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Abstract

Stochastic Optimization: Complexity-Based Analysis and Development Engineering
Applications

by

Caleb Xavier Bugg

Doctor of Philosophy in Engineering- Industrial Engineering and Operations Research

and the Designated Emphasis in

Development Engineering

University of California, Berkeley

Associate Professor Anil Aswani, Chair

This dissertation work combines two lines of work related to stochastic optimization, one
focused on theoretical contributions to the field, and the other focused on modelling and
philosophical contributions to the field. In the first line of work, we contribute to the
theoretical underpinnings of two models that draw from data analysis, mathematical and
statistical modeling, and optimization. In particular, there are several classes of machine
learning problems which interface with stochastics and optimization, and, with the use of
stochastic process theory and associated notions of complexity, we can recharacterize some of
the theoretical expectations of these problems, which importantly model uncertainty. The
improved results are gained from problem reformulations, improved analytical techniques, and
a concerted effort to use the most recent advances in complexity analysis and their associated
generalizations, and has implications for the construction and analysis of societal scale models.
In the second line of work, we demonstrate why the techniques in stochastic optimization help
form a mathematical and statistical basis that can solve large-scale societal problems over time,
with precise engineering intervention focus. The main model researched is the Principal Agent
Model (PAM). Considering sectors of the social economy as the principal and communities of
people as the agents, we utilize development engineering and the associated economics of
global poverty reduction to unveil the concept of Optimal Intervention Theory as a means to
explore, adapt, and activate tractable solutions in specially-constrained environments. By
tractable here, we mean interventions that last long beyond the intervention period, according
to the education-, resource-, access-, and network-bases interventions afforded the impacted
populations, especially those concerned with international development and global poverty
alleviation.
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Chapter 1

Introduction

Our global community has found itself at an interesting time nexus, in which there are
great changes occurring in both natural and human systems. Changes to human systems
are brought about by the globalization of world populations through technology, adding
pressure to our ability to efficiently allocate global resources. The ethical ideals of altruism
and utilitarianism are paramount here, as a correct (engineering) response to this current
amalgamated crisis requires selflessness and a desire to (1) do the most good for the greatest
number of people on this planet, and (2) help and prioritize those who need the most help.

The prospect of repealing our current systems is an easier task than replacing those
systems with systems based in Justice, Equity, Diversity, and Inclusion (JEDI) principles.
To the task of replacing these systems, this thesis represents initial steps towards combining
social, political, and economic (SPE) thinking with rigorous stochastic optimization theory,
which is the basis of academic “buzzwords” like artificial intelligence, machine learning,
and data science. In particular, following the title of Holland’s lead of viewing the World’s
economy as an adaptive process [43], we posit a mathematical view of human and social
systems that can, over time, learn its tasks better, and therefore improve ad infinitum to
higher social and physical utility of economic resources.

The field of development engineering (DE) is concerned with many of these issues; however,
there is a lack of focus on incentive theory, contract design, and contract enforcement that
will be critical to the future success of DE. Operations Researchers and Systems Engineers are
equipped with the mathematical and statistical tools necessary to present and collate methods
from statistics and optimization, and our associated knowledge of their in-use efficiency,
to begin the rigorous study of DE. Whereas DE contributes to literature and practice of
Global Poverty Alleviation and International Development (GPA & ID) by considering the
combination of economics and engineering science, OIT utilizes the theory and practice
of additional social sciences, namely behavioral psychology, to capture social and political
factors that impact human behavior and the adoption and use of goods and services beneficial
to society.

This dissertation falls under the guise of Public Operations Research (Public OR), and
the field of Machine Learning and AI for Social Good (ML4SG/AI4SG), which are closely
connected to diversity, equity, and inclusion outcomes for social systems such as schools,
healthcare systems, and housing and food security. Many of the practitioners of these fields
and subfields focus on the two problems of (1) translating abstract, qualitative fairness and
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equity goals into “math problems”, and (2) extending the prediction and classification power
of Machine Learning (ML) algorithms and techniques to intervention insights. Both of these
things are likely impossible to do in a completely technical format; and thus will have to lend
credence to human actors and decision makers through the formation of multidisciplinary
research and implementation teams.

1.1 Overview of Thesis

The creation and use of Optimal Intervention Theory requires both knowledge of stochastic
optimization, and its associated theory, models, and analysis techniques, as well as general
system modelling knowledge, for which operations researchers are rigorously trained. In
particular, stochastic optimization gives us a framework and theory to pose models for OIT,
and a setting for engineering techniques and analysis to be applied to GPA & ID. Stochasticity
affects both the analysis of our models and the philosophy of observing and responding to
random, human behavior. In this way, this dissertation work combines two lines of work
related to stochastic optimization, one focused on theoretical contributions to the field, and
the other focused on modelling and philosophical contributions to the field.

The two stochastic optimization methods presented in this work are Nonnegative Tensor
Completion (NNTC) and Sample Average Approximation (SAA). The next two chapters
study these stochastic optimization methods. The tensor completion problem represents the
work we can do with data structures which hold our realized random variables’ value over
time, again helping us to predict the future value random variables through completion, and
also gives us insights through the direct use of factorization techniques, similar to singular
value decomposition in the matrix world. The SAA chapter gives results for stochastic
problems involving ℓ1 constraints, and will be a direct part of the OIT model, and our sample
bounds in that chapter will be relevant for estimating the principal’s investments over the
intervention period, which is discussed in the final chapter of this dissertation.

The fourth and fifth chapters present the philosophical and mathematical basis for OIT,
respectively. The fourth chapter focuses on modelling, and gives our unified systems-based
theory for Global Poverty Alleviation and International Development (GPA & ID), while
the fifth chapter presents math models that are tailored to form our Quadratic Knapsack
Problem, which is based on a dynamic version of the Principal Agent Model. The final
chapter previews the impact of OIT through cost savings and shared benefits models, and
concludes with ethical and pedagogical contributions to the field of development engineering
and engineering ethics.

Tensor Completion

Unlike matrix completion, tensor completion does not have an algorithm that is known to
achieve the information-theoretic sample complexity rate. Chapter 2 develops a new algorithm
for the special case of completion for nonnegative tensors. We prove that our algorithm
converges in a linear (in numerical tolerance) number of oracle steps, while achieving the
information-theoretic rate. Our approach is to define a new norm for nonnegative tensors
using the gauge of a particular 0-1 polytope; integer linear programming can, in turn, be used
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to solve linear separation problems over this polytope. We combine this insight with a variant
of the Frank-Wolfe algorithm to construct our numerical algorithm, and we demonstrate its
effectiveness and scalability through computational experiments using a laptop on tensors
with up to one-hundred million entries. This chapter is based on our work from [21].

Sample Average Approximation

Sample Average Approximation (SAA) is used to approximately solve stochastic optimization
problems. In practice, SAA requires much fewer samples than predicted by existing theoretical
bounds that ensure the SAA solution is close to optimal. Here, we derive new sample-size
bounds for SAA that, for certain problems, are logarithmic (existing bounds are polynomial)
in problem dimension. Notably, our new bounds provide a theoretical explanation for the
success of SAA for many capacity- or budget-constrained optimization problems. This chapter
based upon work from [20].

