

smaller numbers, resulting in replacing arithmetic operations with multiple simpler operations

by reducing the operands’ bit widths. Each residue (remainder) is always smaller than the

corresponding modulus. Therefore, for representing each residue, fewer bits are needed. RNS

simplifies the operations by breaking them down to the same operations on the residues with

smaller bit-width. Consequently, it needs simpler arithmetic for implementation. Figure 1.1

shows the area of a MAC unit in RNS format for different bit-widths. The area is the total area

of the residue MAC units. For instance, for six-bit binary numbers that are converted to RNS

with {3,4,5} as moduli set, the area of the MAC unit is shown as six-bit RNS MAC. Six-bit

RNS MAC reduces the area by 2.4× as compared to the binary MAC unit (18 LUTs versus 44).

Residue-Net uses six-bit RNS with {3,4,5}moduli set to exploit the benefits provided by

RNS to represent six-bit network weights with two 2-bit and one 3-bit numbers. Considering the

{3,4,5}moduli set, in Residue-Net, the residues can only be within the set of {0,1,2,3,4}, as the

residues are always less than the modulis. Therefore, Residue-Net replaces costly multiplications

with non-complex, energy-efficient shift and add operations to further simplify the computational

7

complexity of neural networks as shown in section 1.2.1. As it is shown in Figure 1.1, the six-bit

MAC unit of Residue-Net, by eliminating the multiplication operations, requires 50.0% fewer

LUTs than the baseline RNS MAC unit, and 79.5% less than the original binary unit.

Residue-Net trains and quantizes the DNN model using the approach proposed in [62],

and transforms the weights and activations into RNS to carry out the exact computations on

operands with fewer bits. Since Residue-Net performs all the computations in exact mode, the

accuracy of the network remains the same. Residue-Net, not only breaks down the computations

to operations with fewer bits, but it is also able to replace the costly multiplications with simpler

add operations to further reduce the computation complexity. The main contribution of this

chapter is as follows.

• We propose Residue-Net, a novel FPGA-based accelerator based on RNS which maps

all activations and weights of a neural network to RNS, which breaks down the six-bit

operations into two 2-bit and a 3-bit operation.

• We further simplify the multiplications into add and shift operations, which further simpli-

fies the computations of the neural network inference.

• The results of implementing four popular neural networks, LeNet, AlexNet, VGG16, and

ResNet-50 on FPGA leveraging the our innovations reveal 2.8× better performance with

no impact on accuracy.

1.1 Background and Related Work

Neural networks have been extensively used in many applications and have been acceler-

ated on various platforms [63, 31]. Quantization has been explored to compress and accelerate

the neural network in literature [28, 64, 65, 61]. The work in [66] developed a tool that enables

both software simulation and hardware realization of DNNs using different data representations

and approximate computing blocks. The work in [28] proposes an automated DNN inference

8

accelerator generator that first quantizes the network and then retrains it to retrieve the accuracy

drop. The work [64] uses reinforcement learning for hardware-aware layer-wise weight quanti-

zation. The above works use static quantization so that the weight bit-width is set fixed either

for the entire network or on a layer-by-layer basis. However, the studies in [65, 67] quantize the

weights based on the complexity of the input such that difficult-to-predict inputs run through a

more precise network. For over-simplifying the execution of the neural network, studies [46]

quantize the network weights down to binary, {−1,+1}, which replaces the multiplications with

XOR operations. Although binarized neural networks are significantly faster than fixed-point

alternatives, they are practically unappealing for real-world applications due to their low accuracy

[68, 69]. Ternary weight representation is proposed [59, 60, 61] to ameliorate the accuracy drop

by using {−1,0,+1} or {−W,0,+W}, even though ternary NNs still cannot provide the same

accuracy as NNs with fixed-point weights.

On an orthogonal research path, unorthodox number representations have been studied

to achieve better accuracy or performance than the conventional fixed-point or floating-point

networks [70, 71, 72, 73]. The study in [70] proposes narrow-precision floating-point represen-

tations instead of 32-bit floating-point numbers to simplify the operations. The posit number

system is introduced in [71] as an alternative representation of IEEE floating-point number to

represent real numbers. Posit has a larger dynamic range and higher accuracy as compared to

floating-point numbers which make it suitable for DNNs to get the same accuracy as 32-bit

floating-point weights with less than eight-bit posit weights [74]. While these studies convert

a trained network to posit representation, [75] uses posit numbers to train the networks. Posit

operations, however, are more complicated than the floating-point ones [76].

Residue Number System: RNS has been used in compute-intensive applications such

as digital signal processing [77] and neural networks [78, 79, 72] to accelerate them by reducing

the bit-width of operands. A number in RNS is represented by the remainders (residues)

of dividing it by a set of numbers, called moduli. Moduli set is a set of numbers Mi ∈

Moduli Set{M1,M2, ...,Mk} where any pair Mi and M j are co-prime. The process of divid-

9

ing a number by the moduli set and representing the number by the residues is called forward

conversion. The process of converting the RNS numbers back to the binary system is called

backward conversion. Several studies such as [80] investigate the impact of different moduli sets

on the computation complexity of the forward conversion step. Multiplication and add operations,

the two most common operation in DNNs, can be directly performed in the RNS domain [72].

Being the remainder of the division by a modulus, each number in RNS is smaller than the

modulus, thereby RNS represents a binary number with multiple smaller numbers with fewer

bits. Several recent studies have focused on optimizing the architecture of RNS operations [81].

By decreasing the bit width of the operands at the cost of increasing the number of operations,

RNS simplifies the hardware implementation that can be translated to a higher parallelism.

The work in [72] uses RNS to implement the DNNs with resistive processing-in-memory

(PIM) technology. They utilize RNS to simplify the operation such that all the DNN operations

can be run in RRAM crossbar memory. The work in [82] focuses on using RNS to improve

multipliers for neural network applications on FPGA. Works in [78] and [83] use nested RNS to

reduce the bit width of numbers so that it maps all the NN operations in FPGA LUTs to increase

the efficiency of computations. In our work, we take the advantage of RNS to breakdown the

weights and activations so that the costly multiplications can be performed with energy-efficient

shift and add operations whilst keeping the accuracy intact.

1.2 Proposed Residue-Net

DNNs consist of convolutional (CNV), activation function (AF), fully connected (FC),

and pooling layers. Residue-Net first converts the incoming inputs to RNS. The rest of the

intermediate computations are carried out in RNS format. The moduli set for Residue-Net is

{2t − 1,2t ,2t + 1}; for t equal to 2, the moduli set becomes {3,4,5}. Considering the RNS

with the selected moduli set, valid values for R3 (residue of dividing by 3) are {0,1,2}, and

valid values for R4 and R5 are {0,1,2,3} and {0,1,2,3,4}, respectively. To represent R3 and R4,

10

Residue-Net requires two bits, while to represent R5 it requires three bits. Therefore, Residue-

Net converts six-bit numbers and operations into two two-bit and one three-bit numbers and

operations. In the following, we first introduce the required operations involved in neural

networks, and then we propose the Residue-Net architecture to accelerate DNNs.

1.2.1 RNS Operations

RNS can uniquely represent binary numbers in the range of D =
k
∏
i=1

Mi (as each residue

Ri can take i different values). Therefore, any binary number ∈ [0,D) can be represented uniquely

as {RM1,RM2, ...,RMk} where RMk is |X |Mk , i.e., X mod Mk. A six-bit binary number x[5 : 0] can

be expanded as x = x[5 : 4]×24 + x[3 : 2]×22 + x[1 : 0]×20. We therefore can obtain residues

of R3 following Equation (1.1).

R3 = |x|3 = |x[5 : 4]×16+ x[3 : 2]×4+ x[1 : 0]×1|3

= x[5 : 4]×|16|3 + x[3 : 2]×|4|3 + x[1 : 0]×|1|3

= x[5 : 4]+ x[3 : 2]+ x[1 : 0]

(1.1)

Analogously, for R4, and R5 we have:

R4 = |x|4 = x[1 : 0] (1.2a)

R5 = |x|5 = x[5 : 4]− x[3 : 2]+ x[1 : 0] (1.2b)

Note that to calculate R3 = x[5 : 4]+ x[3 : 2]+ x[1 : 0], if the result of the sum is greater than the

modulus 3, we subtract the modulus from the result of the addition. R4 is equal to the two least

significant bits x[1 : 0], and R5 is calculated in a similar fashion of calculating the R3, though

the middle addition is replaced by subtraction. Therefore, Residue-Net requires two three-port

adders for the forward conversion. To convert the RNS numbers back to the binary system, we

11

use a look-up table that maps every RNS number to its corresponding binary number.

Addition and Multiplication: Upon converting binary numbers to RNS, Residue-Net

executes the neural network operations in RNS, where the majority of operations in convolution

and fully-connected layers are addition and multiplication. Multiplication and addition in RNS

are similar to the binary operations. To multiply (add) two RNS numbers, their corresponding

residues are multiplied (added); if the result is greater than the modulus, the final residue is

computed by subtracting the modulus, as represented by Equation (1.3) and (1.4).

(A+B)RNS = {|A+B|3, |A+B|4, |A+B|5}

= {|A|3 + |B|3, |A|4 + |B|4, |A|5 + |B|5}

= {|R3,A +R3,B|3, |R4,A +R4,B|4, |R5,A +R5,B|5}

(1.3)

(A×B)RNS = {|A×B|3, |A×B|4, |A×B|5}

= {|A|3×|B|3, |A|4×|B|4, |A|5×|B|5}

= {|RA
1 ×RB

1 |3, |RA
2 ×RB

2 |4, |RA
3 ×RB

3 |5}

(1.4)

As alluded before, considering the selected moduli set, RNS numbers will be in the set

{[0,1] , [0,1,2] , [0,1,2,3]}. Thus, Residue-Net simplifies the multiplication to shift and/or add

operation. Multiplication by 0 results in constant 0 output. In multiplying by 1, the output simply

gets the input value. Multiplication by 2 and 4 are realized by shift operations. Residue-Net

computes multiplication by 3 by adding the input with to its left-shifted (i.e., 3x = 2x+ x).

Figure 1.2 demonstrates how a Residue-Net multiplication module works. First, if the

inputs are not in RNS, Residue-Net converts them to RNS using the forward conversion (FWC)

formulated earlier. Each multiplexer covers all possible scenarios of the weight parameter

(which is also in RNS format) and inputs/activation values. As shown in the figure, Residue-

12

Net only utilizes a two-bit and a three-bit adder plus three multiplexers to implement a six-bit

multiplication. The output of multiplications in RNS format can also be larger than the moduli

set, which needs to be converted back to the right range. For this, at the end of computations,

Residue-Net uses a Ranging Block (RB) to calculate the residue in case the output of multiplexers

are greater than the corresponding modulus.

The example of Figure 1.2 computes 7× 4 in RNS. Residue-Net first transforms the

input 7 to {R3 = 1,R4 = 3,R5 = 2} (if the input is an activation, i.e., outputs of intermediate

layers, it will be already in RNS format). All weight parameters of the model are converted

to RNS format offline for once. Here, the w = 4 is represented as {R3 = 1,R4 = 0,R5 = 4}.

Residues of the weights are connected to the select port of the multiplexers. The output of the

multiplexers are, expectedly, {R3 = 1×1 = 1,R4 = 3×0 = 0,R5 = 2×4 = 8}. Since R5 = 8 is

greater than 5, the ranging blocks eventually convert the output to {1,0,3}, which matches with

representing 7×4 = 28 in RNS format: |28|3 = 1, |28|4 = 0, and |28|5 = 3. We note that the

ranging blocks in Figure 1.2 are just for demonstration purposes. As explained in the following

subsection, we share a single RB block for the entire adder-tree (that sums up the output of

several multiplications) by deferring RB operations after the summations.

Comparison: Comparison is another operation required to execute DNNs, mainly used

in pooling and activation layers. Comparison cannot be directly performed in RNS format by

simply comparing the residues [84]. Instead of converting the RNS numbers back to the binary

number system to perform the comparison, Residue-Net uses mathematical attributes of RNS for

this purpose. For a number in our RNS representation with residues {R3,R4,R5}, we define α

as the smallest number that has the same residue for R3 and R5. For instance, for an arbitrary

number with R3 = 0 and R5 = 1, we see α = 6 as |6|3 = 0 = R3, and |6|5 = 1 = R5. Any number

smaller than α = 6 does not hold this property. Such a number (α) will have an arbitrary R4 of

β , i.e., |α|4 = β . That being said, if we multiply x = {R3,R4,R5}RNS by M1×M3 = 3×5 = 15,

we observe |15x|3 = 0, |15x|4 = |− x|4 =−R4, and |15x|5 = 0 as well. With these insights, we

13

R3

×0 ×1 ×2

W
ei
gh
t R3

R4

R5

×0 ×1 ×2 ×3

+

R4 R5

×0 ×1 ×2 ×3 ×4

+

Input

7

1 3 2

4

1

0

4

1 0 3

RB RB RB

Figure 1.2. The RNS multiplication unit of Residue-Net.

can represent x = {R3,R4,R5} in RNS as follows.

x≡ |β −R4|×15+α (1.5a)

→ |x|3 = |(|β −R4|×15)|3 + |α|3 = 0+R3 = R3 (1.5b)

→ |x|4 = |(|β −R4|×15)|4 + |α|4 = (R4−β)+β = R4 (1.5c)

→ |x|5 = |(|β −R4|×15)|5 + |α|5 = 0+R5 = R5 (1.5d)

We use this property to compare two binary numbers x′ = |βx−R4,x| × 15+αx and

y′ = |βy−R4,y| × 15+αy that have the same RNS representation of x and y: we can simply

compare |βx−R4,x| and |βy−R4,y| to compare the actual values x and y. If these two terms are

14

Forward
Conversion

R3 Memory

R4 Memory

R5 Memory

Conv/FC
layer (R3)

Conv/FC
layer (R4)

Conv/FC
layer (R5)

A
ct

iv
at

io
n
 F

u
n

ct
io

n

P
o

o
li
n
g

R3 Memory

R4 Memory

R5 Memory

Weight
Memory

+

+

+

K×K

+
+

+
+

+ RB4

+

+

+ +

+

+
+

+

ACC RB4

α, β
Memory

R3,x
R4,x
R5,x

R3,y
R4,y
R5,y

β

βα, β
Memory

R4,x

R4,y CMP=
> CMP

>
In

p
u
t

B
u

ff
e
r

Modulo 4 Convolution
Kernel

Modulo 4 Fully
Connected Neuron

(a) (b) (d)

(c)

Figure 1.3. (a) The proposed architecture for Residue-Net. (b) A convolutional kernel that
performs computations on the inputs and weights R4. (c) Residue-Net proposed comparator
module. (d) A fully connected neuron working in inputs and weights R4.

equal, we then use the comparison of αx and αy. To avoid computational complexity, for every

possible value of x, Residue-Net stores αx and βx in a memory. Note that binary x has six bits, so

the memory footprint is trivial. The R4,x (i.e., |x|4) is ready beforehand as the operands passed

through the layers are all in RNS format.

We showed that Residue-Net can execute the neural network operations entirely in RNS

representation. After performing all the computations, Residue-Net converts the final results back

to the binary system using the backward conversion module explained above for the final soft-

max operations. Since the binary number has a limited bit-width of six, Residue-Net transforms

each RNS number to the corresponding binary number using a small lookup table.

1.2.2 Residue-Net Architecture

The architecture and dataflow of Residue-Net is illustrated in Figure 3.9(a). The network

is trained and weights are quantized to 6-bit binary values offline. The weights are converted

to RNS and transferred to FPGA DRAM. Since the computation in RNS is performed on each

residue independently, Residue-Net stores the weights residues in three separate memory blocks

to simplify the memory access pattern of different residues. During the execution of the network,

Residue-Net transfers the weights to FPGA local BRAMs which have considerably faster access

latency than the off-chip memory (DRAM). Residue-Net uses a weight stationary dataflow to

load the weights. Weights of each kernel remain stationary in the FPGA BRAM to maximize the

15

kernel reuse. Once a convolutional kernel weights are fetched into BRAMs, all the computations

that use those weights are executed.

Residue-Net transfers the primary inputs to the Input Buffer which is connected to forward

conversion (FWC) modules. FWC modules calculate the residues as explained in Equation (1.1)

and (1.2) for multiple input features in parallel. R1, R2, and R3 of the converted inputs are stored

in three separate memory blocks, one for each residue. Residue-Net comprises the required

modules for DNN inference, convolutional, fully connected, ReLu activation function, pooling

layers, memory blocks, scheduler, and controller. Multiplication and add operations can be

carried out independently for each of the residues, however, an RNS comparison demands all

the three representing residues. Thus, Residue-Net executes the computations of CNV and

FC layers for each residue in parallel while ensuring that results of all residues become ready

simultaneously to pass to the next layer. Residue-Net makes three instances of both convolution

and fully connected layer, whereby each instance performs computations on the corresponding

residue. As executing activation function and pooling layers require all the three residues, only

one instance of these layers is present in the architecture. Note that, in Figure 3.9 (b)/(d), only the

convolutional kernel and fully connected neuron of the residue R4 is illustrated. Computations on

the other two residues are performed in a module with the same architecture but slightly different

in the primary arithmetic modules (see Figure 1.2).

The scheduler of Residue-Net moves primary input data to the input buffer as well as

fetches the required weights into the weight memory blocks. Thereafter, based on the network

architecture, it initiates different layers sequentially. Convolutional layers might consist of

different numbers of convolutional kernels with different shapes. Thus, the scheduler applies

the layer configurations to the CNV layers in the runtime. Since each layer may not be able

to accomplish the computations in a single cycle, the controller generates the memory access

addresses for the layer’s inputs and weights. For the first layer, the controller reads the RNS

inputs from the first array of residue memories and writes the intermediate results into the

second array of the residue memories. The controller also issues hand-shaking signals when the

16

computations of a layer are accomplished. To execute the next layer, instead of reading the inputs

from the first array, the controller reads the layer’s inputs from the second memory array and

writes the results into the first array. That is, the controller switches the memories alternatively

for every other layer; a layer reads from one memory and writes to the other memory.

Convolutional layers consist of single or multiple convolutional kernels that multiply the

inputs by the kernel weights and accumulate the results. The convolutional kernels move along

the inputs to generate outputs. Figure 3.9(b) depicts the convolutional kernel of Residue-Net

that operates on the R4 residues. The convolutional of the kernel weights and the inputs are

carried out in Residue-Net multiplier (see Figure 1.2). Since the values of R4s are smaller than 4,

Residue-Net simplifies the multiplication to selecting among the pre-calculated multiplied values.

The number of multiplications in a K×K convolutional kernel is equal to the size of the kernel,

i.e., K×K. Residue-Net aggregates the multiplication outputs in a pipelined adder-tree. The

result of the accumulation of the multiplied inputs and weights may be greater than the modulus.

