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ABSTRACT OF THE THESIS 

Computational Biomedicine via Single-Cell Analysis 

by 

Che Yu Lee 

Master of Science in Computer Science 

University of California, Irvine, 2023 

Assistant Professor Jing Zhang, Chair 

 

The advent of single-cell sequencing has allowed us to simultaneously capture transcripts 

in millions of cells, providing the opportunity to dissect important biological regulatory mechanisms 

at an unprecedented resolution. Unfortunately, computational modeling of single-cell data has 

faced several challenges. Specifically, it is sparse with many zeros, sensitive to numerous 

experimental confounding factors, and complicated with many non-linear biological interactions, 

making it hard for computational analysis. In the following three studies –– across the tissue-

cellular-DNA levels, we utilized biological information and mathematical models to address these 

computational challenges. Firstly, at the tissue level, we leveraged the resolution of single-cell 

sequencing to perform a novel cell-to-cell communication analysis to discover dysregulated 

communicating cell types. Secondly, at the cellular level, we performed a cell-type-specific 

analysis to identify key driver genes in Alcohol Use Disorder. Thirdly, at the DNA level, we 

developed a computational pipeline that studies virus infection that pinpoints retroviral integration 

sites at the genetic base pair resolution within specific cell types. By synergizing single-cell 

sequencing with tailored computational analyses, we pave the way for a new era in medicine, 

enabling physicians to practice with unparalleled insight and precision. 
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INTRODUCTION 

In medicine, studying the brain is of utmost importance. Psychiatric conditions are widespread, 

with depression alone affecting over 264 million people globally, according to the World Health 

Organization (WHO). Schizophrenia is estimated to affect about 20 million people worldwide 

(Kahn et al., 2015). Substance abuse, including alcohol and illicit drugs, contributes to over 11 

million deaths each year, and the global burden of disease attributable to substance abuse is 

substantial, with opioids and alcohol being significant contributors (Newton, 2018). 

Neurodegenerative diseases are also a growing concern, with Alzheimer's disease and other 

dementias affecting an estimated 50 million people worldwide—a number that is expected to triple 

by 2050 due to aging populations (DeTure & Dickson, 2019). These statistics underline the 

urgency of advancing our understanding and treatment of brain disorders. In computational 

biomedicine, the analysis of large-scale brain -omics using advanced algorithms could help 

identify patterns and risk factors, potentially leading to earlier intervention and more personalized 

approaches to treatment, ultimately aiming to mitigate the extensive individual and societal 

impacts of these conditions. 

 

The recent single-cell sequencing technology has revolutionized genetic and genomic studies by 

simultaneously profiling molecular signatures across thousands to millions of cells (Zheng et al., 

2017). It enables scientists to explore cellular diversity, gene expression patterns, and cellular 

interactions in complex tissues and health conditions, allowing us to identify unique cell types, 

discover disease-specific cellular signatures, and unravel the intricate mechanisms underlying 

genetic disorders. As a result, several single-cell genomic research studies have been conducted 

to investigate neurological disease pathology and provide new molecular insights. The complex 

and multidirectional interplay between these factors (and their properties) plays crucial roles in 
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tissue development, cellular responses, disease progression, and therapeutic interventions. 

Understanding and manipulating this relationship can provide insights into disease mechanisms 

and guide the development of novel therapeutic strategies. 

 

At the tissue level, our research has embraced the high resolution of single-cell sequencing to 

forge a novel analytical approach to cell-to-cell communication for psychiatric diseases. Most of 

the existing studies solely focused on molecular perturbations within each individual cell. 

However, cells are not isolated entities but live in a microenvironment, or cell niche, composed of 

dynamically interacting entities, including extracellular matrix (ECM), neighboring cells, and 

soluble factors (Bloom & Zaman, 2014; Spill, Reynolds, Kamm, & Zaman, 2016). We leveraged 

the large-scale and publicly available single-nucleus RNA sequencing (snRNA-seq) in the human 

brain to investigate cell-to-cell communication patterns and their perturbations in diseased 

phenotypes. This has unearthed previously obscured cellular dialogues, shedding light on the 

dysregulated communication networks that may underpin complex psychiatric diseases.  