OIT

In chapters four and five, we present the basis and main model of OIT, an intervention model
whose output is a dynamic optimal contract of interventions between a principal and agent
under a time-indexed version of the quartic knapsack problem. The main thrust of adaptive
processes is that decision makers (or processes) increase their knowledge by the cumulative
experience of “doing while learning”. The philosophical framework for optimal intervention
theory is based in economic theory, with a special attention paid to behavioral psychology
and other fields that contribute to the study of optimal incentive and contract design. OIT is
the study of population adoption of socially beneficial goods and services (SBGs).
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Chapter 2

Nonnegative Tensor Completion

Tensors generalize matrices. A tensor ψ of order p is ψ ∈ Rr1×···×rp , where ri is the dimension
of the tensor in the i-th index, for i = 1, . . . , p. Though related, many problems that are
polynomial-time solvable for matrices are NP-hard for tensors. For instance, it is NP-hard to
compute the rank of a tensor [41]. Tensor versions of the spectral norm, nuclear norm, and
matrix singular value decomposition are also NP-hard to compute [41, 33].

2.1 Past Approaches to Tensor Completion

Tensor completion is the problem of observing (possibly with noise) a subset of entries of a
tensor and then estimating the remaining entries based on an assumption of low-rankness. The
tensor completion problem is encountered in a number of important applications, including
computer vision [64, 112], regression with only categorical variables [6], healthcare [35, 27],
and many other application domains [97].

Although the special case of matrix completion is now well understood, the tensor version
of this problem has an unresolved tension. To date, no tensor completion algorithm has been
shown to achieve the information-theoretic sample complexity rate. Namely, for a tensor
completion problem on a rank k tensor with sample size n, the information theoretic rate
for estimation error is

√
k ·

∑
i ri/n [35]. In fact, evidence suggests a computational barrier

in which no polynomial-time algorithm can achieve this rate [9]. One set of approaches has
polynomial-time computation but requires exponentially more samples than the information-
theoretic rate [35, 71, 9, 70], whereas another set of approaches achieves the information-
theoretic rate but (in order to attain global minima) requires solving NP-hard problems that
lack numerical algorithms [23, 111, 110, 85].

However, algorithms that achieve the information-theoretic rate have been developed
for a few special cases of tensors. Completion of nonnegative rank-1 tensors can be written
as a convex optimization problem [6]. For symmetric orthogonal tensors, a variant of the
Frank-Wolfe algorithm has been proposed [84]. Though this latter paper does not prove
their algorithm achieves the information-theoretic rate, this can be shown using standard
techniques [35]. This latter paper is closely related to the approach we take in this chapter,
with one of the key differences being the design of a different separation oracle in order to
support a different class of tensors.
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2.2 Completion using Integer Programming

This chapter proposes a numerical algorithm for completion of nonnegative tensors that
provably converges to a global minimum in a linear (in numerical tolerance) number of oracle
steps, while achieving the information-theoretic rate. Nonnegative tensors are encountered in
many applications. For instance, image and video data usually consists of nonnegative tensors
[64, 112]. Notably, the image demosaicing problem that must be solved by nearly every digital
camera [61] is an instance of a nonnegative tensor completion problem, though it has not
previously been interpreted as such. Nonnegative tensor completion is also encountered in
specific instances of recommender systems [97], healthcare applications [35, 27], and statistical
regression contexts [6].

Our approach is to define a new norm for nonnegative tensors using the gauge of a
specific 0-1 polytope that we construct. We prove that this norm acts as a convex surrogate
for rank and has low statistical complexity (as measured by the Rademacher average for
the tensor, viewed as a function from a set of indices to the corresponding entry), but is
NP-hard to approximate to an arbitrary accuracy. Importantly, we prove that the tensor
completion problem using this norm is able to achieve the information-theoretic rate in
terms of sample complexity. However, the resulting tensor completion problem is NP-hard to
solve. Nonetheless, because our new norm is defined using a 0-1 polytope, this means we
can use integer linear optimization as a practical means to solve linear separation problems
over the polytope. We combine this insight with a variant of the Frank-Wolfe algorithm
to construct our numerical algorithm, and we demonstrate its effectiveness and scalability
through numerical experiments.

2.3 Norm for Nonnegative Tensors

Consider a tensor ψ ∈ Rr1×···×rp . To refer to a specific entry in the tensor we use the notation
ψx := ψx1,...,xp , where x = (x1, . . . , xp), and xi ∈ [ri] denotes the value of the i-th index, with
[s] := {1, . . . , s}. Let ρ =

∑
i ri, π =

∏
i ri, and R = [r1]× · · · × [rp].

A nonnegative rank-1 tensor is ψx =
∏p

k=1 θ
(k)
xk , where θ

(k) ∈ Rrk
+ are nonnegative vectors

indexed by the different values of xk ∈ [rk]. To simplify notation, we drop the superscript in

θ
(k)
xk and write this as θxk when clear from the context.

For a nonnegative tensor ψ, its nonnegative rank is

rank+(ψ) = min{q | ψ =
∑q

k=1 ψ
k, ψk ∈ B∞ for k ∈ [q]}, (2.1)

where we define the ball of nonnegative rank-1 tensors whose maximum entry is λ ∈ R+ to be

Bλ = {ψ : ψx = λ ·
∏p

k=1 θxk , θxk ∈ [0, 1], for x ∈ R} (2.2)

and B∞ = limλ→∞Bλ. A nonnegative cp decomposition is given by the summation ψ =∑rank+(ψ)
k=1 ψk, where ψk ∈ B∞ for k ∈ [rank+(ψ)].
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Convex Hull of Nonnegative Rank-1 Tensors

Now for λ ∈ R+ consider the finite set of points:

Sλ = {ψ : ψx = λ ·
∏p

k=1 θxk , θxk ∈ {0, 1} for x ∈ R}. (2.3)

Using standard techniques from integer optimization [40, 77], the above set of points can be
rewritten as a set of linear constraints on binary variables:

Sλ = {ψ : λ · (1− p) + λ ·
∑p

k=1 θxk ≤ ψx,

0 ≤ ψx ≤ λ · θxk , θxk ∈ {0, 1}, for k ∈ [p], x ∈ R}. (2.4)

Our first result is that the convex hulls of the set of points Sλ and of the ball Bλ are equivalent.

Proposition 1. We have the relation that Cλ := conv(Bλ) = conv(Sλ).

Proof. We prove this by showing the two set inclusions conv(Sλ) ⊆ conv(Bλ) and conv(Bλ) ⊆
conv(Sλ). The first inclusion is immediate since by definition we have Sλ ⊂ Bλ, and so we
focus on proving the second inclusion. We prove this by contradiction:

Suppose conv(Bλ) ̸⊂ conv(Sλ). Then there exists a tensor ψ′ ∈ Bλ with ψ′ ̸∈ conv(Sλ).
By the hyperplane separation theorem, there exists φ ∈ Rr1×···×rp and δ > 0 such that
⟨φ, ψ′⟩ ≥ ⟨φ, ψ⟩+ δ for all ψ ∈ conv(Sλ), where ⟨·, ·⟩ is the usual inner product that is defined
as the summation of elementwise multiplication. Now consider the multilinear optimization
problem

max ⟨φ, ψ⟩
s.t. ψx = λ ·

∏p
k=1 θxk , for x ∈ R

θxk ∈ [0, 1], for x ∈ R
(2.5)

Proposition 2.1 of [28] shows that there exists a global optimum ψ′′ of (2.5) such that ψ′′ ∈ Sλ.
By construction of this global optimum, we must have ⟨φ, ψ′′⟩ ≥ ⟨φ, ψ′⟩, which implies
⟨φ, ψ′′⟩ ≥ ⟨φ, ψ⟩ + δ for all ψ ∈ conv(Sλ). But this last statement is a contradiction since
ψ′′ ∈ Sλ ⊆ conv(Sλ). ■

Remark 1. This result has two implications that will be important in later sections. The first
is that Cλ is a polytope since it is the convex hull of a finite number of bounded points. The
second is that the elements of Sλ are the vertices of Cλ, since any individual element cannot
be written as a convex combination of the other elements.