Therefore, as mentioned earlier, Residue-Net uses a ranging block to convert the output back

to valid RNS representation. In the RNS multiplier shown in Figure 1.2, a ranging block is

used immediately after the multiplication. However, in intermediate computations, temporary

variables do not need to be in a valid RNS representation Therefore, Residue-Net utilizes only a

single ranging block (here, mod 4) after computing the final value of convolutional kernel rather

than using a ranging block after every operation. To fully utilize the available FPGA resources,

Residue-Net instantiates multiple convolutional kernels within the convolutional layer.

In DNNs, the output of the layers passes through a non-linear activation function. Recti-

fied Linear Unit (ReLU) activation function is the most widely used activation function layer. To

implement the ReLU activation function, Residue-Net needs to perform the comparison using

the procedure explained in Section 1.2.1. Figure 3.9(c) shows the Residue-Net comparator. To

compare two RNS numbers, R3, and R5 of both inputs are connected to a lookup table to the

values of α and β . Residue-Net comparator calculates the difference of R4 of each input and their

corresponding β ; the one with the larger difference is greater. For equal differences, the number

17

with the greater α is larger. To implement the ReLU activation function, Residue-Net uses the

implemented comparator with one input fixed. Residue-Net also uses the RNS comparator to

implement max/min pooling layers.

In fully connected layers, similar to convolutional layers, multiple neurons are executing

simultaneously. The architecture of each neuron is illustrated in Figure 3.9(d). Since the number

of inputs in different fully connected layers varies, Residue-Net uses a generic architecture, which

parallelizes the computation by instantiating multiple neurons, where each neuron multiplies

and accumulates multiple inputs. Each neuron multiplies the outputs of the previous layer by

the corresponding weights and accumulates the results. A series of Residue-Net multipliers

multiply the weights by the inputs. The results are aggregated in a pipelined adder-tree and an

accumulator adds up the intermediate results of consecutive iterations. The controller issues the

memory access signals and reads all the inputs of the layer (P inputs per cycle), and at the end,

converts the accumulated RNS result to valid RNS representation.

1.3 Experimental Result

1.3.1 Experimental Setup

Residue-Net migrates the neural network execution to the RNS domain to reduce the

complexity of DNNs without losing the accuracy of the quantized network. To evaluate the

efficiency of Residue-Net, we implemented four common network architectures, LeNet, Alexnet,

VGG16, and ResNet50 on FPGA. Table 1.1 compares the Top-1 accuracy of Residue-Net with

that of the 32-bit fixed-point, and networks quantized to 6-bit over four popular DNNs classifying

various popular datasets (LeNet on MNIST, AlexNet on ImageNet, VGG16 and ResNet-50 on

CIFAR-10). To train and quantize the networks we used the approach proposed in [62]. As

presented in the table, Residue-Net provides almost the same accuracy as the full-precision

network.

Residue-Net host code is written in OpenCL to convert the quantized weights to RNS.

18

Table 1.1. Accuracy of the Residue-Net as compared to the full precision and quantized to 6 bits
networks.

LeNet
(MNIST)

AlexNet
(ImageNet)

VGG16
(CIFAR-10)

ResNet50
(CIFAR-10)

32-bit Fixed-point 99.3% 47.95% 92.44% 93.62%
6-bit Fixed-Point 99.3% 47.95% 92.41% 93.58%
Residue-Net 99.3% 47.94% 92.41% 93.59%

The host code uses the Xilinx Vitis software platform to transfer the primary inputs and RNS

weights to FPGA DRAM and invoke the Residue-Net kernel. Residue-Net FPGA kernel is

implemented in SystemVerilog HDL and synthesized using Xilinx Vivado Design Suite. The

timing and the functionality of the Residue-Net are also verified using Vivado Design Suite. We

implemented Residue-Net on Kintex-7 FPGA KC705 Evaluation kit. To estimate the device

power we used the built-in Xilinx Power Estimator tool in Vivado. To evaluate the efficiency, we

compared Residue-Net with the baseline FPGA implementation. Since the dynamic range of

RNS used in Residue-Net can only uniquely represent 6-bit binary numbers, we implemented

the network quantized to 6-bit weights and activations in the binary system on FPGA with the

same architecture. We used the same architecture for the baseline and Residue-Net to minimize

the impact of the accelerator architecture on the evaluations and emphasize the effectiveness

of migrating to RNS from the binary system and multiplication-free execution of DNNs. We

also compared the efficiency of the building blocks of DNNs to represent the efficiencies and

overheads of Residue-Net.

1.3.2 System Evaluation

The baseline FPGA implementation is designed to utilize ∼90% of the FPGA available

LUTs which are the bottleneck of increasing the parallelism. We took two approaches in

selecting the parallelism level of Residue-Net: i) Residue-Net (area-opt) targets minimizing

the area and power consumption of the network. It provides the same performance as the

baseline while reducing the power and area of the network. ii) Residue-Net (performance-

19

opt) targets to fully utilize (∼90%) the FPGA LUTs to improve the performance and energy

consumption of the network. Figure 1.4 shows the throughput improvement and energy reduction

values of all the four DNNs as compared to the baseline for both area-opt and performance-opt

implementations. Residue-Net (area-opt) provides the same performance as the baseline with

less area and consequently lower power and energy consumption. Residue-Net (area-opt) shows

24% energy reduction on average as compared to the baseline. Residue-Net (performance-

opt), by increasing the parallelism provides 2.8× higher throughput, with a close area and

power consumption to the baseline; thus increasing the energy efficiency by 2.7×. The main

efficiency of the Residue-Net comes from the optimized MAC unit, therefore, Residue-Net

shows higher performance improvement in networks with a higher number of MAC operations.

As the number of MAC operations in LeNet is significantly less than those of the ResNet-50 the

performance improvement in LeNet is less than that in ResNet-50 (2.1× as compared to 3.1×).

Although Residue-Net requires more memory to store the weights (7 bits as compared to 6 bits

in the baseline), since all of Residue-Net implementations are compute-bound, the memory and

communication overhead is negligible.

Figure 1.5 shows the LUT, and BRAM utilization of the FPGA (divided by the total

available resources), as well as the power, throughput, and energy consumption of both Residue-

Net (area-opt) and Residue-Net (performance-opt) as compared to the baseline in AlexNet.

Residue-Net (area-opt) shows 33% reduction in the number of required LUTs as compared to

the baseline. Although Residue-Net increases the BRAM utilization because of using multiple

memory instances to store the RNS weights and activations, this overhead does not affect the

performance as BRAMs are not the bottleneck of the design. Residue-Net (area-opt) in AlexNet,

is able to reduce the power consumption and consequently the energy consumption of classifying

an input by 17%, while delivering the same performance as the baseline. Residue-Net (area-opt)

on average, reduces the resource utilization by 36% and power consumption by 21%. Residue-

Net (performance-opt), by fully utilizing the FPGA resources, is able to increase the throughput

and energy efficiency by 2.9× as compared to the AlexNet quantized to 6 bits. Since CNV and

20

0.0

1.0

2.0

3.0

4.0

LeNet AlexNet VGG16 ResNet50 LeNet AlexNet VGG16 ResNet50

Throughput Energy Reduction

Baseline Residue-Net (area-opt) Residue-Net (performance-opt)

Figure 1.4. Comparing the normalized values of power, throughput and energy consumption of
the FPGA baseline, Residue-Net (area-opt), and Residue-Net (performance-opt) w.r.t the FPGA
baseline for different DNNs.

FC layers in DNNs contribute to the majority of execution time, Residue-Net (performance-opt)

employs the saved resources to increase the parallelism in CNV and FC layers, thereby increasing

the performance. Residue-Net (performance-opt) provides higher speed-up and energy reduction

due to the efficiency of Residue-Net in executing MAC operations. In the following subsection,

we evaluate the efficiency of DNN sub-modules to justify where the efficiency of the system

comes from.

1.3.3 Operation Evaluation

Residue-Net tackles the computation complexity of MAC operation and particularly

the complexity of the multiplication operation. It has been shown that convolutional layers

consume 80% of the execution time [85]. To show the effectiveness of Residue-Net in breaking

down the computation complexity of the multiplication operation we evaluate the efficiency

of Residue-Net in executing the building blocks of convolutional, fully connected, activation

function and pooling layer separately.

Efficiency: The efficiency of DNN building modules is illustrated in Figure 1.6. Figure

1.6(a) shows the LUT utilization, LUT s
Totlal LUT s , of each module in FPGA. Utilization values not

21

0.0

1.0

2.0

3.0

LUT usage BRAM usage Power Throughput Energy

AlexNetBaseline

Residue-Net (area-opt)

Residue-Net (performance-opt)

Figure 1.5. Comparing the LUT and BRAM utilization of the FPGA baseline, Residue-Net
(area-opt), and Residue-Net (performance-opt), as well as the normalized values of power,
throughput and energy consumption w.r.t the FPGA baseline for AlexNet.

only demonstrate the reduction in the area achieved by Residue-Net but also show the relative

size of each module as compared to the available FPGA resources. These building modules can

be integrated into any DNN accelerator to reduce the area of the accelerators. Residue-Net shows

79.5% area reduction in implementing MAC operations which comprise more than 99% of

DNN operations [30]. Residue-Net MAC module also shows 80% power reduction as compared

to 6-bit binary MAC operation. In figure 1.6 power and performance are calculated for 100

MAC modules since due to the small size of the MAC module, the power consumption of a

single MAC module would be close to 0 and hard to represent. We also evaluate the efficiency

of four common convolutional kernels (CNV 3× 3, CNV 4× 4, CNV 5× 5, CNV 11× 11).

Residue-Net convolutional kernels, on average, show 54.5% area reduction and 59% power

reduction as compared to the baseline modules. Consuming most of the execution time of the

network, convolutional layers can be considerably accelerated in Residue-Net.

In fully connected layers, a neuron multiplies its inputs by weights and accumulate the

results. In Figure 1.6, 16 FC, 64 FC and 128 FC represent a neuron that has 16, 64, and 128

inputs respectively. For instance, 64 FC multiplies 64 inputs by weights and accumulate the

results in an adder-tree with 64 inputs. Note that if the inputs of the layer are more than 64,

the module calculates the result in multiple iterations. In fully connected neurons, Residue-Net

22

0

10

20

30

40

100
MAC

3x3 CNV4x4 CNV5x5 CNV 11x11
CNV

16 FC 64 FC 128 FC 25 AF 2x2
Pooling

5x5
Pooling

P
o

w
er

 (
m

W
)

Baseline Residue-Net

0

0.01

0.02

0.03

0.04

100
MAC

3x3 CNV4x4 CNV5x5 CNV 11x11
CNV

16 FC 64 FC 128 FC 25 AF 2x2
Pooling

5x5
Pooling

L
U

T
 U

ti
li

za
ti

o
n

 (
%

)
Baseline Residue-Net

Figure 1.6. LUT utilization and power consumption of Residue-Net building blocks in DNNs.

reduces the area by 53% and power consumption by 57% as compared to the baseline.

Residue-Net shows a significant reduction in computation complexity of both convolu-

tional and fully connected layers which are the most time-consuming parts of DNN execution.

However, due to higher complexity in comparison operations in RNS, Residue-Net activation

function and pooling layers require more resources than the baseline layers. Residue-Net re-

quires 75% more resources to implement the activation function for 25 inputs than the baseline

activation function, 215% more resources for implementing the pooling layer. However, these

two sub-modules require significantly fewer resources than the FC and CNV modules, and the

Residue-Net area overhead in these two layers will not considerably impact the effectiveness of

Residue-Net.

Overhead: Table 1.2 shows the LUT overhead of Residue-Net as compared to the

23

Table 1.2. LUT overhead of using Residue-Net in executing DNNs.

Forward Conversion Backward Conversion Ranging Block Comparator
5 12 9 15

baseline. First, Residue-Net needs to convert inputs to RNS using forward conversion modules,

each requires 5 LUTs. Also, after executing the network, Residue-Net converts the results back

to the binary system using backward conversion modules. The backward conversion module is a

table with all the possible binary numbers and maps RNS numbers to a unique binary number,

which requires 12 LUTs to implement. After performing MAC operations, Residue-Net should

calculate the residues using a ranging block that needs 9 LUTs. AF and pooling layers require

comparison operators, each of which needs 15 more LUTs in Residue-Net as compared to the

same operation in the binary system. Considering the limited number of each of these modules

in the entire system, the overhead of Residue-Net will be negligible in the efficiency of the

accelerator.

1.4 Conclusion

In this chapter, we proposed Residue-Net, a multiplication-free DNN accelerator that uses

the residue number system. Residue-Net transforms a pretrained and 6-bit quantized DNN model

to RNS representation using {3, 4, 5} as the moduli set. It breaks down the 6-bit operations

into smaller operations. It also replaces the complex multiplications with energy-efficient shift

and addition operations. Residue-Net on average, shows 36% and 21% reduction in area and

power respectively as compared to the baseline FPGA implementation with the same throughput

when executing widely-used DNNs (LeNet, AlexNet, VGG16, and ResNet50). Residue-Net,

with the same area as the baseline implementation, shows 2.8× speedup on average (up to 3.1×

in ResNet-50), while delivering the same accuracy as the 6-bit quantized network.

Even though implementing DNNs on FPGAs and replacing multiplication operations

with simpler operations increases the performance, many applications can be processed with

24

much simpler machine learning algorithms at significantly higher performance and lower en-

ergy consumption. In the next chapter we introduce hyperdimensional (HD) computing as an

alternative light-weight and hardware-friendly solution for many machine learning applications.

It provides comparable accuracy as the conventional machine learning algorithms while being

highly parallizable in hardware.

This chapter contains material from “Residue-Net: Multiplication-free Neural Network

by In-situ No-loss Migration to Residue Number Systems”, by Sahand Salamat, Sumiran

Shubhi, Behnam Khaleghi, and Tajana S. Rosing, which appears in IEEE Asia and South Pacific

Design Automation Conference (ASP-DAC), 2021 [3]. The dissertation author was the primary

investigator and author of this paper.

25

Chapter 2

Accelerating HD computing on FPGAs

Hyperdimensional (HD) computing is a novel computational paradigm that emulates the

brain functionality in performing cognitive tasks. HD provides close or even better accuracy (as

shown in table 1.1) in a wide range of applications compared to conventional machine learning

algorithms with significantly lower computational complexity. The underlying computation of

HD involves a substantial number of element-wise operations (e.g., addition and multiplications)

on ultra-wide hypervectors, in the granularities of as small as a single bit, which can be effectively

parallelized. In addition, though different HD applications might vary in terms of number of

input features and output classes (labels), they generally follow the same computation flow. Such

characteristics of HD computing inimitably matches with the intrinsic capabilities of FPGAs,

making these devices a unique solution for accelerating these applications.

In this chapter, we propose HD2FPGA, an automated tool to generate fast and highly

efficient FPGA-based accelerator for HD classification and clustering. It eliminates the arduous

task of handcrafted designing of hardware accelerators by automatically generating an FPGA

implementation of HD accelerator leveraging a template of optimized processing elements,

according to the applications specification and user’s constraint. HD2FPGA generates a synthe-

sizable Verilog implementation of HD accelerator while taking the high-level user and target

FPGA parameters into account. It is flexible and highly optimized to deliver fast and energy

efficient accelerator according to the user-specified constraints (viz., performance, and power). It

26

supports end-to-end training, retraining and inference for both HD classification and clustering.

Specifically, this chapter makes the following contributions:

• Develops a publicly available tool [86] that generates FPGA-based synthesizable architec-

tures for accelerating training, retraining, inference for HD classification and clustering.

• Utilizes random projection encoding to deliver high accuracy while removing the depen-

dency of the encoding hardware to the number of input feature levels. We show that

HD2FPGA is able to deliver high accuracy for a wide variety of applications.

• Supports training, retraining, inference, and online model refinement using the developed

template-based framework.

• Enables easy access for researchers and industry to implement classification and clustering

on FPGAs with orders of magnitude speed-up and energy reduction, compared to CPU,

with a push of a button by using HD2FPGA’s Graphical User Interface.

• Evaluates the efficiency of HD2FPGA classification and clustering using different bench-

marks compared to running the CPU-based baseline on an Intel Core-I7 CPU.

2.1 Background and Related Work

In this section, we first articulate the operations behind HD computing, including encod-

ing, training, inference, and retraining for classification and clustering. Afterward, we review the

previous work regarding the utilization and implementation of the HD computing.

2.1.1 Hyperdimensional Computing

HD computing builds on the fact that the cognitive tasks of the human brain can be

explained by mathematical operations on ultra-wide hypervectors [36]. In other words, the brain

computes with patterns of neural activity, which can be better represented by hypervectors rather

than scalar numbers. A hypervector comprises Dhv, e.g., 10,000 bits, independent components

27

(dimensions) whereby the enclosed information is distributed uniformly among all Dhv dimen-

sions. This makes hypervectors robust to failure as the system remains functional under a certain

number of component failings, and as degradation of information does not depend on the position

of the failing components [87, 38, 88].

Encoding: Several encoding methods have been proposed to map input data into hyper-

vectors. Random projection [89], permutation-based [47, 90, 91], n-gram [92], and ID-vector

[91] encoding methods have been used in literature, among which the random projection method

works well on wider variety of data sets and can be efficiently implemented on FPGA. Therefore,

in HD2FPGA we utilize the random projection encoding for classification and clustering. Sup-

pose the input data is X = {x1,x2, . . . ,xDiv}, where Div is the number of input features in the input

vector and each feature can be quantized to L unique levels. Table 2.1 shows the accuracy of each

encoding method on various edge sensing applications. We quantify the number of multiplication

and accumulation (MAC) operations as well as the size of the required memory for encoding an

input with Div input features quantized to L levels. Additionally, we compare the accuracy of HD

computing with deep neural networks (DNNs) multi-layer perceptron (MLP) and random forest

as conventional machine learning algorithms. As illustrated in the table, the random projection

encoding provides a comparable accuracy compared to other conventional machine learning

algorithms for a wide range of applications. The accuracy of the random projection, ID-level

and permutation-based encoding are relatively close. However, implementing ID-level and

permutation-based encodings on hardware is impossible as they require a huge amount of mem-

ory when full-precision (32-bit) inputs. Implementing these two encoding methods on FPGA is

possible when the input features are quantized to 8 levels (3-bit) [47]; nevertheless, quantizing

the input features to 8 levels drops the accuracy of the ID-level and permutation-based encodings

for 9.1% and 10.2% respectively. Equation 2.1 shows the random projection encoding.

~H =
j=div

∑
i=1

~Pi× xi (2.1)

28

In this encoding, the input vector is multiplied by a projection matrix consists of a set

of Div binary vectors Pi. The P matrix consists of Div columns of projection hypervectors (Pi).