 

At the cellular level, our focus shifted to deciphering the cryptic language of genes within the 

context of a subtype of substance abuse, Alcohol Use Disorder (AUD). Given the highly diversified 

nature of the affected biological processes, it is unlikely that one particular cell type is responsible 

for AUD pathology. The human brain is made up of a myriad of cell types and subtypes and 

several have been implicated in substance abuse pathology including both excitatory and 

inhibitory neurons, endothelial cells, and microglia that could be responsible for the changes 

observed (Hodge et al., 2019; Lake et al., 2018). By identifying the key driver genes, we have 

opened a window into the cellular mechanics that could be leveraged for therapeutic interventions.  

 

Finally, moving even deeper, at the DNA level, our work has honed a computational pipeline with 

the precision to study viruses and pinpoint retroviral integration sites, including HIV-associated 
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Dementia. The once-in-a-century COVID-19 pandemic has shown the importance of studying 

viral infections (Ahmad, Haroon, Baig, & Hui, 2020). Venus takes advantage of single-cell 

sequencing for virus detection and integration site discovery. Specifically, Venus addresses two 

main questions: whether a tissue/cell type is infected by viruses or a virus of interest? And if 

infected, whether and where has the virus inserted itself into the human genome? This tool offers 

a magnified view into the viral landscape of infected cells, with implications that stretch far beyond 

the immediate study. 
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CHAPTER 1: Cell-to-cell Communication 

Firstly, at the tissue level, we leveraged the resolution of single-cell sequencing to perform a novel 

cell-to-cell communication (C2C) analysis to discover dysregulated communicating cell types. We 

utilized the gene expression patterns of known ligand-receptor pairs from the snRNA-seq data to 

infer the C2C networks via popular software packages CellChat and NeuronChat (Figure 1) (Jin 

et al., 2021; Zhao, Johnston, Ren, Xu, & Nie, 2023). Specifically, we constructed a three-

dimensional matrix representing the communication strength between any sender and receiver 

cell type pair via a specific ligand-receptor pair. Finally, we connected them with downstream risk 

genes via NicheNet (Browaeys, Saelens, & Saeys, 2020). As a result, this allowed us to aggregate 

the C2C communication patterns in diseased brains, measure C2C changes between conditions, 

infer disease-driving signal pathways, and connect ligand genes to downstream risk genes in a 

cell-type-specific manner. We will discuss the detailed results in the following sections. 

Communication pattern analysis reveals inter-mixing of cell types and 

signaling pathways in brains affected with psychiatric disorders 

With the 3D C2C matrix constructed, we first explored how multiple cell types coordinate 

intercellular communications using certain pathways in an unsupervised manner. To achieve this 

goal, we first flattened the 3D communication matrix into a 2D sender-by-LigandReceptorPair 

matrix and performed non-negative matrix factorization (NMF) to identify latent communication 

groups and their key ligand-receptor signaling contributors (Brunet, Tamayo, Golub, & Mesirov, 

2004; D. D. Lee & Seung, 1999). We demonstrated our outgoing C2C network results in the 

alluvial plot, where the middle bar represents the latent patterns, and the flow indicates how 

different signaling pathways (or cell types) belong to each pattern. Interestingly, we found normal 

prefrontal cortices employ three distinct outgoing communication latent patterns in three major 
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cell groups, excitatory neurons, inhibitory neurons, and supporting cells. All of the outgoing 

supporting cells are characterized by pattern 1, dominated by biologically relevant pathways 

named after genes such as ANGPT, BMP, SPP1, and TGFβ (Figure 2). Inhibitory neurons are 

represented by pattern 2, driven by expected signaling pathways such as VIP, SST, CCK, and 

CRH while excitatory neurons are characterized by pattern 3, driven by signaling pathways such 

as CSF, SEMA3, and NRG. In contrast, we found that this pattern has been disrupted in 

Alzheimer’s Disease (AD) prefrontal cortices. For instance, the inhibitory and excitatory neurons 

demonstrated mixed latent communication patterns (e.g., Chandelier cells have been grouped 

into excitatory patterns in Alzheimer’s). In addition, the major driving signal pathways for different 

cell types also changed noticeably. For example, the WNT pathways became one major 

contributor to the excitatory group, while ANGPT switched from major contributors in supporting 

cells to the inhibitory group. Together, these results suggested extensive alterations in global C2C 

communication patterns and signaling usage in the outgoing network. 

