UC Berkeley
SEMM Reports Series

Title
Accuracy Control of a Direct Spectral Method for Nonlinear Elastic Problems

Permalink
bttgs:ggescholarshiQ.orgéucéitemélwwaSgd
Authors

Wisniewski, Krzysztof
Taylor, Robert

Publication Date
1989-11-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1ww6x5gn
https://escholarship.org
http://www.cdlib.org/

REPORT NO. STRUCTURAL ENGINEERING
UCB/SEMM-89/21 MECHANICS AND MATERIALS

ACCURACY CONTROL
OF A DIRECT SPECTRAL METHOD
FOR NONLINEAR ELASTIC PROBLEMS

BY

K. WISNIEWSKI and R. L. TAYLOR

NOVEMBER 1989 DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA




ACCURACY CONTROL OF A DIRECT SPECTRAL METHOD
FOR NONLINEAR ELASTIC PROBLEMS

by
KRZYSZTOF WISNIEWSKT; and ROBERT L.TAYLORt

ABSTRACT

An accuracy control procedure for nonlinear elastic problems discretized by the direct spectral
method is presented. Two forms of the Lax-Richtmyer conditions for convergence are discussed and
an error estimation formula suitable for numerical applications is given. It is shown that for an incre-
mental formulation an inconsistency in the. approximation scheme may be caused only by an under-
representation of global displacements. A procedure to control the solution in the transform space
for a Newton - Raphson type algorithm is proposed. An active solution space is defined and an
adaptive algorithm is formulated to adjust the spectral representation to changes of this space.

Numerical examples illustrate application of the method to some linear and nonlinear problems
for circular elastic rings.
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ACCURACY CONTROL OF A DIRECT SPECTRAL METHOD
FOR NONLINEAR ELASTIC PROBLEMS

by
KRZYSZTOF WISNIEWSKI and ROBERT L.TAYLOR

1. INTRODUCTION

Spectral methods may be used to expand the solution of the differential equations in terms of
global basis functions. For many applications spectral methods have the potential for rapid conver-
gence. The methods have been extensively tested within the field of fluid mechanics and have pro-
vided primary solution techniques in areas such as simulation of turbulent flows and computation of
transition to turbulence, as reported in a recent survey by Hussaini, Kopriva, Patera [1989].
Although problem solutions in solid and structural mechanics are dominated by applications of the
finite element method spectral methods have been used successfully to solve many problems. Prob-
lems of symmetric bodies subjected to unsymmetric loads seem to be especially well suited for these
methods, see Wisniewski, Taylor [1989]

The direct spectral method may be classified as a Galerkin method which uses trigonometric
identities and exact integration. Integrals are calculated by reduction of trigonometric polynomials to
polynomials of second order for which integrals are exact. Details for this step are included in Sec-
tion 2.

Several aspects of the method related to convergence, error control and space adaptation are
studied in the present paper. The problem of convergence may be treated via the Lax - Richtmyer
conditions which impose certain restrictions on the approximation scheme. However, a classical form
of these conditions checks the consistency on an exact solution which is unknown for complicated
boundary value problems. To alleviate this problem an alternative form of the Lax - Richtmyer con-
ditions is formulated (Section 3) and a simpler form is given later in Section 4. This form provides a
measure of error based on an estimation of the residual of the exact equation. In Section 5 an incon-
sistency of the tangent operator for a direct spectral method is discussed. It is pointed out that the
inconsistency is caused only by an incompleteness of the representation for the global displacements.
Consequently, the problem of consistency is replaced by the problem of controlling and adjusting the
solution space. For cases where loads are represented exactly, the residual of the approximate equili-
brium equation is identical to the residual of the exact equation. Hence, convergence to the exact
solution is automatically coerced by the Newton - Raphson method. Finally, in Section 6 a space
adaptation strategy is described. This strategy determines an active part of the solution space after
each step of the Newton - Raphson method and resizes the approximation space as the active space
enlarges. Section 7 describes results of numerical calculations on some linear and non-linear test

problems..

2. DIRECT SPECTRAL METHOD

The purpose of this chapter is to characterize the direct spectral method as an approximation
scheme for partial differential equations. Partially we follow here a description given by Gottlieb and
Orszag [1977] and Wisniewski and Taylor [1989].