We will call the set Cλ the nonnegative tensor polytope. A useful observation is that the
following relationships hold: Bλ = λB1, Sλ = λS1, and Cλ = λC1.

Constructing a Norm for Nonnegative Tensors

Since the set of nonnegative tensors forms a cone [82], we need to use a modified definition
of a norm. A norm on a cone K is a function p : K → R+ such that for all x, y ∈ K the
function has the following three properties: p(x) = 0 if and only if x = 0; p(γ · x) = γ · p(x)
for γ ∈ R+; and p(x + y) ≤ p(x) + p(y). The difference with the usual norm definition is
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subtle: The second property here is required to hold for γ ∈ R+, whereas in the usual norm
definition we require p(γ · x) = |γ| · p(x) ∀γ ∈ R.

We next use Cλ to construct a new norm for nonnegative tensors using a gauge (or
Minkowski functional) construction. Though constructing norms using a gauge is common in
machine learning [23], the convex sets used in these constructions are symmetric about the
origin. Symmetry guarantees that scaling the ball eventually includes the entire space [86].
However, in our case Cλ is not symmetric about the origin, and so without proof we do not a
priori know whether scaling C1 eventually includes the entire space of nonnegative tensors.
Thus we have to explicitly prove the gauge is a norm.

Proposition 2. The function defined as

∥ψ∥+ := inf{λ ≥ 0 | ψ ∈ λC1} (2.6)

is a norm for nonnegative tensors ψ ∈ Rr1×···×rp
+ .

Proof. We first prove the above function is finite. Consider any nonnegative tensor ψ ∈
Rr1×···rp

+ , and note there exists a decomposition ψ =
∑π

i=1 ψ
k with ψk ∈ ∥ψ∥max · B1 [83].

(This holds because we can choose each ψk to have a single non-zero value that corresponds
to a different entry of ψ.) Hence by Proposition 1 it follows that ψk ∈ ∥ψ∥max · C1. Recalling
the decomposition of ψ, this means that ψ ∈ π∥ψ∥max · C1 which by definition means
∥ψ∥+ ≤ π∥ψ∥max. Thus ∥ψ∥+ must be finite.

Next we verify that the three properties of a norm on a cone are satisfied. To do so,
we first observe that that by definition we have: C1 is convex; 0 ∈ C1; and C1 is closed and
bounded. Thus by Example 3.50 of [86] we have {ψ : ∥ψ∥+ = 0} = {0}, which means the first
norm property holds. Also by Example 3.50 of [86] we have λC1 ⊆ λ′C1 for all 0 ≤ λ ≤ λ′,
which means the second norm property holds. Last, we note Example 3.50 of [86] establishes
sublinearity of the gauge, and so the third norm property holds for our case. ■

Convex Surrogate for Nonnegative Tensor Rank

An important property of our norm ∥ψ∥+ is that it can be used as a convex surrogate for
tensor rank, whereas the max and Frobenius norms cannot.

Proposition 3. If ψ is a nonnegative tensor, then we have

∥ψ∥max ≤ ∥ψ∥+ ≤ rank+(ψ) · ∥ψ∥max. (2.7)

If rank+(ψ) = 1, then ∥ψ∥+ = ∥ψ∥max

Proof. Consider any λ ≥ 0. If ψ ∈ Sλ, then by definition ∥ψ∥max = λ. By the convexity of
norms we have that: if ψ ∈ Cλ, then ∥ψ∥max ≤ λ. This means that for all λ ≥ 0 we have
Cλ ⊆ Uλ := {ψ : ∥ψ∥max ≤ λ} . Thus we have the relation

inf{λ ≥ 0 | ψ ∈ λU1} ≤ inf{λ ≥ 0 | ψ ∈ λC1}. (2.8)

But the left side is ∥ψ∥max and the right side is ∥ψ∥+. This proves the left side of the
inequality (2.7).
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Next consider the case where rank+(ψ) = 1. By definition we have ψ ∈ ∥ψ∥max · B1. Thus
ψ ∈ ∥ψ∥max · C1, and so ∥ψ∥+ ≤ ∥ψ∥max. This proves the rank-1 case.

Last consider any nonnegative tensor ψ. Recall its nonnegative cp decomposition ψ =∑rank+(ψ)
k=1 ψk with ψk ∈ B∞. Applying the triangle inequality gives

∥ψ∥+ ≤
∑rank+(ψ)

k=1 ∥ψk∥+ =
∑rank+(ψ)

k=1 ∥ψk∥max, (2.9)

where the equality follows from the above-proved rank-1 case since rank+(ψ
k) = 1 by definition

of the cp decomposition. But ∥ψk∥max ≤ ∥ψ∥max since the tensors are nonnegative. This
proves the right side of (2.7). ■

Remark 2. These bounds are tight. The lower and upper bounds are achieved by all
nonnegative rank-1 tensors. As another example, the identity matrix with k columns achieves
the upper bound with rank+(ψ) = k.

We can prove a similar result for the Frobenius norm.

Proposition 4. If ψ is a nonnegative tensor, then we have

1√
π
· ∥ψ∥F ≤ ∥ψ∥+ ≤

√
rank+(ψ) · ∥ψ∥F . (2.10)

Proof. First note ∥ψ∥max ≤ ∥ψ∥F ≤
√
π∥ψ∥max, because these norms are elementwise and

are hence subject to the bounds applicable to vector norms.
The left side of the inequality (2.10) now directly follows from the above inequalities and

Proposition 3.
Next recall (2.9) from the proof of Proposition 3. Observe that ∥v∥1 ≤

√
d∥v∥2 for a

vector v ∈ Rd. Thus we have

∥ψ∥+ ≤
∑rank+(ψ)

k=1 ∥ψk∥max

≤
√

rank+(ψ) ·
(∑rank+(ψ)

i=k (∥ψk∥max)
2
)1/2

.
(2.11)

Let xk = argmaxx∈R ψ
k
x, and define {uk} to be the set of unique values from the set {xk}.

Since the tensors are nonnegative, we have ψuk ≥
∑

k:xk=uk ∥ψk∥max. Thus, we have that

(
∑rank+(ψ)

k=1 (∥ψi∥max)
2
)1/2 ≤ (∑

uk(ψuk)
2
)1/2 ≤ ∥ψ∥F . The result follows by combining with

(2.11). ■

Remark 3. These bounds are tight. The lower bound is achieved for a tensor with all entries
equal to 1. The upper bound with rank+(ψ) = k is achieved for the identity matrix with k
columns.

2.4 Measures of Norm Complexity

Computational Complexity

We next characterize the computational complexity of our new norm on nonnegative tensors.