 

Cell type-centric cell-to-cell comparison highlights disturbed 

communication strength across various cell types in brains affected 

with psychiatric disorders 

After checking the global C2C pattern perturbations, we focused on cell-type-centric 

communication changes by aggregating all Ligand receptor pairs in our 3D C2C matrix. In Post-

Traumatic Stress Disorder (PTSD), we found that the INH SST cells have significant 

downregulation of neurotransmitter synthesis and transport enzymes resulting in a decrease in 

sender communication when compared to other neuronal cell types (Figure 3A). We found that 

the differential strength of communication from INH SST to every other neuronal cell type was 

downregulated, and we observed modest decreases with astrocytes, endothelial cells, and OPCs 
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(Figure 3B). Noticeably, the most downregulated communication occurs from INH SST to INH 

KCNG1 cells. We speculate that downregulated communication signaling is related to GABAergic 

transmission decreases from INH SST cells throughout the PFC and is consistent with previous 

findings in the PTSD brain. 

Pathway-centric analysis of neuroinflammation and neuroprotection 

signaling in brains with psychiatric disorders are dis-regulated in a 

cell-type-specific manner 

Our previous analyses mainly focused on the cell-type-level communication strength 

perturbations in the C2C network comparison without considering the impact of their 

communication pathways. To fill this gap, we also performed a signaling-pathway-centric analysis 

by evaluating the contribution of all involved ligand-receptor pairs. Simply, for each ligand-

receptor interaction, we conducted a paired sample Wilcoxon signed-rank test comparing all 

possible sender-receiver cell type combinations between diseased and control groups (Conover, 

1971). A significant P-value occurs when all the interactions belonging to one diagnosis rank lower 

than the interactions from the other diagnosis (Figure 4A). We chose to focus on 4 canonical, 

literature-driven ligand-receptor interactions for further analysis, namely the WNT, CSF, TGFβ, 

and CX3C pathways, which were all statistically significant. 

 

Neuronal inflammation plays a significant role in the AD pathology. For instance, immune cells 

such as microglia respond to the accumulation of beta-amyloid plaques, a hallmark of Alzheimer's, 

by triggering an inflammatory response. Also, prolonged microglia activation can result in chronic 

inflammation, leading to neuronal damage and the exacerbation of plaque buildup, thus creating 

a vicious cycle. Consistently, we found that two inflammation-related pathways WNT and CSF 

are dysregulated in the C2C communication process in our analysis. For example, the WNT 
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signaling pathway plays multifaceted roles in CNS diseases by modulating neuroimmune 

interactions. We found that the WNT pathway has significantly reduced its involvement in C2C 

communication (30% of control, P=2.086e-7, Figure 4B), which has been primarily driven by the 

global reduction of communication usage from the sender endothelial cells to both inhibitory and 

excitatory neuron receivers. Mechanistically, the downregulation of the WNT ligand gene may 

cause overactivity of the lithium-targeted GSK3β enzyme, leading to changes in neurogenesis, 

inflammation, oxidative stress, and circadian dysregulation in neuronal cell types. Additionally, 

lines of literature reported that the CSF pathway is a well-known disease-related signaling 

pathway primarily involved in microglia. which can activate the recruitment of microglia and 

worsen inflammatory response. Consistently, we found that the CSF pathway has been 

significantly upregulated in AD patients (2.5x of control, P=0, Figure 4C). Such increased 

involvement is mainly driven by the increased communication from the excitatory neurons L6b to 

Microglia cells. 