Each Pi consists of Dhv randomly generated binary values.

Pi = {p j} j=Dhv
j=1 , p j ∈ {0,1} (2.2)

HD encoding maps inputs to hypervectors and involves the following steps. First, it

initializes projection hypervectors, each of which corresponds to a specific input feature level.

Indeed, input of the HD algorithm is a feature vector ~Viv with Div dimensions (elements) wherein

each dimension represents a feature value. According to Table 2.1, the size of the required

memory in the ID-Level is proportional to the number of features and number of quantization

levels (O(DivL)). The permutation-based encoding, used in [47], memory requirement is in the

order of O(L), while the memory requirement in the random projection encoding is O(Div. Input

features can be quantized to simplify the encoding step. The ID-Level and Permutation-based

encoding are more susceptible to the number of input features levels (i.e. input bit-width), as

there should be a unique hypervector for each level. However, in the random projection encoding

the input bit-width only affects the operations bit-width. In many applications, reducing the

quantization levels significantly affect the accuracy, as shown in table 2.1. Therefore, unlike the

random projection encoding, both ID-Level and permutation-based encoding methods are unable

to support 32-bit input features, which is needed in some applications to provide the utmost

accuracy on FPGA due to the limited on-chip memory needed to store the base hypervectors.

Moreover, in HD2FPGA we reduce the memory requirement to O(1) by generating the required

projection hypervectors on the fly.

After loading the projection hypervectors, the projection matrix is getting multiplied

by the input features to generate the encoded hypervector. Each dimension of the encoded

hypervector can be generated independent of the others. The element jth of the encoded

hypervector can be generated by multiplying the jth row of the projection matrix (Div element)

29

Features

(#Div) Encoder

Dhv dimensions

B
as

e
H

V
 M

em
o

ry

Similarity Check

HD Model (class HVs)

Random Projection

+

Class 0Class 0

Class 1Class 1

Class CClass C

Train input @ Class i

EncoderEncoder

Class i HV

Class 1 HV

Class C HV

Train HVTrain HV

Class x

×× ∑∑××× ∑×

×× ∑∑××× ∑×

HD Model

Training Inference

×× ∑∑××× ∑×

×× ∑∑××× ∑×

Figure 2.1. Overview of hyperdimensional learning and inference.

Table 2.1. Comparing the accuracy and memory requirement of each encoding method in various
edge sensing applications.

Cardio Face ISOLET UCIHAR MNIST Page PAMAP2 Average Memory
Random Projection 84.9% 95.3% 93.5% 94.1% 93.5% 96.2% 90% 92.5% O(Div)
ID-Level 88.1% 95.6% 93.2% 94.6% 89.4% 91.6% 94.6% 92.4% O(DivL)
ID-Level 3-bit 84.3% 95.6% 93.2% 94.1% 86.6% 91.4% 37.9% 83.3% O(DivL)
Permutation-based 32-bit 88.2% 96.1% 93.5% 94.7% 89.3% 91.7% 95.8% 92.7% O(DivL)
Permutation-based 3-bit 84.6% 95.8% 93.2% 94.4% 86.4% 91.4% 31.9% 82.2% O(DivL)
MLP 86.4% 95.5% 95% 94.6% 96.7% 96.5% 92.9% 93.9%
Linear Regression 86.4% 92.3% 94% 93.1% 92.6% 96% 92.9% 92.4%
Random Forest 95.3% 92.5% 92.2% 95.6% 96% 97.4% 95.6% 94.9%

by the input vector. Therefore, generating different dimensions of the encoded hypervector

can be parallelized which makes FPGAs with intrinsically high parallelism a great platform for

executing HD encoding.

Training: After mapping each input ~Viv to hypervector ~H as above, all hypervectors be-

longing to the same class (label) are simply summed to form the final representative hypervectors.

Thus, assuming ~H l = 〈h0,h1, · · · ,hdhv〉l denotes a generated class hypervector for an input data

with label l, the final (representative) class hypervectors are obtained as Equation 2.3, in which

each dimension c j is obtained through dimension-wise addition of all hl
js, and K is the number

30

of input data with label l.

~Cl = 〈c0,c1, · · · ,cdhv〉=
K

∑
k=0

~H l
k (2.3)

Inference: The first steps of inference in HD computing is similar to training; an input

feature vector is encoded to Dhv−dimension query hypervector, as explained in the encoding step.

This is followed by a similarity check between the query hypervector ~H and all representative

class hypervectors, ~Cl . The similarity is defined as calculating the cosine similarity, which is

obtained by multiplying each dimension in the query vector to the corresponding dimension of

the class hypervectors, and adding up the partial products:

similarity(~H , ~Cl) =
Dhv

∑
j=0

hk · ck (2.4)

The class with the highest similarity with the query hypervector indicates the classification result.

Retraining: Retraining might be used to enhance the model accuracy by calibrating it

either via new training data or by multiple iterations on the same training data. Retraining is

basically done by removing the mispredicted query hypervectors from the mispredicted class

and adding it to the right class. Thus, for a new input feature vector ~Vin with query hypervector

~H belonging actually to class with hypervector ~Cl , if the current model predicts the class Cl′

where Cl′ 6= Cl , the model updates itself as follows:

~Cl = ~Cl + ~H

~Cl′ = ~Cl′− ~H
(2.5)

This, indeed, reduces the similarity between ~H and mispredicted class Cl′ , and adds ~H to the

correct class Cl to increase their similarity and the model will be able to correctly classify such

query hypervectors.

Clustering: Similar to HD classification, in HD clustering every input needs to be

encoded first. In HD clustering, the centroid hypervectors are initialized by hypervector of

31

randomly selected inputs. HD clustering keeps 2 copies of HD model (centroid hypervectors). It

uses one for finding the closest centroid to the current input, and use the other model to update

the clustering centroids for the next iteration. During each iteration of clustering, it finds the

similarity between the encoded hypervector and every centroid and the cluster with the maximum

similarity is the result of clustering (similar to classification). After finding the closest cluster,

the input is used to update the copy of HD model. The encoded input is added to the centroid

hypervector representing the cluster. After processing all the input in the dataset, the HD model

is being replaced by the updated model for the next iteration. The number of iterations is a

parameter defined by the user.

2.1.2 Related Studies

HD computing is gaining traction as an alternative solution to perform cognitive tasks in a

light-weight fashion that uses significantly simpler operations compared to conventional machine

learning techniques that deal with complex learning procedures with substantial number of

costly operations. So far, HD computing has been widely used for a wide range of classification

[93], clustering [94], recommendation systems [45] to name a few. Language identification

[95], DNA sequencing [96], physical activity prediction [40, 97], speech recognition [41, 98],

gesture recognition [99, 100], EEG signal classification [101, 102], robotics [103, 104] are a few

example of HD applications.

On par with studies investigating the HD applications, several studies have attempted to

propose application-specific accelerators (ASIC [105, 106, 100, 107], FPGA [108, 87, 90, 91, 47,

109, 98]) and algorithmic solutions to enhance the efficacy of HD computing. The study in [87]

proposes logical operations to generate the hypervector corresponding to each feature on the fly,

in order to reduce the costly BRAM accesses. They also propose an approximate majority gate to

compose the binary class hypervectors without requiring to hold the summation on hypervector

components in a multi-bit format in the course of training. This is, however, limited to low-

accuracy binarized HD computing wherein each dimension of the query and class hypervectors

32

is one bit. The authors of [110] propose a hierarchical HD computing solution that consists of the

main stage with multiple classifiers each can trade between efficiency and accuracy. There is also

a decider stage that learns and selects the appropriate encoder within the main stage based on a

so-called difficulty metric of the input data. The work in [90] exploits computational reuse to

reduce the computation complexity of HD classification. It proposed an FPGA-based architecture

to execute HD classification on FPGA. It reuses the previously encoded hypervector to encode

the current input to simplify the encoding step. It additionally, clusters class hypervectors

dimensions to reduce the number of multiplications in the associative search step. The work

in [91] proposes approximate encoding modules to significantly accelerate the encoding step.

They approximate and optimize the encoding operations based on the characteristics of FPGA

resources.

Multiple works leverage advances of emerging technologies in HD computing [92,

111, 112, 113, 114, 115]. The work in [92] presented a complete in-memory platform for

executing both encoding and associative steps of HD computing on memristive devices. the

developed platform supports hypervectors with different dimensionality and input datasets

with different numbers of input features and classes. Thanks to the intrinsic robustness of

HD computing to noise, the work in [92] approximates the mathematical operations to further

accelerate HD computing. In [111], the authors leverage CNT-FET and Resistive RAM to

fabricate an end-to-end HD computing solution. They exploit the variations in RRAM resistance

and CNT-FET drives current to project the input features to query hypervectors as well as

propose an approximate accumulation circuit using gradual RRAM reset operation. The work

in [112] demonstrates HD computing with 3D vertical RRAM in-memory kernels capable of

performing multiplication, addition, and permutation by analog operations on RRAM cells. The

work in [114] exploits stochastic computing to execute HD computing operations in memory.

The proposed architecture introduces stochastic operation on HD vectors which can be easily

parallelized in memory.

33

Vitis Development Tools

HD Kernel

Vivado Design Suite

HD Accelerator BitstreamCompiled Host Program

DRAM

Training Data

Test Data

AXI

D
R

A
M

D
R

A
M

FPGAFPGA

User Input
Application Description

HD Parameters

Data Setup HD Kernel Setup

Host Program

E
n

co
d

eU
n

it
E

n
co

d
eU

n
it

In
p

u
t

St
re

am
In

p
u

t
St

re
am

Se
ar

ch
 U

n
it

Se
ar

ch
 U

n
it

A
X

I
A

X
I Input

Encoded
Input

Prediction
Label

Trained
Model

HD
Execution

HD
Results

PCIe

User Input
Application Description

HD Parameters

Figure 2.2. Overview of the proposed framework, HD2FPGA.

2.2 HD2FPGA Framework Overview

HD2FPGA aims to abstract away the complexities behind employing FPGAs for ac-

celerating AI applications. HD2FPGA is an automated tool to accelerate the design time of

an FPGA-based HD classification and clustering considering the user-specified criteria, e.g.,

power budget, performance-accuracy trade-off, and FPGA model (available resources). The

overview of HD2FPGA is illustrated in Figure 2.2. HD2FPGA can be split into two parts: the

host program and the HD kernel. The host program runs on the host CPU and is responsible

for transferring data to the FPGA off-chip memory, initiate the HD kernel, and read the results

from the FPGA. It, first, loads the dataset from the storage. A part of the dataset is for training

34

and retraining the HD model while the rest is used to evaluate the accuracy of the model. It

uses the training data to train the HD model. As explained in the previous section, multiple

iterations of retraining is needed to adjust and increase the accuracy of the HD model. After

training the HD model, HD2FPGA model can be used to classify/cluster unseen data. HD2FPGA

gets the application description and HD parameters from the user and automatically generates

an FPGA-based accelerator, called HD kernel, for the user’s application. The HD kernel runs

on FPGA and supports end-to-end HD execution, including encoding, training, retraining, and

inference of HD classification and clustering.

2.3 HD2FPGA Architecture

In this section, we articulate the contributions of HD2FPGA in more detail. We begin

by elaborating on the proposed encoding scheme that reduces BRAM usage. Afterward, we

illustrate the architecture overview and detail the functionality and structure of the building

blocks in the course of training, retraining, and inference of both classification and clustering.

We also formulate the required resources of each module, based on the HD parameters.

HD2FPGA automatically generates the FPGA-based accelerator for user’s HD classifica-

tion and clustering applications. HD2FPGA gets the HD parameters (e.g., hypervector lengths,

number of input features, number of classes/clusters) and generates an accelerator based on users’

inputs. HD2FPGA consists of three main modules (InputStream, EncodeUnit, and SearchUnit)

to execute all the operations in both HD classification and clustering. Details of each module are

disccussed in the following.

InputStream: It reads the inputs from the FPGA memory through AXI bus interfaces and writes

them into parallel buffers as illustrated in Figure 2.3. The AXI interface bit width is set to 32

and since the host program quantizes the dataset to 32-bit numbers, the HD kernel reads one

feature per transaction. The number of features for each input is a parameter (Div) set by the

user, during the synthesis. The InputStream module continuously reads the Div input features

35

32

Fin1
0Stream Buffer Fin2

0Fin3
0

Fin1
1Stream Buffer Fin2

1Fin3
1

Fin1
DivStream Buffer Fin2

DivFin3
Div

Write
Enable

..
.

counter
D

ec
o

d
er

x

x

x

we

we

we

A
X

I

FPGADRAM

Train
Data

Test
Data

Figure 2.3. The architecture of the InputStream module.

and writes them into parallel stream buffers, implemented as First-In-First-Out (FIFO) buffers,

as shown in Figure 2.3. Features belonging to an input vector can be read in parallel as they are

written in different stream buffers. F j
i , in the figure, represents the ith feature of the jth input.

The encoding module needs to read multiple input features in each cycle, therefore, parallel

buffers provide simultaneous access to all input features.

EncodeUnit: It reads the input features from the stream buffers and encodes the input to

a hypervector with Dhv dimensions (defined by the user during the runtime). HD2FPGA utilizes

random projection encoding, as it is more efficient for edge devices and provides higher accuracy

in most of the applications. The random projection encoding is shown by the following equation.

H=∑
Div
k=1 Pk× vk (2.6)

Here Viv =< v1, ,vDiv > is the input vector and vk shows a quantized feature element,

while Pk is the kth projection hypervector. The projection hypervectors are randomly generated

hypervectors for each input feature. Projection hypervectors are frequently being used to generate

the encoded hypervectors. Thus, they should be stored in FPGA on-chip memory (BRAMs

36

and/or URAMs) to maximize performance. However, the size of the FPGA on-chip memory

is limited, and storing a hypervector for each input feature requires multiple megabytes of

on-chip memory which is higher than what is available on small FPGAs. To make HD2FPGA

compatible with more FPGA family types and specifically smaller FPGAs used in edge devices,

the HD kernel only stores a single seed hypervector (SeedHV), and by applying permutations, it

creates the projection hypervectors on the fly. To permute the seed hypervector, HD2FPGA uses

hardware-friendly shift operation as shown in the following equation to generate the projection

hypervectors.

Pk = SeedHV << k (2.7)

To generate the projection hypervector corresponding to the kth feature, HD2FPGA

applies k rotational shifts on the seed hypervector. As the encoding operations are regular,

HD2FPGA does not need to store the projection hypervector, so it generates the required

dimensions of the projection hypervectors on the fly. The random projection encoding by using

the seed hypervector is shown in the equation below.

H=∑
Div
k=1(seedHV << k)× vk (2.8)

Figure 2.4(a) shows the matrix multiplication operations for the random projection

encoding. The projection hypervector matrix in the figure shows how the projection hypervectors

are achieved from the seed hypervector. Bi is the ith dimension of the seed hypervector and

column Pi is the projection hypervector of the ith feature. P1 directly uses the seed hypervector,

and the other projection hypervectors are conducted by permuting P1. HD2FPGA breaks down

the encoding operations to generate the encoded hypervector in multiple cycles to be compatible

with a wider range of FPGA devices with different amounts of resources. HD2FPGA is able

37

to increase or decrease the parallelization based on the users’ desired performance and the

available FPGA resources. It accelerates HD operations by parallelizing the HD operations at

the dimension level. Each dimension of the encoded hypervector can be generated independent

of the others. The similarity metrics between dimensions of the encoded hypervector and class

hypervectors can also be calculated independent of the other dimensions. Therefore, there is a

trade-off between the parallelization and consequently the resource utilization of HD2FPGA and

the performance of HD2FPGA. HD2FPGA uses two parameters to adjust the parallelization of

HD. It breaks down the matrix multiplication computation using a sliding window that covers

C elements of the input features and generates R dimensions of the encoded hypervector in Div
C

cycles in parallel.

At each cycle, HD2FPGA multiplies a window (i.e. several columns of a few rows) of

the projection binary vectors with the corresponding portion of the features column. Thus, each

vector-vector multiplication generates a portion of a dimension of the encoded hypervector. In

the next cycle, the window slides to the next portion of the same rows to generate the remaining

partials of the encoding dimensions. As the window slides over rows, it also slides on the

features column so we are always multiplying elements of column k with the element k of the

feature column. This procedure accumulates the partial results of the same encoding dimensions

over several cycles, without moving the partial accumulation results. Thus, we have a fixed

architecture consisting of several pipelined tree-adders for vector-vector multiplications in which

we just need to feed the proper dimensions (bits) of the projection hypervectors and feature

values to tree-adders, in a deterministic sequence, as shown in Figure 2.4(b).

The EncodeUnit, instead of storing all the projection hypervectors, generates the di-

mensions of the projection hypervectors that are needed in every clock cycle by reading a

window of the seed hypervector and performing shift operations on the sliding window. Since

shift operations in hardware are implemented by simply modifying the wires connections, The

EncodeUnit generates the required dimensions of the projections hypervectors, on the fly, by

reading a window with fixed wirings that handle shift operations. To explain how the EncodeUnit

38

B1

B2

BR

BDhv

B1

B2

BR

BDhv

B2

B3

B1

B2

B3

B1

BR+1 BR+C-1

BC

BC+1

BC+1

BC+2

BR+C

Bdiv-1 Bdiv-1

BDiv

Bdiv+1

Bdiv+2

C
R

C

vdiv vdiv

v1

vC+1

vC

X

C

Seed Hypervector

in
p

u
t

Encoded Hypervector

++ +

H1H2HR

BC B1B2

-v1 v1-v2 v2-vC vC

(b)(a)

Figure 2.4. (a) The matrix multiplication of the projection hypervectors and the input feature
vector. (b) HD2FPGA architecture based on random-projection encoding

generates the dimensions of the projection hypervectors needed in the matrix multiplication,

Figure 2.5 shows a simplified example of the matrix multiplication where Dhv = 16 (dimen-

sionality of hypervectors), Div = 8 (number of input features), C = 2, and R = 4. As illustrated

in the figure, every Div
C = 8

2 = 4 cycles 4 dimensions of the encoded hypervector is generated.

The encodeUnit, in the first cycle, multiplies the [[B0, B1], [B1, B2], [B2, B3], [B3, B4]] matrix

by the input vector [v0, v1] to generate the intermediate values for the first 4 dimensions of the

encoded hypervector. Therefore, {B0, B1, B2, B3, B4} elements of the seed hypervector (Bi

is the ith element of the seed hypervector) are required to execute the intermediate values for

{H0,H1,H2,H3} dimensions (Hi is the ith dimension of the encoded hypervector). In the second

cycle, {B2, B3, B4, B5, B6} and {F1,F2} are required to update the values of {H0, H1, H2, H3}.

All the execution steps of the encoding is illustrated in Figure 2.5. At the end of the fourth cycle,

H0, H1, H2, and H3 are generated.

