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Spin Circuit Model for 2D Channels 
with Spin-Orbit Coupling
Seokmin Hong, Shehrin Sayed & Supriyo Datta

In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” 
due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic 
states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign 
of the x-component of the velocity (+, −). This could be viewed as an extension of the standard spin 
diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses 
four: U+, D+, U−, and D−. We use this formulation to develop an equivalent spin circuit that is also 
benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation 
can be used to interpret experiments and estimate important quantities of interest like the charge 
to spin conversion ratio or the maximum spin current that can be extracted. The model should be 
applicable to topological insulator surface states with parallel channels as well as to other layered 
structures with interfacial spin-orbit coupling.

Recently there have been a number of electrical measurements showing the unique coupling between charge and 
spin in the surface states of a new class of materials called topological insulators (TI)1–12. These include charge 
current induced spin voltage as well as spin current induced charge voltage analogous to the spin Hall effect (SHE) 
and the inverse spin Hall effect (ISHE) respectively that are observed in a different class of materials with strong 
spin-orbit coupling (see, for example, references in13,14). Although there might be some fundamental differences 
in their physical origin there are irrefutable similarities regarding terminal characteristics of charge and spin in 
these two classes of materials. The latter phenomena are usually interpreted in terms of a bulk spin diffusion equa-
tion modified to include the spin Hall angle15,16 which often coexist with other spin-orbit torques like interfacial 
Rashba-style spin-orbit coupling (SOC)17 similar to those observed earlier in semiconductors (see ref. 18 and 
references therein). With successful demonstrations of writing information into a conventional metallic magnet 
at room temperature using materials with SHE there is also intense theoretical interest and discussion19–25 in 
understanding the physics and implications of this type of effect in TI with particular interest in their capability 
of spin current generation.

In this paper we present a general theory for an arbitrary 2D channel in the z-x plane with SOC (Fig. 1(a)) of 
the form σ( × ) ⋅�� �

ˆv k y0  that gives rise to electronic states whose x-directed momentum and z-directed spins are 
correlated. We present a semiclassical model based on which we develop an equivalent spin circuit that can be 
used to interpret experiments and estimate important parameters of great interest like the charge to spin conver-
sion ratio or the maximum spin current density that can be extracted. Note that a primary value of the modular 
circuit approach is that it allows us to characterize the TI conductor based on its intrinsic properties irrespective 
of what the terminals are connected to. Our formulation includes many spin transport related effects through the 
use of 4-component (one for charge, three for spin) voltages and currents. This “spin circuit” approach has been 
described in several earlier publications and benchmarked against experiment as well as against diffusion theory 
and quantum transport models (see, for example, ref. 26 and references therein).

Our model is based on a classification of all electronic states in the channel into four groups based on the 
sign of the z-component of the spin (up (U), down (D)) and the sign of x-component of the velocity (+ , − ). This 
could be viewed as an extension of the standard spin diffusion model27 which uses two separate electrochemical 
potentials for U and D states. Our model uses four: U+ , D+ , U− , and D− . Time reversal symmetry requires the 
number of transverse modes to be the same for U+  and D−  states (M) and for U−  and D+  states (N), as shown 
in Fig. 1(b). In principle, the ferromagnetic contact could break the time reversal symmetry of the underlying 
TI layer, which we have not considered in this paper. It is possible that future experiments with strongly coupled 
ferromagnetic contacts will require an extension of our model to include unequal number of modes for U+ , 
D−  and for U− , D+ . However, some recent experiments1,3,4,10,11,28,29 show relative robustness of TI surface states 
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in the presence of ferromagnetic contacts, where the effect of time reversal symmetry breaking appears minimal 
possibly because any modification of the TI band structure appears to occur around the Dirac point28,29.

Parameters
Three parameters appear in our equivalent circuits, namely the channel polarization (p0), the ballistic conduct-
ance (GB) and the ordinary conductance (G) which are given by

≡
−
+ ( )

p M N
M N 10

= = ( + )
( )

G
R

q
h

M N1
2B

B

2

λ λ
= = .