Let us assume that » is an element of a space K . The solution of the equation L u = f
in domain D belongs to the subspace B of K satisfying boundary conditions B u = 0 on aD .
When a boundary value problem is well posed L is a bounded operator from K to B .



-3

The formulation of a spectral method involves two steps :

(i) the choice of an approximation space By which is an N-dimensional subspace of B ,

(ii) the choice of the projection operator Py of B onto By
The operator Py is used to obtain finite dimensional projections uy = Py u and
fx = Py f . Anapproximation to the governing equation is in the form

Ly uy = fn (2.1)
where an operator Ly from K to By isexpressedas Ly = Py L Pyl.

'Two types of approximations are used: Galerkin and collocation and each is based on a trun-
cated series representation:

w@) = 3 o) 22

where 1, (x) are specified linearly independent functions. Usually, Fourier or Chebyshev series are
used as a basis of the approximation space.

In a classical Galerkin approximation, the functions 1,(x) must individually satisfy the boun-
dary conditions and the coefficients @, are determined from the equation :

(ta sLuy) = (tp,f), n=1,..N (2.3)
with the inner product defined as (a,b) = [a b dD .

D
If £,(x) do not individually satisfy the boundary conditions then an additional k boundary con-
straints are imposed as
N+k
> a,Bt, =0 (2.9
n=0

where N + k is the number of terms in the representation (2.2). The coefficients a, are deter-
mined from the N equations of (2.3) and k equations of (2.4). This method is sometimes also
called the tau or Lanczos approximation.

A classical collocation approximation requires the equilibrium equation to be satisfied at
N+1 collocation points x;

Sant) = ue) . 0N 2.9

The direct spectral method is characterized in our work as a Galerkin approximation which is

based on Fourier series and an exact integration procedure. It may be used for both linear and non-
linear equations.
For linear problems the term (', ,L uy ) in equation (2.3) is a second order trigonometric polyno-
mial for which exact integrals are known. For incremental nonlinear problems L is a tangent opera-
tor and an integration scheme must be specified to deal with trigonometric polynomials of 3rd and
higher orderin (#, ,L uy ). In the direct method trigonometric identities of the type:

sind; sind; = %[ —cos(dy+dy) +cos (g —dby)] (2.6)

are used to reduce the order of products in the trigonometric series to polynomials of the second
order for which integrals are known.

3. ALTERNATIVE FORM OF LAX - RICHTMYER CONDITION

The Lax - Richtmyer condition introduces notions of consistency and stability which separate
factors necessary for the convergence of a solution. A classical form of this condition results from



the following identities:
Uy = LN—I fN (3.1.3)
u=(Ly' Ly)u (3.1.b)
Li'(Lu—-f)=0 (3.1.0

If we subtract equation (3.1.b) from equation (3.1.a) and add equation (3.1.c) then after reordering
terms we get:

u—uy = Lyt (Ly —L)u + Lyt (f —fn) (3.2
and the following estimation holds:

[l —uy [| = LF" V1 (Ly =L ) u ||+ [ L7 ] HOE =fn ) (3.3)
with || || denoting a proper norm. Necessary and sufficient conditions for the convergence of
uy to u are formulated as:
the stability condition

[l Lyt || <k , k — constant (3.4.a)

and the consistency conditions |
tim [ (Ly =L )u || =0 (3.4.5)
im || (f ~fy) || =0 (3.4.9

The Lax - Richtmyer condition given in Eq. (3.3) has a substantial disadvantage when applied to
complicated boundary value problems: an exact form of the solution u is not known and the related
term cannot be estimated. Similarly, the consistency condition (3.4.b) also cannot be estimated and
the usefulness of this form of the condition is very limited.

An alternative formulation can be obtained when the identities given below are used instead of
equations (3.1).

u=L71f (3.5.a)
uy = (LY L )uy (3.5.b)
LY (Lyuy —fny)=0 (3.5.0
These identities lead to
u—uy = L(L —Ly)uy + L7(f —fn) (3.6)
and the subsequent estimation holds:
Wu —wy = [IL7 (L =Ly Yy [|+ [TZ7V|]ICF =) B

For this formulation the estimation of || u —uy || does not depend on the unknown exact solu-
tion u . The alternative consistency condition, to replace equation (3.4.b), may be defined as:

IlviEH(L—LN)“NH:O (3.8)

which states that closeness of operators L and Ly should also hold on the approximate solution
Uy .