Generally, in each cycle, C +R− 1 elements of the seed hypervector are needed for

the partial matrix multiplication. However, to simplify the accesses to the seed hypervector

memory, the EncodeUnit reads a window of 2×R elements of the seed hypervector. After each

cycle, it shifts the window for R elements. In cycles 1 through cycle 4 the following set of seed

hypervector elements are needed:

clk1 = {B0, B1, B2, B3, B4}

39

clk2 = {B2, B3, B4, B5, B6}

clk3 = {B4, B5, B6, B7, B8}

clk4 = {B6, B7, B8, B9, B10}

Note that at the end of the fourth cycle, the dimensions {H0,H1,H2,H3} of the encoded hyper-

vector have been generated. The EncodeUnit reads the first 8 elements of the seed hypervector in

the first cycle, then, in the second cycle, it moves the window for two steps to cover elements

{B2, B3, . . . , B8}. In every cycle, the window has the required elements for the next R
C cycles.

This prefetching mechanism helps the synthesis tool to schedule the operations more efficiently.

The generated dimensions of the encoded hypervector are written into a memory, which is

used for the following HD steps, including training and associative search. The HD kernel

stores the entire encoded hypervector for the retraining step in the off-chip memory to avoid

re-encoding each input during the multiple retraining epochs. During the retraining steps, the

encoded hypervectors are fetched to adjust the HD model for any misprediction. Thus, in the

retraining steps, encoding is not executed from scratch anymore.

SearchUnit: It executes HD training, inference, and retraining. If the user loads a trained

HD model, SearchUnit loads the trained class hypervectors from the FPGA memory. Otherwise,

the class hypervectors are initialized with zeros, and the SearchUnit updates the HD model

during the training. To train the model, it adds the encoded hypervectors to the class hypervector

they belong to. The training is usually followed by multiple retraining iterations. The number

of retraining iterations is empirically set by the user during the runtime such that the difference

between the accuracy of the HD model between two consecutive iterations is less than the

user’s desired threshold (the model converges). In the retraining step, the predicted label is

compared to the original label of the data. In case of misprediction, SearchUnit adds the encoded

hypervector to the class hypervector it belongs to and subtracts the encoded hypervector from the

predicted class. At the end of retraining, SearchUnit writes the trained HD model into the FPGA

memory. To perform HD inference, SearchUnit calculates the cosine similarity between the

encoded hypervector and the class hypervectors. It multiplies the generated dimensions of the

40

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

x

Cycle (1)
E0=B0*F0+B1*F1 E1=B1*F0+B2*F1
E2=B2*F0+B3*F1 E3=B3*F0+B4*F1

Cycle (2)
E0+=B2*F2+B3*F3 E1+=B3*F2+B4*F3
E2+=B4*F2+B5*F3 E3+=B5*F2+B6*F3

Cycle (3)
E0+=B4*F4+B5*F5 E1+=B5*F4+B6*F5
E2+=B6*F4+B7*F5 E3+=B7*F4+B8*F5

Cycle (4)
E0+=B6*F6+B7*F7 E1+=B7*F6+B8*F7
E2+=B8*F6+B9*F7 E3+=B9*F6+B10*F7

Cycle (5)
E4=B4*F0+B5*F1 E5=B5*F0+B6*F1
E6=B6*F0+B7*F1 E7=B7*F0+B8*F1

Cycle (6)
E4+=B6*F2+B7*F3 E5+=B7*F2+B8*F3
E6+=B8*F2+B9*F3 E7+=B9*F2+B10*F3

F7

F6

F5

F4

F3

F2

F1

F0

F7

F6

F5

F4

F3

F2

F1

F0

Cycle (15)
E12+=B0*F4+B1*F5 E13+=B1*F4+B2*F5
E14+=B2*F4+B3*F5 E15+=B3*F4+B4*F5

Cycle (16)
E12+=B2*F2+B3*F3 E13+=B3*F2+B4*F3
E14+=B4*F2+B5*F3 E15+=B5*F2+B6*F3

...

E12, E13
E14, E15

E0, E1
E2, E3

...

Figure 2.5. The partial matrix multiplication example when Dhv = 16, Div = 8, C = 2, and
R = 4.

encoded hypervector by the corresponding elements of the class hypervectors and accumulates

the multiplied results. After processing all the dimensions of the encoded hypervector, the class

with the highest similarity metric is the prediction result. During the inference step, the predicted

label is written into the FPGA off-chip memory.

HD2FPGA classification and clustering kernels share the same EncodeUnit and Input-

Stream modules. The only difference is in the SearchUnit, as illustrated in Figure 2.6. In

retraining the classification model, the HD kernel performs the associative search and finds the

+++

+

+++

+

+++

+

+++

+

xxx xxx

xxx xxx

C
la

ss
1

H
V

C
la

ss
1

H
V

Encoded HVEncoded HV

Centroidt-1 HV

Centroid0 HV

Centroid1 HV

+
Updated

CentroidPL HV

Predicted
Label (PL)

Similarity
Check

Temp Centroidt-1 HV

Temp Centroid0 HV

Temp Centroid1 HV
Update the HD model

at the end of each
training iterations

Clustering
Encoded HVEncoded HV

A
ct

u
al

 L
ab

el
 (

A
L)

Classt-1 HV

Class0 HV

Class1 HV

Predicted
Label (PL)

+

-

Similarity
Check

ClassPL HV

ClassAL HV

Classification Similarity Check

C
la

ss
0

H
V

C
la

ss
0

H
V

Encoded HVEncoded HV

C
la

ss
t-

1
H

V
C

la
ss

t-
1

H
V

xxx xxx

+++

+

+++

+

Figure 2.6. The proposed architecture of the Search unit for (a) HD Classification and (b) HD
clustering.

41

most similar class to the encoded hypervector and compares the predicted label with the actual

label, and in case of misprediction, it adds the encoded hypervector to the class hypervector of

the actual label and subtracts the encoded hypervector from the mispredicted class. However,

in training the clustering HD model, we do not use the actual labels. The HD clustering kernel

initializes each centroid hypervector with the encoded hypervector of a randomly selected input.

Thereafter, it calculates the similarity between each encoded hypervector and all the centroid hy-

pervectors and finds the most similar cluster (predicted centroid). The clustering SearchUnit also

keeps a copy of the clustering HD model (temp Centroids), and it adds the encoded hypervectors

to the predicted centroid of the temporary model. At the end of each retraining iteration, the

SearchUnit replaces the HD clustering model with the temporary model. HD2FPGA clustering

kernel, similar to the classification kernel, encodes the input in the first iteration of clustering and

stores the encoded hypervectors into the FPGA off-chip DRAM. In the next iterations, it only

reads the encoded hypervectors from FPGA DRAM to avoid the costly encoding step, thereby

increasing the performance of clustering.

2.3.1 HD2FPGA software program

HD2FPGA is equipped with a graphical user interface (GUI) for users to enter the

application specification and HD characteristics which have been shown in Figure 2.2. The

GUI gets the user parameters and passes them to the host program. The host program has

been developed based on the Vitis platform [116], which is the Xilinx software development

environment. The Vitis software platform integrates FPGA-based accelerators with the software

applications thanks to the Vitis core development kit and Xilinx Runtime (XRT) library [117].

HD2FPGA utilizes the Vitis development flow to develop the FPGA-based accelerator for

HD classification and clustering using standard programming languages for both software

and hardware components. HD2FPGA is compatible with Intel FPGAs as the Intel Quartus

toolchain provides a similar platform to synthesize C++ kernels on Intel FPGAs, and a software

development kit to communicate with the FPGA kernels in the host program [118].

42

As shown in Figure 2.2, execution of HD2FPGA is split between a host program and the

HD kernel with a communication channel between them. The host program, written in C++ and

using OpenCL APIs, runs on the host processor, while the HD kernel runs on the FPGA. The

API calls, managed by XRT, are used to process transactions between the host program and the

HD kernel through the PCIe bus between the host CPU and the FPGA. These communications

include transferring the control signals to/from the HD kernel as well as transferring the dataset

from the host CPU to the FPGA global memory (DRAM). The host memory is only accessible

to the host CPU while the FPGA global memory is accessible by both the host processor and

FPGA kernels, therefore, the host is responsible for transferring the dataset to the FPGA DRAM

and read the results from the FPGA DRAM upon kernel completion. Since the host CPU is

responsible for orchestrating the data transfer and kernel initiation, HD2FPGA has no limitation

in the size of the dataset. For instance, if the dataset size is greater than the available FPGA’s

off-chip memory, the host splits the data into the chunks that fit into the FPGA DRAM, sends

the commands to the FPGA to process the chunk of the data, and then transfer the other chunks.

This is possible since HD training, retraining, and inference are independent of the other chunks.

Execution of HD2FPGA host program can be divided into three steps:

Data setup: the host program reads the dataset in the compressed format, quantizes

the features if necessary, allocates the corresponding space in the FPGA global memory, and

transfers the data to the FPGA global memory through the PCIe bus. The host program also

generates the seed projection hypervector which is a randomly generated binary hypervector

with the length of Dhv. The seed hypervector will be used in the HD kernel for the encoding

step to produce all other projection hypervectors on the fly. A user can also load an already

trained HD model, for which the host program can read the trained class hypervectors from a file

specified by the user and execute the inference with the loaded classes.

HD kernel setup: The host program sets up the kernel with its input parameters as well as

pointers to the data in the FPGA memory. The input parameters to the HD kernel are the

43

number of data inputs, the length of the hypervectors, and the HD task (training, retraining, and

inference).

HD execution: The host program triggers the execution of the HD kernel on the FPGA. The HD

kernel performs the required computations while reading the input data from the FPGA memory

and writes the results back to the FPGA memory. When the HD kernel trains the HD model,

it also writes the trained class hypervectors to global memory. In HD training and retraining,

the FPGA kernel reads the training data labels, while in inference, the HD kernel writes the

prediction results.

HD results: The HD kernel, upon compilation, notifies the host that it has completed the

task. The host program measures the execution time from initiating the kernel to the task

completion. The host program reads the resulting data (e.g. prediction results and/or trained

class hypervectors) back from FPGA global memory into the host memory.

2.4 Experimental Results

HD2FPGA is a flexible framework for efficient implementation of different HD com-

puting applications in FPGA hardware, respecting the application specifications and user’s

requirements. HD2FPGA is equipped with a GUI written in Python which gets the input pa-

rameters from the user and generates the header files for both host program and HD kernel. the

host program has been implemented in OpenCL and executes on CPU. HD2FPGA GUI also

synthesize and generates the FPGA bitstream for the HD kernel of the user’s application. The

HD kernel is written in C++ and optimized to deliver high performance. HD kernel is synthesized

using the Vivado High-Level Synthesis tool (HLS) and integrated with the host code using Xilinx

Vitis Accel 2019.2 and is running on U280 FPGA board. To measure the performance of the

end-to-end execution of HD classification and clustering on FPGA, we used OpenCL event

profiling. We report end-to-end execution times, including reading the data from the FPGA

DRAM, executing HD on FPGA and writing the results back to the FPGA DRAM. To evaluate

44

the energy efficiency of HD2FPGA, we measure the power consumption of the FPGA, including

its off-chip DRAM using the API provided by Xilinx XRT.

We compare the performance and energy efficiency of HD2FPGA running on FPGA with

Intel i7 7600 CPU with 16GB memory. We evaluate HD on a wide range of benchmark datasets.

These datasets cover a broad spectrum of signal classification tasks commonly encountered

in edge-sensing applications ranging from human activity detection to text recognition. The

publicly available datasets we use are:

Medical Diagnosis (CARDIO): This dataset provides medical diagnosis based on information

about each patient. The training and testing datasets are taken from the Cardiotocography dataset.

Gesture Recognition (EMG): Here we try to recognize five different hand gestures (rested hand,

closed hand, open hand, 2-finger pinch, and point index) using EMG data. The gestures were

sampled at 500Hz with the use of an elastic band containing four EMG sensors. We used the

data collected from five different subjects. The data was collected by each subject performing 10

repetitions of each gesture for three seconds each with a three second resting period in between.

Therefore, each sample contains 6,000 data points.

Face Recognition (FACE): We exploit Caltech’s 10,000 web faces dataset. Negative training

images, i.e., non-face images, are selected from CIFAR-100 and Pascal VOS 2012 datasets.

Speech Recognition (ISOLET): Recognize voice audio of the 26 letters of the English alphabet.

The training and testing datasets are taken from the Isolet dataset. This dataset consists of 150

subjects speaking each letter of the alphabet twice. The speakers are grouped into sets of 30

speakers. The training of hypervectors is performed on Isolet 1,2,3,4, and tested on Isolet 5.

Activity Recognition (UCIHAR): Detect human activity based on 3-axial linear acceleration

and 3-axial angular velocity that has been captured at a constant rate of 50Hz. The training and

testing datasets are taken from the Human Activity Recognition dataset. This dataset contains

10,299 samples each with 561 attributes.

We evaluate HD clustering on the ISOLET dataset and FCPS, the fundamental clustering problem

suite, which have been widely used in the literature. FCPS offers a variety of clustering problems

45

that any algorithm shall be able to handle when facing real world data. We also evaluate HD

clustering on the speech and the pattern recognition datasets. The publicly available datasets we

use are:

FCPS Hepta: The Hepta data set, which is part of the FCPS, is used to illustrate the general

problems with quality measures (QMs) and projections from the perspective of structure preser-

vation. The three-dimensional Hepta data set consists of seven clusters that are clearly separated

by distance, one of which has a much higher density.

FCPS Tetra: The Tetra data set, which is part of the FCPS, consists of 400 data points in four

clusters in R2 that have large intra-cluster distances. The clusters are nearly touching each other,

resulting in low inter-cluster distances. FCPS TwoDiamonds: The data consists of two clusters

of two-dimensional points. Inside each “diamond” the values for each data point were drawn

independently from uniform distributions”. The clusters contain 300 points each.

FCPS WingNut: The Wing Nut dataset (FCPS) consists of two symmetric data subsets of 500

points each. Each of these subsets is an overlay of equally spaced points with a lattice distance

of 0.2 and random points with a growing density in one corner. The data sets are mirrored and

shifted such that the gap between the subsets is larger than 0.3.

Pattern Recognition (Iris): The data set consists of 50 samples from each of three species of Iris

flower. Four features were measured from each sample: the length and the width of the sepals

and petals. One class is linearly separable from the other 2; the latter are not linearly separable

from each other.

2.4.1 HD Classification

Encoding

Encoding module is used in both training and inference. The encoder module works in a

pipeline stage with the SearchUnit module. Thus, the more generated dimensions by the

encoding module, the more throughput HD2FPGA can achieve. To evaluate the effectiveness

46

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cardio3 EMG5 FACE ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.7. Encoding time of CPU and HD2FPGA.

of our proposed EncodeUnit module, we compare the hardware implementation of HD2FPGA

encoding with a baseline HD computing encoding running on CPU. Figure 2.7 compares the

execution time of encoding the entire datasets on CPU and FPGA. The complexity of the

encoding step is propotional to the number of input features, the length of hypervectors (Dhv) and

the size of the dataset (number of samples). We show results for Dhv = 2K and Dhv = 10K with

C = 32 and two different parallelization levels (R = 32 and R = 256). HD2FPGA encoding’s

performance is linearly proportional to Dhv since the number of generated dimensions of the

encoded hypervector is fixed. However, as illustrated in the figure, the encoding time in CPU

is not linearly proportional with the dimensionality. For instance, in ISOLET, encoding with

Dhv = 10K is 29× slower on CPU relative to Dhv = 2K. According to Figure 2.7, for Dhv = 2K,

the FPGA implementation with R = 32 and R = 256 parallel rows improve the performance by

16.5×, and 127.9×, respectively. For Dhv = 10K, these numbers increase to 76.2× (R = 32)

and 564.5× (R = 256) as the CPU’s performance diminishes significantly for larger Dhv.

Retraining

We store and reuse the encoded hypervectors during retraining to increase efficiency in both CPU

and FPGA-based implementations. Similar to encoding, the performance of FPGA is linearly

47

1E-1

1E+0

1E+1

1E+2

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cardio3 EMG5 FACE

ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.8. Retraining time of CPU and FPGA for 50 epochs.

dependent on the dimensionality. Figure 2.8 shows the retraining time of HD2FPGA compared to

CPU baseline for 50 epochs. Based on the figure, for Dhv = 2K, FPGA’s retraining time is 1.2×

and 8.8× faster than CPU with R = 32 and R = 256, respectively. However, unlike encoding,

the CPU’s relative performance improves for larger dimensionality as the time of fetching the

encoded hypervectors is amortized by parallel search among the classes as well as having higher

DRAM bandwidth compared to FPGA resulting in relatively lower improvements to FPGA’s

relative performance is 0.8× (R = 32) and 5.6× (R = 256) for Dhv = 10K.

End-to-End Training

In Figure 2.9, we combine the encoding, initial training step and the retraining times of CPU

and FPGA to obtain the total training time (including the encoding and 50 retraining epochs).

Accordingly, we observe that HD2FPGA provides 1.8× (with R = 32) and 12.9× (with R = 256)

speed-up for hypervectors with Dhv = 2K dimensions. For Dhv = 10K, we achieve 4.2× (R = 32)

and 30.5× (R = 256) speed-up compared to CPU baseline. By moving from Dhv = 2K to

Dhv = 10K, the relative efficiency of FPGA in encoding increases but it decreases for retraining.

However, since the encoding time dominates the retraining time of the CPU, in Dhv = 10K

48

1E-1

1E+0

1E+1

1E+2

1E+3

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cardio3 EMG5 FACE ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.9. End-to-end Training (encoding + 50 epochs retraining) time of CPU and HD2FPGA.

HD2FPGA achieves higher improvement for the training time. To evaluate the energy efficiency

of HD2FPGA compared to the CPU baseline, we measure the power consumption of HD2FPGA

and CPU during the runtime. Regardless of the benchmark, we observe a power of ∼ 65W for

CPU encoding, and ∼ 40W for its retraining. Figure 2.10 shows the training energy for CPU and

FPGA, comprising the sum of encoding and 50 epochs of retraining energy. HD2FPGA achieves

4.3× (R = 32) and 25.0× (R = 256) training energy efficiency for Dhv = 2K. With Dhv = 10K,

the energy efficiency increases to 12.8× (R = 32) and 73.9× (R = 256). In ISOLET dataset,

HD2FPGA consumes ∼ 20W for R = 32 configuration, and ∼ 25W for R = 256. The difference

between the power consumption of these two configurations is not proportional to their resource

utilization due to the high static power consumption of the U280 FPGA board.

Figure 36. Training energy of CPU and FPGA. D is the dimensionality, and R is the

number of parallel rows in the window of the FPGA’s matrix-vector multiplication unit.