( )
G G
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We also define three scattering rates per unit length, namely r, rs, and ts for three types of scattering processes, 
representing reflection without spin-flip, reflection with spin-flip and transmission with spin-flip respectively as 
indicated in Fig. 1(b). Correspondingly there are several distinct mean free paths e.g.

λ λ λ
= + , = + , = + ,

( )
r r r t r t1 1 and 1

4s
s

s s s
0

that appear in the full model, though only the first mean free path (λ) appears in the simple equivalent circuits 
that we present.

Although the ballistic conductance GB appears as a parameter, our results are not limited to ballistic transport, 
and are valid in general from ballistic to diffusive regime. GB simply represents a material parameter defined 
by Eq. (2). Supplementary information describes how the number of modes M, N are estimated for a given 

Figure 1.  (a) Physical structure: A two dimensional (2D) channel with spin-orbit coupling (SOC).  
(b) Electronic states in the channel are classified into four groups depending on the sign of the z-component of 
the spin (up (U), down (D)) and the sign of the x-component of the velocity (+ , − ). Time reversal symmetry 
requires the number of transverse modes to be the same for U+  and D−  states (M) and for U−  and D+  states 
(N). Also indicated are three types of scattering rates per unit length, namely r, rs, and ts corresponding to 
reflection without spin-flip, reflection with spin-flip and transmission with spin-flip respectively. For a more 
detailed discussion of U± , D±  see Fig. 1 in the supplementary information.
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Hamiltonian. The concept of modes or channels plays a central role in mesoscopic physics and have a deeper 
significance beyond what the simple derivation might suggest30.

The key parameter here is the channel polarization p0 defined in terms of M and N (Eq. (1)): It provides a 
common link among diverse 2D channels with SOC. TI surface states represent a special case of this model with 
N =  0 thus providing the highest value of p0. In practice, however, parallel channels are usually present making 
the effective N greater than zero and lowering the effective p0. Note that p0 is well-defined not only for TI but 
also for more general cases like the Rashba Hamiltonian where it is energy-dependent and has direct physical 
interpretation and consequences31. In this paper we present an explicit relationship between the parameter p0 and 
Rashba/topological insulator channels, but similar expressions could be obtained for other mechanisms as well 
through an appropriate redefinition of the three parameters. Alternatively these parameters could be obtained 
directly from experiment without reference to any microscopic theory. The proposed circuit contains linear ele-
ments which with appropriate energy averaging can incorporate non-zero temperature related effects. However, 
at higher bias the circuit elements may need to be bias-dependent.

Our approach is based on a terminal description with the channel described by three physical parameters: 
p0, GB, and G. This terminal description is first obtained from heuristic arguments and then from a detailed 
semiclassical model based on the four electrochemical potentials mentioned earlier. There has been much dis-
cussion in the literature regarding subtle issues32 related to (a) the non-zero equilibrium spin currents and (b) 
the non-conservation of spin currents. Our model takes care of (a) by defining the spin current relative to that 
in the equilibrium state with a common electrochemical potential μeq. This relative quantity allows us to extract 
circuit parameters needed to model non-equilibrium measurements. Regarding (b) our model includes it through 
scattering processes in Eq. (4) just as Valet-Fert equations included it through spin-flip processes. The model, 
however, misses any effect (e.g. spin precession) involving off-diagonal elements of the density matrix, which are 
presumed negligible due to phase breaking processes.

Outline
The outline of this paper is as follows. We first summarize the main results followed by an intuitive derivation in 
the heuristic derivation section. We then show that the predictions from the circuit model match quantitatively 
the results obtained from a full quantum transport model based on the non-equilibrium Green’s function (NEGF) 
formalism for a 1D channel including scattering processes. Then we present a semiclassical model that can be 
viewed as an extension of the usual spin diffusion equations to include four electrochemical potentials U+ , D+ , 
U− , and D−  as described earlier. We use it to provide a formal justification of the equivalent circuits represent-
ing the structure in Fig. 2(a), but it should be noted that this approach can be used to treat more general contact 
structures beyond the one shown in Fig. 2(a). Indeed some readers may prefer to look at this formal derivation 
first, before looking at the more heuristic discussions in the earlier sections.