Proposition 5. It is NP-hard to approximate the nonnegative tensor norm ∥ ·∥+ to arbitrary
accuracy.
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Proof. The dual norm is ∥φ∥◦ = sup{⟨φ, ψ⟩ | ∥ψ∥+ ≤ 1} for all tensors φ ∈ Rr1×···×rp .
Theorems 3 and 10 of [34] show that approximation of the dual norm ∥ · ∥◦ is polynomial-time
reducible to approximation of the norm ∥ · ∥+. We proceed by showing a polynomial-
time reduction to approximation of ∥ · ∥◦. Without loss of generality assume p = 2 and
d := r1 = r2. The appendix of [109] proves that max cut is polynomial-time reducible to
sup{⟨φ, ψ⟩ | ψ ∈ S1}. However, since the objective function is linear and the set S1 consists of
the vertices of C1, this means that optimization problem is equivalent to sup{⟨φ, ψ⟩ | ψ ∈ C1}.
This is the desired polynomial-time reduction of max cut to approximation of the dual norm
∥ · ∥◦ because C1 = {ψ : ∥ψ∥+ ≤ 1}. The result now follows by recalling that approximately
solving max cut to arbitrary accuracy is NP-hard [78, 4]. ■

Corollary 4. Given some K ∈ R+ and ψ ∈ Rr1×···×rp
+ , it is NP-complete to determine

whether ∥ψ∥+ ≤ K.

Proof. The problem is NP-hard by reduction from the problem of Proposition 5. In particular,

a binary search can approximate the norm using this decision problem, ∥ψ∥+
?

≤ K, as an
oracle. Applying Proposition 3, the search can be initialized over the interval [0, π∥ψ∥max].
Furthermore, the decision problem is in NP because we can use the (polynomial-sized) θ
from (2.2) as a certificate. ■

Stochastic Complexity of Norm

We next show that our norm ∥ψ∥+ has low stochastic complexity. Let X = {x⟨1⟩, . . . , x⟨n⟩},
and suppose σi are independent and identically distributed (i.i.d.) Rademacher random
variables (i.e., σi = ±1 with probability 1

2
) [10, 99]. The Rademacher complexity for a set of

functions H is
R(H) = E

(
sup
h∈H

1
n

∣∣∑n
i=1 σi · h(x⟨i⟩)

∣∣), (2.12)

and the worst case Rademacher complexity of H is

W(H) = sup
X

Eσ
(
sup
h∈H

1
n

∣∣∑n
i=1 σi · h(x⟨i⟩)

∣∣). (2.13)

These notions can be used to measure the complexity of sets of matrices [98] or tensors [6].
The idea is to interpret each nonnegative tensor as a function ψ : R → R+ from a set of
indices x ∈ R to the corresponding entry of the tensor ψx. This complexity notion is useful
for the completion problem because it can be directly translated into generalization bounds.

Proposition 6. We have R(Cλ) ≤ W(Cλ) ≤ 2λ
√
ρ/n.

Proof. First note that from their definitions we get R(Cλ) ≤ W(Cλ). Next define the set
Pλ = {±ψ : ψ ∈ Sλ}, and recall that Cλ = conv(Sλ) by Proposition 1. This means
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W(Cλ) = W(Sλ) [58, 10]. Next observe that

W(Cλ) = W(Sλ) = sup
X

Eσ
(
sup
ψ∈Sλ

1
n

∣∣∑n
i=1 σi · ψx⟨i⟩

∣∣)
= sup

X
Eσ

(
max
ψ∈Pλ

1
n
·
∑n

i=1 σi · ψx⟨i⟩
)

≤ sup
X
r
√

2 log#Pλ/n

(2.14)

where in the second line we have replaced the supremum with a maximum since the set Pλ is
finite and in the last line we have used the Finite Class Lemma [67] with

r = max
ψ∈Pλ

√∑n
i=1(ψx⟨i⟩)

2 ≤ λ
√
n (2.15)

This inequality on r is due to the fact that Pλ consists of tensors whose entries are from
{−λ, 0, λ}. Thus W(Cλ) ≤ λ

√
(2 log 2) · (ρ+ 1)/n. The result follows by weakening the

bound using log 2 · (ρ+ 1) ≤ 2ρ. ■

Remark 5. Because ψ has π = O(rp) entries, the Rademacher complexity in a typical tensor
norm (e.g., max and Frobenius norms) will be O(

√
π/n) = O(

√
rp/n). However, Rademacher

complexity in our norm ∥ψ∥+ is O(
√
ρ/n) = O(

√
rp/n), which is exponentially smaller.

2.5 Tensor Completion

Suppose we have data (x⟨i⟩, y⟨i⟩) ∈ R × R for i = 1, . . . , n. Let I = {i1, . . . , iu} ⊆ [n]
be any set of points that specify all the unique x⟨i⟩ for i = 1, . . . , n, meaning the set
U = {x⟨i1⟩, . . . , x⟨iu⟩} does not have any repeated points and x⟨i⟩ ∈ U for all i = 1, . . . , n.
The nonnegative tensor completion problem using our norm ∥ψ∥+ is given by

ψ̂ ∈ argmin
ψ

1
n

∑n
i=1

(
y⟨i⟩ − ψx⟨i⟩

)2
s.t. ∥ψ∥+ ≤ λ

(2.16)

We will study the statistical properties of the above estimate and describe the elements of
algorithm to solve the above optimization problem. The purpose of defining the set U is that
it is used in constructing the algorithm used to solve the above problem.

Statistical Guarantees

Though in the previous section we calculated a Rademacher complexity for nonnegative
tensors in Cλ viewed as functions, here we use an alternative approach to derive generalization
bounds. The reason is that generalization bounds using the Rademacher complexity are not
tight here.

Our approach is based on the observation that the nonnegative tensor completion problem
(2.16) using our norm ∥ψ∥+ is equivalent to a convex aggregation problem [74, 102, 57] for
a finite set of functions. In particular, by Proposition 1 we have {ψ : ∥ψ∥+ ≤ λ} = Cλ =
conv(Sλ). The implication is we can directly apply existing results for convex aggregation to
provide a tight generalization bound for the solution of (2.16).
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Proposition 7 ([57]). Suppose |y| ≤ b almost surely. Given any δ > 0, with probability at
least 1− 4δ we have that

E
(
(y − ψx)2

)
≤ min

φ∈Cλ
E
(
(y − φx)2

)
+ c0 ·max

[
b2, λ2

]
·max

[
ζn,

log(1/δ)
n

]
, (2.17)

where

ζn =


2ρ

n
, if 2ρ ≤

√
n√

1
n
log

(
e2ρ√
n

)
, if 2ρ >

√
n

(2.18)

and c0 is an absolute constant.

Remark 6. We make two comments. First, note that ζn = o(
√
ρ/n). Second, in some regimes

ζn can be considerably faster than the
√
ρ/n rate.

Generalization bounds under specific noise models, such as an additive noise model, follow
as a corollary to the above proposition combined with Proposition 3.

Corollary 7. Suppose φ is a nonnegative tensor with rank+(φ) = k and ∥φ∥max ≤ µ. If
(x⟨i⟩, y⟨i⟩) are independent and identically distributed with |y⟨i⟩ − φx⟨i⟩| ≤ e almost surely
and Ey⟨i⟩ = φx⟨i⟩. Then given any δ > 0, with probability at least 1− 4δ we have

E
(
(y − ψ̂x)2

)
≤ e2 + c0 ·

(
µk + e)2 ·max

[
ζn,

log(1/δ)
n

]
, (2.19)

where ζn is as in (2.18) and c0 is an absolute constant.

Computational Complexity

Though (2.16) is a convex optimization problem, our next result shows that solving it is
NP-hard.

Proposition 8. It is NP-hard to solve the nonnegative tensor completion problem (2.16) to
an arbitrary accuracy.