 

Next, we move on to neuroprotective signaling pathways. We observed the downregulation of 

TGFβ signaling in Alzheimer’s in the communication to Micro/PVM cell type (60% of control, P=0, 

Figure 4D). A decreased TGFβ1 has been associated with a higher burden of Aβ in the 

parenchyma, which correlates with an increased microglia activation. The suppression of the 

neuroprotective role of the signaling pathway TGFβ1 against Aβ toxicity in the diseased cell types 

may be the molecular mechanism underlying the symptoms of Alzheimer’s disease. Adding on, 

we also found the decrease of another neuroprotective signaling pathway, the CX3C pathway 

(70% of control, P=4.883e-2, Figure 4E). CX3CL1 has been demonstrated to play a 

neuroprotective role in CNS by reducing neurotoxicity and microglial activation. Our C2C analysis 

agrees with the literature as we see all communication in the CX3C pathway is directed to the 

Micro/PVM cell type. Moreover, with single-cell resolution, we can further see that this decrease 

happens primarily from the excitatory neurons to Micro/PVM. In summary, we discover that both 
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the signaling pathways that cause neuroinflammation and those that protect against it are 

regulated in a cell-type-specific manner.  

Intracellular cell-to-cell communication analysis reveals a strong 

connection to neuroinflammatory psychiatric risk genes 

Lastly, we extend our extracellular cell-to-cell communication analysis by considering related 

disruptions to intracellular signaling pathways. Specifically, for each ligand gene, a database of 

ligands regulating downstream genes is constructed with a regulatory potential score (Kanehisa 

& Goto, 2000). We perform a correlation test of each target gene’s regulatory potential score with 

the actual gene expression to determine whether that ligand gene is important. By utilizing known 

risk genes and setting support cells (i.e., non-neurons) as the senders and neurons as the 

receivers, we find ligand-receptor links connecting risk genes to potential upstream effectors, such 

as FOXP1 and its ligand EBI3 in bipolar disorder and MECP2 and its ligand PDGFB in 

schizophrenia (Figure 5A, B). 

CHAPTER 2: Single-cell Multiomic Analysis 

Secondly, at the cellular level, we performed a cell-type-specific analysis to identify key driver 

genes in Alcohol Use Disorder. Alcohol Use Disorder (AUD) is a multigenic disorder occurring in 

the substance abuse of alcohol. Recent studies have begun to detail the molecular biology of the 

postmortem AUD brain using bulk-tissue transcriptomic and epigenetic analyses. However, given 

the array of AUD-perturbed molecular pathways identified thus far, it is unlikely that a single cell 

type is responsible. It is therefore necessary to uncover the individual cell types contributing to 

the molecular pathology of AUD (Akbarian et al., 2015). We performed a single-cell resolute 

transciptomic and epigenetic analysis (Figure 6). For gene expression (RNA), we tested whether 

differentially expressed genes and their pathways are enriched for specific biological functions in 
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each cell population (Li et al., 2020). For chromatin accessibility (ATAC), we will measure 

chromatin peaks in AUD that may affect gene expression (Granja et al., 2021; Stuart, Srivastava, 

Madad, Lareau, & Satija, 2021; Y. Zhang et al., 2008). 

Covariate-corrected differential analysis of gene expression between 

Alcohol Use Disorder cases and controls 

To better understand the cell type-specific biological processes affected by AUD, we first 

performed differential gene expression analysis systematically across all 7 brain cell type (17 sub 

cell types) clusters in the snRNA-seq dataset. We employed a method commonly used in the 

field: MAST with covariate correction (Finak et al., 2015). The covariates we employed in MAST 

included: age, sex, ancestry, PMI, and RIN. Specifically, we utilized a generalized linear model in 

which the first dimension was the condition of interest (AUD or Control) and the other dimensions 

were the covariates (McCullagh & Nelder, 1989). For each cluster, we report DEGs that were 

identified as overlapping between the two tests and shared directional fold change (FC) > 1.2 and 

FDR < 0.01. For our DEG analysis, we analyzed the canonical cell types but also examined gene 

expression in specific neuronal subtypes. Specifically, through the excitatory cell type, we found 

an upregulation of the ethanol metabolic enzyme, Aldehyde Dehydrogenase (Figure 7). 