Main Results
[R] matrix.  In an earlier paper31 it was shown that the flow of a current I along a channel with SOC leads to 
the generation of a surface spin voltage (Fig. 1(a)) given by

= ,
( )

 ˆv s p
G

I
2 5

s

B

where ≡ ( , , )
v v v vs z x y T represents a three component spin voltage and ̂s is a unit vector along the spin polariza-

tion direction.
A number of experimental observations4–9 have supported this result and one of the important objectives of 

this paper is to extend it to provide a description of processes that extract or inject a spin current ≡ ( , , )


i i i i
s z x y T 

from or into the surface as shown in Fig. 2(a). Specifically we show that for a channel where reflection with spin 
flip is the dominant scattering process, the resistance matrix is given by
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where α (0 ≤  α ≤  1) is the angular averaging factor. This angular averaging factor comes from the fact that pos-
itive propagating states or modes have some angular variations depending on their eigenstates or detailed scat-
tering processes. In the simplest approximation the angle θ between spin polarization and the z-axis varies from 
− π/2 to + π/2 as the angle of propagation (that is the k-vector) changes and so we need to average over θ, which 
will give α =  2/π with p =  αp0. This resistance matrix can be translated into the equivalent circuit in Fig. 2(b). The 
conductance matrix is given by
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which can be translated into the equivalent circuit shown in Fig. 2(c) where other components of spin (x, y) are 
added with no coupling with charge (p0 =  0). Here ≡ ⋅



ˆi z iz s
 and ≡ ⋅

ˆv z vz s.
Note that in Eq. (6) R(1, 2) =  − R(2, 1) =  αp0/2GB as required by reciprocity33, the extra negative sign arising 

from the reversal of spin (but not charge) on reversing time. The R(2, 1) element in Eq. (6) represents our earlier 
result for the open circuit spin voltage corresponding to zero spin current ( = )



i 0
s

. The R(1, 2) element represents 

Figure 2.  (a) Physical structure: A two dimensional (2D) channel with spin-orbit coupling (SOC) subject to a 
constant current I flowing along x-direction and a spin current 



i
s
 injected into the surface as shown. The overall 

system is treated as a three-terminal device with two charge terminals 1 and 2, and a spin terminal 3 with a three 
component spin voltage ≡ ( , , )

v v v vs z x y T and current ≡ ( , , )


i i i i
s z x y T indicating the direction of the spin.  

(b) Equivalent circuit representation based on resistance matrix. (c) Equivalent circuit representation based on 
conductance matrix where I3×3 represents a 3 by 3 identity matrix. Parameters are defined in  
Eqs (1)–(3).
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an inverse effect similar to what has been described as the Rashba-Edelstein effect18,34, whereby an injected spin 
current causes a voltage to appear in the charge circuit.

The element R(1, 1) gives the ordinary resistance 1/G as we might expect. However, the element R(2, 2) is 
non-intuitive and extremely important since it determines the maximum spin current that can be extracted for a 
given charge current.

From Eqs (6) and (7) it is immediately clear that the measured conductance would change from G for a spin 
open circuit ( = )



i 0
s

 to ( − )p G1 0
2  for a spin short circuit ( = )

v 0s . One way to go continuously from a spin open 
circuit to a spin short circuit is to use a magnetic insulator like YIG (yttrium iron garnet) and rotate its magneti-
zation from the z-direction to the x-direction. SHE materials have been shown to exhibit the phenomenon of spin 
Hall magnetoresistance15,35. Our model suggests that a similar phenomenon should be observed for any 2D 
spin-orbit channel and the magnitude of the effect depends on the square of the channel polarization, p0. More 
general expressions of Eqs. (6) and (7) considering all scattering mechanisms are given in the semiclassical model 
section.

