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Abstract

Domain-specific approaches to software engineering require the
automation and evolution of domain knowledge. As automatic,
domain-specific design synthesis techniques improve, emphasis
will shift to automatic generation of domain-specific
development environments themselves. These environments will
need to be generated from domain expert-evolvable
representations of knowledge. The discipline of Knowledge
Acquisition has produced tools to automatically generate domain-
specific expert systems from domain expert-evolvable
representations of knowledge. Thus Software Engineering's
emerging era of domain-specificity calls for many of the same
capabilities that spurred the discipline of Knowledge
Acquisition. The discipline of Algebraic Specification has
produced correctness-preserving specification structuring
mechanisms to build large specifications in a methodical and
understandable way. In an effort to discover a framework to
define tools to support Software Engineering's new era, we
apply algebraic specification structuring mechanisms to evaluate
several exemplary knowledge acquisition tools. Algebraic
specification structuring mechanisms provide an architectural
metalanguage into which knowledge acquisition tools are recast.
This highlights how knowledge acquisition tools support domain
theory structure and evolution. This evaluation provide insights
into requirements for tools to automatically generate effective,
efficient, domain-specific development environments from
domain expert-evolvable representations of knowledge.

Page 1 of 60





Using a Framework for Domain Theor>' Structure and Evolution to Evaluate Knowledge Acquisition Tools
Arthur Alexander Reves

1 Introduction

Software Engineering enters an era of application domain-specificity. This era is heralded by
the confluence of research in Domain-Specific Software Architectures (DSSAs) [21]; Domain
Modeling, Domain Analysis, and Domain Engineering [25]; Domain-Oriented Development
Environments (DODEs) [7]; Domain-Specific, Knowledge-Based Software Engineering (KB-
SE) [19];and Domain-Specific Languages [12]. Domain-specificity offers many advantages
over domain-independent approaches to software construction and evolution, the chief advan
tage being the collection, representation, evolution, and automation of domain knowledge.
This knowledge remains as a permanent source of organizational memory which can be used
by automated tools to work in a variety of problem classes within the domain, e.g., automated
program synthesis [19] and end user tutoring [1].

Domain knowledge can be represented in many forms, such as software library compo
nents, class hierarchies, databases, semiformal domain models (DMs) in machine-processable
notations (e.g., the emerging Unified Modeling Language (UML) for Object-Oriented Develop
ment [2]), and formal, declarative representations such as domain theories (DTs). Once auto
mated in these forms, the domain knowledge can be used to answer queries and guide synthe
sis. These representations can become organizational centerpieces and the focus of consider
able refinement and evolution.

As Keller points out, domain-specificity also has disadvantages [16]. The chief disad
vantage is the amount of effort required to evolve domain models and domain theories in re
sponse to continual real-world application domain evolution. Application domains themselves
evolve with the discovery of new knowledge, extension to reusable component libraries, and
obsolescence of old technologies and adoption of new technologies. Domain artifacts such as
documents, test cases, and tools must evolve in response to both evolution of the domain itself
and evolution of our understanding of the domain. If Software Engineering's new era is to
scale up effectively, domain models and domain theories must easily evolve with their associ
ated application domains.

The discipline of Knowledge Acquisition (KA) [3] has been associated mostly with the
development and evolution of expert systems [10]. A few authors, such as Eriksson [6], have
discussed the relationship between software engineering and knowledge acquisition, specifical
ly with regard to requirements analysis, specification, and design. Software Engineering's era
of domain-specificity calls for many of the same capabilities as those that spurred the creation
of the knowledge acquisition discipline. These capabilities include enabling domain experts
(who are responsible for the creation and evolution of domain models and other key domain
artifacts) to easily evolve domain models, without first acquiring skills in knowledge represen
tation, artificial intelligence, and automated inference. Well-integrated knowledge acquisition
tools automatically synthesize new runtime, end user environments (often referred to as "per
formance systems") from domain expert-evolved knowledge.

While approaches to knowledge acquisition such as Inductive Logic Programming
(ILP) [22] appear promising, we believe the knowledge acquisition discipline could benefit
from insight into what the space of possible knowledge acquisition approaches is. Given that
knowledge acquisition is concerned with the evolution of domain models and domain theories,
a sufficiently general and formal framework for investigating this evolution might be able to
provide insights into the boundaries of the space of knowledge acquisition approaches and
their limitations. Unexplored areas of this space could indicate a more interesting and broad re
search agenda for domain model and domain theory evolution and provide insight into the
kinds of knowledge acquisition tools needed to work in different areas of this space.

The discipline of Algebraic Specification [28] (especially the Joseph Goguen school of
research) believes the purpose of a specification language is not merely to construct sentences
in a formal language, but rather to provide an infrastructure for building modular, easily-under-
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Stood, and well-structured specifications. Researchers in algebraic specification have discov
ered specification structuring mechanisms which work independently of the particular syntax
and logical systems of the individual, component specifications (i.e.. regardless of the languag
es in which the component specifications are written).

Given that domain theories can be represented via algebraic specifications, and that
knowledge acquisition tools provide processes and user interfaces to evolve domain models,
we recast domain models as domain theories and use algebraic specifications and their .struc
turing mechani.sms to define an architectural metalanguage for knowledge acquisition tools.
This architectural metalanguage can be used to represent both the static structure of domain
theories and domain theory evolution. Armed with this metalanguage as a framework for do
main theory structure and evolution, this survey answers the following question.

How does the architecture of a knowledge acquisition tool
support domain theory structure and evolution?

Superficially, our evaluation method is similar to "software architectural analysis meth
od" (SAAM) [15]. SAAM seeks to produce more credible comparisons among software tools
than is possible using feature-oriented, taxonomic approaches only. SAAM seeks to under
stand how the structure of a tool supports quality attributes of interest to the human evaluator
within the framework of a reference architecture [21] for the tools being evaluated. The archi
tectural metalanguage/framework for domain theory structure and evolution used in this sur
vey (based on algebraic specifications and structuring mechanisms) is designed to specifically
address issues of interest to our research and bears little resemblance to SAAM's architectural
metalanguage (based on computational components and data/control flow between them). Ad
ditionally, a reference architecture for knowledge acquisition tools was not available at the
start of our evaluation.

This Survey uses a "What versus How" exposition of domain theory structure and evo
lution. The "what" branch of domain theory structure and evolution is the syntax, structure,
and semantics of domain theories, constructors to incrementally build domain theories, and
the criteria which must be satisfied during domain theory evolution. The "what" branch is de
fined using concepts from the discipline of algebraic specification. The "how" branch of do
main theory structure and evolution is the collection of processes and user interfaces needed
to generate and evolve domain theories. The "how" branch is defined using concepts from the
discipline of knowledge acquisition. We can think of the "what" branch as providing a declara
tive specification of the goals to be accomplished and the "how" branch as providing process
es satisfying the declarative specification.

1,1 Domain Theory Structure And Evolution; WHAT

This survey introduces a tentative framework for the investigation of domain theory structure
and evolution. This framework represents domain theory evolution as progression through a
state space of domain theories. Each evolutionary step a domain theory takes maps the old do
main theory to a new domain theory. In this framework, each evolutionary step is represented
by the application of one or more domain theory constructors. Because this framework is
based on constructor application, the framework can represent both initial development and
post development evolution of domain theories.

Our framework represents a domain theory by a specification in a suitable (usually al
gebraic) specification language. Many domain theory constructors defined in this framework
correspond to well-understood algebraic "specification-building operations" [27]. We currently
categorize domain theory constructors into instance constructors, sort constructors, sentence
constructors, specification constructors, and institution constructors. Application of one or
more constructors from any of these categories constitutes a domain theory evolutionary step.
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To be practical, domain theory evolution must be constrained in some way. For exam
ple, an evolutionary path that routinely invalidates many important, previously developed do
main artifacts (e.g.. test suites, software library components, problem specifications, tools,
etc.) would not be cost effective. Thus we believe that certain invariants must hold during ev
ery evolutionary step a domain theory can take. The discovery of these invariants will be a
subject of further research.

1.2 Domain Theory Structure and Evolution: HOW

We attempt to treat domain theory constructors as formal specifications of processes. Domain
theory constructors assume their arguments already exist and that processes exist which can
map arguments to correct results. Domain theory evolution is realized by processes enacted by
humans and computers which produce the arguments to the constructors and compute the re
sults of constructor application. These proces.ses require user interfaces by which domain ex
perts can view and evolve domain theories. Knowledge acquisition tools provide such process
es and user interfaces.

1.3 Comparison of Knowledge Acquisition Tools Within the Framework

This survey examines the body of work on knowledge acquisition tools. Representative, exam
ple knowledge acquisition tools presented in this survey were selected using the following cri
teria.

• Fully-integrated, end-to-end process support; The tool acquires knowledge from domain
experts and automatically synthesizes (and possibly operationalizes) a new, domain-
specific performance system.

• Domain experts need apply only existing skill set during knowledge acquisition: The
knowledge acquisition tool acquires knowledge from domain experts using
representations with which the domain expert is already familiar. In other words, the
knowledge acquisition tool does not require the domain expert to gain new skills in
knowledge representation, automated reasoning, etc.

• Performance systems solve synthesis problems: Domain-specific performance systems
synthesized by the knowledge acquisition tool themselves solve .synthesis (i.e., design,
configuration, etc.), rather than analysis (i.e., classification, diagnosis, etc.) problems
within the domain.

Only a small number of representative example knowledge acquisition tools were
found that satisfy these criteria. This survey evaluates Kipps's DTAS/LOLA [17], Iscoe's
Ozym [13], Marcus's and McDermott's SALT [20], Musen's PROTEGE [23], and Gruber's
ASK [9] knowledge acquisition tools. For each knowledge acquisition tool surveyed, the tool
is recast in our architectural metalanguage/framework. Once recast, the architecture of the
knowledge acquisition tool indicates how domain theory structuring and evolution are support
ed. Support is indicated in two ways. The first way a knowledge acquisition tool can support
domain theory structuring and evolution is whether or not specific domain theory constructors
(i.e., for instances, sorts, sentences, specifications, and institutions) are implemented in the
tool. The second way a knowledge acquisition tool can support domain theory structuring and
evolution is how the tooPs architecture allocates its structure to our reference architecture for
knowledge acquisition tools.

1.4 Organization of Survey

In order to ground our discussion and provide a better appreciation for our viewpoint,
Section 2 on page 5 provides an introduction to automatic deductive program synthesis in Am-
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phion [19] and describes the structure and evolution of Amphion-style domain theories. The
Amphion system introduced us to the need for effective domain theory structure and evolution
and has influenced our thinking considerably. Section 3 on page 12 describes an architectural
metalanguage/framework for domain theory structure and evolution in terms of atomic domain
theory constructors. This provides important background knowledge for Section 4 on page 19.
in which we present the formal reviews of the surveyed knowledge acquisition tools.
Section 5 on page 57 provides a summary of knowledge acquisition tool evaluations. Section 6
on page 58 presents our conclusions.

2 Fundamentals of Automatic Deductive Program
Synthesis in Amphion

This section provides an introduction to automatic deductive program synthesis as exemplified
by the Amphion system [19]. This will provide insight into our viewpoints and motivation for
the need for effective domain theory structure and evolution.

2.1 Example Domain Theory

This section describes an example domain theory. This domain theory permits the specifica
tion and satisfaction of problems dealing with conversions between 3 systems for time mea
surement.

Imagine an application domain in which 4 functions (implemented as FORTRAN sub
routines) exist to perform conversions between time units as shown in the graph below. Nodes
represent time units and arcs represent conversion subroutines between time units.

Figure 2.1 Graphical Depiction of Example Problem Domain

/ \ ^ et2uicC ^ utcD2et

UTC-CalendarA /
Date j 1

' \

Ephemeris-
Time ) (

/
UTC-Date-
Day-Of-Year

\ / utcC2et V y et2utcD V

The specification TIME, shown below, is an algebraic specification of the domain theo
ry. TIME is written in SLANG, the algebraic specification language used in the Specware™
system [14]. TIME is composed of 3 parts, a set of sort symbols (representing types) S, a set
of constant and operation symbols written using the sort symbols of S, and a set of sentenc
es (i.e., axioms, rules) built up from terms constructed from Q. The sets S and Q. together
are referred to as the signature I of the domain theory. Z defines a language for the domain
theory in the sense of providing a grammar in which axioms and theorems are written.
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spec TIME is

sorts TIME, TIME-COORDINATE, TIME-SYSTEM

const Ephemeris-Time TIME-SYSTEM
const UTC-Calendar-Date : TIME-SYSTEM

const UTC-Date-Day-Of-Year : TIME-SYSTEM

op UtcC2et : TIME-COORDINATE -> TIME-COORDINATE
op et2utcC ; TIME-COORDINATE -> TIME-COORDINATE
op UtcD2et : TIME-COORDINATE -> TIME-COORDINATE
Op et2utcD ; TIME-COORDINATE -> TIME-COORDINATE

op coordinates-to-time : TIME-SYSTEM.TIME-COORDINATE -> TIME

axiom UTCC-TO-ET is
(equal

(coordinates-to-time UTC-Calendar- Date tc)
(coordinates-to-time Ephemeris-Time (utcC2et tc)))

axiom ET-TO-UTCC is

(equal
(coordinates-to-time Ephemeris-Time tc)
(coordinates-to-time UTC-Calendar-Date (et2utcC tc)))

axiom UTCD-TO-ET is

(equal
(coordinates-to-time UTC-Date-Day-Of-Year tc)
(coordinates-to-time Ephemeris-Time (utcD2et tc)))

axiom ET-TO-UTCD is

(equal
(coordinates-to-time Ephemeris-Time tc)
(coordinates-to-tirae UTC-Date-Day-Of-Year (et2utcD tc) ) )

end-spec

The sort TIME (not to be confused with the enclosing specification TIME) corre
sponds to the basic quantity of time'. The sort TIME-COORDINATE corresponds to a gener
al unit of time, which is interpreted to a specific unit via an instance of sort TIME-SYSTEM^.
Operations utcC2et, utcD2et, et2utcC, and et2utcD are functions that convert a time between
units, while preserving the "abstract value" (i.e.. unitless value) of time. These operations rep
resent FORTRAN subroutines performing the same task in the real world. The operation coor
dinates-to-time is an abstraction function, which when given an instance of TIME-COORDI
NATE and an instance of TIME-SYSTEM, returns the abstract value of time. The reasons for
structuring the domain theory in this manner are described in Section 2.5 on page 9.