Proof. Define the ball of radius δ > 0 centered at a nonnegative tensor ψ to be

B(ψ, δ) =
{
φ : ∥φ− ψ∥F ≤ δ

}
. (2.20)

Next define W (C1, δ) =
⋃
ψ∈C1 B(ψ, δ) and W (C1,−δ) = {ψ ∈ C1 : B(ψ, δ) ⊆ C1}. The weak

membership problem for C1 is that given a nonnegative tensor ψ and a δ > 0 decide whether
ψ ∈ W (C1, δ) or ψ /∈ W (C1,−δ). Theorem 10 of [34] shows that approximation of the norm
∥ · ∥+ is polynomial-time reducible to the weak membership problem for C1. Since Proposition
5 shows that approximation of the norm ∥ · ∥+ is NP-hard, the result follows if we can reduce
the weak membership problem to (2.16).

Suppose we are given inputs ψ and δ for the weak membership problem. Choose x⟨i⟩ for
i = 1, . . . , π such that each element in R is enumerated exactly once. Next choose y⟨i⟩ = ψx⟨i⟩.
Finally, note if we solve (2.16) and the minimum objective value is less than or equal to
δ, then we can conclude ψ ∈ W (C1, δ); otherwise we have ψ /∈ W (C1,−δ). The result now
follows since this was the desired reduction. ■
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We note that the decision version of (2.16), that is ascertaining whether a given tensor ψ
attains an objective less than a given value while also satisfying ∥ψ∥+ ≤ λ, is NP-complete.
This follows directly from Corollary 4 and Proposition 8.

Numerical Computation

Although it is NP-hard, there is substantial structure that enables efficient numerical compu-
tation of global minima of (2.16). The key observation is that C1 is a 0-1 polytope, which
implies the linear separation problem on this polytope can be solved using integer linear
optimization. Integer optimization has well-established global algorithms that are guaranteed
to solve the separation problem for this polytope. This is a critical feature that enables the
use of the Frank-Wolfe algorithm or one of its variants to solve (2.16) to a desired numerical
tolerance. In fact, the Frank-Wolfe variant known as Blended Conditional Gradients (BCG)
[17] is particularly well-suited for calculating a solution to (2.16) for the following reasons:

The first reason is that our problem has structure such that the BCG algorithm will
terminate (within numerical tolerance) in a linear number of oracle steps. A sufficient
condition for this linear convergence is if the feasible set is a polytope and the objective
function is strictly convex over the feasible set. For our problem (2.16), the objective
function can be made strictly convex over the feasible set by an equivalent reformulation.
Specifically, we use the equivalent reformulation in which we change the feasible set from
{ψ : ∥ψ∥+ ≤ λ} = Cλ to ProjU(Cλ) where the projection is done over the unique indices
specified by the set U . In fact, this projection is trivial to implement because it simply
consists of discarding the entries of ψ that are not observed by the x⟨i⟩ indices.

The second is that the BCG algorithm uses weak linear separation, which accommodates
early-termination of the associated integer linear optimization. Integer optimization software
tends to find optimal or near-optimal solutions considerably faster than certifying the
optimality of such solutions. Furthermore, a variety of tuning parameters (see e.g. [13]) can
be used to accelerate the search for good primal solutions when exact solutions are not needed.
We also deploy a fast alternating maximization heuristic in order to avoid integer optimization
oracle calls where possible. Thus, early-termination allows us to deploy a globally convergent
algorithm with practical solution times.

Hence we consider the BCG algorithm to compute global minima of (2.16) to arbitrary
numerical tolerance. For brevity we omit a full description of the algorithm, and instead
focus on the separation oracle, which is the main component specifically adapted to our
application. The oracle is described in Algorithm 1, where we use ⟨·, ·⟩ to denote the dot
product for tensors viewed as vectors; note that for notational simplicity we state the oracle
in terms of the original space, ignoring projection onto U . Output condition (1) provides
separation with some vertex φ, while (2) requires certification that no such vertex exists.

In implementing the weak separation oracle, we first attempt separation with our alter-
nating maximization procedure. Described as Algorithm 2, it involves the following objective
function:

zM(θ) :=
∑

x∈R⟨cx, ψx − λ ·
∏p

k=1 θxk⟩ (2.21)

The separation problem is thus treated as a multilinear binary optimization problem, and the
algorithm successively minimizes in each dimension. We apply this heuristic a fixed number
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of times, randomly complementing entries in the incumbent each time. The procedure runs
in polynomial-time, and is not guaranteed to separate nor can it certify that such separation
is impossible. However, in our experiments it succeeds often, offering substantial practical
speedups.

If alternating maximization fails to separate, then we solve the following integer program-
ming problem:

max
φ,θ
⟨c, ψ − φ⟩

s.t. λ · (1− p) + λ ·
∑p

k=1 θxk ≤ φx x ∈ R
0 ≤ φx ≤ λ · θxk k ∈ [p], x ∈ R
θxk ∈ {0, 1} k ∈ [p], x ∈ R

(2.22)

Note that early termination is deployed: we stop whenever an incumbent solution is
found such that the objective is greater than Φ/K. If no such solution exists, then the
integer programming solver is guaranteed to (eventually) establish a dual bound zU such that
⟨c, ψ − φ⟩ ≤ zU ≤ Φ.

Algorithm 1 Weak Separation Oracle for Cλ
Input: linear objective c ∈ Rr1×···×rp , point ψ ∈ Cλ, accuracy K ≥ 1, gap estimate Φ > 0,
norm bound λ
Output: Either (1) vertex φ ∈ Sλ with ⟨c, ψ − φ⟩ ≥ Φ/K, or (2) false: ⟨c, ψ − φ⟩ ≤ Φ
for all φ ∈ Cλ

Algorithm 2 Alternating Maximization

Input: linear objective c ∈ Rr1×···×rp , point ψ ∈ Cλ, norm bound λ, incumbent (binary)
solution θ̂ ∈ Sλ
Output: Best known solution θ

θ ← θ̂
z ← zM(θ)
for i = 1 to p do
for k = 1 to ri do
θ
(i)
k ← 1− θ(i)k
if zM(θ) > z then
z ← zM(θ)

else
θ
(i)
k ← 1− θ(i)k

end if
end for

end for
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Table 2.1: Numerical Results with Order-3 Nonnegative Tensors (n=500)

Tensor Size BCG with Weak Oracle Alternating Least Squares
NMSE Time (s) NMSE Time (s)

10× 10× 10 0.004± 0.001 4.29± 0.194 0.058± 0.002 0.122± 0.003
20× 20× 20 0.070± 0.003 28.6± 0.753 0.174± 0.005 0.351± 0.012
30× 30× 30 0.220± 0.004 11.0± 0.671 0.287± 0.005 0.796± 0.030
40× 40× 40 0.300± 0.004 5.83± 0.202 0.351± 0.005 0.947± 0.043
50× 50× 50 0.371± 0.004 4.86± 0.090 0.406± 0.006 1.58± 0.093
60× 60× 60 0.434± 0.004 4.78± 0.063 0.454± 0.006 2.08± 0.105
70× 70× 70 0.500± 0.004 4.94± 0.063 0.503± 0.008 3.30± 0.140
80× 80× 80 0.554± 0.004 5.73± 0.112 0.539± 0.010 5.96± 0.226
90× 90× 90 0.594± 0.004 5.34± 0.077 0.576± 0.011 9.34± 0.302

100× 100× 100 0.641± 0.004 5.56± 0.072 0.666± 0.013 16.8± 0.568

Table 2.2: Numerical Results with Dimension-10 Nonnegative Tensors (n=10,000)