Equivalent spin-Hall angle.  Indeed as observed from the terminals, the effects described here for a 2D 
channel with SOC mimic those associated with the SHE which is commonly described in terms of a bulk spin 
Hall angle (θSHE) for a sample of thickness t. For example, Eq. (6) suggests that with a very high spin conductive 
load ( = )

v 0s  the ratio of the spin current to the charge current is given by
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which can be equated to the standard expression for the SHE to obtain an effective spin Hall angle
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Not surprisingly, the effective spin Hall angle is related to the channel polarization p0, but a less intuitive pre-
diction is that the backscattering length λ plays the role of the film thickness t: note that our 2D channel has no 
intrinsic thickness in the y-direction.

Maximum spin current density.  The previous result can also be used to obtain a simple estimate for the 
maximum spin current density that can be extracted from a 2D channel with SOC:
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Assuming p0 ≈  0.5 and α ~ 1 corresponding to 2D TI surface states with parallel channels, the maximum spin 
current density equals I/Wλ. The charge current per unit width is given by36

∫ µ µ=
( )

( − ) − ( − ) ,
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+∞ + + − −I
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q
h

dE M E
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f E f E2 [ ]

with f+(E −  μ+) and f−(E −  μ−) representing occupational factors for positive and negative propagating modes. 
Assuming (μ+ −  μ−)max ≈  EG so that f+(E −  μ+) ≈  1 and f−(E −  μ−) ≈  0 over an energy range of EG provides an 
estimation of maximum charge current per unit width at low temperature.
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With a bandgap EG ~ 0.5 eV and Fermi velocity vF ~ 5 ×  105 ms−1, we have a maximum I/W ~ 10 mA/μm, so that to 
obtain a spin current density of 106 A/cm2 we need a mean free path less than 1 μm.

A non-intuitive aspect of Eq. (9) is that one needs shorter mean free paths (λ) and hence higher resistivity in 
order to obtain a higher effective spin Hall angle and hence extract more spin current from a given structure. This 
seems similar to what is experimentally observed for materials with spin Hall effect: high resistivity phase of a 
given material shows larger spin Hall angles13,14.

Heuristic Derivation
In this section we present an intuitive derivation of Eq. (6) which is represented by the circuit model shown in 
Fig. 2(b). The conductance matrix version in Eq. (7) and Fig. 2(c) then follows as a corollary.

The [R] matrix in Eq. (6) has four elements which appear as elements of the circuit in Fig. 2(b). R(1, 1) is just 
the ordinary resistance 1/G, with G given by Eq. (3). Below we will justify the elements R(2, 1) and R(2, 2). The 
remaining element R(1, 2) follows from R(2, 1) through reciprocity.

We first note that the charge current is given by the difference between those carried by the forward states 
(U+ , D+ ) and the backward states (U− , D− )

µ µ µ µ= ( ( +) − ( −) + ( +) − ( −)), ( )   I q
h

M U N U N D M D 12
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where electrochemical potentials µ( )  are defined relative to the equilibrium state (μeq) i.e. µ µ µ≡ − eq (see sup-
plementary information for derivation).

The spin voltage is given by the difference between the weighted average of the up channels (U+  and U− ) and 
that of the down channels (D+  and D− ) (see supplementary information):

α
µ µ µ µ

=
( +) + ( −) − ( +) − ( −)

( + )
.

( )
� � � � � ˆq v

M U N U N D M D
M N

s
2 13

s

Here α is added to denote the angular averaging effect where only partial number of modes of M and N contribute 
for spin effectively.

To obtain R(2, 1) we consider a special case where the channel is driven by a charge voltage along x̂ creating 
the potential profile shown in Fig. 3(a) with

µ µ µ µ µ µ( + ) = ( +) ≡ ( −) = ( − ) ≡ . ( )+ −
   U D U Dand 14

Using Eq. (14) in Eqs. (12) and (13) we have

µ µ= ( − )
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+ −I G
q 15
B

α
µ µ= ⋅ = ( − ). ( )

+ −ˆqv qz v
p

2 16
z s 0

Combining Eqs (15) and (16) we have the result stated in the introduction vz =  αp0I/2GB with iz =  0 which leads 
to the stated value of R(2, 1) =  αp0/2GB.