The stability condition, which in the classical formulation was expressed in terms of Ly!, Eq.
(3.4.2), now refers to the operator L~! , which, analogically, must be bounded from above.



4. ERROR ESTIMATION

Consistency and stability of an approximation scheme guarantee convergence as the size of the
approximation space goes to infinity. For finite dimensional spaces a distance between the approxi-
mate solution and the exact one need to be estimated.

'The error defined as ey = u —uy can be expressed as:

u—uy = L(f —L uy) 4.1
obtained by subtraction of equation (3.5.b) from equation (3.5.a). The following estimation holds:
w —uy [ = [IL7 ] (f ~Luy) || (4.2)

These equations are equivalent to the conditions given by equations (3.6) and (3.7) but are more
useful in numerical applications.

To estimate || L~ || we notice that if the strain energy is positive definite the operator L
is bijective and bounded below. Then the inverse operator L~ is bounded from above

LY || <k , k — constant (4.3)
and equation (4.2) may be rewritten as:
u —uy || <k [](f —Luy)|l (4.9)

The term (f —L uy ) is a residual of the exact differential equations of the problem for the
approximate solution uy .

For many methods of discretization it is not easy to estimate the residual as the derivatives in
L are of higher order than derivatives in Ly . For example the finite element appraximations are
very often based on polynomials of the lowest admissible order and higher order derivatives (than
those in the functional) are not immediately accessible. Additional post - processing techniques are
necessary (e.g., see Babuska, Miller [1984]). For spectral approximations based on Fourier series
which are functions of class C* this problem does not exist.

We conclude this part with some remarks related to evaluation of the solution for space By in
comparison with the solution for space By., , which very often is done when an exact solution is
not known. We assume that the same discretization procedure is used to generate equations for two
approximation spaces of sizc N and N+M . For the h - version of the finite element method the
bigger space may be generated by a uniform subdivision of the original N elements into N+M
elements of the same type. For the spectral method (or p - version of FEM) we use approximation
functions (polynomials) of order N and N+M . The load vectors and the stiffness operators for
these spaces are denoted as follows :

[fn sLy ] for By , [fyem sLyim ] for Byiy 4.5

When a solution for the space By is evaluated in space By., then the measure of error is
defined as:

& = Uyn+m — Uy (4.6)
and may be estimated as

e = || (fyer —Lnn v ) || 4.7

Decayinthiserroronlyslmsthatbothsolutionsaredosetoeachotherbutdoesnotguaranteethat
the solution converges to the exact one. A divergence is caused by the approximation scheme used
to generate finite dimensional equations. Low order (for h - version of the FEM only), incomplete
approximation functions or numerical integration may render that the consistency condition (3.4.b)
or (3.8) fails. It is difficult to check the consistency and therefore different conditions are formu-
lated to assure the convergence. For example, within the finite element method, the usefulness of the
so called "patch test" has been acknowledged, see Taylor et al. [1986].

The consistency problem for the direct spectral method will be discussed in the next section.
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5. CONSISTENCY FOR THE INCREMENTAL FORMULATION

A question of consistency of the tangent operator for an incremental formulation of nonlinear
problems is addressed and a procedure eliminating factors which may cause an inconsistency for the
direct spectral method is formulated.

Let us consider an incremental formulation of the nonlinear problem (formulas derived for a
circular ring are given in the Appendix). We denote a tangent operator by Lj . This operator
depends on a known solution & = uf where i is an index for the previous iteration. The stan-
dard Newton - Raphson procedure is defined by:

L Auftl = R (5.1)
uf™ = ul + Auf! (5.2

The residual (unbalanced) forces are given as follows
R = fy — L uj, (5.3)

where L is a nonlinear equilibrium operator in a weak form. For cases with loads exactly
represented by a series of size N ,i.e. when f = fy , the residual of the approximate equilibrium
equation is identical to the residual of the exact equation.

If the method is convergent the residual forces R’ and the error of approximation (the norm
of Eq.(5.3) is used in Eq.(4.4)) are minimized. Hence, the convergence to the exact solution is
automatically coerced by the Newton - Raphson method.

If the method defined by (5.1) to (5.3) is divergent then an inconsistency in the tangent opera-
tor Lf must be suspected. This operator depends on the global displacements & and, as no numer-
ical integration is used to generate it, the low order or incompleteness of the approximation series for

u are the only possible source of an inconsistency.