Tensor Size BCG with Weak Oracle Alternating Least Squares
NMSE Time (s) NMSE Time (s)

10×4 0.001± 0.000 25.2± 1.11 0.007± 0.001 0.925± 0.025
10×5 0.002± 0.000 40.7± 0.82 0.074± 0.006 1.13± 0.038
10×6 0.008± 0.001 59.5± 1.20 0.412± 0.025 1.79± 0.097
10×7 0.034± 0.004 530± 368 0.930± 0.019 1.28± 0.050
10×8 0.156± 0.014 872± 66 0.986± 0.010 15.1± 0.199

Table 2.3: Numerical Results with Tensor Size 10×6 and Increasing Sample Size

Sample % BCG with Weak Oracle Alternating Least Squares
NMSE Time (s) NMSE Time (s)

0.01 0.989± 0.002 0.348± 0.016 1.00± 0.00 0.067± 0.001
0.1 0.457± 0.023 62.4± 4.79 1.00± 0.00 0.105± .001
1 0.007± 0.000 60.4± 1.32 0.389± 0.023 1.82± 0.098

10 (n = 100, 000) 0.005± 0.000 413.7± 11.1 0.046± 0.005 15.03± 0.401
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2.6 Numerical Experiments

Here we present numerical results that show the efficacy and scalability of our algorithm for
nonnegative tensor completion. Our experiments were conducted on a personal computer with
8GB of RAM and an Intel Core i5 2.3Ghz processor with 2-cores/4-threads. The algorithms
were coded in Python 3. We used Gurobi v9.1 [39] to solve the integer programs (2.22).

As a benchmark, we use alternating least squares (ALS), which is often called a “workhorse”
for numerical tensor problems [52]. We believe ALS alone is the correct benchmark because
it is substantially more scalable than other algorithms, such as those using semidefinite
programming (SDP) [71, 9, 85]. In fact, many of the problems we consider in our experiments
(the largest tensors have 108 entries) are too large for nearly all tensor completion algorithms
that have been previously developed.

To minimize the impact of hyperparameter selection in our numerical results, we provided
the ground truth values when possible. For instance, in our nonnegative tensor completion
formulation (2.16) we chose λ to be the smallest value for which we could certify that
∥ψ∥+ ≤ λ for the true tensor ψ. This was accomplished by construction of the true tensor
ψ. For ALS, we used a nonnegative rank k that was the smallest value for which we could
certify that rank+(ψ) ≤ k. This was also accomplished by construction of the true tensor
ψ. A last note is that ALS often works better when used with L2 regularization [73]. The
hyperparameter for the L2 regularization for ALS was chosen in a way favorable to ALS in
order to maximize its accuracy.

Experiments with Third-Order Tensors

Our first set of results concerns tensors of order p = 3 with increasing dimension values.
In each experiment, the true tensor ψ was constructed by randomly choosing 10 points
from the set of points S1 and then taking a random convex combination of these 10 points.
This method of construction of ψ ensures that ∥ψ∥+ ≤ 1 and rank+(ψ) ≤ 10. We used
n = 500 samples (with indices sampled with replacement). Each experiment was repeated
100 times, and the results are shown in Table 2.1 in terms of “normalized mean squared
error ± standard error”. The measure of accuracy we used is normalized mean squared
error (NMSE) ∥ψ̂ − ψ∥ 2

F /∥ψ∥ 2
F . This is a more stringent measure of accuracy than used in

Corollary 7 because the statistical theoretical result does not include normalization. The
numerical results in the table show that, on average, our approach provides modestly higher
accuracy but requires more computation time. However, the computation time remains on
the order of seconds for the various tensor sizes. For reference, by construction of the 0-1
polytope, the worst-case normalized mean squared error is 1, implying no meaningful result
was found, while the best case NMSE is 0, implying an exact construction of the underlying
true tensor. We also note that NMSE is not exactly zero because indices are sampled with
replacement and because of the finite precision of numerical algorithms.

Experiments with Increasing Tensor Order

Our second set of results concerns tensors with increasing order p, where each dimension takes
the value ri = 10 for i = 1, . . . , p. In each experiment, the true tensor was constructed by the
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method given in Section 5.1, again ensuring that ∥ψ∥+ ≤ 1 and rank+(ψ) ≤ 10. We used
n = 10, 000 samples (with indices sampled with replacement). Each experiment was repeated
100 times, and the results are shown in Table 2.2 in terms of “NMSE ± standard error”. The
numerical results in the table show that our approach provides substantially higher accuracy
but requires more computation time. However, the computation time remains on the order
of minutes even for the largest tensor with 108 entries.

Experiments with Increasing Sample Size

Our third and fourth set of results concerns tensors of size 10×6 and 10×7, respectively, where
experiments are conducted with increasing sample size, given in the table as percentage of
total entries. For example, for n = 100 on a 106 tensor, the sample percentage is 100/1,000,000
= 0.01%. The true tensor ψ was constructed as in Section 5.1, with the same assurances. We
begin with sample percentage 0.01% (with indices sampled with replacement), and extend
each set of experiments’ sample size by one order of magnitude. Each experiment was
repeated 100 times, and the results are shown in Table 2.3 and Table 2.4 in terms of “NMSE
± standard error”, as above. Again, the numerical results in the table show that our approach
provides substantially higher accuracy but requires more computation time. The computation
time remains on the order of minutes for most of the sampling schemes, excepting the draw
of 106 entries for a tensor with 107 entries (i.e., about 1.5 hours).
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Table 2.4: Numerical Results with Tensor Size 10×7 and Increasing Sample Size

Sample % BCG with Weak Oracle Alternating Least Squares
NMSE Time (s) NMSE Time (s)

0.01 0.873± 0.016 48.4± 3.42 1.00± 0.00 0.561± 0.003
0.1 0.029± 0.004 145± 36.6 0.877± 0.023 1.29± 0.043
1 0.011± 0.001 522± 11.7 0.220± 0.016 19.2± 0.603

10 (n = 1, 000, 000) 0.013± 0.001 5623± 381 0.052± 0.007 189± 4.89
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Chapter 3

Sample Average Approximation

Sample Average Approximation (SAA) is used to approximately solve stochastic optimization
problems. Consider a generic stochastic optimization problem of the form

min
x∈X
{F (x) := Eξf(x, ξ)}, (3.1)

where ξ ∈ Ξ is some random variable with known distribution P (·), and X ⊂ Rp is the
(deterministic) feasible set. That is, we consider problems where stochasticity enters into the
objective function and not the constraints. Note F (x∗) = Eξf(x∗, ξ) is the corresponding
optimal value, where

x∗ ∈ argmin
x∈X

F (x)

is any optimal point. Such problems are often difficult to solve because the expectation
cannot be analytically computed except in cases when the distribution P (·) or the function
f(x, ξ) have very specific mathematical forms.