To obtain R(2, 2) we consider another special case where the channel is driven by a spin voltage creating the 
potential profile shown in Fig. 3(b) with

µ µ µ µ µ µ( +) = ( −) ≡ ( +) = ( −) ≡ . ( )   U U D Dand 17U D

Using Eq. (17) in Eqs (12) and (13) we have
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From Eq. (6) we have
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Figure 3.  Two special cases considered in this Section to extract the coefficients of the R-matrix in Eq. (6). 
(a) Separate electrochemical potential profile for U+ , D+  and U− , D−  respectively in the channel driven by 
a charge voltage. (b) Separate electrochemical potential profile for U+ , U−  and D+ , D−  respectively in the 
channel driven by a spin voltage.
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Since V1 −  V2 =  0, we have iz =  (2GB/αp0G)I from Eq. (6) so that

α α
( , ) = − .

( )
R

p G
G

v
I

p G
G

2 2
2 4 21B

z

B

0
2

0
2

2

Using Eqs (18) and (19) we obtain the expression stated earlier, namely α( , ) = ( − ) /R p G G2 2 1 4 B
2

0
2 2.

NEGF Benchmark
In this section we compare the predictions of the circuit model in Fig. 2 quantitatively with the results from a 
non-equilibrium Green’s function (NEGF) based model for a simple 1D TI surface states having M =  1, N =  0 so 
that p0 =  1. Note that in this case the factor α =  1 because angular averaging over transverse directions is absent. 
From the resistance matrix in Eq. (6) we can write

= − , = ,
( )

i G
G

I G V v I
G

2 2
2 22

z B
B

z

B

where V ≡  V1 −  V2.
To test this prediction we use the NEGF model summarized in Fig. 4(a) with a Hamiltonian H and four differ-

ent self energies: Σ L, Σ R representing the left and right contacts, Σ S representing the scattering processes in the 
channel and Σ FM representing an external load that extracts a spin current 



i
s
 as shown in Fig. 2(a) (model details 

provided below).
As we vary the magnitude of Σ FM with a fixed V, the current I changes along with the spin voltage vs and the 

spin current 


i
s
. Figure 4(b,c) compares the variation of spin current and spin voltage against the charge current 

calculated from the NEGF model against the prediction of the circuit model (Eq. (22)), showing good 
agreement.

Below are the details of the model following the discussion and notation in ref. 31.

Hamiltonian.  The model Hamiltonian for topological insulator surface states (TISS) is given by

σ σ σ= ( ) − ( ) − ( ( ) + ( ) − ) , ( )H v
a

k a k a k a k a[ sin sin cos cos 2 ] 23TISS x y y x z x y
0

with σx, σy, σz the Pauli spin matrices and a the lattice spacing and v0 the Fermi velocity respectively.

Self energy for contact.  Two self energies Σ L and Σ R are used for left and right contacts representing 
semi-infinite contacts of extended channel.

Self energy for incoherent scattering.  The incoherent scattering in the channel is included by the self 
energy Σ S with isotropic momentum and spin relaxation in the self-consistent Born approximation. The momen-
tum randomizing scattering is described by37

δ δ δΣ , Σ = , , ( )d G G[ ] [ ] 24s s
in

ij m ij ik jl
n

kl

with i, j, k, and l representing indices in real space. The spin randomizing scattering is described by37

σ σΣ , Σ = ( ⋅ ) , , ( )
�� �� G G[ ] [ ] 25s s

in
ab ac db

n
cd

with a, b, c, and d representing indices in spin space.

Self energy for FM.  The self energy for FM ([Σ FM]) is modeled as an additional scattering process in the 
channel represented by isotropic momentum and spin relaxations in the self-consistent Born approximation.