Because the consistency of the tangent operator is difficult to prove a procedure intended to
eliminate the underrepresentation factor, which may cause the inconsistency, is proposed.

Firstly, it is assumed that all terms of Auy are used to calculate the global displacements i . The
maximum size of the space for & is limited to the size of the space for Auy , see (5.2).

Secondly, the representation of the incremental displacements Auy is controlled to determine the
number of distinct (active) terms of Auy, .

Thirdly, the size of the active and the approximation space for Auy are compared and, if necessary,
the approximation space is resized.

In this way the problem of consistency of Lj; , is reduced to the problem of controlling and adjusting
the representation of incremental displacements. Details of the adaptation procedure are given in
Section 6.

6. SPACE ADAPTATION

All the space adaptation methods are based on a posteriori error estimates. Two basic tech-
niques for such estimates are used in the finite element method: one based on estimates of residuals
and another based on interpolation error estimates, Oden et al.[1986], Zienkiewicz et al. [1986].

The proposed space control and adaptation procedure is applied after each load increment. A
part of the spectrum which significantly contributes to the solution (active part) is determined and, as
necessary, the approximation space is resized.

Let uy be a solution obtained by means of Eq.(5.1) to (5.3) for a given load f . An active
part of this solution is defined as a series for n = 0,...,M which guarantees a required accuracy T .
Several measures are used to determine the active part of the solution:

— for residual forces:

W =Lw) [ =7]1f |l (6.1)
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(uy , (f ~Luy))=7(uy,f) (6.2)

— for displacements:
Huy =g [| =7 ||y || (6.3)

— for strain energy:
(uy s fu)=7(uy,f) (6.4

A largest value of M calculated from equations (6.1) to (6.4) is an actual size of the active space.

After the above evaluation, the size of the active space and the approximation space are com-
pared.
1. The approximation space is enlarged if M =N —buyffer . A new size is equal
N = M + buffer where the buffer denotes an additional set of terms, which are used to avoid
recalculation at the same load level for cases when M =N . If however M < N , i.e. when the
buffer diminished only, then the space is resized and the next load step is executed.

2. The approximation space is not changed for M < N — buffer .
7. NUMERICAL EXAMPLES : ELASTIC, CIRCULAR RING

7.A. LINEAR PROBLEMS

If we use Fourier representations for the displacement vector u:
N
u= E u, tn (7.1)
n=0

then the linear elastic stiffness operator L splits into parts L, related to individual harmonics » .
In this case the displacements u, = (w, ,v, ) dependonlyonloads £, = (fun , fon )-

Example 7.A.1. Spectral flexibility
Let’s assume that the load is a one - parameter function, namely the load is given as
f. = (fun »0). We define a spectral flexibility s, as a ratio:
un
Sun =
-
where u, isacomponent of the displacement vector u, . If the operator L, = LT then the spec-
tral decomposition provides L, = U A UT , where A is a diagonal matrix of eigenvalues and U is
an orthonormal matrix of eigenvectors. The parameters s,, are entirely expressed by the eigen-
values and eigenvectors of the operator L, .

[j""] - Lo [(1,] (7.2.b)

v

(7.2.a)

A circular, elastic ring under transverse spectral loads given as f,, = 1.0 for n=0,..,100 is
analyzed. Geometrical parameters of the ring are: radius @ = 100.0 , thickness # = 1.0, Young’s
modulus E = 0.3 108 . The equations used for the analysis are described in the Appendix.

Results of this analysis ( s,, and s, in Fig. 7.1) indicate a considerable decrease of the
amplitudes of each harmonic as n increases. The same property is exhibited by the membrane
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forces N, . and the internal moments M, (Fig. 7.2).

The decreasing spectral flexibility is a quite promising property when loads are represented as
infinite series and permits neglecting harmonics with higher numbers.

Example 7.A.2. Pinched ring

This example is to compare the decay of errors of loads and displacements as functions of the
number of terms in their spectral representations.

The same ring as in Example 7.A.1 is analyzed. Loads consist of two concentrated forces
P =10 appliedat & =0° and ¢ = 180° . The exact representation of these loads is an infin-
ite series, obtained from this for the Dirac delta function and additionally rescaled. The following
finite series is used in calculations:

=q —1_ =
Pw = q N+1(1+§2 csnd) , n=24..N (7.3)

Loads calculated from this formula for ¢ = 1.0 and N = 100 are shown in Fig. 7.3. Results of
the analysis obtained for N = 100 are shown: displacements w, , v, in Fig. 7.4, normalized inter-
nal forces and moments N, , M, in Fg. 7.5.