The four axioms of the specification TIME tell us that each conversion operation pre
serves the abstract value of time, i.e., the conversion subroutines do not change the origin of
the clock. The axioms show that if we wish to convert a concrete time value measured in
UTC-Calendar-Date to an equivalent time value measured in UTC-Date-Day-Of-Year, we
must first convert to and then from an equivalent lime value measured in Ephemeris-Time, as
indicated by the graph provided earlier. Unless indicated otherwise, all variables are universal
ly quantified.

When designing Amphion domain theories, it is common practice to draw an axiom as
a commutative diagram, because most axioms take the form of equalities between terms. Com
mutative diagrams representing the 4 axioms of the specification TIME follow.

1. Basic quantities in the SI system of measurement are time, length, mass, temperature, current, substance,
and luminosity [24].
2. Note that other formulations of this domain theory are possible.
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Figure 2,2 Graphical Depiction of TIME'S Axioms
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Amphion is a generic knowledge-based program synthesis (KBPS) system that is spe
cialized to a particular application domain by a declarative domain theory, such as TIME. Let
us imagine that a new KBPS system. Amphion/TIME, has been so instantiated using TIME
and the declarative domain theory.

2.2 Problem Specification

This domain theory can be used to specify and solve (very) simple problems in the application
domain of time unit conversions. The diagram below, a screen shot from the specification edi
tor used by Amphion/TIME, specifies a simple problem.

Figure 2.3 Amphion/TIME's Specification Editor

File Edit Vindov Preferences Macro Help

UTC-Celendw uTC-Day-ol-Yew
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This problem specification asks "given a time value measured in UTC-Calendar-Date
units (the input), what is the equivalent time value measured in UTC-Date-Day-Of-Year units
(the output)?" We say that this problem specification is represented here using a surface syn
tax.

Amphion/TIME converts this graphical specification into an equivalent predicate writ
ten using the signature of TIME. We say that this predicate representation of the problem is
written using the abstract syntax provided by the signature of the domain theory.

conjecture UTC-C-TO-UTC-D is
(fa (tcIN)

(ex (tcOUT time-l)
(and

(equal (coordinates-to-time UTC-Calendar-Date tcIN) time-l)
(equal (coordinates-to-time UTC-Date-Day-Of-Year tcOUT) time-l))))

Thus Amphion/TIME's domain theory provides a ready-made domain-specific specifi
cation language. The Amphion/TIME specification editor is automatically generated from the
signature of the Amphion/TIME domain theory.

2.3 Program Synthesis via Resolution Theorem Proving

Amphion/TIME takes the problem specification predicate and attempts to prove that it is a the
orem of the domain theory. A successful resolution proof yields variable substitutions for the
output variable(s), i.e., a witness for the proof. These substitutions are applicative terms that
are syntactically translated into the concrete syntax of the solution language, which in our
case is a FORTRAN program that makes calls to subroutines.

We negate the problem specification predicate as follows.
(not
(fa (tcIN)

(ex (tcOUT time-l)
(and

(equal (coordinates-to-time UTC-Calendar-Date tciN) time-l)
(equal (coordinates-to-time UTC-Date-Day-Of-Year tcOUT) time-l))))

Amphion/TIME next converts the negated problem specification predicate into clause form as
follows.

(or

(not (equal
(coordinates-to-time UTC-Calendar-Date tcIN!)
time-l))

(not (equal
(coordinates-to-tirae UTC-Date-Day-Of-Year tcOUT)
time-l)))

tcIN!, which represents the input, is now treated as a constant.

Resolving this clause first with axiom UTCC-TO-ET and secondly with axiom ET-TO-
UTCD produces the empty resolvent and the following substitution for tcOUT.

{tcOUT (et2utcD (utcC2et tcIN!))}

During deductive synthesis, Amphion/TIME uses a strategy that biases selection of op
eration symbols to replace abstract (problem specification-oriented) operation symbols with
concrete (solution implementation-oriented) operation symbols, thereby ensuring that the appli
cative term produced contains only operation symbols that represent components from the sub
routine library.

2.4 Answer Extraction and Translation

The witness (tcOUT <— (et2utcD (utcC2et tcIN!))} represents a FORTRAN program but writ
ten using the signature of the Amphion/TIME domain theory. A syntactic transformation pro
duces the following FORTRAN program from the witness.
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SUBROUTINE UTCCTO ( TCIN, TCOUT )

C Code for Utc-C-to-Utc-D
C Request-id: REQ-1996-09-16-15-01-40-274

C Parameters

INTEGER CLKPRC

PARAMETER { CLKPRC = 7 )

C Input variables
CHARACTER*(*) TCIN

C Output variables
CHARACTER*(*} TCOUT

C Functions

LOGICAL RETURN

C Local variables

DOUBLE PRECISION E

Error handling
IF ( RETURN() ) THEN

RETURN

ELSE

CALL CHKIN ( 'UTCCTO' )
END IF

CALL UTC2ET ( TCIN, E )
CALL ET2UTC < E, 'D', CLKPRC, TCOUT

CALL CHKOUT ( 'UTCCTO' )
RETURN

Amphion domain theories in use are of course more interesting than our example (Am-
phion/TIME can only solve 9 distinct I/O pair problems!). However the basic process of syn
thesizing a program from a specification is the same.

2.5 Structural Style for Amphion Domain Theories

The reader may have noticed that we use the terms "abstract," •'concrete," and "abstraction"
to describe kinds of sorts and operation symbols in the domain theory. Amphion domain theo
ries are structured in a particular style which has been found to be useful for the class of syn
thesis problems targeted.

Amphion domain theories are structured into 4 parts. An abstract language (i.e., signa
ture) lA provides most of the domain-specific specification language. ZA is designed to pro
vide Amphion end users (i.e., application program developers) with convenient access to soft
ware library component functionality.

A concrete language (i.e., signature) ZC represents sorts and operations that directly
correspond to software library components. The design of ZC can be made more challenging
when software library components are non-functional (i.e., causing side-effects), because ZC
operations are purely functional.

A set of abstraction functions ABS which map ZC sorts to ZA sorts must also be de
fined. Abstraction functions are often parameterized by either concrete or abstract sorts. For
example, the coordinates-to-time abstraction function of the Amphion/TIME domain theory is
parameterized by a value of sort TIME-SYSTEM. Parameters such as these are needed to cor
rectly interpret the concrete values being mapped to abstract values.

The last part of an Amphion domain theory is the collection of axioms DT. Most axi
oms in an Amphion domain theory are associated with the abstraction functions in ABS. This
is because the an Amphion system's main focus is program synthesis, the essence of which is
mapping specifications to source code implementations.

Page 9 of 60
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Amphion domain theory axioms come in 2 basic styles. The first style are "triangle"
axioms representing unit conversions between concrete values, such as the 4 axioms in Am-
phion/TIME's domain theory. The second style is the "rectangle" style, representing an equali
ty of terms, one of which features an abstract operation and the other of which features a con
crete operation (triangle axioms have no abstract operation). A generalized rectangle axiom is
shown below in diagram form.

OPabstract

ABSsourct BStarget

OPconcrete

This diagram represents the following equation.

(fa (X)
{equal

(OPabstract (ABSsource x))
(ABStarget {OPconcrete x)))).

In summary, Amphion domain theories are formulated in the style of Hoare [11].

We can further illustrate the structure of Amphion-style domain theories (and
domain theories in general) by using a diagram of specifications and specification
morphisms. Such a diagram is shown adjacent. In such a diagram, nodes represent al- i
gebraic specifications (which in turn represent domain theories) and arcs represent
specification morphisms between theories. ABS

A specification morphism is a total function that maps source specification .
sorts and operations to target specification sorts and operations (possibly renaming '
them) such that every axiom of the source specification is a theorem of the target ic
specification. In a sense, the source specification is embedded in the target specifica
tion. The adjacent diagram shows how the theories SA, XC, and ABS are related. Most axi
oms in an Amphion-style domain theory are found in the theory ABS. LA and EC are mostly
syntactic (i.e.. have few axioms). In the adjacent diagram, specification morphisms from XA
to ABS and from XC to ABS are decorated with an "i" symbol. This means that these arrows
represent inclusion morphisms. Inclusion morphisms are a special kind of specification mor
phism that maps source specification symbols to copies of themselves in the target specifica
tion. Hence an inclusion morphism allows a theory to be simply extended. Although Amphion/
time's domain theory is too small to make a good example of specification structuring, if we
broke up Amphion/TIME's domain theory into this style of structure, we would have the fol
lowing 3 specifications.
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spec SIGMA-A is
sorts TIME

end-spec

spec SIGMA-C is
sorts TIME-COORDINATE, TIME-SYSTEM
const Ephemeris-Time : TIME-SYSTEM
const UTC-Calendar-Date : TIME-SYSTEM

const UTC-Date-Day-Of-Year : TIME-SYSTEM
op utcC2et ; TIME-COORDINATE -> TIME-COORDINATE
op et2utcC : TIME-COORDINATE -> TIME-COORDINATE
op UtcD2et : TIME-COORDINATE -> TIME-COORDINATE
op et2utcD : TIME-COORDINATE -> TIME-COORDINATE

end-spec

spec ABS is
import SIGMA-A,SIGMA-C
op coordinates-to-time ; TIME-SYSTEM,TIME-COORDINATE -> TIME

axiom UTCC-TO-ET is
(equal

(coordinates-to-time UTC-Calendar-Date tc)
(coordinates-to-time Ephemeris-Tirae (utcC2et tc)))

axiom ET-TO-UTCC is

(equal
(coordinates-to-tirae Ephemeris-Time tc)
(coordinates-to-time UTC-Calendar-Date (et2utcC tc)))

axiom UTCD-TO-ET is

(equal
(coordinates-to-time UTC-Date-Day-Of-Year tc)
(coordinates-to-time Ephemeris-Time (utcD2et tc)))

axiom ET-TO-UTCD is

(equal
(coordinates-to-time Ephemeris-Time tc)
(coordinates-to-time UTC-Date-Day-Of-Year (et2utcD tc) ))

end-spec

We can use a diagram of specifications and specification user-spec ^TA
morphisms to also represent the relationships between parts of the *"2.A
domain theory and those theories created by the end user during i
the problem specification process. In the adjacent diagram, user-
spec represents the theory associated with the problem specifica- ABS
tion constructed by the user, user-prog represents (a specification
containing only) the sentence formed by the term replacements pro- j
duced during synthesis. A specification morphism from user-spec
to lA indicates that the (single) axiom of user-spec is a theorem "ser-prog *"£0
of LA. Likewise, the specification morphism from user-prog to ZC
indicates that the (single) axiom of user-prog is a theorem of LC.

Note that the framework only considers the abstract syntax of languages, rather than
concrete syntax. (Concrete syntax corresponds to program source code text in an editor or on
paper, abstract syntax corresponds to the parse tree of the program's source code.)

user-pro^

2.6 Domain Theory Evolution in Amphion

Amphion-style domain theories must evolve with
the application domain in which they are used. " ^^-spec
The adjacent diagram of specifications and speci
fication morphisms represents domain theory evo
lution. is a specification morphism that
maps the original LA theory to a new theory
LA', possibly changing the names of symbols in
LA. Likewise Oabs ^ZC specification
morphisms that map the original ABS and LC
theories to new theories ABS' and LC' respec
tively. Collectively o^bS' ^ZC (consti
tute an evolutionary step of the domain theory.
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How can artifacts (e.g.. test cases, end user specifications, end user programs, tools,
etc.) created under the original domain theory be preserved during domain theory evolution?
We believe a part of the solution is to use morphisms defining evolutionary steps of the do
main theory to translate artifacts into the new domain theory. Thus the diagram below repre
sents the situation in which is used to translate user-spec into user-spec' and o^q is used
to translate user-prog into user-prog'.

Figure 2.4 Translating Domain Artifacts After Domain Theory Evolution

user-spec ^ lA user-spec'user-spec

^ABS

user-prog- user-prog

3 Framework for Domain Theory Structure and Evolution

This section introduces a framework in which domain theory structure and evolution can be
represented. This framework can be thought of as a language in which to describe the architec
tures of knowledge acquisition tools. Section 3.1 on page 12 describes atomic domain theory
constructors, which form the vocabulary of this language. Section 3.2 on page 16 describes an
initial reference architecture for knowledge acquisition tools, which forms a collection of im
portant sentences in this language.