Inference

Figure 2.11 compares the performance of HD inference in HD2FPGA compared to CPU. The

inference includes the encoding and search steps for HD classification. The encoding step

dominates the execution time, so we expect a similar improvement we observed for encoding.

49

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

Cardio3 EMG5 FACE ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.10. End-to-end Training (encoding + 50 epochs retraining) energy consumption of
CPU and HD2FPGA.

However, the SearchUnit module of HD2FPGA is fully pipelined with The EncodeUnit module,

meaning that in CPU the total inference time is the execution time of the encoding in addition to

the associative search, while in HD2FPGA the execution time is the maximum of the execution

time of the encoding and associative search as they are executing simultaneously in a pipeline

fashion. Depending on the application parameters (number of features per input and number of

classes), either of the encoding or associative search steps can become bottleneck. In Cardio

and EMG the search module is bottleneck, as they have relatively low number of input features

and consequently less complex encoding. Nevertheless, in the FACE, ISOLET, and UCIHAR,

the encoding is more computationally complex than the associative search. For Dhv = 2K,

HD2FPGA achieves 19.5× (with R= 32) and 140.8× (R= 256) speed-up over the CPU baseline.

For Dhv = 10K, HD2FPGA inference is 80.0× faster when R = 32 and the speed-up further

increases to 578.3× when the matrix-vector multiplication is configured to use 256 parallel

rows (R = 256). Figure 2.12 compares the energy consumption of HD2FPGA compared to

the CPU baseline. In inference, the encoding step is usually the computational bottleneck and

hence, it dominates the energy consumption. As HD2FPGA significantly outperformed the CPU

50

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Cardio3 EMG5 FACE ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.11. Inference (encoding + associative search) time of CPU and HD2FPGA.

baseline in encoding, we expect higher energy efficiency for inference. According to Figure

2.12, HD2FPGA is 63.3× (R = 32) and 366.0× (R = 256) more energy efficient than the CPU

baseline for Dhv = 2K. When Dhv = 10K is used, the energy reduction increases to 260.1× and

1503.7× respectively.

Comparison with DNN accelerator:

We evaluate the efficiency of HD2FPGA versus a state-of-the-art neural network implementation

in FPGA using the ISOLET dataset [119]. For neural network baseline, we leverage the

optimized 617×512×512×26 topology utilized in [1]. Figure 2.13 compares the number of cycles

of HD2FPGA and DNN accelerator developed in [1]. The x-axis shows different number of HD

cycles, which belong to different dimensionality (Dhv) and the corresponding accuracy for that

particular Dhv is also shown. The DNN takes exactly 9014 cycles. For Dhv = 2k, HD2FPGA

achieves 143× cycle reduction with an accuracy of ∼ 92%. Note that HD runs at frequency of

200 MHz while DNN is twice slower, at 100 MHz (i.e., 90,146 nano-second latency). In Figure

2.14, we show the end-to-end latency of HD (nano-second) and compare with DNN for different

HD dimensions. For Dhv = 2k, HD2FPGA shows 277× speedup compared to DNN accelerator

in [1]. Figure 2.15 compares the energy consumption of HD2FPGA and DNN for classifying

51

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

Cardio3 EMG5 FACE ISOLET UCIHAR

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.12. Inference (encoding + associative search) energy consumption of CPU and
HD2FPGA.

an input. For Dhv = 2k and Dhv = 4k, HD improves the energy consumption for 172× and 87×,

respectively.

2.4.2 HD Clustering

HD clustering algorithm involves encoding the input data, selecting a subset of the

encoded hypervectors as centroids, assigning the similar encoded hypervectors to the same

centroids, and bundling the assigned hypervectors to create the new centroids. It is similar to

the HD encoding and retraining algorithms, where the retraining step finds the similar class

(centroid) and in case of misprediction, performs vector-wise addition. Figure 2.16 shows the

execution time for one epoch of clustering. Since clustering repeatedly performs encoding and

search, the execution time linearly increases with the number of training epochs. In all datasets

but ISOLET, the search step is the bottleneck of the FPGA pipeline as the datasets contain a small

number of features per input, making the encoding comparatively faster than search among the

centroids. ISOLET has significantly higher number of input features and thus, the encoding step

in ISOLET is more complicated than the other datasets. With Dhv = 2K, HD2FPGA performance

outperforms the CPU by 3.5× for R = 32, and 22.1× for R = 256. With Dhv = 10K, HD2FPGA

52

Figure 2.13. Accuracy and latency (number of cycles) of HD2FPGA versus DNN accelerator of
[1].

Figure 2.14. End-to-end latency and performance improvement of HD2FPGA versus DNN
accelerator of [1].

53

Figure 2.15. Energy comparison of HD2FPGA versus DNN accelerator of [1].

is 9× faster when R = 32, and 57× faster when R = 256.

Figure 2.17 shows the energy consumption for the CPU baseline and HD2FPGA cluster-

ing. The encoding and search steps consume the same amount of power in the classification step

as the algorithm (hence the architecture) is the same. With 2K dimensionality, the HD2FPGA

consumes 10.2× and 51.6× for R = 32 and R = 256, respectively. For Dhv = 10K, HD2FPGA

energy efficiency increases to 27.7× (for R = 32) and 140.5× (for R = 256). AS mentioned

earlier, the execution time of HD2FPGA increases linearly with Dhv, while in CPU we observe

larger increase (e.g., the ISOLET encoding runtime increases by 29.7× when moving from

Dhv = 2K to Dhv = 10K). Thus, by moving to larger dimensionalities, HD2FPGA’s energy

efficiency further raises.

Comparison with Kmeans accelerator:

We evaluate the efficiency of HD2FPGA versus state-of-the-art implementation of

Kmeans on FPGA developed by Xilinx [2]. The Kmeans developed in [2] is written in C++,

synthesized and implemented on FPGA using Vitis Development tool, in a process similar to

HD2FPGA, running on the same FPGA as HD2FPGA. Figure 2.18 compares the clustering

54

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Hepta Tetra TwoDiamonds

WingNut Iris ISOLET

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.16. Inference (encoding + associative search) time of CPU and HD2FPGA.

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

CPU (D=2K) CPU (D=10K) HD2FPGA HD2FPGA HD2FPGA HD2FPGA

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

Hepta Tetra TwoDiamonds

WingNut Iris ISOLET

D=2k R=32 D=10k R=32 D=2k R=256 D=10k R=256

Figure 2.17. Inference (encoding + associative search) energy consumption of CPU and
HD2FPGA.

55

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

Hepta Tetra TwoDiamonds WingNut Iris ISOLET

E
xe

cu
ti

o
n

 T
im

e
(S

ec
)

Kmeans HD2FPGA (D=2K) HD2FPGA (D=10K)

Figure 2.18. End-to-end performance improvement of HD2FPGA versus Kmeans accelerator of
[2].

execution time of Kmeans and HD2FPGA for R = 256. According to the figure, the performance

of HD2FPGA is 46× higher than Kmeans when Dhv = 2K. When Dhv = 10K, due to higher

computation complexity of HD with longer dimensionality, the performance improvement drops

9.2×. Figure 2.19 shows the energy consumption of HD2FPGA and Kmeans for clustering the

entire dataset. According to the figure, the energy consumption of HD2FPGA is 47.8× less than

Kmeans for Dhv = 2K. When Dhv = 10K, HD2FPGA improves the energy efficiency for 9.6×

compared to the Kmeans accelerator [2].

2.5 Conclusion

In this chapter, we proposed HD2FPGA, an automated framework for FPGA-based

acceleration of HD classification and clustering. HD2FPGA abstracts away the complexities

associated with the design of hardware accelerators from the user. The proposed framework

enables the user to provide the HD application specifications (e.g., the number of input features,

classes and training data) as well as the application task (classification or clustering) and then

automatically generates a customized FPGA implementation. HD2FPGA supports end-to-end

training and inference of HD classification and end-to-end execution of HD clustering on FPGA.

56

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

Hepta Tetra TwoDiamonds WingNut Iris ISOLET

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

Kmeans HD2FPGA (D=2K) HD2FPGA (D=10K)

Figure 2.19. Energy comparison of HD2FPGA versus Kmeans accelerator of [2].

We evaluated the efficiency of HD2FPGA extensively, thereby showing 30.5× speedup and

73.9× efficiency in HD training. HD2FPGA shows 578.3× and 57× performance improvement

in HD classification and clustering, respectively. It moreover, increases the energy efficiency

of HD classification and clustering by 1503.7× and 140.5×, respectively. HD2FPGA, in

classification, shows, 277× speedup and 172× energy reduction compared to state-of-the-art

DNN running on FPGA. It also shows 46× speedup and 47.8× energy reduction compared to

state-of-the-art FPGA-based K-Means clustering accelerator. While HD2FPGA improves the

performance and energy efficiency of classification and clustering on a single FPGA, as many

users utilize cloud FPGAs, the energy efficiency of runnign multiple FPGAs is also crucial.

The next chapter introduces an approach to minimize the energy consumption of multi-FPGA

platforms commonly used for cloud-based processing.

This chapter contains material from “HD2FPGA: Automated Framework for Accelerating

Hyperdimensional Computing on FPGAs”, by Sahand Salamat, Behnam Khaleghi, and Tajana S.

Rosing, which is still in preparation. The dissertation author was the primary investigator and

author of this paper.

57

Chapter 3

Efficiency of ML on Multi-FPGAs

In the previous chapters we proposed two highly optimized FPGA-based accelerators

for DNNs and HD. Even though these accelerators increase the efficiency of running DNNs

and HD and thereby enabling processing more data, as the majority of the users are using cloud

services optimizing the energy efficiency of cloud computation platforms is crucial for efficient

big data processing. The continuous growth of big data applications with high computational

and scalability demands has resulted in increasing popularity of cloud computing. Optimizing

the performance and power consumption of cloud resources is therefore crucial to relieve the

rising costs of data centers.

In recent years, multi-FPGA platforms have gained traction in data centers with their

low-cost and high-performance when used as acceleration engines, thanks to the high degree

of parallelism they provide. Several cloud service providers offer multi-FPGA platforms as

”Infrastructure as a Service” where users can implement their own applications. They also offer

machine learning software as a service running on multi-FPGA platforms. Nonetheless, the size

of data centers workloads varies during service time, leading to significant underutilization of

computing resources while consuming a large amount of power, which is a key factor contributing

to data center inefficiency, regardless of the underlying hardware structure.

In this chapter, we propose an efficient framework to throttle the power consumption of

multi-FPGA platforms by dynamically scaling the voltage and hereby frequency during runtime

58

according to prediction of, and adjustment to the workload level, while maintaining the desired

Quality of Service (QoS). This is in contrast to, and more efficient than, conventional approaches

that merely scale (i.e., power-gate) the computing nodes or frequency. The proposed framework

carefully exploits a pre-characterized library of delay-voltage, and power-voltage information

of FPGA resources, which we show is indispensable to obtain the efficient operating point due

to the different sensitivity of resources w.r.t. voltage scaling, particularly considering multiple

power rails residing in these devices. Our evaluations by implementing state-of-the-art deep

neural network accelerators revealed that, providing an average power reduction of 4.0×, the

proposed framework surpasses the previous works by 33.6% (up to 83%).

3.1 Related Work

The use of FPGAs in modern data centers have been gained attention recently as a

response to rapid evolution pace of data center services in tandem with the inflexibility of

application-specific accelerators and unaffordable power requirement of GPUs [120, 57]. Data

center FPGAs are offered in various ways, Infrastructure as a Service for FPGA rental, Platform

as a Service to offer acceleration services, and Software as a service to offer accelerated vendor

services/software [121]. Though primary works deploy FPGAs as tightly-coupled server adden-

dum, recent works provision FPGAs as an ordinary standalone network-connected server-class

node with memory, computation and networking capabilities [121, 57]. Various ways of utilizing

FPGA devices in data centers have been well elaborated in [120].

FPGA data centers, in parts, address the problem of programmability with comparatively

less power consumption than GPUs. Nonetheless, the significant resource underutilization in non-

peak workload yet wastes a high amount of data centers energy. FPGA virtualization attempted

to resolve this issue by splitting the FPGA fabric into multiple chunks and implementing

applications in the so-called virtual FPGAs. Yazdanshenas et al. have quantified the cost of

FPGA virtualization in [120], revealing up to 46% performance degradation with 2.6× increase

59

in wire length of the shell, i.e., the static region responsible to connect the virtual FPGAs to

external resources such as PCI and DDR. This hinders the routability of the shell as the number

of virtual FPGAs increase. These overheads excluded the area overhead of the shell itself, which

occupies up to 44% of FPGA area. FPGA virtualization is also not practical for large data center

applications such as deep neural networks that occupy a whole or multiple devices [55].

Another foray for FPGA power optimization includes approaches that exploit dynamic

frequency and/or voltage scaling. The main goal of these studies is to utilize the available

timing headroom conservatively considered for worst-case temperature, aging, variation, etc.

and scale the frequency for performance boosting, or voltage reduction without performance

degradation, though a few of them consider workload. Chow et al. [122] propose a dynamic

voltage scaling scheme that exploits a ring-oscillator based logic delay measurement circuit

to mimic the timing behavior of application critical path and adjust the voltage accordingly.

However, the inaccuracy of path monitor circuitries in FPGAs and even ASICs has been well

elaborated [123, 124, 125, 126]. Levine et al. employ timing error detectors inserted as capture

registers with a phase-shifted clock at the end of critical paths to find out the timing slack of

FPGA-mapped designs through a gradual reduction of voltage [123]. Their approach adds

extra area and power overhead, cannot be implemented in paths heading to hard blocks such as

memories, and assumes the corresponding paths will be exercised at runtime. Zhao et al. propose

an elaborated two-step approach by extracting the critical paths of the design using the static

timing analysis tool and sequentially mapping into the FPGA [124]. Thence, they vary the FPGA

core voltage to obtain the voltage-delay (Vcore−D) relation of the paths for online adjustment

during the operation time. It requires analyzing a huge number of paths, especially originally

non-critical paths might become critical when the voltage changes. Salami et al. evaluate the

impact of block RAM (BRAM) voltage (Vbram) scaling on the power and accuracy of a neural

network application [127]. They observed that Vbram can be reduced by 39% of the nominal

value, which saves the BRAM dynamic power by one order of magnitude, with a negligible

error at the output. Their approach is intuitive and does not examine timing violation, i.e., it is

60

0

5

10

15

20

25

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

D
el

ay
 R

at
io

Voltage (V)

Routing
Logic
Memory
DSP

Figure 3.1. Delay of FPGA resources versus voltage

not known if the timing will not be eventually violated in a particular voltage level. Similarly,

Khaleghi et al. leverage the thermal margin of FPGAs for frequency boosting though they

integrate it in the conventional flow of FPGA using the pre-characterizition of resources [52].

Eventually, Jones et al. propose a workload-aware frequency scaling approach that temporarily

allows over-clocking of applications when the temperature is safe enough, i.e., the workload is

not bursty [128]. They assume the design has inherently sufficient slack to tolerate the frequency

boosting without overscaling the voltage.

As mentioned earlier, the primary goal of the latter studies is to leverage the pessimistic

timing headrooms for efficiency, while they struggle in guaranteeing timing safety. More

importantly, the utmost effort of previous works is to satisfy the timing of critical or near-critical

paths under either (and mainly) Vcore scaling, or Vbram scaling. Nevertheless, unlike single voltage

scaling where there is only one minimal voltage level for a target frequency, for simultaneous

scaling of Vcore and Vbram, numerous ‘Vcore, Vbram’ pairs will minimally yield the target frequency

while only one pair of this solution space has the minimum power dissipation. Therefore,

accurate timing and power analysis under multiple voltage scaling is inevitable.

61

0.0

0.2

0.4

0.6

0.8

1.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

D
yn

am
ic

 R
at

io

Voltage (V)

Routing
Logic
Memory
DSP

Figure 3.2. Dynamic power of FPGA resources versus voltage.

0.0

0.2

0.4

0.6

0.8

1.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

St
at

ic
 R

at
io

Voltage (V)

Routing
Logic
Memory
DSP

Figure 3.3. Static power of FPGA resources versus voltage.

62

3.2 Motivational Analysis

In this section, we use a simplified example to justify the necessity of the proposed

scheme and how it surpasses the conventional approaches in power efficiency. Figures 3.1, 3.2,

and 3.3 shows the relation of delay and power consumption of FPGA resources when voltage

scales down. Experimental results will be elaborated in Section 3.5, but concisely, routing and

logic delay and power indicate the average delay and power of individual routing resources (e.g.,

switch boxes and connection block multiplexers) and logic resources (e.g., LUTs). Memory

stands for the on-chip BRAMs, and DSP is the digital signal processing hard macro block. Except

memory blocks, the other resources share the same Vcore power rail. Since FPGA memories

incorporate high-threshold process technology, they utilize a Vbram voltage that is initially higher

than nominal core voltage Vcore to enhance the performance [129]. We assumed a nominal

memory and core voltage of 0.95V and 0.8V, respectively [129].

The different sensitivity of resources’ delay and power with respect to voltage scaling

implies cautious considerations when scaling the voltage. For instance, by comparing Figure 3.1

and Figure 3.3, we can understand that reducing the memory voltage from 0.95V down to 0.80V

has a relatively small effect on its delay, while its static power decreases by more than 75%.

Then we see a spike in memory delay with trivial improvement of its power, meaning that it is

not beneficial to scale Vbram anymore. Similarly, routing resources show good delay tolerance

versus voltage scaling. It is mainly because of their simple two-level pass-transistor based

structure with boosted configuration SRAM voltage that alleviates the drop of drain voltages

[130]. Notice that we assume a separate power rail for configuration SRAM cells and do not

change their voltages as they are made up of thick high-threshold transistors that have already

throttled their leakage current by two orders of magnitude though have a crucial impact on FPGA

performance. Nor we do scale the auxiliary voltage of I/O rails to facile standard interfacing.

While low sensitivity of routing resources against voltage implied Vcore is a prosperous candidate

in interconnection-bound designs, the large increase of logic delay with voltage scaling hinders

63

Vcore scaling when the critical path consists of mostly LUTs. In the following we show how

varying parameters of workload, critical path(s), and application affect optimum ‘Vcore, Vbram’

point and energy saving.

Let us consider the critical path delay of an arbitrary application as Equation (3.1).

dcp = dl0 ·Dl(Vcore)+dm0 ·Dm(Vbram) (3.1)

Where dl0 stands for the initial delay of the logic and routing part of the critical path, and

Dl(Vcore) denotes the voltage scaling factor, i.e., information of Figure 3.1. Analogously, dm0

and Dm(Vbram) are the memory counterparts. The original delay of the application is dl0 +dm0,

which can be stretched by (dl0 +dm0)×Sw where Sw ≥ 1 indicates the workload factor, meaning

that in an 80% workload, the delay of all nodes can be increased up to Sw = 1
0.8 = 1.25×.