CHAPTER 3: Venus 

Thirdly, at the DNA level, we developed a computational pipeline that studies virus infection that 

pinpoints retroviral integration sites at the genetic base pair resolution within specific cell types 

(Dobin & Gingeras, 2016; C. Y. Lee et al., 2022). Recent advances in single-cell RNA sequencing 

technologies have allowed us to simultaneously capture transcripts in millions of cells, providing 

the opportunity to dissect the transcriptome at a single-cell resolution. While several recent 

computational methods were developed to study viruses at a single-cell resolution, they failed to 
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identify the many integration-able viruses and report virus integration sites (Figure 8) (Chen et 

al., 2013; Yasumizu, Hara, Sakaguchi, & Ohkura, 2021). To address the aforementioned 

challenges, we developed Venus, an efficient Virus infection and fusion site detection method for 

both bulk-tissue and single-cell RNA-seq data. Venus consists of two main modules: virus 

detection and integration site discovery (Figure 9). 

Computational parameters of Venus’s Detection Module 

Venus utilized a sequential analysis to detect viruses (Fig 9A). It first aligned reads to the human 

genome and then aligned the leftover unmapped reads to a mega-viral genome. Finally, the 

virusThreshold parameter removed viral species with low number of supporting reads (S1 File). 

What is most important will be the threshold set for transcript filtering. We recommend starting 

with a threshold of zero first and then deciding on a new threshold with the results. For single-cell 

data, barcode and UMI were specified while a whitelist was inputted if available. 

 

Human genome (version GRCh38.p13) and annotation file (version GRCh38.p13) were 

downloaded from the GENCODE website. 7571 viral genomes were downloaded from NCBI and 

then concatenated to make the mega-virus index (annotation files were unavailable). Indices and 

reads were built and mapped using STAR version 2.7.9a (Dobin & Gingeras, 2016). To perform 

a limited amount of benchmarking on the detection module, we dropped out a certain portion of 

the reads and found that viral detection decreased with increasing dropout percentage (S4 File). 

Computational parameters of Venus’s Integration Module 

After detecting the virus of interest (target virus), we further developed efficient pipelines for 

integration site discovery. Specifically, Venus contained three steps for accurate integration site 

detection, as shown (Fig 9B). Parameters used are described and bolded (S2 File). What is most 
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important in the integration module will be the integrSeq.fna file, which contains biological 

sequences Venus should specifically look for in its fusion sites to classify meaningful integration 

sites. For HIV and other retroviruses, this will be the LTR sequences. Firstly, Venus selected the 

reads mappable to the target virus genome as the starting point for maximum processing 

efficiency because viruses have smaller genomes than humans and mapping first to the virus 

genome without splicing increases detection sensitivity. Secondly, the virus-mappable reads were 

then mapped with splicing to a custom hybrid genome, made from concatenating human and 

target viral fasta/gtf files. Thirdly, chimeric fusion transcripts were sorted and classified based on 

the integrSeq parameter to provide biologically relevant integration sites. 

Complexity analysis of Venus 

We performed runtime and memory analyses on a downsampled HIV-infected T-cell dataset with 

16 CPUs and 64 GB RAM. Runtime linearly depended on the number of reads, while memory 

remained constant at 30 GB, the size of the human genome (S3 File). A short list of Venus’s 

software dependencies includes STAR, Samtools, and Numpy, but a full list can be found on our 

GitHub page. For hardware dependencies, Venus needs to have a writing disk space of 100GB 

while around 30GB for RAM, ideally with at least 8 parallel threads for timely analysis. 