3.1 Atomic Domain Theory Constructors

This subsection describes different categories of atomic domain theory constructors. The
framework used in this survey represents evolutionary steps a domain theory takes, such as de
fined by OjA, CF^BS' ^IC collectively in figure 2.4 above, by the application of one or
more atomic domain theory constructors. The diagram of figure 2.4 represents a kind of com
bined "before and after" picture. The "before" picture is represented by user-spec, user-prog,
ZA, ZC, ABS. and the specification morphisms between them. The "after" picture is represent
ed by user-spec', user-prog', ZA', ZC , ABS', and the morphisms between them. The "be
fore" and "after" pictures are linked by ^IC*

The mere presence of the "after" picture indicates that a collection of atomic domain
theory constructors was applied to the specifications in the "before" picture. Application of an
atomic domain theory constructor induces the creation of a "primed" specification and a mor-
phism from the unprimed specification to the primed specification. Thus a diagram of specifi
cations and specification morphisms showing domain theory evolution serves as a visual de
sign record.

To better ground our discussion, the adja- i 1 i
cent diagram illustrates the application of a ba- ^ is spec DT' is
sic sort constructor and how that application in- ^ ^ ^ .
duces an inclusion morphism from the original "" import Ul
domain theory (specification DT) to the extend- snd-spec sort A
ed domain theory (specification DT'). In the ad- end-spec
jacent diagram, specifications, which usually ap
pear only as labels in diagrams of specifications
and specification morphisms, are shown in exploded form showing some of their textual struc-

ipec DT' is
import DT
sort A

end-spec
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In order to restrict the length of this survey, complete details of atomic domain theory
constructors will be published under a different report.

3.1.1 Atomic Instance Constructors

An instance constructor produces a new instance of a sort, e.g.. Cassini is a new instance of
sort SPACECRAFT, and Sun-Earth-Photon is a new instance of sort PHOTON. The only sym
bol introduced is that of the new instance, sort symbols already exist. Currently, instances are
either constants or functions, because SLANG (the algebraic specification language used to
prototype this survey's framework) does not support free variables or variable with state. Ap
plication of an instance constructor to a domain theory causes an evolutionary step which is
represented by a definitional extension of the domain theory. A definitional extension is an in
clusion morphism that only introduces constants and operations that can be completely de
fined within the original specification. Creating a definitional extension of a programming lan
guage is like defining a function using the language and declaring that the function in now a
primitive of the language. The semantics of a specification and a definitional extension of the
specification are exactly the same. Thus if we consider the domain theory to define a lan
guage, then application of instance constructors defines a string in the language. Alternatively,
if a domain model consists of a collection of software component classes, then the application
of instance constructors defines a program built using those classes.

We index atomic instance constructors by whether they use implicitly- or explicitly-de-
fined sorts. This can make a difference for the domain expert. Depending upon the type, famil
iar kinds of editors (e.g., tables) could be used to fill in the instance's attribute values. For ex
ample. if the new instance is of an explicitly-defined product sort, the domain expert would be
able to use the table editor to compare the new instance's attribute values with those of in
stances of the same sort defined earlier. Alternatively, if the instance is a new function of an
implicitly-defined sort, an empty table editor could be automatically generated on the fly in
which mapplets of the function could be enumerated.

3.1.2 Atomic Sort Constructors

A sort constructor produces a new sort, e.g., CONE is a new sort representing the collection
of all pairs selected from sorts RAY and ANGLE (i.e., CONE is the product sort of RAY and
ANGLE). We believe the application of a sort constructor to a domain theory causes an evolu
tionary step which is represented by a conservative extension of the domain theory. A conser
vative extension is an inclusion morphism that preserves satisfiability of the specification.
Thus, for example, if a domain model consists of a collection of software component classes,
then the application of a sort constructor could produce a new domain model featuring a new,
multiply-inherited class. Definitions of atomic sort constructors assume explicit sort construc
tion only.

3.1.3 Atomic Sentence Constructors

A sentence constructor deduces or induces a new sentence from a collection of sentences.
Logical deduction is a sentence constructor that establishes the validity of a new sentence giv
en a collection of already-existing sentences (i.e., the hypothesis). Logical induction is a sen
tence constructor that establishes a hypothesis that covers a set of ground (i.e., contain no vari
ables) sentences, declared to be either positive or negative training examples. Sentences can al
ways be constructed manually by human invention, either by typing strings in a text editor or
manipulating a graphical representation of sentences (e.g., an AND/OR graph).
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3.1.4 Atomic Specification Constructors

A specification constructor produces a new domain theory from already-existing theories, e.g..
the domain theory of supermarket checkout lines as a renaming of the theory of queues. Appli
cation of a specification constructor to a domain theory causes an evolutionary step which is
represented by a (possibly a collection of) specification morphism(s). Thus, for example, if we
have a domain theory of lists and a domain theory of natural numbers, we can construct a do
main theory of lists of natural numbers by mapping the "element" sort of the list domain theo
ry to the "number" sort of the natural number domain theory and computing the pushout or
colimit of the domain theories and mappings between them. Alternatively, for example, if we
have a library of software components (the current domain model) for producing graphical
user interfaces (GUIs), application of a specification constructor can import another library of
components (a different domain model), such as a library of components for calculating statis
tics. Our choice of specification constructors is taken from [27].

3.1.5 Atomic Institution Constructors

An institution constructor produces a new logical system in which domain theories can be con
structed, e.g., translating a collection of domain theories in sorted, higher-order lambda calcu
lus into a corresponding collection of domain theories in unsorted, first-order logic. We be
lieve that application of an institution constructor to a domain theory causes an evolutionary
step which is represented by an institution morphism. Our choice of institution constructors is
taken from [8].

3.1.6 Summary of Atomic Domain Theory Constructors

Table 1, "Atomic Domain Theory Constructors," on page 14 below summarizes the cur
rent collection of atomic domain theory constructors.

Table 1: Atomic Domain Theory Constructors

Symbol
Introduction

(i.e., "basic"
constructors)

Instances Sentences

Page 14 of 60

Specifications
(i.e., Domain

Theories)

uman invention: spec br is

axiom a is (p x) sorts S
ops Q.
axioms O

end-spec

Institutions
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Table 1: Atomic Domain Theory Constructors

Symbol
Constructors

Instances

defined

Sorts Sentences

Specifications
(i.e.. Domain

Theories)

SI . S2 (product) Deduction ^ielSPi

SI —> S2 (function) Induction translate SP by a

S1 + S2 (coproduct) Universal derive from SP' by a
Instantiation

S 1p (subsort) iso close SP

(where
1

p : S -A Boolean) minimal SP wrt a

S / e (quotient sort) abstract SP wrt 0(X)
(where

e : S , S —> Boolean) ^ ^ •^par • S^res

supersort of Sj colimit of D

sort-axiom SI = S2 mmmieam spec A ^ spec B

Institutions

(0,a,P):Il ^12

Duplex ...

Figure 3.1, "Richer Example of Domain Theory Evolution," on page 16 is shown be
low. It is included in order to provide a larger, visual example of how this framework is ap
plied to represent both the structure and evolution of a domain theory. Evolution of the do
main theory is indicated by the path along the bold inclusion morphisms which is framed with
in the region denoted by meta-SC. Structure of the knowledge acquisition tools which evolve
the domain theory is indicated by the collections of specifications and morphisms in the re
gion denoted by meta-ZA. These labels will be described in Section 3.2 on page 16
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Figure 3.1 Richer Example of Domain Theory Evolution
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3.2 Draft Reference Architecture for Knowledge Acquisition Tools

In the architectural metalanguage of SAAM [15]. a software architecture consists of a set of
components and a set of connections between components. Components provide computation
al services (i.e., processors) or storage services (i.e., files and tables). Connectors enable the
flow of data or control between components. The architectural metalanguage/framework for
domain theory structuring and evolution used in this survey is somewhat different from
SAAM's metalanguage. In our metalanguage, components are algebraic specifications and con
nectors are specification morphisms. Figure 3.2. ''Architectural Metalanguage and Draft Refer
ence Architecture Functional Elements," on page 17 below provides a legend for the architec
ture diagrams used in Section 4 on page 19.
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Figure 3.2 Architectural Metalanguage and Draft Reference Architecture
Functional Elements

General Spec Morphism
Source-Spec ^ Target-Spec

Source-Spec

Source-Spec

Source-Spec

Inclusion Morphism

Definitional Extension

d

Colimit Definition

Target-Spec

Target-Spec

Target-Spec

I End User's Specification Language

; End User's Implementation Language

Implementation Relation Language

; Spec Containing Most Axioms

; Domain Expert's Specification Language
meta- SA ; (i.e., knowledge acquisition language)

; Domain Expert's Implementation Language
meta- SO ; (i.e., runtime performance system)

The functional elements of a draft reference architecture for knowledge acquisition sys
tems are shown in the lower half of figure 3.2. These elements group together collections of
specifications and specification morphisms (i.e., architecture components and connectors)
which provide the functionality required by the element. ZA is the reference architecture func
tional element providing a problem specification language for end users (within the perfor
mance system). ZC is the element providing a solution implementation language for end users
(within the performance system). ABS is the element providing the implementation relation
language between ZC and ZA (within the performance system). DT is the element containing
the majority of the axioms used by the performance system. meta-ZA is the element providing
a knowledge acquisition language for the domain expert. meta-ZC is the element providing an
implementation language for the domain expert. meta-ZC corresponds to the performance sys
tem as a whole.

Currently in our research the reference architecture functional elements do not form a
partition, as is the case in SAAM. At this time the functional elements are related to each oth
er in a way described by the figure below. meta-ZA should be disjoint from meta-ZC. We typ
ically expect to find ZA, ZC, ABS, and DT within meta-ZC. ZA and ZC should be disjoint,
most likely separated by ABS and DT.
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Figure 3.3 Preferred Relationship Between Functional Elements

meta- EA

meta- IC

Figure 3.4, "Example Showing Protege's Assignment of Architectural Components and
Connectors to Reference Architecture Functional Elements," on page 19 is shown below as an
example. It shows how Protege's architectural components and connectors are assigned to
reference architecture functional elements. It is possible that a given tool may have no compo
nents and connectors to assign to a reference architecture functional element. For example.
Protege does not assign any architectural components or connectors to the reference architec
ture functional elements of ABS and DT.
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Figure 3.4 Example Showing Protege's Assignment of Architectural Components
and Connectors to Reference Architecture Functional Elements

SPR-Sigma Theory-of-Skeletal-Plan-Refinement

Domain-Specific-KA-Lang

Input-Data-Lang

Input-Data-Lang' Recommended-Plan-Lang'

•
meta- EC

4 Reviews of Knowledge Acquisition Tools

This section reviews the selected knowledge acquisition tools by recasting them within our ar
chitectural metalanguage/framework and examining which atomic domain theory constructors
they implement and how their architectural components and connectors are assigned to the
draft reference architecture for knowledge acquisition tools.

When we recast a knowledge acquisition tool within the framework, we attempt to rep
resent a typical domain model on which the actual tool has been applied. The framework al
ways represents domain models as domain theories. This is because the framework is based
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upon formal, declarative theories, rather than semiformal or non-declarative domain models.

Recasting a knowledge acquisition tool within the framework requires a considerable
amount of interpretation on the part of the evaluator. This is because each reviewed tool uses
its own representation for domain models, which may or may not correspond to the structure
imposed during the recasting process. Recasting knowledge acquisition tools within the frame
work is thus far an art form that must fill in many knowledge representation-related omissions
in the original publications about the tools. The reader should view these architectural dia
grams as the evaluator's best idea of how to reimplement the knowledge acquisition tool us
ing algebraic specification and specification morphisms.

4.1 LOLA

LOLA (Logic Learning Assistant) is the knowledge acquisition tool developed for DTAS (De
sign Technology Adaptation System) [17]. The performance systems synthesized by DTAS
are hardware register transfer level (RTL) design synthesis environments. LOLA enables a do
main expert to evolve domain models in parallel with evolution of a library of reusable RTL
cells. The performance system composes cells together to create designs which satisfy a high-
level specification.

4.1.1 WHAT LOLA Is

When represented within the framework, a DTAS performance system consists of a collection
of specifications and specification morphisms as shown in the diagram below.

Figure 4.1 LOLA's Languages

spec Cell-Library.

; spec CSPEC_

spec Netlist

spec Construction-
Method-Templates

spec Decomposition
"Methods

spec Construction-
Methods

spec CSPEC defines the language of component specifications (sort cspec) (i.e., the end
user's problem specification language and abstract part of the domain theory, SA).

spec Netlist defines the language of component implementations (sort cimpl).

spec Cell-Library represents the contents of the chosen hardware cell library currently
used by the performance system (spec Netlist and spec Cell-Library together make the
end user's solution language and concrete part of the domain theory, ZC).

spec Decomposition-Methods contains axioms showing how a cspec can be decomposed
into an assembled collection of other cspec's.
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• spec Construction-Methods contains axioms showing how a cspec can be decomposed
into an assembled collection of cspec's and component implementations (cimpl's).
drawn from spec Cell-Library, spec Decomposition-Methods and spec Construction-
Methods together form the collection of axioms used during design synthesis. In an
Amphion-style domain theory, these specifications together would form DT.

• spec Construction-Method-Templates contains axioms used to instantiate new axioms in
spec Construction-Methods, drawing from available cells (cimpl's) in spec Cell-Library,
spec Construction-Method-Templates helps automate the knowledge acquisition process.