Currents and Voltages.  The current operator at terminal “i” is defined as36

( ) = ( Σ − Σ + Σ − Σ ), ( )
+I E q

ih
G G G G[ ] [ ] 26i

op
i
in A R

i
in

i
n n

i

for a given energy. The charge and spin currents are calculated from

σ( ) = ( ) = ( ). ( )
� ��I E I i ITr and Tr 27i i

op
i
s

i
op

Charge and spin occupation factors are calculated from

σ= ( )/ ( ) = ( )/ ( ) ( )
�� ��f Tr G Tr A f Tr G Tr Aand 28n s n

and to compare with the proposed circuit model the following identifications are made, which can be justified 
within a linear response regime,
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=
−

, = ( ), =
( )

( / )( − )
.

v
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f
f f

I
G V

T E i
G V

i E
G q f f

and
z z

B

z

B

z

B1 2 1 2

Semiclassical Model
Here we provide a formal justification of the proposed circuit based on a semiclassical model. Starting from the 
steady-state Boltzmann equation

Figure 4.  NEGF result compared with the proposed spin circuit for a 1D topological insulator (P0 = 1). 
(a) NEGF model: Hamiltonian (H) with four different self energies are shown. Σ L and Σ R are used for left and 
right contacts. Σ S represents the incoherent scattering in the intrinsic 2D channel. Σ FM represents the effect 
of a ferromagnet (FM) which is modeled as a spin mixing conductance with isotropic momentum relaxation 
scattering in real space. (b,c) Comparison of results from Eq. (6) (solid lines) and from NEGF (circles).
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with Sop denoting a scattering operator we obtain after applying the relaxation time approximation
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where u*
1 = r*

s1 + r* + t*
s , u*

2 = r*
s2 + r* + t*�s and feq represents the equilibrium Fermi function. We have chosen a 

set of parameters consistent with reciprocity, charge conservation, and the requirement of zero current for equal 
potentials. Using the linear response approximation for the Fermi function:
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we obtain the following equation describing the spatial evolution of the electrochemical potentials for the four 
groups of states U+ , D+ , U− , and D− ,
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where µ µ µ≡ − eq are the electrochemical potentials defined relative to the equilibrium state. Here we have 
added the last term to account for charge (ic) and spin (iz) currents injected from external sources and the factor 
a is the same as in Eq. (13) arising from the angular averaging of the spin direction associated with different 
modes.

We now transform Eq. (32) in terms of charge and spin voltages and currents in the channel defined as
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where the first two equations were introduced earlier (Eqs. (12), (13)), the last two follow similarly (see supple-
mentary information for derivation). From Eqs. (32) and (33) we get using straightforward algebra (details in 
supplementary information)
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where λ, λs, and λ0 are given by Eq. (4). λ′, λ′s , and λ′0 are given by.
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We will now specialize to problems for which there are no external charge current, ic =0 and we can assume 
that dvz/dx = 0: we then have from the second line of Eq. (34)
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which when used with the last two lines of Eq.(34) gives
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Combining the last equation of Eq. (34) with dVc/dx = -(V1 - V2)/L and Eq. (38), we have
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Eqs (38) and (39) can be rewritten in the following form
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which represents the generalized version of Eq. (6) stated earlier, where G is defined inEq. (3) and KR denote the 
correction factors:
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The corrections factors KR are ~1 if rs  r, ts, rs
′ that is if reflection with spin fip is the dominant scattering process 

in the channel. Inverting Eq. (40) we obtain the generalized version of the conductance matrix in Eq. (7)
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with correction factors KG given by
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Summary
A spin circuit model for 2D channels with spin-orbit coupling is proposed that can be used to interpret experi-
mental results and estimate important quantities like the effective spin Hall angle, maximum spin current density 
and magnetoresistance. Some experimental support is already available4–7 and we hope more will be forthcoming. 
A heuristic justification as well as a semiclassical derivation is provided for the proposed circuit with an emphasis 
on the concept of propagating modes in the channel. Specifically, four types of modes depending on their spin 
(up and down) and propagating directions (positive and negative) are introduced together with chemical poten-
tials for each of them. We also show with a simple 1D example that results from the circuit model agree well with 
those obtained from a quantum transport simulation based on nonequilibrium Green’s function (NEGF) model. 
We believe that the proposed spin circuit can be used to model simple structures (Fig. 2(a)) while the underlying 
semiclassical model can be used for more general contact structures38,39.
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