Venus precisely identified HIV-infected cells at a single-cell resolution 

in monocytes at various stages of maturity 

We first tested Venus’s detection module (Figure 9A). We demonstrated Venus’s single-cell 

capability by analyzing a HIV-infected single-cell dataset, which had 8 uninfected samples as 

controls, 24 HIV-infected as treatment one, and another 24 HIV-infected but AntiRetroviral 

Therapy-treated (ART) as treatment two (Figure 10A, B) (León-Rivera, Morsey, Niu, Fox, & 

Berman, 2020). As expected, Venus found no viral load in all control samples, high viral load in 
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treatment one, and low viral load in treatment two. Non-ART treated patients had a range of 531 

to 2670 HIV transcripts, significantly higher than those from ART-treated patients with 7 to 198 

HIV transcripts. Expectedly, ART treatment significantly suppressed viral load, exhibiting Venus’s 

accurate detection capability in a single-cell setting. 

 

To visualize Venus’s single-cell capability, we labeled each infected cell with Venus-generated 

output to produce a UMAP plot in Seurat (Figure 10C) (Butler, Hoffman, Smibert, Papalexi, & 

Satija, 2018). Out of the 25,211 cells that had passed Seurat’s default filters, 1056 cells harbored 

HIV transcripts. And after clustering, 12 different gene-expression groups of monocytes were 

found. While there was no preference for infection toward any of the 12 different clusters, it 

exhibits Venus’s capability to provide a single-cell resolution picture of viral infection. 

Venus discovered HIV integration sites with varying biological 

significance and confidence in T-cells 

We then tested Venus’s integration site discovery module (Figure 9b). Lines of literature have 

highlighted the importance of virus integration sites due to their strong linkage to viral persistence, 

especially in the incessant HIV/AIDs epidemic. Despite this, integration sites are often falsely 

concluded due to library preparation and sequencing artifacts. To address these challenges, 

Venus classified HIV fusion transcripts into three categories based on biological relevance: Class 

I) fusion sites with human sequence reading into HIV’s U3 sequence, HIV’s U5 reading into human 

sequence, or splice donor-acceptor pairs; Class II) fusion sites with the aforementioned 

sequences but reading into noncoding human regions; Class III) fusion sites mapped to the middle 

of HIV genes (Figure 11). 
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In the HIV-infected T-cells dataset, Venus found 17 Class I, 2 Class II, and 6116 Class III 

integration sites (Liu et al., 2020). We were confident that the first two classes of fusion sites were 

integration sites because of three telltale signs: 1) Unmatched sequences overlay perfectly onto 

the opposite specie’s reference; 2) Reads switch sharply in the middle between species, labeled 

by the red triangle breakpoints; 3) Nucleotides match the canonical U3 and U5 sequences used 

in HIV’s integration events (Figure 11A, B) (J. Zhang & Crumpacker, 2022). Indeed, all three 

signs together showed that biologically-accurate integration sites were detected. Integration sites 

are inherently very difficult to detect, requiring a sequencing depth of 10X coverage. While it may 

be interesting to compare across datasets, of the three HIV datasets studied, namely brain, 

monocytes, and T cells, only T cells were sequenced deeply enough to detect such integration 

sites. 

 

While both Venus’s integration site classification algorithm and visualization capability were used 

to obtain high-confidence integration sites, they were also used to discard biologically irrelevant 

fusion sites. In contrast to Class I and IIs, Class IIIs likely signified partial integrations and 

sequencing artifacts due to their HIV gene disruptions (Figure 11C). With the guide integrSeq 

parameter and subsequent visualization in IGV, Venus reduced the large amount of noise 

inherent to viral integration site discovery (Robinson et al., 2011). We have provided a 

visualization capability in Venus because we understood viral integration events may vary from 

virus to virus, thus wishing to rest the final decision to each user. In conclusion, not only could 

Venus detect chimeric fusion transcripts but also was it able to classify them into biologically 

meaningful integration sites. 
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CONCLUSION 

The leap forward afforded by single-cell sequencing has revolutionized our understanding of 

cellular complexity and the intricacies of gene expression. This technological marvel has provided 

us with the tools to delve into the biological labyrinth at a level of detail that was once beyond our 

reach. However, the path has been challenging. Computational modeling of such intricate data 

sets has been hampered by sparsity, confounding experimental variables, and the inherently non-

linear nature of biological systems. Despite these hurdles, the studies presented herein have not 

only navigated these challenges but have also turned them into opportunities for innovation and 

discovery. 