Sample Average Approximation (SAA) is a commonly-used procedure for solving (3.1),
and it works by approximating the stochastic optimization problem using a deterministic
optimization problem that is easier to solve [29, 51, 103, 94, 50]. The idea of SAA is to
first generate an i.i.d. sample ξ1, . . . , ξn of the random variable ξ, and then approximate the
expectation Eξf(x, ξ) using its sample average

min
x∈X
{Fn(x) :=

1

n

n∑
i=1

f(x, ξi)}. (3.2)

Note the objective function value of the original stochastic optimization problem (3.1) with
the optimal solution of the SAA problem (3.2) is given by F (x̂n) = Eξf(x̂n, ξ), where we
have that

x̂n ∈ argmin
x∈X

Fn(x)

is any optimal point of the SAA problem (3.2). By definition of x∗ and x̂n, we have that
F (x∗) ≤ F (x̂n), and clearly we expect to see that F (x̂n)→ F (x∗) almost surely as n→∞
by an argument using the uniform law of large numbers.
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3.1 Classical Sample Bounds

Two practical considerations necessitate that the number of samples n in the SAA problem
(3.2) be as small as possible. First, for many applications it is computationally costly to
generate any single sample ξi of the random variable ξ. Second, for many functional forms of
f(·, ·) it is the case that larger values of n require greater computation (e.g., more function
evaluations, more gradient evaluations, etc.) in order to numerically solve the SAA problem
(3.2).

Towards this goal, a now classical analysis [51, 93, 94] showed that in order to ensure

P
(
F (x̂n)− F (x∗) ≤ δ

)
≥ 1− α (3.3)

for any δ ∈ (0, 1] and α ∈ (0, 1], the number of samples n should satisfy

n ≳
p

δ2
log

1

δ
+

1

δ2
log

1

α
. (3.4)

Here, we have used the notation x ≳ y of [63] which means x ≥ cy for some constant c > 0
that is independent of p, δ, α and which may depend polynomially upon other parameters of
the optimization problem (3.1). This bound says the required number of samples depends
polynomially on the dimension p of the decision variable x, and this bound is prohibitively
restrictive when p is high-dimensional. In fact, applications of SAA for large p are common
in many domains.

However, the experience of many practitioners has been that a much smaller number
of samples n (as compared to the above bound) is needed in order to ensure the SAA
approximation is close to the true optimal value [90, 65, 50] – that is, the sample bound (3.4)
is often overly conservative. Motivated by this empirical observation, there has been work
on algorithmic approaches that iteratively or adaptively choose sample sizes in order to get
good solutions with SAA with a small number of samples [89, 88].

3.2 Logarithmic Bounds with Special Structure

We briefly outline our chapter and highlight our main contributions. We first provide an
overview of the stochastic process theory of Rademacher complexity [59, 11]. Our first
contribution uses stochastic process theory to derive a new bound for n to ensure (3.3).
This bound depends in a non-trivial way upon the complex, stochastic interplay between X
and f(·, ·). In the next section, we describe an algorithmic procedure that can be used to
numerically upper-bound this stochastic quantity for some stochastic optimization problems
(3.1). Then in the following section, we give examples of stochastic optimization problems
where our approach yields explicit symbolic bounds on the number of samples n needed.
Notably, we show that single-index models with an ℓ1 constraint yields logarithmic bounds
on the number of samples needed. We conclude by conducting numerical experiments with
the Markowitz portfolio selection problem to demonstrate the significant improvement of our
bound relative to the classical bound (3.4).
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Comparison to Other Sample Bounds

One set of previous results [51, 93, 94] are based on an intermediate bound: When X is a
discrete set of points, then (3.3) whenever n ≳ 1

δ2
log #X

α
, where #X is the cardinality of the

finite set X . Such a counting approach is effective for some problems: For example, these ideas
have been used to prove that nonconvex (both integer and continuous) optimization problems
with an ℓ1 constraint have a significantly reduced theoretical computational complexity [69].

However, the above counting bound obscures the complex interplay between the feasible
set X and the mathematical structure of the function f(·, ·), which is what actually governs
the behavior of the SAA solutions. More recent work [75, 76] uses empirical process theory to
derive sample bounds, which is better able to capture the interplay between the objective and
the feasible set. This work uses a chaining argument to characterize stochastic complexity, and
this approach is in fact closely related our use of Rademacher theory that also characterizes
stochastic complexity.

All sample bounds make assumptions about the continuity of f(x, ξ) and about the
problem stochasticity. It is common to assume f(x, ξ) satisfies stochastic Lipschitz [51, 93, 94,
37] or stochastic Hölder continuity [75, 76] conditions. It is also common to assume stochastic
regularity, such as assuming it follows sub-Gaussian distributions [51, 93, 94, 37] or assuming
that sample averages are well-behaved. These results find sample bounds that are linear in
the dimension p [51, 93, 94, 37], or find sample bounds for specific problems like lasso that
have effective dimensions that are smaller than p (and even logarithmic in p in the case of
lasso) [75, 76].

In this chapter, we assume deterministic Lipschitz continuity on f(x, ξ) and ensure
stochastic regularity by requiring boundedness. We show sample bounds that are logarithmic
in dimension p when the underlying stochastic optimization problem has ℓ1 or nuclear norm
constraints. The sample bounds of [51, 93, 94, 37] are linear in p because they consider
generic feasible sets, whereas the faster-than-lienar bounds of [75, 76] are calculated only
for specific problems. However, we stress that our logarithmic sample bounds do not arise
because we have made stronger assumptions, but they are instead due to the geometry of the
ℓ1 or nuclear norm constraints. We demonstrate this by providing in this paper an alternative
proof of logarithmic bounds under the more general assumptions of [51, 93, 94]. Our stronger
assumptions are due to the proof technique we use. For instance, our boundedness assumption
can be relaxed using the results of [53] though we do not consider this generalization here
because it requires more notation that hides the main ideas.

Another related line of work has explored sample bounds under assumptions of sparsity.
The work in [63, 62] used sparsity-based techniques to study the relationship between sample
size and SAA solution quality for the special case where the optimal solution x∗ is sparse.
(Here we define sparsity to include both low cardinality vectors and low rank matrices.) The
approach of [63, 62] adds a regularization term to the SAA (3.2), which induces sparsity
in the optimal solution x̂ to the SAA. The authors prove that this leads the sample size n
to have poly-logarithmic dependence on the dimension p. However, there is an alternative
explanation for these derived bounds. Since the optimal solution is known to be sparse, the
effective feasible set X ′ (which incorporates the fact that x∗ is sparse) can be taken to be
much smaller than the stated feasible set X . We use this idea in Sec. 3.5 to derive similar
logarithmic bounds for a similar (to the ones studied by [63, 62]) class of problems; these
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original bounds were achieved using regularization and using a much more technically difficult
argument than the one we provide here.

3.3 Rademacher Complexities

Before deriving our results, we need to provide a brief introduction to the stochastic process
theory of Rademacher complexity [59, 11], which is key to understanding our results. We
provide this introduction because these results and underlying methodology are not generally
known within the operations and control communities, though they are generally well-known
within statistics and probability theory.

Let ϵ1, . . . , ϵn be i.i.d. Rademacher random variables, where ϵ is a Rademacher random
variable if its distribution is P(ϵ = ±1) = 1

2
; and let f(x, ξ) be the function from the objective

of (3.1). We define the Rademacher complexity of the function set F := {f(x, ξ) : x ∈ X} to
be

Rn[f ] = Eξ
(
sup
x∈X

∣∣∣ 1n ∑n
i=1 ϵif(x, ξi)

∣∣∣). (3.5)

Note the Rademacher complexity is often defined without an absolute value when the set F
is symmetric, and we can use an equivalent definition without an absolute value

Rn[f ] = Eξ
(

sup
s∈±1,x∈X

1
n

∑n
i=1 ϵisf(x, ξi)

)
by defining the augmented function set F ′ := {sf(x, ξ) : s ∈ ±1, x ∈ X}. Because both
definitions are equivalent, we use the representation (3.5) to maintain consistency. Without
loss of generality, we will make the following assumption for the remainder of the paper:

Assumption. We have that −∆/2 ≤ f(x, ξ) ≤ ∆/2 for all (x, ξ) ∈ X × Ξ, for some finite
constant ∆ ∈ R+.