The approximation error of the function g by a spectrum consisting of N harmonics is
defined as:

|lg —gv |l
e = T 7.4.a
Tz 1] (7.42)
The mean - square norm based on Fourier coefficients a, of the function g is defined as:
N
g [I*> = 2wa} + w3 a? (7.4.b)
n=1

'The norms based on values of g at control points j are defined as:
J
e |lh = max|g | Hg|!§=21gj2 (7.4.c)
J:

The mean - square errors of p,y related to loads for N = 1000 and the mean - square
errors of wy related to the solution for N = 1000 are shown in Fig. 7.6. Fig. 7.7 shows errors of
the displacements w calculated by Eq. (7.4.c) at uniformly distributed control points within
¢ =0,..180. The errors of displacements w, decrease much faster than the errors of loads
Pwn . For example, for N =10 errors of displacement in the defined norms are equal about
0.00001 % while errors of loads are 67.35 % . This indicates that very exact displacements may be
obtained even when loads are given by a short series and seem to be unadequately represented.

7.B. NONLINEAR PROBLEMS

Example 7.B.1. Spectral properties of the product operator

Two problems important for nonlinear operators and spectral representations are illustrated.
These are a boundedness of the product series for spectra of different profiles and an expansion of
the product for a simple iterative procedure.

Let O and O denote nonlinear operators acting on functions and their spectral representa-
tions, respectively. We assume that the following relations, between functions a,b,c and their



series representations, hold:
Sfunctions : ab ; ¢ =0 (a,b) (7.5)
series  : ayby 3 Cw =0 (ay,b,) (7.6)
for n=0,....N and m=0,... M
Profiles of a, and b, determine a profile of ¢, . Here, we calculate ¢, only for a simple
nonlinear operator, namely when O is a product operator:
O(a,b) =a*b (7.7)
For series representations operator O is replaced by O which in an additive form is:

O (a1}, bjt?) = a by 05(1p = 1%) (7.8)
where /=i+j and k=i—j . Trigonometric functions ¢3,t* can be expressed by trigonometric
functions ! , 12 according to standard trigonometric identities (e.g. (2.6)).

In calculations we assume that a, = b, ,i.e. O is a square operator. The spectrum a, is taken
as a constant (@, = 1.0), linear (@, = 1.0/n ) and quadratic (a, = 1.0/n? ) function of n . Cal-
culations are performed for N = 100 and results are presented in Fig. 7.8. The product consists of
harmonics with indices up to 2N . Results for the constant spectrum bound the results for the linear
and quadratic spectra.

If the square operator is used repeatedly, as when solving nonlinear equations, the spectral
representation expands. For the iteration procedure defined as:

fio= fi-1 % fi-t (7.9
with
N_,
fit =3 ai! cosn ¢ (7.10)
n=0
(i isan index of iteration) the result may be written as:
N N,
fi=3 a csnd = o > bl cosnd (7.11)
n=0 n=0
where o; = (o;1)2 B;, B; = maxal, N; = Ngi? and b isthe normalized af .
In our calculations the starting values for the iteration are chosen as:

a=10, n=0,.Ny, No=10, op=1.0 (7.12)

Normalized results for iterations i = 0,...,4 are shown in Fig. 7.9, and values of B; and N; are
placed in Table 7.1. A number of harmonics involved N; and a value of «; increases for each
iteration and for i = 4 we have:

Nyg=160 , oa4=(ag)®(B)®(B2)*(Bs) Bs (7.13)

Thus, in general use of product operators and iterative solutions leads to rapidly expanding number of
terms. In applications to problem solution this is balanced by other considerations as shown next.

Example 7.B.2. Nonlinear analysis for sdf-equilibrating loads

Application of the product operator presented in Example 7.B.1 using Fourier series to a
geometrically nonlinear analysis, does not require an approximation space of excessive size. A rea-
sonable size of the approximation space is preserved because the tendency to expand the representa-
tion is moderated by the decreasing spectral flexibility.
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A problem similar to the one described here was studied by Seide and Jamjoom [1974]. They
analyzed a circular ring subjected to forces:

po=a(l+qos2b) , ¢ =10,0.1,001 0001 (7.14)

In our analysis we assume that p, does not change direction during the deformation. Seide and
Jamjoom considered the following forces and used a completely different method of solution.
The analysis is based on the nonlinear equations for moderate rotations of rings summarized in the
Appendix. An approximation space of harmonics n = 0,...,9 is used.