A DTAS performance system (i.e.. design environment) takes as input from the end
user a succinct specification of a functional unit, called a CSPEC (for component specifica
tion), such as an adder (ADD), multiplier (MULT), or arithmetic and logic unit (ALU). The
language of CSPECs is shown below in spec CSPEC. Once defined, spec CSPEC need not
change during evolution of a DTAS design environment.

spec CSPEC is

sorts cspec,type,iports,oports,attrs,port,name,value,width

sort-axiom cspec = type,Iports,oports,attrs
sort-axiom type = string
sort-axiom iports = nat,port -> boolean
sort-axiom oports = nat,port -> boolean
sort-axiom attrs = nat,(name,value) -> boolean
sort-axiom port = name,width
sort-axiom name = string
sort-axiom value = nat + string
sort-axiom width = nat

end-spec

Spec CSPEC was written by reviewing the CSPEC grammar definition in [17]-"^. Additional axi
oms could be added to spec CSPEC, giving it semantics in addition to those provided by the
sort axioms of spec CSPEC, but we omit them because of limited time resources.

The end user of a DTAS performance system constructs problem specifications using
the language of spec CSPEC. Below in spec ALU-32-4-4-8 we show an example problem
specification (using abstract syntax only) of an ALU, borrowed from Section 9 of [17]. The
user .specified that the ALU has input ports 10 (32 bits wide). II (32 bits wide), ICIN (1 bit
wide), ISEL (4 bits wide), and output ports OO (32 bits wide), OCOUT (1 bit wide), and
OREL (1 bit wide); that the ALU is to be implemented in a "ripple" style with zero levels;
and that the area and delay are not of concern.

3. Sorts correspond to nonterminal symbols in the grammar and sort-axioms, which define new sorts from
other sorts by the application of various sort constructors, correspond to production rules of the grammar.
When the right hand side of a grammarproduction rule features a list of elements (e.g., iports ::= [ port* ]),
the list is represented by a relation on nat and the sort of the list element (e.g., sort-axiom iports =
nat.poit->boolean). Alternatives in grammar rules (e.g., value ::= nat Istring) are represented by coproducts
(i.e., disjoint unions) (e.g., sort-axiom value = nat + string).
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spec AHJ-32-4-4-8 is

import CSPEC

const ALU-32-4-4-8 cspec
const ips
const ops
const ats

iports
oports
attrs

definition of ALU-32-4-4-8 is
axiom

(and (and (and (and (and (and
(ips 0 <"I0" 32>)
(ips 1 <"11" 32>))
(ips 2 <"ICIN" 1>))

(ips 3 <"ISEL" 4>))
(and (and

(ops 0 <"O0" 32>)
(ops 1 <"OCOUT" 1>))
(Ops 2 <"OREL" !>)))

(and
(ats 0 <"STYLE" ((embed 2) "RIPPLE")>)
(ats 1 <"LEVELS" ((embed 1) 0)>)})

(equal
ALU-32-4-4-8

<"ALU" ips ops ats>))
end-definition

end-spec

A DTAS performance system takes a problem specification such as this and incremen
tally transforms it from a CSPEC to a netlist. by the application of decomposition methods
and construction methods. Transformations act upon the problem representation until it ceases
to contain CSPECs. CSPECs are replaced by CIMPLs, which are drawn from cell library com
ponents (i.e., spec Cell-Library). A DTAS performance system uses a depth-first search algo
rithm to explore the space of netlist representations and returns a set of representations with
the best area and delay characteristics.

A netlist is a data structure representing hierarchical hardware designs, spec Netlist
shown below defines the language (using abstract syntax) of these data structures. Once de
fined spec Netlist need not change during evolution of a DTAS performance system. Notice
spec Netlist imports spec CSPEC (hence the inclusion morphism from spec CSPEC to
spec Netlist). This means that all the sorts, operations, and axioms of spec CSPEC are includ
ed in spec Netlist. Additional axioms could be written for spec Netlist defining constraints on
parts of the language, but they are omitted.

spec NETLIST is % The implementation language & KA language.

import CSPEC

sorts

netlist,ipins,opins,wires,cells,cspecs,modules,
pin,wire,module,cimpl,props,src,snk,list

sort-axiom netlist = ipins,opins,wires,cells,cspecs,modules
sort-axiom ipins = nat,pin -> boolean
sort-axiom opins = nat.pin -> boolean
sort-axiom wires = nat,wire -> boolean
sort-axiom cells = nat,(name,cspec) -> boolean
sort-axiom cspecs = nat, (name,cspec) -> boolean
sort-axiom modules = nat,(name,module) -> boolean
sort-axiom module = ipins,opins,cspec,cimpl
sort-axiom cimpl = name,cspec,props %+ cspec,netlist
sort-axiom props = nat,(name,value) -> boolean
sort-axiom pin = string
sort-axiom wire = name,src,snk
sort-axiom src = pin
sort-axiom sn)c = nat,pin -> boolean % at least one
sort-axiom list = nat,value -> boolean

end-spec

A cell library is a collection of reusable design units, each providing a behavior, which
can be assembled and instantiated in silicon or other implementation medium. Cell libraries
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are made available by vendors in much the same way that mathematical and statistical soft
ware component libraries are provided by other software vendors. Cells are designed for sin
gle logic gates {e.g.. AND) and complex, hierarchical units (e.g.. MULT). An advantage of us
ing cells is that their predefined implementations are often faster and smaller than custom-
made. functionally-equivalent compositions of gates. Cell libraries accompany fabrication tech
nology that reproduces composed cells in the implementation medium. We assume that cells
behave according to their specification and need never be inspected, i.e., cells are "black box
es." As borrowed from Section 9 of [17]. spec Cell-Library below is an example cell library,
containing a single cell, ND2.

spec CELL-LIBRARY is

import NETLIST

const ND2 : cimpl
const ips : iports
const ops : oports
const ats attrs

const prps : props

definition of ND2 is
axiom

(and (and (and (and
(ips 0 <"10" 2>)
(ips 1 <"11" 2>))
(Ops 0 <"00" 2>))
(and

(ats 0 <"STYLE" ((embed 2) "RIPPLE")>)
(ats 1 <"LEVELS" ((embed 1) 0)>)))

(equal
ND2

<"ND2" <"NAND" ips ops ats> prps>})
end-definition

end-spec

ND2 is a component implementation (CIMPL), performing the NAND behavior with inputs 10
(2 bits wide) and II (2 bits wide), output OO (2 bits wide), and with (omitted) area and delay
values.

spec Decomposition-Methods contains dozens of axioms showing how a CSPEC can
be replaced (or implemented) by a assembled collection of other CSPECs. Because the decom
position methods are cell library-independent, once spec Decomposition-Method is defined, it
need not evolve during evolution of a DTAS performance system. We shall omit presentation
of spec Decomposition-Methods.

spec Construction-Methods contains axioms showing how a CSPEC can be replaced
(or implemented) by an assembled collection of CSPECs and CIMPLs. The only difference be
tween a decomposition method and a construction method is that the right hand side of the
construction method must contain at least one CIMPL from the cell library. Construction meth
ods are always cell library-dependent and the set of construction methods changes every time
the cell library changes. If the cell library is extended with a collection of new cells, new con
struction methods must be generated that use the new cells.

LOLA, the knowledge acquisition subsystem of DTAS, automatically generates con
struction methods from the current contents of the cell library. LOLA automatically generates
construction methods by using a predefined set of acquisition templates. We represent an ac
quisition template as a template for instantiating a construction method axiom given that a cer
tain kind of cell exists in the library and that another kind of cell does not exist in the library.
The set of acquisition templates does not evolve, spec Construction-Method-Templates shown
below demonstrates the concept.
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spec CONSTRUCTION-METHOD-TEMPLATES is

import NETLIST

axiom

(fa (nand-cimpl-in cimpl
nand-cimpl-in-name : name)

{iff
(and (and

(equal
({project 1) ((project 2) nand-cimpl-in)}
"NAND")

(equal
((project 1) nand-cimpl-in)
nand-cimpl-in-name))

(not (ex {inv-cimpl-out : cimpl)
(equal

((project 1) ((project 2) inv-cimpl-out))
"INV"))))

(fa (10 name
WIG width

GO : name

WOO width

ni iports
no oports
ii iports
io oports)

(and (and (and (and (and
(ni 0 <10 WIO>)
(no 0 <00 WOO>))
(ii 0 <10 WIO>))
(ii 1 <''pos-grnd" 1>))

(io 0 <00 WOO>))
(implies

(fa (inv-cspec : cspec)
(equal

inv-cspec
<"INV'' ni no atsl>))

(equal
nand-cimpl-in
<nand-cimpl-in-name <"NAND'' ii io ats2> prps>)))))}

end-spec

The axiom states, if we find that the cell library contains a NAND cell, but the cell library
does not contain an inverter (INV) cell, then and only then an axiom applies that takes a
CSPEC of an inverter and replaces it by the library's NAND cell, but with one of the NAND
cell's input ports ground to positive.

What does it mean to generate a specification, such as spec Construction-Methods?
We represent the generation of spec Construction-Methods in part by taking the colimit of
spec Netlist. spec Cell-Library, and spec Construciion-Method-Templates, as shown in the dia
gram below.
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Figure 4.2 LOLA's Architecture

spec CSPEQ

spec Cell-Librarv , Q spec Neilist

spec Construciion-
Method-Templates

spec Decomposition-;
"Methods ;

^ spec Construction-
^ Methods

The colimii produces the union of a collection of specifications while taking into ac
count the sharing of sorts and operation symbols indicated by the specification morphisms. In
the framework, which is thus far implemented using Specware™ [14], a colimit is defined by
first defining the diagram from which the colimit will be computed. For the DTAS example,
this diagram definition is shown below.

diagram DIAGRAM--INSTANTIATE-CONSTRUCTION-METHODS is

nodes

CSPEC,NETLIST,CELL-LIBRARY,

DECOMPOSITION-METHODS,CONSTRUCTION-METHOD-TEMPLATES

arcs

CSPEC -> NETLIST : {),
NETLIST -> CELL-LIBRARY ; {},
CSPEC -> DECOMPOSITION-METHODS : {],
NETLIST -> CONSTRUCTION-METHOD-TEMPLATES : {)

end-diagram

The colimii is computed by interpreting the specification below.
spec CONSTRUCTION-METHODS is
colimit of DIAGRAM--INSTANTIATE-CONSTRUCTION-METHODS

Thus the domain theory of a DTAS performance system evolves in lockstep with evo
lution of the performance system's cell library. Knowledge acquisition occurs when the do
main expert extends the cell library and domain theory evolution occurs automatically by re
computing spec Construction-Methods from a new colimit diagram. This approach to domain
theory evolution is captured succinctly by the diagram below.
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Figure 4.3 LOLA's Approach to Domain Theory Structuring and Evolution
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This approach to domain theory evolution was formalized in [26] as part of research in
automating domain theory evolution for Amphion domain theories. This approach to domain
theory evolution appears to be especially applicable under the following conditions.

• The end user problem specification language does not evolve.

• The base language used to represent the component library does not evolve (definitional
extensions such as from Netlist to Cell-Library are allowed).

• The direction of possible component library evolution is fully understood a priori.

4.1.2 HOW LOLA Does it

Until now. we only discussed the architecture of LOLA knowledge acquisition tools and syn
thesized DTAS performance systems. Now we discuss the processes and UIs LOLA uses to
implement the atomic domain theory constructors and compositions thereof. Each subsection
address whether LOLA/DTAS supports the atomic domain theory constructor mentioned and
if so, how (i.e., by what processes and UIs) it is supported or implemented and also for which
roles (e.g., domain expert, end user, or the system it.selO the constructor is supported.
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4.1.2.1 Instance of a Sort (generic example SLANG code shown ad- dt is
sorts T,...

jacent)
op t-constr : -> T

The simplest kind of evolutionary step a domain theory can undergo is end-spec %dt
the addition of a new symbol which is an instance of previously-defined
sort(s). This kind of evolutionary step is exemplified by the adjacent Spoi-?^DT^^
(pseudo) SLANG code. The declaration of a new instance of a sort re- const i : t
quires symbol introduction (i.e., const i : T) and an axiom assigning a (t^-cLstr))
value to the symbol (i.e., def-of-i). end -spec %DT'

4.1.2.1.1 Instance of Explicitly-defined Sort

A DTAS performance system enables end users (i.e., hardware designers) to create new in
stances of sort cspec and of associated sorts for problem specification (See "spec CSPEC is"
on page 21.) presumably by entering text via a text editor. DTAS parses and checks these
specifications to ensure that they are syntactically and semantically correct. See "spec ALU-
32-4-4-8 is" on page 22.

LOLA enables domain experts to create new instances of sort cimpl and of associated
sorts to define new cells in the cell library (See "spec CELL-LIBRARY is" on page 23.) again
presumably via a text editor. LOLA parses and checks these cell descriptions to ensure that
they are syntactically and semantically correct.

A DTAS performance system creates new instances of sorts cimpl and netlist during
design synthesis. LOLA itself creates new instances of sort cspec during "technology compila
tion," in which it instantiates new construction methods based upon new instances of sort cim
pl added to the cell library by the domain expert.

4.1.2.1.2 Instance of Operation, i.e., Instance of Implicitly-Defined
Function Sort (generic example SLANG code shown ad
jacent)

spec DT is
sorts T1,T2,.,.

T1,T2,T2 -> T2

end-spec %DT

Neither DTAS nor LOLA supports the ability to construct a new opera
tion . This would require the ability to define new axioms defining the import
behavior of the new operation. Instances of sorts cspec and cimpl are t2
purely syntactic and provide no explicit definition of behavior. This is
why end users and domain experts can define only new examples of (ft)
"functional units" from the (short) list of functional units supported by end-spec
DTAS (i.e., ADD, MULT. MUX, ALU, AND. OR, etc.).