Defining α = dm0
dl0

as the relative delay of memory block(s) in the critical path to logic/routing

resources, the applications need to meet the following:

dcp ∝ Dl(Vcore)+α ·Dm(Vbram)≤ (1+α) ·Sw (3.2)

We can derive a similar model for power consumption as a function of Vcore and Vbram

shown by Equation (3.3).

pcir ∝ Pl(Vcore,dcp)+β ·Pm(Vbram,dcp) (3.3)

where Pl(Vcore,dcp) is for the total power drawn from the core rail by logic, routing, and DSP

resources as a function of voltage Vcore and frequency (delay) dcp, and β is an application-

dependent factor to determine the contribution of BRAM power. In the following, we initially

assume α = 0.2 (i.e., BRAM contributes to 0.2
1+0.2 of critical path delay [130]) and β = 0.4 (i.e.,

BRAM power initially is ∼ 25% of device total power [127]).

Figures 3.4, 3.5, and 3.6 demonstrates the efficiency of different voltage scaling schemes

64

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

P
o

w
er

 (
ra

ti
o

)

Workload (%)

Prop Vcore Vbram

core-only bram-only PG

Figure 3.4. Comparing DVFS techniques in different workloads.

under varying workloads, applications’ critical paths (‘α’s), and applications’ power charac-

teristics (i.e., β , the ratio of memory to chip power). Prop means the proposed approach that

simultaneously determines Vcore and Vbram, core-only is the technique that only scales Vcore

[124, 123], and bram-only is similar to [127]. Dashed lines of Vcore and Vbram in the figures

show the magnitude of the Vcore and Vbram in the proposed approach, Prop (for the sake of clarity,

we do not show voltages of the other methods). According to Figure 3.4, in high workloads

(> 90%, or Sw < 1.1), our proposed approach mostly reduces the Vbram voltage because slight

reduction of the memory power in high voltages significantly improves the power efficiency,

especially because the contribution of memory delay in the critical path is small (α = 0.2),

leaving room for Vbram scaling. For the same reason, core-only scheme has small gains there.

The Figure also reveals the sophisticated relation of the minimum voltage points and the size

of workload; each workload level requires re-estimation of ‘Vcore,Vbram’. In all cases, the pro-

posed approach yields the lowest power consumption. It is noteworthy that the conventional

power-gating approach (denoted by PG in Figure 3.4) scales the number of computing nodes

linearly with workload, though, the other approaches scale both frequency and voltage, leading

to twofold power saving. In very low workloads, power-gating works better than the other two

65

Workload (%)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

P
o

w
er

 (
ra

ti
o

)

BRAM delay contribution (α)

Prop Vcore Vbram

core-only bram-only

Figure 3.5. Comparing DVFS techniques in different critical paths.

approaches because the crash voltage (∼ 0.50V) prevents further power reduction.

Similar insights can also be grasped from Figure 3.5 and 3.6. A constant workload of

50% is assumed here while α and β parameters change. When the contribution of BRAM delay

in total reduces, the proposed approach tends to scale the Vbram. For α = 0 highest power saving

is achieved as the proposed method can scale the voltage to the minimum possible, i.e., the

crash voltage. Analogously in Figure 3.6, the effectiveness of the core-only (bram-only) method

degrades (improves) when BRAM contributes to a significant ratio of total power, while our

proposed method can adjust both voltages cautiously to provide minimum power consumption.

It is worth to note that the efficiency of the proposed method increases in high BRAM powers

because in these scenarios a minor reduction of BRAM power saves huge power with a small

increase of delay (compare Figure 3.4 and 3.6).

3.3 Proposed Method

In practice, the generated data from different users are processed in a centralized FPGA

platform located in datacenters. The computing resources of the data centers are rarely completely

idle and sporadically operate near their maximum capacity. In fact, most of the time the incoming

workload is between 10% to 50% of the maximum nominal workload. Multiple FPGA instances

66

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

P
o

w
er

 (
ra

ti
o

)

BRAM power contribution (β)

Prop Vcore Vbram

core-only bram-only

Figure 3.6. Comparing DVFS techniques in different BRAM power rates.

are designed to deliver the maximum nominal workload when running on the nominal frequency

to provide the users’ desired quality of service. However, since the incoming FPGA workloads

are often lower than the maximum nominal workload, FPGA become underutilized. By scaling

the operating frequency proportional to the incoming workload, the power dissipation will be

reduced without violating the desired throughput. It is noteworthy that if an application has

specific latency restrictions, it should be considered in the voltage and frequency scaling. The

maximum operating frequency of the FPGA can be set depending on the delay of the critical path

such that it guarantees the reliability and the correctness of the computation. By underscaling

the frequency, i.e., stretching the clock period, delay of the critical path becomes less than the

clock toggle rate. This extra timing room can be leveraged to underscale the voltage to minimize

the energy consumption untill the critical path delay again reaches the clock delay.

Figure 3.7 abstracts an FPGA cloud platform consisting of n FPGA instances where all

of them are processing the input data gathered from one or different users. FPGA instances

are provided with the ability to modify their operating frequency and voltage. In the following

we explain the workload prediction, dynamic frequency scaling and dynamic voltage scaling

implementations.

67

Incoming workload Mem.

FPGA #nFPGA #1

User Input Output

DVFS

Application

DVFS

Application

DVFS

Application

DVFS

Application

w
o

rk
lo

a
d

s
iz

e

time

Figure 3.7. Overview of an FPGA-based datacenter platform.

3.3.1 Workload Prediction

We divide the FPGA execution time to steps with the length of τ , where the energy is

minimized separately for each time step. At the ith time step (τi−1), our approach predicts the

size of the workload for the i+1 time step. Accordingly, we set the working frequency of the

platform such that it can complete the the predicted workload for the τi time step.

To provide the desired QoS as well as minimizing the FPGA idle time, the size of the

incoming workload needs to be predicted at each time step. The operating voltage and frequency

of the platform is set based on the predicted workload. Generally, to predict and allocate

resources for dynamic workloads, two different approaches have been established: reactive, and

proactive. In reactive approach, resources are allocated to the workload based on a predefined

thresholds [131, 132], while in proactive approach, the future size of the workload is predicted

and resources are allocated based on this prediction [133, 134, 135].

In this work, we use a light-weight online workload prediction method similar to the one

proposed in [135] which is able to extract short-term features. In the cases the service provider

knows the periodic signatures of the incoming workload, the predictor can be loaded with this

68

S0

S1

S2

S3

P2,1

P1,2

P1,1

P0,0

P0,1

P1,0

P2,2

P2,3

P3,2

P3,3

P0,3

P3,0S0

S1

S2

S3

P2,1

P1,2

P1,1

P0,0

P0,1

P1,0

P2,2

P2,3

P3,2

P3,3

P0,3

P3,0

P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

P0,0 P0,1 P0,2 P0,3

P1,0 P1,1 P1,2 P1,3

P2,0 P2,1 P2,2 P2,3

P3,0 P3,1 P3,2 P3,3

M

M

Figure 3.8. Example of Markov chain for workload prediction.

information. Workloads with repeating patterns are divided into time intervals which are repeated

with the period. The average of the intervals represents a bias for the short-term prediction.

For applications without repeating patterns, we use a discrete-time Markov chain with a finite

number of states to represents the short-term characteristics of the incoming workload.

The size of the workload is discretized into M bins, each represented by a state in the

Markov chain; all the states are connected through a directed edge. Pi, j shows the transition

probability from state i to state j. Therefore, there are M×M edges between states where

each edge has a probability learned during the training steps to predict the size of the incoming

workload. Figure 3.8 represents a Markov chain model with 4 states, {S0,S1,S2,S3}, in which a

directed edge with label Pi, j shows the transition from Si to S j which happens with the probability

of Pi, j. Considering the The total probability of the outgoing edges of state Si has to be 1 as

probability of selecting the next state is one.

Starting from S0 with probability of P0,i the next state will be Si. In the next time step,

the third state will be again S1 with P1,1 probability. If a pre-trained model of the workload is

available, it can be loaded on FPGA, otherwise, the model needs to be trained during the runtime.

69

During system initialization, the platform runs with the maximum frequency and works with

the nominal frequency for the first I time steps. In the training phase, the Markov model learns

the patterns of the incoming workload and the probability of transitions between states are set

during this phase.

After I time steps, the Markov model predicts the incoming input of the next time step

and the frequency of the platform is selected accordingly, with a t% throughput margin to offset

the likelihood of workload under-estimation as well as to preclude consecutive mispredictions.

Mispredictions can be either under-estimations or over-estimations. In case of over-estimation,

QoS is meet, however, some power is wasted as the frequency (and voltage) is set to a unneces-

sarily higher value. In case of workload under-estimation the desired QoS may be violated. The

work in [135] tackles most of the underestimations by t = 5% margin.

3.3.2 Frequency Scaling Flow

To achieve high energy efficiency, the operating FPGA frequency needs to be adjusted

according to the size of the incoming workload. To scale the frequency of FPGAs, Intel (Altera)

FPGAs enable Phase-Locked Loop (PLL) hard-macros (Xilinx also provide a similar feature).

Each PLL generates up to 10 output clock signals from a reference clock. Each clock signal can

have an independent frequency and phase as compared to the reference clock. PLLs support

runtime reconfiguration through a Reconfiguration Port (RP). The reconfiguration process is

capable of updating most of the PLL specifications, including clock frequency parameters sets

(e.g. frequency and phase). To update the PLL parameters, a state machine controls the RP

signals to all the FPGA PLL modules.

PLL module has a Lock signal that represents when the output clock signal is stable. The

lock signal activates whenever there is a change in PLL inputs or parameters. After stabling

the PLL inputs and the output clock signal, the lock signal is asserted again. The lock signal is

de-asserted during the PLL reprogramming and will be issued again in, at most, 100µSec. Each

of the FPGA instances in the proposed DFS module has its own PLL modules to generate the

70

Workload Counter Workload Predictor
Vbram

Vcore
PLL0

DRP

PLL1

Application

B
R

A
M

D
SP

LUT

Sw
it

ch

B
o

x

Controller

Lock

FRef

Vbram

Vcore

RP M
U

X

DFSController

 WLƬ D
FS

U

p
d

at
e

Freq. Selector Voltage Selector

Vbram = ƒ (FreqƬ+1)
Vcore = ƒ (FreqƬ+1)FreqƬ+1 =ƒ (WLƬ+1)

(b) Central Controller

+

DFS

Application

CC
DFS

Application

CC

DFS

Application

DFS

Application

DFS

Application

DFS

Application D
V

S
U

p
d

at
e

(C) FPGA Instances(a) Multi-FPGA platform

LockDRP

D
V

S

Figure 3.9. (a) the architecture of the proposed energy-efficient multi-FPGA platform. The
details of the (b) central controller, and (c) the FPGA instances.

clock signal from the reference clock provided in the FPGA board. For simplicity of explanations,

we assume the design works with one clock frequency, however, our design supports multiple

clock signals with the same procedure. Each PLL generates one clock output, CLK0. At the

start-up, the PLL is initialized to generate the output clock equal to the reference clock. When

the platform modifies the clock frequency, at τi based on the predicted workload for τi+1, the

PLL is reconfigured to generate the output clock that meets the QoS for τi+1.

3.3.3 Voltage Scaling Flow

To implement the dynamic voltage scaling for both Vcore and Vbram, Texas Instruments

(TI) PMBUS USB Adapter can be used [136] for different FPGA vendors. TI adapter provides a

C-based Application Programming Interface (API), which eases adjusting the board voltage rails

and reading the chip currents to measure the power consumption through Power Management

Bus (PMBUS) standard. To scale the FPGA voltage rails, the required PMBUS commands are

sent to the adapter to set the Vbram and Vcore to certain values. This adopter is used as a proof

of concept, while in industry fast DC-DC converters are used to change the voltage rails. The

work in [137] has shown a latency of 3-5 nSec, and is able to generate voltages between 0.45V

to 1V with 25mV resolution. As these converters are faster than the FPGAs clock frequency, we

neglect the performance overhead of the DVS module in the rest of the chapter.

71

3.4 Proposed Architecture

Figure 3.9(a) demonstrates the architecture of the proposed energy efficient multi-FPGA

platform. Our platform consists of n FPGAs where one of them is a central FPGA. The central

FPGA has Central Controller (CC) and DFS blocks and is responsible to control the frequency

and voltage of all other FPGAs. Figure 3.9(b) shows the details of the CC managing the

voltage/frequency of all FPGA instances. The CC predicts the workload size and accordingly

scales the voltage and frequency of all other FPGAs. A Workload Counter computes the number

of incoming inputs in a central FPGA, assuming all other FPGAs have the similar input rate.

The Workload Predictor module compares the counter value with the predicted workload at the

previous time step. Based on the current state, the workload predictor estimates the workload

size in the next time step. Next, Freq. Selector module determines the frequency of all FPGA

instances depending on the workload size. Finally, the Voltage Selector module sets the working

voltages of different blocks based on the clock frequency, design timing characteristics (e.g.,

critical paths), and FPGA resources characteristics. This voltage selection happens for logic

elements, switch boxes, and DSP cores (Vcore); as well as the operating voltage of BRAM cells

(Vbram). The obtained voltages not only guarantee timing (which has a large solution space), but

also minimizes the power as discussed in Section 3.2. The optimal operating voltage(s) of each

frequency is calculated during the design synthesis stage and are stored in the memory, where

the DVS module is programmed to fetch the voltage levels of FPGAs instances.

Misprediction Detection: In CC, the misprediction happens when the workload bin for

time step ith is not equal to the bin achieved by the workload counter. To detect mispredictions,

the value of t% should be greater than 1/m, where m is the number of bins. Therefore, the

system discriminates each bin with the higher level bin. For example, if the size of the incoming

workload is predicted to be in bin ith while it actually belongs to i+ 1th bin, the system is

able to process the workload with the size of i+1th bin. After each misprediction, the state of

the Markov model is updated to the correct state. If the number of mispredictions exceeded a

72

threshold, the probabilities of the corresponding edges are updated.

PLL Overhead: The CC issues the required signals to reprogram the PLL blocks in

each FPGA. To reprogram the PLL modules, the DVF reprogramming FSM issues the RP signal

serially. After reprogramming the PLL module, the generated clock output is unreliable until the

lock signal is issued, which takes no longer than 100 µSec. In the cases the framework changes

the frequency and voltage very frequently, the overhead of stalling the FPGA instances for the

stable output clock signal limits the performance and energy improvement. Therefore, we use

two PLL modules to eliminate the overhead of frequency adjustion. In this platform, as shown

in Figure 3.9(c), the outputs of two PLL modules pass through a multiplexer, one of them is

generating the current clock frequency, while the other is being programmed to generate the

clock for the next time step. Thus, in the next clock, the platform will not be halted waiting for a

stable clock frequency.

In case of having one PLL, each time step with duration τ requires tlock extra time for

generating a stable clock signal. Therefore, using one PLL has tlock set up overhead. Since

tlock� τ , we assume the PLL overhead, tlock, does not affect the frequency selection. The energy

overhead of using one PLL is:

PDesign× tlock︸ ︷︷ ︸
Design energy during tlock

+PPLL× (τ + tlock)︸ ︷︷ ︸
PLL energy

(3.4)

In case of using two PLLs, there is no performance overhead. The energy overhead would

be equal to power consumption of two PLLs multiplied by τ . The performance overhead is

negligible since tlock < 100µSec� τ . Therefore, it is more efficient to use two PLLs when the

following condition is hold:

Pdesign× tlock +PPLL× (τ + tlock)> 2×PPLL× τ (3.5)

Since tlock � τ , we should have Pdesign× tLock > PPLL× τ . Our evaluation shows that this

73

condition can be always satisfied over all our experiments. In practice, the fully utilized FPGA

power consumption is around 20W while the PLL consumes about 0.1W, and tlock ' 10µSec.

Therefore, when τ > 2mSec, the overhead of using two PLL becomes less than using one PLL.

In practice, τ is at least in order of seconds or minutes; thus it is always more beneficial to use

two PLLs.

3.5 Experimental Results

3.5.1 General Setup

We evaluated the efficiency of the proposed method by implementing several state-of-the-

art neural network acceleration frameworks on a commercial FPGA architecture. To generate

and characterize the SPICE netlist of FPGA resources from delay and power perspectives, we

used the latest version of COFFE [138] with 22nm predictive technology model (PTM) [139]

and an architectural description file similar to Stratix IV devices due to their well-provided

architectural details [140]. COFFE does not model DSPs, so we hand-crafted a Verilog HDL

of Stratix IV DSPs [141] and characterized with Synopsys Design Compiler using NanGate

45nm Open-Cell Library [142] tailored for libraries with different voltages by the means of

Synopsys SiliconSmart. Eventually we scaled the 45nm DSP characterization to 22nm following

the scaling factors of a subset of combinational and sequential cells obtained through SPICE

simulations.

We synthesized the benchmarks using Intel (Altera) Quartus II software targeting Stratix

IV devices and converted the resulted VQM (Verilog Quartus Mapping) file format to Berkeley

Logic Interchange Format (BLIF) format, recognizable by our placement and routing VTR

(Verilog-to-Routing) toolset [140]. VTR gets a synthesized design in BLIF format along with

the architectural description of the device (e.g., number of LUTs per slice, routing network

information such as wire length, delays, etc.) and maps (i.e., performs place and routing)

on the smallest possible FPGA device and simultaneously tries to minimize the delay. The

74

Table 3.1. Post place and route resource utilization and timing of the benchmarks.

Parameter Tabla DnnWeaver DianNao Stripes Proteus
LAB 127 730 3430 12343 2702
DSP 0 1 112 16 144
M9K 47 166 30 15 15
M144K 1 13 2 1 1
I/O 567 1655 4659 8797 5033
Freq. (MHz) 113 99 83 40 70

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50 60 70 80 90 100 110

P
o

w
er

 (
ra

ti
o

)

Time (Sec.)

workload
Prop.
core-only
bram-only

Figure 3.10. Comparing the efficiency of different voltage scaling techniques under a varying
workload for Tabla framework.

only amendment we made in the device architecture was to increase the capacity of I/O pads

from 2 to 4 as our benchmarks are heavily I/O bound. Our benchmarks include Tabla [53],

DnnWeaver [54], DianNao [143], Stripes [144], and Proteus [145] which are general neural

network acceleration frameworks capable of optimizing various objective functions through

gradient descent by supporting huge parallelism. The last two networks provide serial and

variable-precision acceleration for energy efficiency. Table 3.1 summarizes the resource usage

and post place and route frequencies of the synthesized benchmarks. LAB stands for Logic

Array Block and includes 10 6-input LUTs. M9K and M144K show the number of 9Kb and

144Kb memories.