The data is as follows : radius a = 100.0, thickness &2 = 1.0, Young’s modulus
E=0.12 108 . The dimensionless parameters are: %— = 100.0 and —‘-1-5-1— =10 .

For a uniform axisymmetric load, i.e. when ¢ = 0.0 in Eq.(7.14), the critical bifurcation
load is

EI
o, = 4 —;3-— (715)

For the given data o, = 4.0.

The load - displacement curves for w' at point & = 0° are presented in Fig. 7.10. It can be
observed that solutions approach the asymptotic line o« = 4.0. as g - 0. The performance of the
direct spectral algorithm was very good, especially in the comner of the curve for ¢ = 0.001 where
the solution exhibits a strongly nonlinear behavior. Several displacement patterns of the ring for dif-
ferent load levels (for ¢ = 0.001 ) are shown in Fig. 7.11., while their spectral representations are
given in Fg. 7.12.

The nonlinearity of the equations results in an increased number of harmonics with non-zero
coefficients, as explained in the previous example. However, as is evident from Fig. 7.12, their
amplitudes decrease very rapidly and influence of the harmonics higher than 4 is negligible. This
results from the fact that the elastic stiffness matrix with decreasing spectral flexibility (shown in
Examples 7.A.1 and 7.A.2) compensates for the tendency of the initial stress and initial displace-
ment matrices to expand the number of significant harmonics.

Example 7.B.3. Nonlinear analysis for a sinusoidal load

In this example we consider a circular ring with the same properties as in Example 7.A.1.

Loads are given by the series

po=a 2(1-3 =2 oxns] (716

. m 2 G+

which as N tends to infinity converges to the function sin ¢ and has a period 7 for even values
of n.
The load for series (7.16) and n = 0,...,50 is shown in Fig. 7.13. Note that the harmonic n = 1
is excluded as would lead to a non self-equilibrated solution. The first 28 harmonics constitute
more than 99% of the total value of the load function. Analyzing the displacements obtained from
a linear analysis it was found that for the first 6 harmonics the error, relative to the solution for 50
harmonics, is smaller than 0.1% .

The analysis is based on nonlinear equations which include effects for moderate rotations of the
ring, see the Appendix. Calculations were continued until points under maximums of the loads
(b = 90° and ¢ = 270°) came into contact. The tolerance parameter to control convergence of the
Newton - Raphson method was set to 1077 .

In the first step calculations were performed for N = 50 to obtain reference values. The load
- displacement curve is presented in Fig. 7.14. The w — displacement for different load values is
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shown in Fig. 7.15. Spectral representation for the w — displacements are given in Fig. 7.16,
Equations (6.1) to (6.4) were used to monitor the active part of the solution. Norms in the equa-
tions (6.1) and (6.3) were specified as the mean - square norms defined by Eq. 7.4.b. The tolerance
T was set to 10 3. The active space consisted of 6 harmonics throughout the entire analysis.
Later, the same problem was analyzed using the space adaptation strategy described in Section
6. The initial number of harmonics was N = 6 and the buffer was 2 harmonics. The solution
space was not resized and the results obtained are identical to those for the 50 harmonic model.

8. FINAL REMARKS

This paper provides some results illustrating convergence, error control and adaptivity proper-
ties of the direct spectral method.
Several examples are solved to assess performance of the method in modeling of linear and nonlinear
behavior of circular rings subjected to static loads. In all examples a dual representation of the solu-
tion (in physical and transform space) are monitored.
It is found that for linear cases the spectral flexibility decreases considerably for harmonics with
higher harmonic numbers. This feature is very important in cases where loads are represented as
infinite or non-decaying series.
For nonlinear applications with this type of loading the size of the active solution space is much
smaller that one would expect from the spectral properties of the product operator. The computed
examples show that the solution space does not expand significantly as compared to the space of a
corresponding linear problem. This rapid convergence is attributed to the decreasing spectral flexibil-
ity.
An adaptive strategy, which controls the resizing of the solution space, is implemented. Comparisons
with solutions for a full space indicate that high accuracy is preserved for the given definition of the
active space. The adaptive strategy improves the effectiveness of the formulation and is especially
important for practical applications of the spectral method.
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APPENDIX. RING EQUATIONS AND INCREMENTAL DESCRIPTION OF DEFORMATION

Governing equations for circular rings based on the Kirchhoff type hypothesis and on the
assumption about moderate rotations of the ring are presented by Brush, Almroth [1975].