If this constructor was supported for the domain expert, the domain expert could repre
sent components as functions. If the functions are first-orcier, arbitrary combinational (i.e., no
internal state) logic devices could be added to the cell library. For example, if the domain ex
pert wishes to add a component to the cell library that determines whether logical implication
hold over the input signals, it could be represented as follows.

4. Recall that sorts iports. oports. and attrs are represented as function sorts (because our framework uses
functions to represent predicates and lists). So. if an end useror domain expert defines an instance of iports,
has a new function been defined?Technicallyyes. but sort iports is explicitlydefined in DTAS.This section
only asks whether functions of implicitly-defined sort can be constructed.
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spec CELL-LIBRARY is
sort BIT

op bit-to-booiean ; BIT -> boolean % abstraction function
axiom def-of-bit-to-boolean is

(and
(equal true (bit-to-boolean 1))
(equal false (bit-to-boolean 0)))

end-spec

spec CELL-LIBRARY' is
import CELL-LIBRARY
Op IMPLIES-COMP-1 : BIT , BIT -> BIT % new component defined as a function
axiom

(iff
(implies

(bit-to-boolean bl)
(bit-to-boolean b2))

(bit-to-boolean (lMPLlES-COMP-1 bl b2)))
end-spec

Alternatively, the new operation IMPLIES-COMP-1 could be represented as a predicate as fol
lows. This representation is advantageous if circuits with cycles must be represented.

op IMPLIES-COMP-1 BIT -> boolean

If second-order functions were allowed, arbitrary sequential (i.e., with internal state) de
vices could be added to the cell library. This would enable the cell library to contain much
larger-grained components than are currently possible in DTAS. Sequential components could
be represented as follows. Wires would be represented by signal functions from Natural num
bers to BIT. Components are represented by predicates that constrain the behavior of signal
functions.

spec CELL-LIBRARY is
import Nat
sort signal
sort-axiom signal = Nat -> BIT

end-spec

spec CELL-LIBRARY' is
import CELL-LIBRARY
op D-FLIP-FLOP-1 signal , signal -> boolean
axiom def-of-D-FLlP-FLOP-1 is

end-spec

This representation of components would have explicit behavior (i.e., semantics) pro
vided by axioms defining the new operations (i.e., component representations). Unfortunately,
DTAS's representation for components is purely syntactic and hence adding the ability to de
fine new operations would be a significant change, possibly effecting most aspects of the sys
tem.

4.1.2.2 Sorts

A more interesting kind of evolutionary step a domain theory can undergo is the addition of a
new sort symbol which may or may not be structurally defined in terms of sorts defined earli
er. Adding a new sort can effectively create a new non-terminal symbol in the languages of
the domain models (i.e.. change the syntax of problem specification and solution representa
tion languages). Unfortunately, neither DTAS nor LOLA supports the ability to construct new
sorts. All sorts are predefined and cannot be added to by domain experts, end users, or DTAS/
LOLA itself.
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4.1.2.2.1 Product Sort (generic example SLANG code adjacent)

A product sort defines a new sort which represents the Cartesian product end-spec %dt
of the argument sorts. The Product Sort constructor is not supported in
DTAS/LOLA. If new product sorts could be defined, it would allow the iSport^x^^
domain expert to extend the languages of the domain model with new sorts t
juxtapositions of previously-defined nonterminal symbols. Ind-spec°%DT'

4.1.2.2.2 Coproduct Sort (generic example SLANG code adjacent) spec DT is
sorts T1,T2 , . . .

A coproduct sort defines a new sort which represents the disjoint union end-spec %dt
of the argument sorts. The Coproduct Sort constructor is not supported
in DTAS/LOLA. If new coproduct sorts could be defined, it would allow iSport^oT^^
the domain expert to extend the languages of the domain model with sorts t
new nonterminals defined as alternatives of previously-defined nontermi- Ind-speJ°%DT'~
nal symbols.

4.1.2.2.3 Function Sort (generic example SLANG code adjacent)

A function sort defines a new sort which represents the set of all func- end-spec %dt
tions from the source sort to the target sort. The Function Sort construc
tor is not supported in DTAS/LOLA. If new function sorts could be de- import
fined, it would allow the domain expert to more easily define signal t
functions (Section 4.1.2.1.2 on page 27) and groups of components with in"speJ°%DT'~
identical input/output signature (e.g.,

sort-axiom binary-logic-gate = BIT,BIT -> BIt).

4.1.2.2.4 Subsort (generic example SLANG code adjacent) spec dt is

A subsort defines a new sort which represents a restricted set of values end-spec %dt
of the base sort, defined by some predicate on the base sort. The Subsort
constructor is not supported in DTAS/LOLA. If new subsorts could be iSport^oT^^
defined, it would allow the domain expert to organize components, sorts ti
wires, netlists, etc. into arbitrary subgroups. For example, the domain ex- sort-\xiom Ti°°i^T?p?
pert could group instances of cimpi into fast and non-fast groups as fol- axiom def-of-p? is
lows (using simplified syntax). ti

(P? t)
. . . )

end-spec %DT'spec DT' is
import DT,Nat
op fast-cimpl? cimpl -> boolean
sort-axiom cimpl-fast = cimpl 1 fast-cimpl?
axiom def-of-fast-cimpl? is
(iff

(fast-cimpl? ci)
(Ite (delay-of ci) 10))

end-spec %DT'

4.1.2.2.5 Quotient Sort (generic example SLANG code adjacent) spec DT is
sorts T,...

A quotient sort defines a new sort representing elements which are end-spec %dt
equivalence classes over the base sort. The equivalence classes are de
fined by an equivalence relation, which must also be defined. The Quo- Sport
tient Sort constructor is not supported in DTAS/LOLA. To apply quo- ti
tient sorts, we need to ask ourselves "where in a DTAS domain theory Sr^axiom'̂ Ti
can instances of a sort be gathered into equivalence classes?" An exam- axiom def-of-e? is
pie equivalence class on cspec might be same-functional-unit-as? (e.g., ta tb)
ALU, AND. MUX, etc.). This would be a more elegant repre.sentation
that the current DTAS functional unit representation as a string.
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4.1.2.2.6 Supersort (generic example SLANG code adjacent) spec DT is
® J ' sorts T,U.A,B,C..-

A supersort is constructed from a collection of previously-defined prod- sort-axiom u=b!c^
uct sorts and is the largest product sort common to all argument sorts.

^ 0nd"SD0c %DT
The supersort constructor is not a primitive in SLANG but we believe
it can be implemented in SLANG. Supersorts are frequently construct-
ed during reengineering of domain models. The Supersort constructor sorts T1
is not supported in DTAS/LOLA. If it was supported, it would enable
the domain expert to define a new nonterminal in the languages of the
domain model, being the maximal nonterminal of common nonterminal making up the argu
ment nonterminals. The following concrete (but weak) example shows how a new sort. pins,
is the supersort of sorts netlist and module.

spec NETLIST is
import CSPEC

sort-axiom netlist = ipins,opins,wires,cells,cspecs,modules

sort-axiom module = ipins,opins,cspec,cimpl

end-spec

spec NETLIST' is
import NETLIST
sort pins
sort-axiom pins = ipins,opins
end-spec

4.1.2.3 Sentences

Sentences are predicates written using variables, constants, and operations from a previously-
defined signature. In our SLANG specifications, sentences always begin with the keyword "ax
iom." Like instances and sorts, sentences must be defined within a specification. In our frame
work, sentences cannot exist without being a part of a specification. This subsection discusses
the processes by which DTAS/LOLA itself, domain experts, and end users create sentences to
evolve the domain model.

4.1.2.3.1 Human Imagination

Human imagination is the sentence constructor which is the easiest to implement. Every time
a DTAS end user types in a cspec in a text editor and compiles the definition, we represent
this by a "sentence" being automatically constructed representing the cspec. For example, if
the end user defines the following cspec (here written in DTAS's cspec surface syntax)

<ALU_32_4_4_8,<ALU,
[<I0,32>,<I1,32>,<ICIN,1>,<ISEL,4>],
[<O0,32>,<OCOUT,1>,<OREL,1>],
[<0P,ADD>,<0P, SUB>,<0P,INC> , <0P,DEC>,<OP,EQ>,<OP,LT>,<OP,GT>,<0P,ZEROP>,<0P,AND>,<OP,OR>,
<OP,NAND>,<OP,NOR>,<OP,XOR>,<0P,XNOR>,<0P,LNOT>,<0P,LIMPL>]>>

then, in an abstract sense, the specification given earlier is a theorem of spec CSPEC. See
"spec ALU-32-4-4-8 is" on page 22. Likewise, component implementations (i.e., cell defini
tions) defined by the domain expert, when parsed, can be thought of as constructing a sen
tence such as the axiom assigning a value to ND2 given earlier. See "spec CELL-LIBRARY
is" on page 23.

4.1.2.3.2 Deduction (e.g., find e such that DT 1— e)

Deduction is the sentence constructor that given a collection of sentences (i.e, axioms) in a
specification (call it DT) and a sentence e (a conjecture) written using the same signature as
DT, determines whether e is deducible from the axioms of DT. The deduction constructor is

not used for domain model evolution in DTAS/LOLA. DTAS uses term rewriting during de
sign synthesis. The application of deduction to domain theory evolution (i.e., deductive synthe-
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sis of domain theories) is an area we hope to investigate in our Dissertation.

4.1.2.3.3 Induction (e.g., find H such that B U H I— e)

The goal of the induction constructor is to find a hypothesis (a collection of axioms) H such
that

V pos-ex G E+ • B U H I— pos-ex (i.e., H is "complete") and
V neg-ex G E- • —i(B U H I— neg-ex) (i.e., H is "consistent").

Where E+ is a collection of positive example (i.e., ground, having no variables) sentences, E-
is a collection of negative example sentences, and B is a collection of background knowledge
axioms (i.e., the existing domain theory).

The induction constructor is not supported by DTAS/LOLA. The application of the in
duction constructor to domain theory evolution for synthesis (rather than analysis) systems is
an area we hope to investigate in our Dissertation.

4.1.2.4 Specifications

The framework for domain theory structure and evolution addresses the construction of ever-
larger-grained parts of domain theories. The next larger domain theory part addressed are con
structors that produce whole specifications from other whole specifications. Given our repre
sentation of domain theory evolution in DTAS. LOLA appears to support several specification
constructors. This section discusses the processes LOLA uses to implement these specification
constructors.

4.1.2.4.1 Uj e, SPi

The distributed union specification constructor takes an indexed collection of specifications
and creates a new specification that is the disjoint union of all their signatures and axioms.
Name conflicts are automatically disambiguated and therefore no sharing of symbols can oc
cur. DTAS/LOLA does not support this constructor. The colimit constructor, described below,
is used in our representation of DTAS/LOLA domain theory evolution.

4.1.2.4.2 translate SP by o

The translate constructor takes a specification morphism G and a source specification SP and
produces a new specification which is "a copy of SP, but with possibly renamed symbols via
G. We showed a typical DTAS/LOLA domain theory as a collection of specifications related
by inclusion morphisms and definitional extension morphisms. The translate constructor is
used to provide these inclusion morphisms and definitional extension morphisms.

Of course a typical DTAS performance system does not represent these morphisms ex
plicitly, but rather implements them in several ways. We presume that spec CSPEC,
spec Netlist, and the inclusion morphism from the former to the latter are implemented in the
DTAS language compiler, spec Cell-Library is presumably represented as a text file and the
definitional extension morphism is represented by the process of successfully compiling the
cell library, spec Decomposition-Methods is presumably represented by a collection of rewrite
rules that operate on compiled design problem specifications. The inclusion morphism from
spec CSPEC to spec Decomposition-Methods is presumably represented by an object base
manager that provides the compiled design problem specifications (in an internal form such as
syntax trees) to the rewrite rules for manipulation. The inclusion morphisms from the old to
the new versions of spec Cell-Library and spec Construction-Methods is represented only by
the progression of time between additions to the spec Cell-Library and execution of LOLA's
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"technology compilation" algorithm.

4.1.2.4.3 derive from SP' by O

The derive constructor takes a target specification SP' and a specification morphism C : SP
—¥ SP' and produces a source specification SP. SP is produced by following o backwards. SP
contains translations of only those symbols which map to SP' symbols in the image of G. The
semantics (i.e., "models" or "interpretations") of SP are defined by the reduct over G. The re-
duct is a function that translates SP' models into SP models by forgetting the carrier sets and
functions of SP' that are not in the image of G. DTAS performance systems support the de
rive constructor by allowing the end user to create instances of CSPEC (problem specifica
tions) and Netlist (solution implementation).

4.1.2.4.4 iso close SP

The isomorphic closure constructor takes a specification SP and produces a new specification
SP' with the same signature as SP but whose models are isomorphic [27]. If a standard inter
pretation paradigm is chosen (e.g.. "initial" or "final" semantics [27]), then SP' can have dif
ferent axioms from SP. DTAS/LOLA does not support the isomorphic closure constructor.

4.1.2.4.5 minimal SP wrt G

The minimal wrt constructor takes a specification SP (with signature Z) and a signature mor-
phisms G : r —> Z and produces a specification with signature Z but the models of which
are minimal extensions of their G-reducts. If a standard interpretation paradigm is chosen,
then SP' can have different axioms from SP. DTAS/LOLA does not support the minimal wrt
constructor.