75

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0 10 20 30 40 50 60 70 80 90 100 110

V
o

lt
ag

e
(V

)

Time (Sec.)

Vcore
Vbram
core-only
bram-only

Figure 3.11. Voltage adjustment in different voltage scaling techniques under the varying
workload for Tabla framework.

3.5.2 Results

Figure 3.10 compares the achieved power gain of different voltage scaling approaches

implemented the Tabla acceleration framework under a varying workload. We considered

a synthetic workload with 40% average load (of the maximum) from [146] with λ = 1000,

H = 0.76 and IDC = 500 where λ , 0.5 < H ≤ 1 and IDC denote the average arrival rate of the

whole process, Hurst exponent, and the index of dispersion, respectively. The workload also

has been shown in the same figure (in green line) which is normalized to its expected peak load.

We have showed the corresponding Vcore and Vbram voltages of all approaches in Figure 3.11.

Note that we have not showed Vbram (Vcore) for the core-only (bram-only) techniques as it is

fixed 0.95V (0.8V) in this approach. An average of 4.1× power reduction is achieved, while this

is 2.9× and 2.7× for the core-only and bram-only approaches. This means that the proposed

technique is 41% more efficient than the best approach, i.e., only considering the core voltage

rails. An interesting point in Figure 3.11 is the reaction of bram-only approach with respect

to workload variation. It follows a similar scaling trend (i.e., slope) as Vbram in our approach.

However, our method also scales the Vcore to find more efficient energy point, thus Vbram in our

proposed approach is always greater than that of bram-only approach.

Figure 3.12 compares the power saving of all accelerator frameworks employing our

76

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50 60 70 80 90 100 110

P
o

w
er

 (
ra

ti
o

)

Time (Sec.)

workload Tabla DianNao Stripes

Proteus DNNWeaver Vtabla Vproteus

Figure 3.12. Power efficiency of the proposed technique in different acceleration frameworks.

Table 3.2. Comparison of power efficiency of different approaches.

Technique Tabla DianNao Stripes Proteus DNNWeav. Average
Core-only 2.9× 3.1× 3.1× 3.1× 2.9× 3.02×
Bram-only 2.7× 1.9× 1.8× 2.0× 2.9× 2.26×
The proposed 4.1× 3.9× 3.9× 3.8× 4.4× 4.02×
Efficiency 41-52% 26-105% 26-116% 23-90% 52% 33.6% − 83%

proposed method, where they follow a similar trend. This is due to the fact that the workload has

considerably higher impact on the opportunity of power saving. We could also infer this from

Figure 3.4 where the power efficiency is significantly affected by workload load rather than the

application specifications (α and β parameters). In addition, we observed that BRAM delay

contributes to a similar portion of critical path delay in all of our accelerators (i.e., α parameters

are close). Lastly, the accelerators are heavily I/O-bound which are obliged to be mapped to a

considerably larger device where static power of the unused resources is large enough to cover

the difference in applications power characteristics. Nevertheless, we have also represented the

BRAM voltages of the Table (VTabla in dashed black line, the same presented in Figure 3.11)

and Proteus (VProteus) applications in 3.12. As we can see, although the power trends of these

applications almost overlap, they have a noticeably different minimum Vbram points.

Table 3.2 summarizes the average power reduction of different voltage scaling schemes

77

over the aforementioned workload. On average, the proposed scheme reduces the power by

4.0×, which is 33.6% better than the previous core-only and 83% more effective than scaling

the Vbram. As elaborated in Section 3.2, different power saving in applications (while having

the same workload) arises from different factors including the distribution of resources in their

critical path where each resource exhibits a different voltage-delay characteristics, as well as the

relative utilization of logic/routing and memory resources that affect the optimum point in each

approach.

3.6 Conclusion

In this chapter, we proposed an efficient framework to throttle the power consumption

of multi-FPGA platforms by effectively scaling the voltage and frequency during runtime. We

utilize a light-weight predictor for proactive estimation of the incoming workload and incorporate

it to our power-aware timing analysis framework. The timing analysis framework then adjusts

the frequency and finds optimal voltages according to the available workload margin, while

maintaining the desired quality of service. We evaluated the efficiency of our framework by

implementing the state-of-the-art deep neural network accelerators on a solid FPGA architecture.

Experimental results signified the efficiency of the proposed method, where we observed 4.0×

power improvement, which is 33.6% to 83% more effective than previous approaches that merely

consider a single voltage rail. In the next chapter we summarize our work and provide some

ideas for future research.

This chapter contains material from “Workload-Aware Opportunistic Energy Efficiency

in Multi-FPGA Platforms”, by Sahand Salamat, Behnam Khaleghi, Mohsen Imani, and Tajana

S. Rosing, which appears in IEEE/ACM International Conference On Computer Aided Design

(ICCAD), 2019 [4]. The dissertation author was the primary investigator and author of this paper.

78

Chapter 4

Summary and Future Work

4.1 Thesis Summary

The rise of the IoT era has massively increased the size of the generated data. Machine

learning algorithms have been extensively used to process this data. Executing these algorithms

is challenging as require significant resource to provide sufficient accuracy. The goal of our

research is to improve the performance and energy-efficiency of big data processing by modifying

the software tools and optimizing the hardware platforms. In this dissertation we 1) optimize

and accelerate the existing DNNs, 2) accelerate HD computing as a light-weight and hardware

friendly alternative to DNNs on FPGAs, and 3) optimize the energy-efficiency of cloud FPGAs

where most of the machine learning applications are running.

One of the main challenges in accelerating DNNs is quantizing the networks without

loosing the accuracy. Quantizing the networks reduces both the network size and the computation

complexity of DNN operations. However, quantizing networks after a certain point (6 bits as

shown in [28]) lowers the accuracy to a level that is not practical for real-world applications. In

chapter 1, we exploit Residue Number System (RNS), instead of the binary numbers, to simplify

DNN operations thereby increasing their performance. Our proposed Residue-Net quantizes the

networks to 6 bits and then converts the weights to RNS and entirely executes DNNs using RNS.

It utilizes RNS to replace the multiplication operations with more hardware-friendly operations

such as shift and addition. We also proposed and FPGA-based accelerator for Residue-Net that

79

provides 2.8× speedup on average (up to 3.1× in ResNet-50) compared to the FPGA baseline

while delivering the same accuracy as the DNN quantized to six bits.

DNNs provide good accuracy for various types of applications, but at the cost of com-

plexity, performance and relatively high energy consumption. Many tasks can be processed with

more light-weight and hardware-friendly algorithms. Hyperdimensional computing provides a

comparable accuracy in many tasks to conventional machine learning algorithms. In chapter 2,

we developed an automated framework that generates FPGA-based accelerators for HD classi-

fication and clustering, called HD2FPGA. HD2FPGA is highly optimized and parallelized to

execute the entire HD training, retraining, and inference for HD classification and clustering on

the FPGA. Compared to state-of-the-art FPGA-based machine learning accelerators, HD2FPGA

achieves 277× speedup and 172× energy reduction in classification as well as 46× speedup and

47.8× energy reduction in clustering.

With the ever-increasing demand for application-specific accelerators, many cloud service

providers have deployed FPGAs in their cloud infrastructure. They offer machine learning

services running on cloud FPGAs; additionally, they offer FPGAs as an infrastructure as a

service where users can implement their applications. On average, the size of the incoming

workload to the cloud services is ∼ 30% of the maximum expected workload. Therefore, most

of the time the cloud FPGAs are underutilized which reduces the overall efficiency of these

platforms. In chapter 3, we improve the energy efficiency of multi-FPGA platforms commonly

used for cloud-based processing. We created a dynamic voltage and frequency scaling approach

to minimize the energy consumption of multi-FPGA platforms. Our approach first predicts the

size of the incoming workload and then adjusts the frequency and voltage of the FPGAs to

deliver the user’s desired quality of service while minimizing the energy consumption.

80

4.2 Future Directions

The constant evolution of IoT systems has led to exponential growth in the size of

the annual generated data. As the size of the generated data increases, new problems will be

introduced and the computational bottlenecks will change. Conventional machine learning

algorithms are widely used in big data applications such as bioinformatics for the classification

and clustering of datasets with massive sizes. Exponentially growing genomics data sets and

the immense amount of computations required to process these datasets have motivated the

researchers to utilize application-specific accelerators and emerging technologies to significantly

accelerate bioinformatics applications.

Residue-Net and HD2FPGA are two FPGA-based accelerators that are highly optimized

to maximize the performance and minimize the energy consumption of running DNNs and HD

computing. These two accelerators and specifically HD2FPGA, thanks to its higher performance,

can be utilized in bioinformatics datasets for classifying and clustering the genomics data.

Designing an ASIC accelerator for HD classification and clustering can further improve the

efficiency of executing HD. ASIC accelerators provide significantly higher flexibility in design

and optimization. However, ASIC accelerators, unlike FPGAs, provide limited reconfigurability;

therefore, the ASIC accelerator has to support HD with different parameters such as the number

of input features, dimensionality, and the number of classes/clusters, to name a few. Using ASIC

accelerators for HD computing will address the computational bottleneck issue but as the size

of datasets increases, more data has to be transferred from/to the storage devices to/from the

computation core.

Today memory and storage access are the computational bottlenecks for many applica-

tions. Increasing the performance of systems requires optimizing the underlying algorithms

for more efficient memory and storage access. Moving the computations to where the data

is stored reduces the data movement in the memory hierarchy (storage, memory, and on-chip

memory of computation cores). Emerging computational paradigms, such as in-memory and

81

in-storage computing, are getting ever-increasing attention as they directly address the data

movement issues. NVM memories provide the ability to directly execute operations in memory

cells, which leads to high parallelism and high efficiency in executing operations on the stored

data. Additionally, computational storage devices can be equipped with custom accelerators

inside the SSD controller to execute operations on the stored data. The computational storage

devices benefit from the higher internal bandwidth of SSDs in addition to the efficiency of

custom accelerators. Executing HD in storage and in memory can improve the efficiency of HD

computing by orders of magnitude.

In summary, going forward, it is important to develop an infrastructure that can learn

efficiently on massive data sets. Some ideas on how to accomplish this include: 1) Using

our already developed accelerators, Residue-Net and HD2FPGA, to process applications with

massive data size. 2) Developing an ASIC accelerator for HD computing to increase our capacity

to process more data with less energy. 3) Developing an in-storage or in-memory accelerator for

HD computing to improve the efficiency of performing tasks (e.g. classification, and clustering)

by orders of magnitude.

82

Bibliography

[1] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural networks for
efficient fpga implementation,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 85–92, IEEE, 2017.

[2] “State-of-the-art fpga-based acceleratof for kmeans clustering.” https://github.com/Xilinx/
Vitis Accel Examples/tree/master/demo/kmeans.

[3] S. Salamat, S. Shubhi, B. Khaleghi, and T. Rosing, “Residue-net: Multiplication-free
neural network by in-situ no-loss migration to residue number systems,” in 2021 26th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 222–228, IEEE, 2021.

[4] S. Salamat, B. Khaleghi, M. Imani, and T. Rosing, “Workload-aware opportunistic energy
efficiency in multi-fpga platforms,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2019.

[5] M. Ge, H. Bangui, and B. Buhnova, “Big data for internet of things: a survey,” Future
generation computer systems, vol. 87, pp. 601–614, 2018.

[6] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Big data technologies: A
survey,” Journal of King Saud University-Computer and Information Sciences, vol. 30,
no. 4, pp. 431–448, 2018.

[7] “Volume of data/information created, captured, copied, and consumed worldwide from
2010 to 2025.” https://www.statista.com/statistics/871513/worldwide-data-created.

[8] E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning and data analytics for the
iot,” Neural Computing and Applications, vol. 32, no. 20, pp. 16205–16233, 2020.

[9] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey and
benchmarking of machine learning accelerators,” in 2019 IEEE high performance extreme
computing conference (HPEC), pp. 1–9, IEEE, 2019.

[10] Z. Li, Y. Zhang, J. Wang, and J. Lai, “A survey of fpga design for ai era,” Journal of
Semiconductors, vol. 41, no. 2, p. 021402, 2020.

[11] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of fpga-based neural network
inference accelerators,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 1, pp. 1–26, 2019.

83

 https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/demo/kmeans
 https://github.com/Xilinx/Vitis_Accel_Examples/tree/master/demo/kmeans
https://www.statista.com/statistics/871513/worldwide-data-created

[12] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural
network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[13] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–
2329, 2017.

[14] A. Bashar, “Survey on evolving deep learning neural network architectures,” Journal of
Artificial Intelligence, vol. 1, no. 02, pp. 73–82, 2019.

[15] P. Druzhkov and V. Kustikova, “A survey of deep learning methods and software tools
for image classification and object detection,” Pattern Recognition and Image Analysis,
vol. 26, no. 1, pp. 9–15, 2016.

[16] N. Ibrahim, P. Maurya, O. Jafari, and P. Nagarkar, “A survey of performance optimization
in neural network-based video analytics systems,” arXiv preprint arXiv:2105.14195, 2021.

[17] C. Morikawa, M. Kobayashi, M. Satoh, Y. Kuroda, T. Inomata, H. Matsuo, T. Miura,
and M. Hilaga, “Image and video processing on mobile devices: a survey,” The Visual
Computer, pp. 1–19, 2021.

[18] M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, and K. M. Iftekharuddin, “Survey on
deep neural networks in speech and vision systems,” Neurocomputing, vol. 417, pp. 302–
321, 2020.

[19] N. H. Tandel, H. B. Prajapati, and V. K. Dabhi, “Voice recognition and voice comparison
using machine learning techniques: A survey,” in 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS), pp. 459–465, IEEE, 2020.

[20] J. Ruiz-del Solar, P. Loncomilla, and N. Soto, “A survey on deep learning methods for
robot vision,” arXiv preprint arXiv:1803.10862, 2018.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[22] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning in robotics: Survey
on model structures and training strategies,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 51, no. 1, pp. 266–279, 2020.

[23] H. Bhaskar, D. C. Hoyle, and S. Singh, “Machine learning in bioinformatics: A brief
survey and recommendations for practitioners,” Computers in biology and medicine,
vol. 36, no. 10, pp. 1104–1125, 2006.

[24] K. Lan, D.-t. Wang, S. Fong, L.-s. Liu, K. K. Wong, and N. Dey, “A survey of data mining
and deep learning in bioinformatics,” Journal of medical systems, vol. 42, no. 8, pp. 1–20,
2018.

84

[25] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, M. Abeydeera, L. Adams, H. Angepat, C. Boehn,
D. Chiou, O. Firestein, A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Hus-
seini, T. Juhasz, K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. G. Rapsang, S. K. Reinhardt, B. Darvish Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Y. Xiao, D. Zhang, R. Zhao, and
D. Burger, “Serving dnns in real time at datacenter scale with project brainwave,” IEEE
Micro, vol. 38, no. 2, pp. 8–20, 2018.

[26] Y. Guo, “A survey on methods and theories of quantized neural networks,” arXiv preprint
arXiv:1808.04752, 2018.

[27] S. Migacz, “Nvidia 8-bit inference width tensorrt,” in GPU Technology Conference, 2017.

[28] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller, A. Kline-
felter, N. Pinckney, P. Raina, Y. Zhang, B. Zimmer, W. J. Dally, J. Emer, S. W. Keckler,
Khailany, and Brucek, “Magnet: A modular accelerator generator for neural networks,” in
Proceedings of the International Conference on Computer-Aided Design (ICCAD), 2019.

[29] A. Jain, P. Goel, S. Aggarwal, A. Fell, and S. Anand, “Symmetric k-means for deep neural
network compression and hardware acceleration on fpgas,” IEEE Journal of Selected
Topics in Signal Processing, 2020.

[30] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, “Bit fu-
sion: Bit-level dynamically composable architecture for accelerating deep neural network,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pp. 764–775, IEEE, 2018.

[31] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and M. Martina, “An
updated survey of efficient hardware architectures for accelerating deep convolutional
neural networks,” Future Internet, vol. 12, no. 7, p. 113, 2020.

[32] R. Ayachi, Y. Said, and A. B. Abdelali, “Optimizing neural networks for efficient fpga
implementation: A survey,” Archives of Computational Methods in Engineering, pp. 1–11,
2021.

[33] A. G. Blaiech, K. B. Khalifa, C. Valderrama, M. A. Fernandes, and M. H. Bedoui, “A
survey and taxonomy of fpga-based deep learning accelerators,” Journal of Systems
Architecture, vol. 98, pp. 331–345, 2019.

[34] T. Simons and D.-J. Lee, “A review of binarized neural networks,” Electronics, vol. 8,
no. 6, p. 661, 2019.

[35] A. R. Omondi and B. Premkumar, Residue number systems: theory and implementation.
World Scientific, 2007.

85

[36] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors,” Cognitive Computation, vol. 1,
no. 2, pp. 139–159, 2009.

[37] P. Kanerva, “Computing with 10,000-bit words,” in Communication, Control, and Com-
puting (Allerton), 2014 52nd Annual Allerton Conference on, pp. 304–310, IEEE, 2014.

[38] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, pp. 64–69, ACM, 2016.

[39] F. R. Najafabadi, A. Rahimi, P. Kanerva, and J. M. Rabaey, “Hyperdimensional computing
for text classification,” in Design, Automation Test in Europe Conference Exhibition
(DATE), University Booth, pp. 1–1, 2016.

[40] O. J. Räsänen and J. P. Saarinen, “Sequence prediction with sparse distributed hyperdi-
mensional coding applied to the analysis of mobile phone use patterns,” IEEE transactions
on neural networks and learning systems, vol. 27, no. 9, pp. 1878–1889, 2016.

[41] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional computing for
efficient speech recognition,” in Rebooting Computing (ICRC), 2017 IEEE International
Conference on, pp. 1–8, IEEE, 2017.

[42] F. Montagna, A. Rahimi, S. Benatti, D. Rossi, and L. Benini, “Pulp-hd: accelerating
brain-inspired high-dimensional computing on a parallel ultra-low power platform,” in
Proceedings of the 55th Annual Design Automation Conference, p. 111, ACM, 2018.

[43] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyperdimen-
sional coding applied to the analysis of mobile phone use patterns,” IEEE Transactions on
Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12, 2015.

[44] A. Joshi, J. Halseth, and P. Kanerva, “Language geometry using random indexing,” Quan-
tum Interaction 2016 Conference Proceedings, In press.

[45] Y. Guo, M. Imani, J. Kang, S. Salamat, J. Morris, B. Aksanli, Y. Kim, and T. Rosing,
“Hyperrec: Efficient recommender systems with hyperdimensional computing,” in 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 384–389,
IEEE, 2021.

[46] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Finn: A framework for fast, scalable binarized neural network inference,” in Proceedings
of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 65–
74, ACM, 2017.

[47] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based
framework for refreshing hyperdimensional computing,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 53–62,
2019.