For this theory measures of strain and changes of curvature are obtained from the Green strain
tensor and are given by:
y=0+%p2 , K=%- (A1)

'

with 6 = v__:_w__ and B =X ;W with transverse displacements w , tangent displacements

v and () = ‘—‘;K( ) ; where a denotes a radius of the undeformed ring.

For a ring in equilibrium under external dead loads f,, the virtual work principle may be
expressed as:

2m 2%
f[NS'y+M8K]d¢=ffw8w do (A.2)
0 0

where N , M are symmetric Lagrangean measures of internal forces and moments related to the
second Piola - Kirchhoff stress tensor and 8( ) denotes a variation.

Applying Stokes theorem to (A.2) we obtain the equilibrium equation:
aN + M —aNB =0 (A.3.3)

M' —aN~-a(NB) = f,a® (A3.b)

The strains are assumed to be small and the "first’ approximation of the strain energy £ for a
ring is defined as:
2% 2w
=847 vap + Eaf ay (A4)
0 0
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where EA , EI are the flexural and the bending stiffness, respectively.
The constitutive relations obtained from the energy = have the uncoupled forms

N =EAy , M = FA«k (A.5)

We next deduce incremental formulas which will be used to generate basic matrices of the
problem.

We consider the virtual work principle (A.2) for a ring in equilibrium under external surface
loads f, and internal forces and moments N, M . We introduce incremental relations for the dis-
placement vector u and the load vector f, as

u=a+An , f,=f,+Af, (A.6)

where known quantities are marked by a bar. The corresponding increments for measure of strains,
change of curvatures, internal forces and moments may be expressed as:

Ay=y—-¥ , Ak=k-K (A.7.a)
AN=N-N , AM=M-M (A.7.b)

Since @ is known the variation of u is replaced by a kinematically admissible variation of Au
ie. du = 8(Au). Similar relations hold for measures : &y = 3(Ay) and ¥« = 5(Ax) .

Let us split Ay and AN into linear (LN) and nonlinear (NL) parts, with respect to the incre-
ments of the displacement vector. Accordingly,

Ay = AyN 4+ Ay (A.8.a)
AN = ANV + ANML (A.8.b)

Hence, in view of incremental quantities defined above, the potential energy may be expressed as:
8P =3Py + 8P, + 8P3 + 8P, =0 (A.9)

and differentials are defined as follows:
2w
8Py = [ [AT S(AYN) + M 8(AK) — £, 5(Aw) — Af,, S(Aw) ] dé
0

5P, = 2f [N'a(AyNL) + AN™ 5(Ay¥) + AM 3(AK) ] dé
1]

2w
oP; = [ |8 a(ay®) + AN s(ay) | ag
0
2%

8Py = [ [ANNL ) ] db

0

The virtual work of external and internal forces for a known configuration is expressed as:
2w
BR = [ [¥ o(av¥) + 3 8(4w) ~ 7, 8(aw) | do (A10)
0

If a known configuration is an equilibrium configuration then 8R = 0 and we obtain the virtual
work principle. Otherwise (A.10) is treated as a virtual work of unbalanced internal forces and
moments.

In the process of linearization 8P; and &P, are omitted. Additionally, &P, is split by
introducing Ay = Ay + Ay* where Ay* depends only on Au while Ay depends on o
and on Au . In a similar way we treat ANM obtaining the following expressions for the second dif-
ferential:

8P, = 8P + 8PS + SPK + SPK- + &PYL (A.11)
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with
2w
Wy = f [AN" S(Ay’) + AM a(AK)] dé
2 2n
wpg = [ [szo S(AyL)] do , ok = [ANL S(Ay")] db
2n 2w
SPY ={[ANL a(AyL)]d¢ ,org = [Aia(AyNL)] db
Standard basic matrices are derived from the following parts of 8P, :
8P -~ [K, ]Aq
3PsL + dPK + 8P -~ [K, ]Aq (A.12)

8P - [K,;]Aq

where [K, ] is an elastic stiffness matrix, [ K, ] is an initial stress matrix, [ K, ] is an initial
displacement matrix, Aq is an increment of the displacement vector.