 

At the tissue level, our research has embraced the high resolution of single-cell sequencing to 

forge a novel analytical approach to cell-to-cell communication. This has unearthed previously 

obscured cellular dialogues, shedding light on the dysregulated communication networks that may 

underpin complex psychiatric disorders. At the cellular level, our focus shifted to deciphering the 

cryptic language of genes within the context of Alcohol Use Disorder. By identifying the key driver 

genes, we have opened a window into the cellular mechanics that could be leveraged for 

therapeutic interventions. Moving even deeper, at the DNA level, our work has honed a 

computational pipeline with the precision to pinpoint retroviral integration sites. This tool offers a 

magnified view into the viral landscape of infected cells, with implications that stretch far beyond 

the immediate study. 

 

In sum, the confluence of single-cell sequencing with sophisticated computational strategies holds 

the promise of a transformative shift in medical practice. The power to dissect and understand 

the cellular and molecular underpinnings of disease at such a granular level stands to usher in an 

era of precision medicine unlike any before. Physicians armed with this knowledge can tailor 
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treatments to the individual, not just the illness, turning the tide in the fight against myriad 

diseases. As we stand on the brink of this new medical horizon, it is clear that the integration of 

advanced sequencing technologies and computational analysis will be the cornerstone of future 

biomedical breakthroughs, promising better outcomes for patients and a more nuanced 

understanding of the living tapestry that is human health.  
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Figure 8
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Figure 8 by Che Yu Lee et. al, 2022, is licensed CC by 4.0, available from https://doi.org/10.1371/journal.pcbi.1010636.



Figure 9
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Figure 9 by Che Yu Lee et. al, 2022, is licensed CC by 4.0, available from https://doi.org/10.1371/journal.pcbi.1010636.



Figure 10
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Figure 10 by Che Yu Lee et. al, 2022, is licensed CC by 4.0, available from https://doi.org/10.1371/journal.pcbi.1010636.



Figure 11
28

Figure 11 by Che Yu Lee et. al, 2022, is licensed CC by 4.0, available from https://doi.org/10.1371/journal.pcbi.1010636.
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APPENDIX 

Supplementary File 1. Venus’s detection module parameters. 

Option Description 

--reads read_1.fastq read_2.fastq Reads 

--virusThreshold 5 

--virusChrRef virus_chr-ref.tsv 

Virus threshold for filtering 

NCBI accession to species metadata file 

--virusGenome virus.genomeDir 

--humanGenome human.genomeDir 
Genome indices directories created to map our reads 

--singleCellBarcode 1, 16 

--singleUniqueMolIdent 17, 12 

--singleWhitelist whitelist.txt 

Specifications for single-cell data 

Numbers represent position, length, respectively 

--out path/to/output/dir 

--readFilesCommand zcat 

--thread 32 

General parameters 
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Supplementary File 2. Venus’s integration site discovery module parameters. 

Option Description 

--reads read_1.fastq read_2.fastq Reads, should only be cDNA reads (no barcodes/UMI) 

--guideFASTA integrSeq.fa 

--geneBed genes.bed 

--virusChr NC_001802.1 

integrSeq.fa are sequences for fusion site classification.  

genes.bed converts genomic coordinates to genes 

NCBI virus accession id 

--virusGenome virus.genomeDir 

--hybridGenome hybrid.genomeDir 
Genome indices directories created to map our reads 

--out path/to/output/dir 

--readFilesCommand zcat 

--thread 32 

General parameters 
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Supplementary File 3. Venus’s integration site discovery module parameters. 
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Supplementary File 4. Venus’s Benchmark 
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