4.1.2.4.6 abstract SP wrt 0(X)

The abstract wrt constructor takes a specification SP and a collection of sentences with free
variables in X and produces a specification SP' with the same signature as SP but the models
of which are observationally equivalent [27] with respect to the sentences 0(X). If a standard
inteipretation paradigm is chosen, then SP' can have different axioms from SP. DTAS/LOLA
does not support the abstract wrt constructor.

4.1.2.4.7 XX: Zp^r • SP^s

The parameterize-by constructor takes a body specification SP^es Queue) and an actual
parameter specification SPpgj. (e.g., Nat) and instantiates a new specification (e.g., Queue-of-
Nat). DTAS/LOLA does not support the parameterize-by constructor.

4.1.2.4.8 colimit of diagram D

The colimit constructor takes a diagram D of specifications and specification morphisms and
produces a specification that is the minimal disjoint union of all the specifications in D while
taking into account the sharing of symbols defined by the specification morphisms in D.

We represented LOLA's generation of the new collection of construction methods as
the colimit of spec Netlist, spec Cell-Library, spec Construction-Method-Templates, and the
morphisms between them. LOLA implements this colimit construction in its "technology com
pilation algorithm." The technology compilation algorithm scans the current cell library search
ing for cells that match the left hand side of "acquisition templates" and generates new con
struction methods. Acquisition templates are 2-tiered rewrite rules that when finding a match
ing pattern in the cell library, instantiate a new rewrite rule (i.e., a construction method)
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specific to what was found in the cell library. Acquisition templates take the form of "if the
cell library has a functional unit X but no functional unit Y. then instantiate a construction
method that implements Ys as Xs." For example, if the cell library has a NAND functional
unit, but no INV functional unit, then a construction method will be instantiated that imple
ments INVs as NANDs.

4.1.3 Conclusions on LOLA

LOLA enables a typical DTAS performance system to evolve in only 1 direction: the addition
(and deletion) of cells to the cell library. This narrow focus enables the DTAS performance
system's domain theory to be automatically regenerated. DTAS/LOLA uses component repre
sentations that are mostly syntactic. This decision results in languages for problem .specifica
tion and cell library component representations that are difficult to evolve. These unchange
able languages prevent LOLA's adoption of more interesting knowledge acquisition and do
main theory evolution processes. LOLA conflates the domain expert's knowledge acquisition
language meta-ZA and the end user's solution implementation language EC. These reference
architecture functional elements should be disjoint.

For the reviews which follow, resource limitations prevent detailed descriptions of how
each knowledge acquisition tool supports each atomic domain theory constructor. Please refer
to Section 5 on page 57 for summaries of which constructors each tool supports.

4.2 Ozym

Ozym [13] is a research prototype knowledge acquisition tool which synthesizes domain-spe
cific application generators (i.e., the performance system is an application generator). Applica
tion generators [4] are used mostly in the relational database development community to auto
mate the construction of user interfaces, reports, and table definitions from high-level specifi
cations. Application generators use simple translation techniques such as context-free macro
expansion to generate implementation code from specifications. Ozym seeks to improve the
quality of generated code by adding domain knowledge to the translation process. As a do
main model evolves, the application generator must be regenerated to take the domain mod
el's new knowledge into account. The new application generator generates code from specifi
cations in the application domain.

Ozym domain models are classes in an object-oriented programming language. Ozym
enables a domain expert to more easily extend a domain model by providing him with a high-
level, structural specification language for defining new class compositions. The domain ex
pert need not know all details of the composed classes in order to compose them together. In
this way Ozym enables domain models to be evolved by composing elementary building-
block cla.s.ses into new classes. The new classes can serve as building blocks for new classes,
and so on.

Using the framework for domain theory structure and evolution, we represent Ozym's
architecture. This representation uses structured domain theories to represent Ozym's domain
models. Many representational decisions have been made in the recasting process, but we be
lieve we have captured the e.s.sence of Ozym's mechanisms for domain model evolution.

Every Ozym domain model features the structures shown in the diagram of specifica
tions and specification morphisms below. Individual Ozym environments add domain-indepen
dent and domain-dependent domain theories to this fundamental structure. The structures
shown below provide generic, non-evolvable. semantic definitions upon which Ozym environ
ments build.
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Figure 4.4 Ozym's Domain-Independent Architecture
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Domain model construction in Ozym in based upon the following concepts.

• Definition of attributes based on well-defined scales of measurement

• Aggregation of attributes into classes

• Composition of classes into new classes

The diagram on the left represents generic theories of scales of measurement and of units of
measurement. The diagram on the right represents generic theories of attributes and classes.

The subject of scales and units of measurement, which is familiar to statisticians, has
been largely ignored in the creation of type systems for programming languages. Ozym is a
notable exception. Scales of measurement are important to define valid transformations on da
ta. For example, if we constructed a computer program that determines the average qualities
of football players, an invalid transformation would be one that takes the jersey number of
each player, calculates the average number, and assigns that number to a hypothetical "aver
age" player. Without proper attention to scales of measurement, such illegal transformations
produce subtle bugs which ultimately undermine the validity of other calculations.

The specification Measurement-Scale, show at the top of the diagram is syntactic and
defines the language of values and scales shared by all measurement scales. The most basic
measurement scale is the Nominal-Scale, which groups measurements into equivalence class
es. Each equivalence class is a different "value." Examples of Nominal scales include gender
(with values Male and Female), football player jersey numbers, etc. The Ordinal-Scale in-
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dudes all the properties of Nominal-Scale (hence the inclusion morphism from Nominal-Scale
to Ordinal-Scale) and adds to them the concept of a total order on values. Together the Nomi
nal-Scale and Ordinal-Scale are known as the "•qualitative" scales. The Interval-Scale extends
the properties of an ordinal scale with the concept of magnitude represented by a numeric val
ue of a unit of measurement. A unit of measurement provides a symbol, the unit name (such
as meters, feet, seconds, etc.) and a granularity representing the smallest possible quantity of
the unit considered in the application domain. To be meaningful, a unit must be associated ei
ther with the Interval-Scale or Ratio-Scale. The Ratio-Scale extends the concepts of an Inter
val-Scale by adding the concept of a non-arbitrary absolute zero, thereby enabling multiplica
tion and division of measurements. Derived-Unit defines the concept of units such meters per
second, kilogram-meters per second per second, etc.

The inclusion morphism from Measurement-Scale to Attribute indicates that every At
tribute defined must be related to a Measurement-Scale. The specification Attribute defines
the properties common to all attributes, namely that an attribute has exactly one measurement
scale associated with it; possesses a set of population parameters defining the likelihood that
the attribute will have a certain value; a set of admissible transformations on the value of the
attribute, given the measurement scale and unit associated with it; and that attributes can be
built as extensions to other attributes. The fact that attributes are aggregated together to form
classes is represented by the inclusion morphism from Attribute to Class. Class defines proper
ties common to all classes, namely the distinction of attributes as to whether they are primi
tive or derived; the distinction of attributes as to whether they are key or nonkey; the proper
ties of functions (i.e., methods) that modify attribute values; and the properties of procedures
to instantiate and delete class instances (i.e., objects).

The diagram of specifications and specification morphisms below represents the exist
ence of 4 domain-expert-defined units of measurement. A specification morphism from the
specification of each new unit of measurement back to the theories Unit or Derived-Unit repre
sents the fact that each new unit is a theorem of the generic theories of Units or Derived-
Units. We use undecorated morphisms such as these to denote instantiation relationships be
tween specifications. The collection of new units of measurement created by the domain ex-
pen. Weight-in-Pounds, Time-in-Years, Money-in-Dollars, and Speed-in-m/s. can be reused in
the construction of new Ozym application generators. Note that the non-derived units of mea
surement defined can later be associated with either the interval scale or ratio scale (or possi
bly both), depending upon the evolutionary path taken by the domain theory. Ozym thus de
couples units from measurement scales in a well-defined manner and enables domain experts
to take advantage of possible combinations of units and scales, as needs arise in the evolution
of the domain model. Thus Ozym domain experts are provided with an elegant type definition
facility.
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Figure 4.5 Ozym Domain Expert Instantiates New Unit Definitions
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The diagram below represents the existence of domain-expert-defined theories defining
new scales of measurement. The definition of nominal and ordinal scales of measurement,
such as ID-Number, Person-Name-Type, and Title-Type is less complex than the definition of
interval and ratio scales. This is because nominal and ordinal scales require no units of mea
surement. Interval-Date-in-Years, Ralio-Weight-in-Pounds. and Ratio-Cost-in-$ use the unit
definitions represented in the previous diagram.

We represent the construction of interval and ratio scales of measurement via colimit
diagrams. For example, Ratio-Cost-in-$ is defined as the colimit of the diagram formed by
Money-in-Dollars, Unit. Interval-Scale, Ratio-Scale, and the morphisms shown between them.
Thus Ratio-Cost-in-$ is the minimal theory containing all the properties of Money-in-Dollars,
Unit. Interval-Scale, and Ratio-Scale, while taking into account the sharing of symbols de
fined by the morphisms. Ozym hides the complexity of the unit and scale combinations by
providing GUI dialog boxes that offer lists of already-defined units and scales to assist in the
definition of new units.
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Figure 4.6 Ozym Domain Expert Deflnes New Scales
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The diagram below represents the existence of a number of attributes, created by a do
main expert. Each attribute is based upon exactly one scale of measurement, but it is possible
for a scale of measurement to be used by more than one attribute. This association is partly
represented by the inclusion morphisms from the domain-expert-created measurement scales
discussed earlier to theories defining specific, new attributes. The attribute definitions add in
formation about population parameters and admissible transformations associated with each at
tribute. As indicated in previous diagrams, the instantiation relation is shown as well.
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Figure 4.7 Ozym Domain Expert Creates New Attributes
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The diagram below represents how a collection of domain-experi-defined attributes are
aggregated together in the definition of a new class (class Book in this case). In addition to
containing all the attributes shown, the specification Book also defines operations to modify at
tribute values, such as the operation Age, which returns a value derived from the attribute
Copyright-Date. Any operations defined for a particular class must be consistent with the gen
eral requirements for such operations defined in the specification Class.

Figure 4.8 Ozym Domain Expert Defines a New Class
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Weight
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Classes
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Classes in an Ozym performance system are distinguished as to whether they are do
main-specific or domain-independent. The diagram below represents a collection of domain-
specific and domain-independent classes. Domain-independent classes can be shared between
different Ozym application domains. Examples of domain-independent classes include Book
and Person, shown in the diagram in the left group of specifications. Domain-dependent class
es are constructed by domain experts specifically for use in his application domain. Examples
of domain-dependent classes include Ilem-lo-be-Loaned and Member, shown in the diagram
in the right group of specifications. We imagine that the application domain is relational data
bases for various lending & renting organizations e.g., libraries, sports equipment centers, car
rental services, etc.).
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Figure 4.9 Ozym's Segregation of Classes
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The diagram below represents the situation in which the end user defines two new, do
main specific classes by combining the already-existing classes just mentioned. This is where
the end user (i.e., application program developer) begins to use the classes already constructed
by the domain expert. The end user wishes the attributes and properties of Book and Item-to-
be-Loaned to be combined to form a new. domain-specific class, Library-Book. This combina
tion operation is analogous to multiple inheritance in some object-oriented programming lan
guages. We represent Ozym's class combination operation using a colimit, as shown in the di
agram below. Specification Library-Book is shown below as the colimit of specifications
Book. Item-to-be-Loaned, and One-Sort. The specification One-Sort is used only to indicate
the shared parts of Book and Item-to-be-Loaned. One-Sort is not a class, but only an auxiliary
specification used to compute the colimit. Likewise, One-Sort is used again to compute Li
brary-Patron as the colimit of Person and Member. The specification Checkout is an associa
tion between the classes Library-Book and Library-Patron and is represented by an instance of
the Class specification that imports both Library-Book and Library-Patron.
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Figure 4.10 Ozym End User Composes Classes Together
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The diagram below summarizes our discussion (thus far) of Ozym's architecture.
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Figure 4.11 Ozym's Typical Domain-Speciflc Architecture
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How do the components and connectors of a typical Ozym performance system archi
tecture map to the draft knowledge acquisition tool reference architecture functional elements?
Recall that XA is the functional element providing an abstract specification language in which
end user (i.e.. application program developer) represent problems within the domain. £C is
functional element providing the concrete implementation language in which solutions are rep
resented, and ABS is the functional element providing a collection of abstraction functions
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that relate SC objects to ZA objects. Problem specifications constructed by Ozym end users
take the form of terms in a language of class compositions. We imagine that the structure of
this language can be represented by the specification below.

spec SIGMA-A is
sorts class

op 8 class . class -> class
const Book class
const Person class

Item-to-be-Loaned : class

end-spec

A "string" in this specification language could be represented by the following specification.
spec Library-Book-Spec is
import SIGMA-A
axiom

(equal
(® Book item-to-be-Loaned)
Library-Book)

end-spec

This specification language is structural in nature and analogous to our diagrams of
specifications and specification morphisms. It is not obvious how to represent a language like
this in our framework, because it deals directly with program artifacts rather than domain-ori
ented concepts. In the specification language, a class is purley syntactic and is an instance of
a sort (sort "class"), but we have represented classes in the domain theory as specifications.
The framework does not (yet) have a formal mechanism to directly relate symbols (instances
of a sort) to theories.

We encountered this kind of problem and documented it in [26]. There, we devised a
language for adding knowledge to a domain theory about different kinds of representation con
versions. We accomplished this by drawing a diagram such as the one we used to introduce
spec TIME, which we provide again below. In [26], a meta-domain theory about representa
tion conversions is used to extend a domain theory with specific new knowledge obtained
from a diagram like the one below.