Table 7.1. Results of the iteration procedure

i Bi N;

0 1.9 10
1| 11.0 20
2| 7.8554} 40
3| 11.0954 | 80
4 | 15.2696 | 160




FIGURES

Example 7.A.1. Unit spectral loads

Fig.7.1. Spectral flexibility s,, and s,, of a circular ring under loads D = 1.0.
Fig.7.2. Spectra of membrane forces N, and internal moments M, of a circular ring under loads
Pwn = 1.0.

Example 7.A.2. Pinched ring

Fig7.3. Loads p, = ﬁlﬁ- (1+32cosnd ), n=24,.,100 modeling two concentrated
n

forces.
Fig.7.4. Displacements w, and v, of apinchedring. N = 100.
Fig.7.5. Normalized membrane forces N, and internal moments M, of a pinched ring

N =100.

Fig.7.6. Spectral errors of loads and displacements w for two concentrated forces related to
N =1000. '

Fig.7.7. Errors of displacements w for two concentrated forces related to N = 1000 computed at
control points.

Example 7.B.1. Spectral properties of the product operator

Fig.7.8.a. Spectrum of the product a, sinnd * a, sinmd for nm = 0,100 for constant, linear
and quadratic a, .

Fig.7.8.b. Spectrum of the product a, cosnd * a, cosmd for n,m = 0,100 for constant, linear
and quadratic a, .

Fig.7.8.c. Spectrum of the product a, sinnd * a,, cos mo for n,m = 0,100 for constant, linear
and quadratic a, .

10
Fig7.9. Normalized spectra for f1 = fi=1 * fi-l with i =1234. f° = 3 1cosnd .
n=0

Example 7.B.2. Nonlinear analysis for self-equilibrating loads

Fig7.10. Load - displacement curves for ring (point ¢ =0°) under Iloads
Pw =a(l+gcos2b), g =10,0.1,0.01,0.001 .

Fig.7.11. Displacements w of ring under loads p, = o (1 + ¢ cos2¢ ) for ¢ = 0.001.

Fig7.12.  Spectral representations of displacements w of ring under loads
Pw =a(l+qgcos2d ) for g =0.001.

Example 7.B.3. Nonlinear analysis for a sinusoidal load

Fig.7.13. Loads p, =~ sind for 0<d <.

Fig.7.14. Load - displacement w curves for ring under loads Pw = sind . Points & = (0° and
b =90° .

Fig.7.15. Displacements w of ring under loads p, ~ sind .

Fig.7.16. Spectral representation of displacements w, of ring under loads p,, = sind .
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Fig.7.1. Spectral flexibility s,, and S,» of a circular ring under loads p,,, = 1.0 .
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Fig.7.2.a. Spectrum of membrane forces N, of a circular ring under loads p,,, = 1.0 .
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Fig.7.2.b. Spectrum of internal moments M, of a circular ring under loads P =1.0.
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Fig.7.4. Displacements w, and v, of apinchedring N = 100.
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Fig.7.5. Normalized membrane forces N, and intemal moments M, of a pinched ring,
N =100. '
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Fig.7.6. Spectral errors of loads and displacements w for two concentrated forces related to
N = 1000 .
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Fig.7.7. Errors of displacements w for two concentrated forces related to N = 1000 computed at
control points.
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Fig.7.8.a. Spectrum of the product a, sinné * a, sinmdé for n,m = 0,100 for constant, linear
and quadratic a, .
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Fig.7.8.b. Spectrum of the product a, cosnd * a, cosm¢ for n,m = 0,100 for constant, linear
and quadratic a, .
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Fig.7.8.c. Spectrum of the product a, sinné * a, csmdé for n,m = 0,100 for constant, linear
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Fig.7.11. Displacements w of ring under loads p, = o (1+ ¢ cos 2 ) for ¢ = 0.001 .
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Fig.7.12.  Spectral  representations of displacements w of ring wunder loads
Pw=0a(l+qgcos2d ) for ¢ =0.001.
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Fig.7.14. Load - displacement w curves for ring under loads p,, = sin¢ . Points ¢ = 0° and
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Fig.7.15. Displacements w of ring under loads p,, = sind .
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Fig.7.16. Spectral representation of displacements w, of ring under loads p,, = sind .