86

[48] A. Bhattacherjee and S. C. Park, “Why end-users move to the cloud: a migration-theoretic
analysis,” European Journal of Information Systems, vol. 23, no. 3, pp. 357–372, 2014.

[49] M. Wahlroos, M. Pärssinen, S. Rinne, S. Syri, and J. Manner, “Future views on waste heat
utilization–case of data centers in northern europe,” Renewable and Sustainable Energy
Reviews, vol. 82, pp. 1749–1764, 2018.

[50] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet, N. Horner,
I. Azevedo, and W. Lintner, “United states data center energy usage report,” 2016.

[51] H.-W. Tseng, T.-T. Yang, K.-C. Yang, and P.-S. Chen, “An energy efficient vm management
scheme with power-law characteristic in video streaming data centers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 29, no. 2, pp. 297–311, 2018.

[52] B. Khaleghi and T. Š. Rosing, “Thermal-aware design and flow for fpga performance
improvement,” in 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 342–347, IEEE, 2019.

[53] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and H. Es-
maeilzadeh, “Tabla: A unified template-based framework for accelerating statistical ma-
chine learning,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 14–26, IEEE, 2016.

[54] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12, IEEE,
2016.

[55] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung, “Accelerating
deep convolutional neural networks using specialized hardware,” Microsoft Research
Whitepaper, vol. 2, no. 11, pp. 1–4, 2015.

[56] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, E. Larus, James Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger, “A reconfigurable fabric for accelerating large-scale datacenter
services,” in 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 13–24, IEEE, 2014.

[57] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached fpgas for data cen-
ter applications,” in 2016 International Conference on Field-Programmable Technology
(FPT), pp. 36–43, IEEE, 2016.

[58] A. Altomare, E. Cesario, and A. Vinci, “Data analytics for energy-efficient clouds: de-
sign, implementation and evaluation,” International Journal of Parallel, Emergent and
Distributed Systems, pp. 1–16, 2018.

87

[59] W. Sung, S. Shin, and K. Hwang, “Resiliency of deep neural networks under quantization,”
arXiv preprint arXiv:1511.06488, 2015.

[60] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network design using
weights+ 1, 0, and- 1,” in 2014 IEEE Workshop on Signal Processing Systems (SiPS),
pp. 1–6, IEEE, 2014.

[61] H. Wi, H. Kim, S. Choi, and L.-S. Kim, “Compressing sparse ternary weight convolutional
neural networks for efficient hardware acceleration,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6, IEEE, 2019.

[62] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for highly accurate
and compact deep neural networks,” in Proceedings of the European conference on
computer vision (ECCV), pp. 365–382, 2018.

[63] H. Yan, A. H. Aboutalebi, and L. Duan, “Efficient allocation and heterogeneous compo-
sition of nvm crossbar arrays for deep learning acceleration,” in 2018 IEEE 37th Inter-
national Performance Computing and Communications Conference (IPCCC), pp. 1–8,
IEEE, 2018.

[64] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated quantization
with mixed precision,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8612–8620, 2019.

[65] D. J. Pagliari, E. Macii, and M. Poncino, “Dynamic bit-width reconfiguration for energy-
efficient deep learning hardware,” in Proceedings of the International Symposium on Low
Power Electronics and Design, pp. 1–6, 2018.

[66] M. Nazemi and M. Pedram, “Deploying customized data representation and approxi-
mate computing in machine learning applications,” in Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 1–6, 2018.

[67] E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo, “Big/little deep
neural network for ultra low power inference,” in 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 124–132, IEEE,
2015.

[68] R. Ding, Z. Liu, R. Shi, D. Marculescu, and R. Blanton, “Lightnn: Filling the gap between
conventional deep neural networks and binarized networks,” in Proceedings of the on
Great Lakes Symposium on VLSI 2017, pp. 35–40, 2017.

[69] N. Khoshavi, C. Broyles, and Y. Bi, “Compression or corruption? a study on the effects of
transient faults on bnn inference accelerators,” in 2020 21st International Symposium on
Quality Electronic Design (ISQED), pp. 99–104, IEEE, 2020.

[70] P. Hill, B. Zamirai, S. Lu, Y.-W. Chao, M. Laurenzano, M. Samadi, M. Papaefthymiou,
S. Mahlke, T. Wenisch, J. Deng, L. Tang, and J. Mars, “Rethinking numerical representa-
tions for deep neural networks,” arXiv preprint arXiv:1808.02513, 2018.

88

[71] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit
arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2, pp. 71–86, 2017.

[72] S. Salamat, M. Imani, S. Gupta, and T. Rosing, “Rnsnet: In-memory neural network
acceleration using residue number system,” in 2018 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–12, IEEE, 2018.

[73] Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability in scientific numeric
computing,” in European conference on Parallel Processing, pp. 558–569, Springer, 2015.

[74] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Kudithipudi,
“Deep positron: A deep neural network using the posit number system,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1421–1426, IEEE,
2019.

[75] J. Lu, S. Lu, Z. Wang, C. Fang, J. Lin, Z. Wang, and L. Du, “Training deep neural networks
using posit number system,” arXiv preprint arXiv:1909.03831, 2019.

[76] Y. Uguen, L. Forget, and F. de Dinechin, “Evaluating the hardware cost of the posit
number system,” in 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), pp. 106–113, IEEE, 2019.

[77] G. C. Cardarilli, A. Nannarelli, and M. Re, “Residue number system for low-power dsp
applications,” in 2007 Conference Record of the Forty-First Asilomar Conference on
Signals, Systems and Computers, pp. 1412–1416, IEEE, 2007.

[78] H. Nakahara and T. Sasao, “A deep convolutional neural network based on nested residue
number system,” in FPL, IEEE, 2015.

[79] N. Samimi, M. Kamal, A. Afzalli-Kusha, and M. Pedram, “Res-dnn: A residue number
system-based dnn accelerator unit,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2019.

[80] K. Anitha, T. Arulananth, R. Karthik, and P. B. Reddy, “Design and implementation of
modified sequential parallel rns forward converters,” International Journal of Applied
Engineering Research, vol. 12, no. 16, pp. 6159–6163, 2017.

[81] R. de Matos, R. Paludo, N. Chervyakov, P. A. Lyakhov, and H. Pettenghi, “Efficient
implementation of modular multiplication by constants applied to rns reverse converters,”
in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, IEEE,
2017.

[82] E. B. Olsen, “Rns hardware matrix multiplier for high precision neural network accelera-
tion:” rns tpu”,” in Circuits and Systems (ISCAS), 2018 IEEE International Symposium
on, pp. 1–5, IEEE, 2018.

89

[83] H. Nakahara and T. Sasao, “A high-speed low-power deep neural network on an fpga
based on the nested rns: Applied to an object detector,” in Circuits and Systems (ISCAS),
2018 IEEE International Symposium on, pp. 1–5, IEEE, 2018.

[84] V. Krasnobayev, A. Yanko, and S. Koshman, “A method for arithmetic comparison of
data represented in a residue number system,” Cybernetics and Systems Analysis, vol. 52,
no. 1, pp. 145–150, 2016.

[85] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 367–379, 2016.

[86] “Hd2fpga tool.” https://github.com/seelab-ucsd/HD2FPGA.git.

[87] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, binarized bundling, and
combinational associative memory,” arXiv preprint arXiv:1807.08583, 2018.

[88] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimensional
associative memory,” in 2017 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 445–456, IEEE, 2017.

[89] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-based
encoding for energy-efficient brain-inspired hyperdimensional computing,” in Proceedings
of the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

[90] S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional computing on fpgas
by exploiting computational reuse,” IEEE Transactions on Computers, 2020.

[91] B. Khaleghi, S. Salamat, A. Thomas, F. Asgarinejad, Y. Kim, and T. Rosing, “Shear er:
highly-efficient hyperdimensional computing by software-hardware enabled multifold
approximation,” in Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, pp. 241–246, 2020.

[92] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian,
“In-memory hyperdimensional computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337,
2020.

[93] L. Ge and K. K. Parhi, “Classification using hyperdimensional computing: A review,”
IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–47, 2020.

[94] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “Hdcluster: An accurate clustering
using brain-inspired high-dimensional computing,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1591–1594, IEEE, 2019.

[95] M. Imani, J. Hwang, T. Rosing, A. Rahimi, and J. M. Rabaey, “Low-power sparse
hyperdimensional encoder for language recognition,” IEEE Design & Test, vol. 34, no. 6,
pp. 94–101, 2017.

90

https://github.com/seelab-ucsd/HD2FPGA.git

[96] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-efficient dna sequencing
using hyperdimensional computing,” in 2018 IEEE EMBS International Conference on
Biomedical & Health Informatics (BHI), pp. 271–274, IEEE, 2018.

[97] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recognition using hyperdi-
mensional computing,” in Proceedings of the 8th International Conference on the Internet
of Things, pp. 1–6, 2018.

[98] M. Imani, S. Salamat, S. Gupta, J. Huang, and T. Rosing, “Fach: Fpga-based acceleration
of hyperdimensional computing by reducing computational complexity,” in Proceedings
of the 24th Asia and South Pacific Design Automation Conference, pp. 493–498, 2019.

[99] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, “Hyperdimensional
biosignal processing: A case study for emg-based hand gesture recognition,” in Rebooting
Computing (ICRC), IEEE International Conference on, pp. 1–8, IEEE, 2016.

[100] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework for
hyperdimensional computing,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 126–131, IEEE, 2019.

[101] A. Rahimi, A. Tchouprina, P. Kanerva, J. d. R. Millán, and J. M. Rabaey, “Hyperdimen-
sional computing for blind and one-shot classification of eeg error-related potentials,”
Mobile Networks and Applications, vol. 25, no. 5, pp. 1958–1969, 2020.

[102] F. Asgarinejad, A. Thomas, and T. Rosing, “Detection of epileptic seizures from surface
eeg using hyperdimensional computing,” in 2020 42nd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 536–540, IEEE,
2020.

[103] P. Neubert, S. Schubert, and P. Protzel, “An introduction to hyperdimensional computing
for robotics,” KI-Künstliche Intelligenz, vol. 33, no. 4, pp. 319–330, 2019.

[104] M. Hersche, E. M. Rella, A. Di Mauro, L. Benini, and A. Rahimi, “Integrating event-
based dynamic vision sensors with sparse hyperdimensional computing: A low-power
accelerator with online learning capability,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 169–174, 2020.

[105] B. Khaleghi, H. Xu, J. Morris, and T. Š. Rosing, “tiny-hd: Ultra-efficient hyperdimensional
computing engine for iot applications,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 408–413, IEEE, 2021.

[106] A. Menon, A. Natarajan, R. Agashe, D. Sun, M. Aristio, H. Liew, Y. S. Shao, and
J. M. Rabaey, “Efficient emotion recognition using hyperdimensional computing with
combinatorial channel encoding and cellular automata,” arXiv preprint arXiv:2104.02804,
2021.

91

[107] S. Datta, R. A. Antonio, A. R. Ison, and J. M. Rabaey, “A programmable hyper-
dimensional processor architecture for human-centric iot,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439–452, 2019.

[108] N. Karvonen, J. Nilsson, D. Kleyko, and L. L. Jiménez, “Low-power classification using
fpga—an approach based on cellular automata, neural networks, and hyperdimensional
computing,” in 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), pp. 370–375, IEEE, 2019.

[109] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim, and T. Rosing,
“Revisiting hyperdimensional learning for fpga and low-power architectures,” in 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pp. 221–234, IEEE, 2021.

[110] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional computing
for energy efficient classification,” in Proceedings of the 55th Annual Design Automation
Conference, p. 108, ACM, 2018.

[111] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker,
and S. Mitra, “Brain-inspired computing exploiting carbon nanotube fets and resistive ram:
Hyperdimensional computing case study,” in Solid-State Circuits Conference-(ISSCC),
2018 IEEE International, pp. 492–494, IEEE, 2018.

[112] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. M. Sabry, S. B.
Eryilmaz, J. Sohn, W.-C. Chiu, M.-C. Chen, T.-T. Wu, J.-M. Shieh, W.-K. Yeh, J. M.
Rabaey, S. Mitra, and W. H.-S. Philip, “Hyperdimensional computing with 3d vrram
in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient
language recognition,” in 2016 IEEE International Electron Devices Meeting (IEDM),
pp. 16–1, IEEE, 2016.

[113] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient logic in memory,” in
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–7,
IEEE, 2018.

[114] P. Poduval, Z. Zouψ , H. Najafi, H. Homayoun, and M. Imani, “Stochd: Stochastic
hyperdimensional system for efficient and robust learning from raw data,” in IEEE/ACM
DAC, 2021.

[115] J. Morris, K. Ergun, B. Khaleghi, M. Imani, B. Aksanli, and T. Rosing, “Hydrea: Towards
more robust and efficient machine learning systems with hyperdimensional computing,” in
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 723–728,
IEEE, 2021.

[116] “Vitis unified software platform.” https://www.xilinx.com/products/design-tools/vitis.
html.

92

https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html

[117] “Xilinx runtime library (xrt).” https://www.xilinx.com/products/design-tools/vitis/xrt.
html.

[118] “Intel quartus prime software suite.” https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/overview.html.

[119] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.

[120] S. Yazdanshenas and V. Betz, “Quantifying and mitigating the costs of fpga virtualization,”
in 2017 27th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–7, IEEE, 2017.

[121] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling fpgas in hyperscale
data centers,” in IEEE Intl Conf on Ubiquitous Intelligence and Computing (UIC-ATC-
ScalCom), pp. 1078–1086, IEEE, 2015.

[122] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. Wilton, “Dynamic voltage
scaling for commercial fpgas,” in Proceedings. 2005 IEEE International Conference on
Field-Programmable Technology, 2005., pp. 173–180, IEEE, 2005.

[123] J. M. Levine, E. Stott, and P. Y. Cheung, “Dynamic voltage & frequency scaling with online
slack measurement,” in Proceedings of the 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays, pp. 65–74, ACM, 2014.

[124] S. Zhao, I. Ahmed, C. Lamoureux, A. Lotfi, V. Betz, and O. Trescases, “A univer-
sal self-calibrating dynamic voltage and frequency scaling (dvfs) scheme with thermal
compensation for energy savings in fpgas,” in 2016 IEEE Applied Power Electronics
Conference and Exposition (APEC), pp. 1882–1887, IEEE, 2016.

[125] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-aware design to
suppress aging,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, IEEE, 2016.

[126] M. Ahmadi, S. Salamat, and B. Alizadeh, “A dynamic timing error avoidance technique
using prediction logic in high-performance designs,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 3, pp. 734–737, 2018.

[127] B. Salami, O. S. Unsal, and A. C. Kestelman, “Comprehensive evaluation of supply voltage
underscaling in fpga on-chip memories,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 724–736, IEEE, 2018.

[128] P. H. Jones, Y. H. Cho, and J. W. Lockwood, “Dynamically optimizing fpga applications
by monitoring temperature and workloads,” in International Conference on VLSI Design
(VLSID’07), pp. 391–400, IEEE, 2007.

[129] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t forget the memory: Automatic block
ram modelling, optimization, and architecture exploration,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 115–124,
ACM, 2017.

93

https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
http://archive.ics.uci.edu/ml/datasets/ISOLET

[130] C. Chiasson and V. Betz, “Coffe: Fully-automated transistor sizing for fpgas,” in 2013
International Conference on Field-Programmable Technology (FPT), pp. 34–41, IEEE,
2013.

[131] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic sla-driven provisioning for
cloud applications,” in IEEE/ACM international symposium on cluster, cloud and grid
computing, pp. 434–443, IEEE Computer Society, 2011.

[132] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints for adaptive ap-
plications in cloud environments,” in ACM International Symposium on High Performance
Distributed Computing, pp. 304–307, ACM, 2010.

[133] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive resource
provisioning in the cloud,” Future Generation Computer Systems, vol. 28, no. 1, pp. 155–
162, 2012.

[134] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using
arima model and its impact on cloud applications’ qos,” IEEE Transactions on Cloud
Computing, vol. 3, no. 4, pp. 449–458, 2015.

[135] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud
systems,” in 2010 International Conference on Network and Service Management, pp. 9–
16, Ieee, 2010.

[136] “Texas instruments (ti), ”fusion digital power designer”.” http://www.ti.com/tool/
FUSION DIGITAL POWER DESIGNER.

[137] R. Jain, B. M. Geuskens, S. T. Kim, M. M. Khellah, J. Kulkarni, J. W. Tschanz, and
V. De, “A 0.45–1 v fully-integrated distributed switched capacitor dc-dc converter with
high density mim capacitor in 22 nm tri-gate cmos,” IEEE Journal of Solid-State Circuits,
vol. 49, no. 4, pp. 917–927, 2014.

[138] S. Yazdanshenas and V. Betz, “Coffe 2: Automatic modelling and optimization of complex
and heterogeneous fpga architectures,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 12, no. 1, p. 3, 2019.

[139] “Predictive technology model.”

[140] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang,
T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and V. Betz, “Vtr 7.0: Next generation
architecture and cad system for fpgas,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 7, no. 2, pp. 1–30, 2014.

[141] “Stratix iv device handbook.” Datasheet, September 2014.

[142] “Nangate open cell library.”

94

http://www.ti.com/tool/FUSION_DIGITAL_POWER_DESIGNER
http://www.ti.com/tool/FUSION_DIGITAL_POWER_DESIGNER

[143] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning,” in ACM Sigplan
Notices, vol. 49, pp. 269–284, ACM, 2014.

[144] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-
serial deep neural network computing,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 1–12, IEEE, 2016.

[145] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger, and A. Moshovos, “Pro-
teus: Exploiting numerical precision variability in deep neural networks,” in Proceedings
of the 2016 International Conference on Supercomputing, pp. 1–12, 2016.

[146] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu, “Burse: A bursty and self-similar workload
generator for cloud computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 3, pp. 668–680, 2014.

95

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	FPGA Acceleration of DNNs
	Background and Related Work
	Proposed Residue-Net
	RNS Operations
	Residue-Net Architecture

	Experimental Result
	Experimental Setup
	System Evaluation
	Operation Evaluation

	Conclusion

	Accelerating HD computing on FPGAs
	Background and Related Work
	Hyperdimensional Computing
	Related Studies

	HD2FPGA Framework Overview
	HD2FPGA Architecture
	HD2FPGA software program

	Experimental Results
	HD Classification
	HD Clustering

	Conclusion

	Efficiency of ML on Multi-FPGAs
	Related Work
	Motivational Analysis
	Proposed Method
	Workload Prediction
	Frequency Scaling Flow
	Voltage Scaling Flow

	Proposed Architecture
	Experimental Results
	General Setup
	Results

	Conclusion

	Summary and Future Work
	Thesis Summary
	Future Directions

	Bibliography