UTC-Calendar-\
Date

et2utcC

utcC2ei

Ephemeris-
Time

utcD2et

et2utcD

UTC-Date-
Day-Of-Year

The Ozym specification language presents a similar problem, but at the level of writ
ing problem specifications, rather than at the level of domain theory evolution. We envision a
similar solution as used in [26], but cannot work out all the details of such a solution because
of resource limitations. At this time, we do not know how to show the relationship between
Ozym's specification language and other parts of its domain theory. Thus ZA is not shown in
the preceding Ozym domain theory diagrams.

Notice that the Ozym specification language evolves in a very restricted manner: Only
terms of sort "class" can be added. Once the new terms are added, they can be immediately
used to define new instances of sort "class." This kind of evolution can be succinctly repre
sented by a definitional extension. Recall that a definitional extension is like extending the def
inition of a programming language by creating a new function and making the function a prim
itive of the language. The semantics (i.e., models) of the original and extended language are
exactly the same. A definitional extension is a restricted inclusion morphism and is represent-
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ed in a diagram by a "d" decoration next to the morphism's arrow, as shown below.

SA -SA'

The quasi-architecture diagram below summarize evolution of Ozym domain-specific
architectures. The specification language lA can only undergo definitional extension, as
brought about by the end user creating new problem specifications (i.e.. class compositions).
Theories defining measurement scales, units, attributes in general and classes in general can
not evolve. The domain expert evolves theories defining specific units, measurement scales, at
tributes, domain-independent, and domain-dependent classes. We believe these evoiutionar>'
steps will usually be inclusion morphisms. Lastly, the end user evolves the collection of com
posed, application-specific classes as a result of writing a specification in SA.

Figure 4.12 Ozym Domain-Speciric Architecture Evolves
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4.3 SALT

SALT [20] generates domain-specific expert systems that solve a class of simple design prob
lem using a method known as "propose and revise." SALT operates in design domains where
designs can be represented by a list of design parameters. A design parameter is an global, im
perative variable (i.e., it can remember its last value) of numeric or enumerated type that is
calculated from conditional, equational formulas (i.e., axioms) of other design parameters or
looked up in tables. The use of design parameters is common in many established engineering
disciplines (e.g., mechanical, civil, and aeronautical engineering) where the principal means of
organizing domain knowledge is via sets of equations that simultaneously hold.

Some design parameters are given as input or stated as constants by the engineer (i.e..
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the end user of a SALT-generated performance system). Input and constant design parameters
are used to calculate the initial values of other design parameters. Thus a collection of design
parameters forms a dependency graph. A dependency graph can be represented by a collection
of axioms. Often cycles exist in the dependency graph. Several iterations around the cycle are
needed for the collection of design parameters to converge on a design solution. When no con
flicts exist among the design parameters, a design solution has been found. This kind of de
sign makes no use of predefined units that encapsulate elementary functionality (e.g., reusable
software or hardware components). Propose and revise design problems focus more on design
parameter optimization.

While complex dependency graphs can be drawn for propose and revise domain theo
ries. these graphs only show functional dependencies between design parameters. Specifica
tion structuring is poor. Thus propose and revise domain theories tend to be monolithic, every
design parameter can conceivably view every other design parameter (i.e.. all design parame
ters are global).

In this section we present our interpretation of SALT's architecture. The diagram of
specifications and specification morphisms shown below is our interpretation of the part of the
elevator design performance system's (i.e.. the OPS5 expert system generated by SALT) do
main model. The domain theory can be modularized into at most 2 parts, a speciHcation lan
guage and an implementation language. Cycles in dependency graphs prevent the implementa
tion language from being broken up into smaller specifications.

lnput-&-Constant-Vaiue-Procs Other-Procs-Constraints-Fixes

The specification on the left, Input-&-Constani-Value-Procs ("Procs" is an abbrevia
tion for "procedures."), contains declarations for design parameters which are given as input
or constant by the end user. A collection of these design parameters with assigned values rep
resents a problem specification. Hence Input-&-Constant-Value-Procs defines the domain theo
ry's specification language. lA. In SALT domain models, every design parameter has a proce
dure to provide it a value. Procedures can be formulas (conditional, equationally-defined func
tions), table lookups, or provide constant, user-defined values.

The specification on the right. Other-Procs-Consiraints-Fixes, contains declarations for
all procedures that are not constants or inputs, procedures that compute constraints for other
design parameters, and special procedures called "fixes" that change a design parameter's val
ue when the parameters fails to satisfy a constraint. Fixes temporarily override the normal pro
cedure associated with the design parameter and are what cause design calculations to iterate.
Because the procedures in Other-Procs-Constraints-Fixes have visibility over all the input and
constant design parameters. Input-&-Constant-Value-Procs is imported by Other-Procs-Con-
straint.s-Fixes. hence the inclusion morphism from the former to the latter. Becau.se a design
consists of the final values assigned to the design parameters in Other-Procs-Constraint.s-Fix-
es. we say that Other-Procs-Constraints-Fixes provides the implementation language. SC.

Recall that SALT generates performance .systems that apply the propose-and-revise
problem-solving method. In our interpretation of SALT's architecture, we show how propose-
and-revise provides a domain-independent language in which to represent domain theories. Do
main experts gain acce.ss to the language of propose-and-revise via a knowledge acquisition
language for defining design parameters and procedures to calculate, constrain and fix design
parameters. The relationship between SALT's knowledge acquisition language and a generic
theory of propose-and-revise is shown in the diagram below. This approach is what Gruber
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[9] calls "task-level architectures."

KA-Language — i Theory-of-Propose-&-Revise

The specification on the left. KA-Language. defines the knowledge acquisition lan
guage. The vocabulary of this language consists of design parameters, procedures to compute
design parameters, tables, constraints on design parameters, fixes to design parameters, terms,
and sentences. The specification on the right. Theory-of-Propose-&-Revise. defines the pro-
pose-and-revise solution method. The specification Theory-of-Propose-&-Revise defines pro
cesses that apply to the vocabulary of KA-Language. hence the inclusion morphism from KA-
Language to Theory-of-Propose-&-Revise. At the beginning of design synthesis, the "pro
pose" process takes the input and constant design parameter values and propagates parameter
design values as far as possible through the dependency graph. When a constraint on a design
parameter is violated (e.g.. the design parameter's value is too great), the "revise" process
overrides the value of one of the design parameters on which the violated parameter depends.
The "propose" process works again to propagate the new parameter value as until a constraint
is violated or ail constraints are satisfied and all parameters have been calculated.

A domain expert represents domain knowledge by definitionally
extending KA-Language, as shown in the diagram adjacent. KA-Language KA-Language
provides a language and the specification Domain-Spec represents a 1
"string" in that language. Thus Domain-Spec contains definitions of de- '
sign parameters, constraints against design parameters, and fixes for de- ^
sign parameters when their constraints are violated. We the domain ex- 4
pert's process as a definitional extension because every design parameter .
he defines can be used as a primitive vocabulary element in a later know]- Domain-Spec
edge acquisition interview.

Given KA-Language, Theory-of-Propose-&-Revise, and Domain-Spec, SALT gener
ates a domain-specific performance system. This generation process is represented by the
colimit diagram below. Recall that colimit generation constructs the minimal specification
which is the union of all argument .specifications while taking account of the sharing of sym
bols defined by specification morphisms. The environment generation process takes every de
sign parameter defined by the domain expert and reformulates it into an equivalent, rule-based
representation in the expert system program language used in SALT-generated design environ
ments. 0PS5. LA and LC represent the parts of the design environment represented in 0PS5.

Domain-Spec
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Figure 4.13 SALT Generates the Domain-Specinc Performance System
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Our notation does not fully express the details of generating the design environment.
Colimits alone are not enough to generate a representation of the design environment. Refor
mulation and instantiation are also required. Domain-Spec represents design parameters, proce
dures, constraints, and fixes by instances of sorts in the vocabulary of KA-Language. In order
to provide real-world semantics and make the generated design environment perform infer
ence. these instances (which are only symbols) need to be reformulated into actual functions
and associated axioms. In other words, the representation of parameters, procedures, con
straints, and fixes in ZA and ZC must closely map to their rule-based representation in the
real-world OPS5 knowledge base (i.e.. the domain theory of the design environment/perfor
mance system).

Recall that end users of a performance system represent problems using the domain-
specific specification language ZA. In an analogous manner, a domain expert uses a meta-de-
sign environment to construct specifications of domain knowledge. The domain expert uses a
domain-specific specification language for representing domain knowledge (i.e., a domain-spe
cific, knowledge acquisition language). In the diagram above this language is denoted by meta-
Sigma-A. Also recall that end u.sers of a design environment synthesize solutions to problems
represented in ZA. Solutions are represented in the language ZC. In an analogous manner, a
domain expert uses a knowledge acquisition tool to synthesize implementations of specifica
tions of domain knowledge. A solution is the design environment/performance system. In the
diagram above the language of design environments is denoted by meta-Sigma-C.
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The NAIF domain theory [19] was developed completely by hand. It contained a large
number of very similar axioms defining representation conversions on time, position, and di
rection. Every lime a new FORTRAN subroutine was added to the NAIF library (known as
SPICELIB). a knowledge engineer would need to manually add 6 axioms to the domain theo
ry defining the new conversion subroutine. This was error prone and seemed redundant. Be
cause all the conversion subroutines possessed similar behavior, we defined a generic specifi
cation of that behavior, Representation-Conversion, and effectively instantiated copies of it for
every conversion subroutine we wished to include in the domain theory. The idea was that the
domain expert could draw a graph representing a family of similar conversion subroutines.
The tool would take the graph and synthesize a fragment of the domain theory (i.e., the speci
fication Time in figure 4.14) dealing with that family of conversion subroutines.

SALT'S approach to domain theory evolution is represented in figure 4.15 on page 48.
The idea is that every time the domain expert makes a definitional extension to KA-Language,
i.e., defines new or revises the existing collection of design parameters, constraints, and fixes,
the performance system is regenerated.

meta-Sigma-C'

Time-

Kernel
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Figure 4.15 SALT^s Approach to Domain Theory Evolution
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4.4 Protege

Protege [23] is a knowledge acquisiiion tool with many similarities to SALT. The most im
portant difference is that instead of using a theory of propose-and-revise to structure a domain
theory (as is done in SALT), Protege uses a theory of "skeletal plan refinement." Skeletal
plan refinement is a problem-solving (i.e., planning) method in which a rudimentary (or "skel
etal") plan is instantiated and incrementally elaborated until all placeholders in the plan have
been filled it by actual events. Skeletal plan refinement does not use backtracking: once a new
skeletal plan has been instantiated, it cannot be replaced by a different skeletal plan. Once an
event has been attached to a skeletal plan, the event cannot be replaced by a different event.
Protege was applied to a domain in which this kind of planning makes sense, hypertension
treatment planning. Hypertension treatments are executed in 1 or 2 week periods between pa-
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tient visits. Once executed, treatments obviously cannot be "undone." hence there is no need
for backtracking. Because the effects of treatments vary from patient to patient, it makes no
sense to make long-term, detailed treatment plans.

This section describes our interpretation of a typical PROTEGE architecture and how it
supports domain theory structure and evolution. We begin by discussing the structure of a do
main theory used by a typical PROTEOE-generated performance system. Figure 4.16, "Protege-
generated Performance System Domain Theory Structure." on page 49 is shown below. The
specification Input-Data-Lang on the left represents the end user's problem specification lan
guage lA. The specification Recommended-Plan-Lang on the right represents the end user's
solution representation language IC. In the example performance system used in [9]. the vo
cabulary of Input-Data-Lang deals with the patient's blood pressure, pulse rate, respiration,
and weight. The vocabulary of Recommended-Plan-Lang deals with tablets, tests, and waiting
periods. A patient visits the doctor's office, has his blood pressure, pulse, respiration, and
weight measured, and a hypertension treatment for the next 1 or 2 weeks, consisting of a se
quence of tablets, tests, and waiting periods, is synthesized by the performance system.

Figure 4.16 PROTEOE-generated Performance System Domain Theory Structure

IInput-Data-Lang Recommended-Plan-Lang

Protege uses a general theory of skeletal plan refinement to structure a domain theo
ry. The diagram below is our interpretation of how Protege breaks up the theory of skeletal
plan refinement to make a portion of it available as a knowledge acquisition language. The
specification on the left, SPR-Sigma. represents the signature or language of the theory of skel
etal plan refinement. The vocabulary of SPR-Sigma deals with hierarchical planning entities,
task-level actions, and input data. The specification on the right, Theory-of-Skeletal-Plan-Re-
finement, imports the language of SPR-Sigma and provides axioms giving that language se
mantics. Like SALT, PROTEGE also applies the concept of a "task-level architecture" [9].

Figure 4.17 Protege's Domain-Independent KA Language and Problem-Solving
Method Theory

SPR-Sigma —1 -^Theory-of-Skeletal-Plan-Refinement

Protege's author argues that the one of the original goals of knowledge acquisition,
to replace the knowledge engineer with a tool that a domain expert can use alone, is not
achievable and is unnecessary. In Protege, a knowledge engineer extends Protege (which
of itself is domain-independent) into a domain-specific knowledge acquisition tool. This pro
cess is represented by Figure 4.18. "Protege's Domain-Independent KA Language Made Do
main-Specific," on page 50. In collaboration with a domain expert, the knowledge engineer ac
complishes this by extending SPR-Sigma into the specification Domain-Specific-KA-Lang.
This extension renames the domain-independent vocabulary of SPR-Sigma into an domain-spe
cific (i.e.. mnemonic) vocabulary. Domain-Specific-KA-Lang's top-level planning entity is a
protocol. Lower-level planning entities below protocol are tablet, lest, and wait. Recall that
tablet, test, and wait are elements of the vocabulary of the performance system's implementa
tion language ZC. Domain-Specific-KA-Lang's task-level actions are end-protocol, increase-
dose. decrease-dose, add-tablet, stop-tablet, and order-test. Domain-Specific-KA-Lang's input
data language vocabulary has elements for blood pressure, pulse rate, respiration, and weight.
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Figure 4.18 Protege's Domain-Independent KA Language Made Domain-Specific

SPR-Sigma

Domain-Specific-KA-Lang

After the knowledge engineer defines Domain-Specific-KA-Lang. a domain expert
adds domain knowledge by creating a definitional extension, as shown in Figure 4.19. "Pro
tege Domain Expert Uses Domain-Specific KA Language." on page 50. The kind of knowl
edge added by the domain expert deals with skeletal hypertension treatment plans. These skel
etal plans are simple process specifications. Within a given skeletal treatment plan, a domain
expert can define actions to take in response to input data values. For example, under the
SANDOZ 331 protocol, if the patient's sitting diastolic blood pressure exceeds 90 mm Hg.
then the end-protocol action must be taken.

Figure 4.19 Protege Domain Expert Uses Domain-Specific KA Language

SPR-Sigma

Domain-Specific-KA-Lang

Domain-Spec

After the domain expert defines a collection of protocols (i.e., planning entities) and ac
tions within each protocol (i.e., task-level actions), a new performance system can be generat
ed. This process is represented in Figure 4.20, "Protege Synthesizes the Domain-Specific Per
formance System," on page 51. We again represent this process using a colimit diagram. How
ever, as was the case with SALT, we believe that colimits alone are not able to synthesize a
complete representation of the performance system. Please refer to our discussion of these is
sues in page 46.
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Figure 4.20 Protege Synthesizes the Domain-Specific Performance System
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Figure 4.21, "Protege's Approach to Domain Theory Evolution," on page 52 concludes
our interpretation of PROTEGE'S architecture and how it supports domain theory evolution.
Overall PROTEGE and SALT have very similar structure (cf. Figure 4.15, "SALT'S Approach
to Domain Theory Evolution," on page 48). As revealed by recasting SALT and PROTEGE
within the framework, we see that there are only 2 important differences between the two
tools.
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Figure 4.21 Protege's Approach to Domain Theory Evolution
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The first key difference between SALT and Protege is the choice of domain-indepen
dent problem solving method. SALT uses the theory of propose-and-revise to structure do
main theories, while Protege uses the theory of skeletal-plan-refinement to structure domain
theories. The second difference is that PROTEGE makes the knowledge acquisition language do-
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main-specific by allowing the items of the vocabulary of the domain-independent knowledge
acquisition language to be refined and renamed so that they are mnemonic within the applica
tion domain. Other than these differences, when viewed from within our framework for do
main theory evolution, SALT and PROTEGE have basically the same architecture and support
domain theory evolution in the same ways.

4.5 ASK

ASK [9] is a knowledge acquisition tool which goes a step beyond the capabilities of SALT
and Protege in the area of acquiring domain-specific problem-solving knowledge. The kinds
of problem-solving knowledge SALT and Protege can apply to a specific problem are com
pletely specified a priori with the selection of which knowledge acquisition tool to use. SALT
or Protege. This is because SALT and PROTEGE are hardwired to problem-solving methods
(i.e.. the domain-independent problem-solving theories). Thus it is not possible for a domain
expert to extend SALT- or PROTEGE-generated performance systems with new domain-specif
ic, problem-solving knowledge.

Execution of an ASK-generaied performance system can be interrupted at any time for
knowledge acquisition interviews. Thus the performance system is meant to be used by both
end users and domain experts. An ASK-generated performance system works interactively
with its user. An ASK-generated performance system does not synthesize a complete design
or plan in batch mode, but rather interactively synthesizes a plan one action at a time.

In [9], ASK was applied to an acute medical care application domain, chest pain diag
nosis. In this application domain, the user (an M.D. or other medical professional) uses the
ASK-generated performance system while the patient is in the doctor's office being examined.
The user inputs data describing the patient's complaint and condition. Given this data, the per
formance system provides a list of ranked actions which might be applied next. The user
chooses one of these actions from the list, e.g., run an EKG test, and performs the con-espond-
ing real-world action on the patient. The performance system asks what the results of the ac
tion are and provides a new ranked list of actions one of which can be applied next. This prob
lem-solving method is call "prospective diagnosis."

If the user is unsatisfied with the list of actions provided at any point in the interac
tion. the user can initiate a knowledge acquisition interview to help the performance system
improve its choices. This is where the user can add domain-specific problem-solving knowl
edge to complement the domain-independent problem-solving knowledge provided by a theo
ry of prospective-diagnosis.

This section presents our interpretation of ASK's architecture and how it supports do
main theory evolution. Figure 4.22. "ASK-generated Performance System Architecture," on
page 54 is shown below. This diagram shows the organization of problem specification lan
guage ZA. consisting solely of the specification D-S-Control-Features; the solution implemen
tation language ZC, consisting solely of the specification D-S-Actions; and the implementa
tion relation language ABS, consisting solely of the specification D-S-Strategic rules. Togeth
er these form the performance system (i.e., the language meta-ZC).
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Figure 4.22 ASK-generated Performance System Architecture
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I meta- SC

D-S-Control-Features contains the set of domain-specific control features. Gruber de
fines a control feature as a variable or function that gives the inference engine information
about the current state of the problem (i.e.. what is known about the problem) being executed
by the performance system. Predicates can be written using control features in order to define
"situations." A situation is a class of problem states, e.g.. the patient is over 50 year old and is
a smoker. D-S-Actions contains the set of domain-specific actions to perform, e.g.. order an
EKG test. D-S-Strategic-Rules contains the set of "strategic rules." Strategic rules map a situa
tion (i.e., a class of problem states) to a ranked list of actions, one of which can be selected
by the user and performed next. Thus D-S-Strategic-Rules includes both D-S-Control-Features
and D-S-Actions.

Figure 4.23. "ASK Domain Language and Hardwired Problem-Solving Theory." on
page 54 is shown below. D-S-Substantive-KB is the domain-specific "substantive knowledge
base." Our interpretation is that the substantive knowledge base provides the domain-specific
language upon which control features and actions are later defined. D-S-Substantive-KB is pro
duced by the knowledge engineering in consultation with the domain expert when the domain-
specific instantiation of ASK is being constructed. Note that ASK does not provide the do
main expert with any means of evolving the basic domain vocabulary. D-S-Substantive-KB is
mapped into the specification Theory-of-Prospective-Diagnosis via a specification morphism,
thus embedding the domain-specific language into the domain-independent problem-solving
method.

Figure 4.23 ASK Domain Language and Hardwired Problem-Solving Theory

D-S-Substantive-KB Theory-of-Prospectlve-Diagnosis

Figure 4.24. "ASK's Relationships Between Languages." on page 55 is shown below.
The basic domain-specific vocabulary provided by D-S-Substantive-KB is imported by D-S-
Control-Features and by D-S-Actions.



Using a Framework for Domain Theory Structure and Evolution toEvaluate Knowledge Acquisition Tools
Arthur Alexander Reyes

Figure 4.24 ASK's Relationships Between Languages

D-S-Substantive-KB Theor7-of-Prospective-Diagnosis

D-S-Control-Features D-S-Actions

meta- ZC

Figure 4.25, "ASK Synthesizes the Domain-Specific Performance System," on page 55
is shown below. Again we represent the synthesis of the domain-specific performance system
using a colimit diagram. This diagram represents generation of only the default set of domain-
specific strategic rules, i.e., the set of domain-independent strategic rules provided by Theory-
of-Prospective-Diagnosis.

Figure 4.25 ASK Synthesizes the Domain-Specific Performance System

D-S-Substantive-KB Theory-of-Prospective-Diagnosis

D-S-Control-Features D-S-Strategic-Rules D-S-Actions

meta-IC

Figure 4.26, "ASK's Approach to Domain Theory Evolution," on page 56 is shown be
low. This diagram represents the process in which the domain expert initiates a knowledge ac
quisition interview. A knowledge acquisition interview can cause conservative extensions of
D-S-Strategic-Rules, but only definitional extensions to D-S-Control-Features and D-S-Actions.
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Figure 4.26 ASK's Approach to Domain Theory Evolution

D-S-Substantive-KB Theory-of-Prospective-Dlagnosis

D-S-Control-Features D-S-Strategic-Rules D-S-Actions

D-S-Control-Features' D-S-Strategic-Rules' D-S-Actions'

u u

meta-SC

ASK supports a similar group of atomic specification constructors as SALT and Pro
tege as well as the induction sentence constructor. However, in achieving support for induc
tion, ASK seems to have conflated meta-ZC and meta-ZA. These functional elements of the
reference architecture should be disjoint. This conflation makes the architecture much more
difficult to understand than well-structured tools such as SALT and Protege.
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5 Summary

This section summarizes our evaluation of the 5 knowledge acquisition tools. The table below
indicates which tool supports which atomic domain theory constructors and for which role
("eu" for end user and "de" for domain expert).

Matrix 2: Atomic Domain Theory Constructors Supported by KA Tools Surveyed

Part of

Domain

Theory

instances

Sentences

Institutions

Constructor

const i

const i : S1,S2

op f : SI -> 82

sort S

sort-axiom PS = S1,S2

sort-axiom CS = S1+S2

ort-axiom F SI -> S2

sort-axiom SS = S|p

sort-axiom QS = S/e

human invention

deduction

induction

universal instantiation

sorts S ops Q axioms O

Ui el SPj

translate SP by a

derive from SP' by a

iso close SP

minimal SP wrt a

abstract SP wrt 0(X)

XX: Ip„r . SP,e,
colimit of D

I = (Sign,Sen,Mod,1=5;)

(<I),a,P)
Duplex

Multiplex

Constructor

Specialization

unconstructed

constructed

function

inclusion

definitional ext.

renamma

instantiation

analogy

LOLA Ozym SALT

eu,de

eu,de

eu,de

We clearly see that most atomic domain theory constructors are not supported. Howev-
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er. those constructors that are supported are supported by most of the tools surveyed. The
large number of unsupported constructors may indicate a new research agenda for knowledge
acquisition tools. Thus the framework indicates kinds of domain theory evolution that have
not yet been explored in knowledge acquisition tools for synthesis.

Not shown in the summary table is the parsimony of each tool architecture with the
draft reference architecture for knowledge acquisition tools defined in Section 3.2 on page 16.
This aspect of architectural support is addressed next. We notice that SALT and Protege
map the components and connectors of their architectures to the reference architecture in the
most straightforward manner. There is no conflation of functional elements. LOLA. Ozym.
and ASK do not map their architectural components and connectors to the reference architec
ture in a straightforward manner. LOLA conflates meta-IA and IC. Ozym does not have a
clearly defined interface between ZA and the remainder of its architecture. ASK conflates
meta-ZA and ABS.

6 Conclusions

This survey presented a framework for domain theory structure and evolution. This
framework served as an architectural metalanguage in which to recast tools for evaluation.
This framework/metalanguage laid out theoretical boundaries for the space of domain theory
evolution. We used our understanding of Amphion [19] to help define a draft reference archi
tecture for knowledge acquisition tools. Together the metalanguage and reference architecture
were used to qualify knowledge acquisition tool support for domain theory structure and evo
lution in an embryonic. SAAM-style [15] evaluation. This survey discovered that most of the
space of domain theory evolution remains unexploited by knowledge acquisition tools for syn
thesis.

By recasting knowledge acquisition tool architectures within the framework, this sur
vey identified two important and interesting themes: "task-level architectures" and colimits.
"Task-level architectures" (TLAs) are used in SALT an Protege and enable a domain-inde
pendent, problem-solving method to organize a narrowly-focused, domain-dependent knowl
edge acquisition tool. The two knowledge acquisition tools based on TLAs mapped neatly
onto the draft reference architecture. The obvious drawback of TLAs is that hardwiring a
knowledge acquisition tool to a single problem-solving method forever limits the applicability
of the tool. Real-world application domains are complex and have aspects which cannot all be
solved by a single problem-solving method. This indicates that perhaps our research should fo
cus on using the framework to build a more general TLA-style knowledge acquisition tool, al
lowing multiple problem-solving methods to be applied to evolution of a single, complex do
main theory.

This survey found colimits to be ubiquitous in structuring and evolving domain theo
ries. Colimits provide a useful means of modularizing a collection of theories. However, in
the area of synthesis of the performance system, colimits alone are not enough and must be
complemented with representation reformulations and universal instantiation. This indicates
that perhaps our research should focus also on using colimits to organize an elegant approach
to domain theory synthesis.

Because so much of the space of domain theory evolution remains unexploited by cur
rent knowledge acquisition tools for synthesis, we believe we have established a research goal
for the discipline of knowledge acquisition. This new research goal seeks to establish a syner
gy between the disciplines of knowledge acquisition and algebraic specification. Knowledge
acquisition will benefit from the synergy by receiving a correctness-preserving, formal frame
work for domain theory structuring and evolution. Algebraic specification will benefit from
the synergy by focussing on a new kind of theory, namely domain theories, rather than pro
gram specifications. We believe this synergy will help to solve long-range problems in Soft-
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ware Engineering's new era of domain-specificity.
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