This assumption is without loss of generality because if the function f(x, ξ) is bounded on
its domain (x, ξ) ∈ X × Ξ then we can always define an equivalent stochastic optimization
problem by defining f ′(x, ξ) = f(x, ξ)−m−∆/2 for some finite constant m ∈ R such that
the above is satisfied.

We would like to emphasize that the above boundedness assumption can be relaxed
by using recent generalizations of McDiarmid’s inequality for unbounded random variables
[53], but we do not consider this generalization here because it adds considerable notational
complexity while obscuring the underlying ideas. In this paper, we assume boundedness so
as to most clearly focus on the key underlying ideas.

The Rademacher complexity can be used to construct inequalities that bound the proba-
bility of large deviations of certain stochastic processes from their expectations. We begin
with such a result on deviation between the sample average (3.2) from the objective of SAA
with its expectation (3.1) in the objective of the stochastic optimization problem. The result
below is similar to existing ones on concentration of measure [59, 11, 16], though our result
differs somewhat from the standard forms. Its proof uses what is known as a symmetrization
argument, and we repeat this argument here to introduce it to readers who are unfamiliar
with it.
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Proposition 9. If the assumption holds, then we have

P
(
sup
x∈X

∣∣∣Fn(x)− F (x)∣∣∣ > t
)
≤ exp

(
− 2n

(t− 2Rn[f ]

∆

)2)
. (3.6)

Proof. For notational convenience, we define

E = sup
x∈X

∣∣∣ 1n ∑n
i=1 f(x, ξi)− Eξf(x, ξ)

∣∣∣
Observe that Jensen’s inequality gives

E
(
E
)
≤ E

(
sup
x∈X

∣∣∣ 1n ∑n
i=1 f(x, ξi)− f(x, ξ′i)

∣∣∣),
where ξi, ξ

′
i are i.i.d. But f(x, ξi)−f(x, ξ′i) has a symmetric distribution, and so its distribution

is equivalent to the distribution of ϵi · (f(x, ξi) − f(x, ξ′i)) since the ϵi have a Rademacher
distribution. And so we get

E
(
E
)
≤ E

(
sup
x∈X

∣∣∣ 1n ∑n
i=1 ϵi(f(x, ξi)− f(x, ξ′i))

∣∣∣).
Applying the triangle inequality yields

E
(
E
)
≤ 2E

(
sup
x∈X

∣∣∣ 1n ∑n
i=1 ϵif(x, ξi)

∣∣∣). (3.7)

But observe that the right-hand side is 2Rn[f ]. Since the function f(·, ·) is bounded by
assumption, we can use the standard McDiarmid’s inequality [16, 68] to get

P
(
E − E

(
E
)
> u

)
≤ exp

(
− 2n

( u
∆

)2)
.

Combining this with (3.7) implies that

P
(
E − 2Rn[f ] > u

)
≤ exp

(
− 2n

( u
∆

)2)
,

or with the substitution u = t− 2Rn[f ] that (3.6) holds. ■

We also prove a nonstandard result (i.e., to the best of our knowledge this result is not
found in the literature on Rademacher complexity) involving functions of (3.1).

Corollary 1. Let h : R→ R be Lipschitz with constant L, and suppose the assumption holds.
Then we have

P
(
sup
x∈X

∣∣∣h(Fn(x))− h(F (x))∣∣∣ > t
)
≤ exp

(
− 2n

(t− 2LRn[f ]

L∆

)2)
. (3.8)

Proof. We first note that Lipschitz continuity of h(·) implies |h(Fn(x))−h(F (x))| ≤ L|Fn(x)−
F (x)|. This means by Proposition 9 we have

P
(
sup
x∈X

∣∣∣h(Fn(x))− h(F (x))∣∣∣ > t
)
≤ P

(
sup
x∈X

L
∣∣∣Fn(x)− F (x)∣∣∣ > t

)
≤ exp

(
− 2n

(t/L− 2Rn[f ]

∆

)2)
.

(3.9)

The bound (3.8) now follows. ■
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It is pragmatically useful to interpret this corollary. In essence, the result says that
applying a Lipschitz function h(·) to (3.1) is the same in terms of the concentration of
measure as scaling the Rademacher complexity by L to LRn[f ] and scaling the assumption
bound by L to L∆.

3.4 New Sample Bounds

The above proposition can be used to construct new sample bounds that ensure (3.3) holds
for a generic stochastic optimization problem (3.1), and our next result gives an implicit
formula for such a bound when Rn[f ] is strictly decreasing.

Proposition 10. Suppose Rn[f ] is strictly decreasing in n. If the assumption holds and
n ≥ N with

N = min
γ1,γ2

max{N1, N2}

N1 = (∆/γ1δ)
2 log(2/α)/2

N2 = min{n : Rn[f ] ≤ γ2δ}

(3.10)

and γ1, γ2 ∈ (0, 1) such that 2γ1 + γ2 = 1, then (3.3) holds.

Proof. First observe that

F (x̂n)− F (x∗) = F (x̂n)− Fn(x̂n) + Fn(x̂n)− Fn(x∗) + Fn(x
∗)− F (x∗). (3.11)

Since x̂n minimizes the SAA, we have Fn(x̂n) ≤ Fn(x
∗). Let γ1, γ2 ∈ (0, 1) be such that

2γ1 + γ2 = 1, and note the union bound gives

P
(
F (x̂n)− F (x∗) ≤ δ

)
≥ 1− P

(
F (x̂n)− Fn(x̂n) > (γ1 + γ2)δ

)
+

− P
(
Fn(x

∗)− F (x∗) > γ1δ
)
. (3.12)

Next, observe that Hoeffding’s inequality [42, 16] implies

P
(
Fn(x

∗)− F (x∗) > t
)
≤ exp

(
− 2N

( t

∆

)2)
since n ≥ N . Note we use Hoeffding’s inequality (i.e., not a uniform convergence result) since
x∗ is fixed. So if −2N · (γ1δ/∆)2 = log(α/2) then P(Fn(x∗)− F (x∗) > γ1δ) ≤ α/2. Now if
γ2δ ≥ 2Rn[f ], then by Proposition 9 we have

P
(
F (x̂n)− Fn(x̂n) > (γ1 + γ2)δ

)
≤ exp

(
− 2n

(γ1δ
∆

)2)
.

Since n ≥ N , then if −2N · (γ1δ/∆)2 = log(α/2) then P(F (x̂n)−Fn(x̂n) > (γ1 + γ2)δ) ≤ α/2.
Combing the above with (3.12) gives the desired result.

■
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The above result can be difficult to interpret because of the implicit equation that specifies
the minimum sample size N for (3.3) to hold. So we next present a simplified result for the

case where the Rademacher complexity can be bounded in the form Rn[f ] ≤ c(p)√
n
for some

function c(p). Such a bound can be constructed for many cases [59, 46, 92, 48, 47].

Corollary 2. If the assumption holds, Rn[f ] =
c(p)√
n
, and

n ≥ 1

2

(3∆
δ

)2

log
( 2

α

)
+
(3c(p)

δ

)2

then we have that (3.3) holds.

Proof. We first compute N2 = min{n : Rn[f ] ≤ γ2δ} under the assumptions of this corrollary.
Specifically, we have c(p)/

√
N2 = γ2δ, or rewritten that N2 = (c(p)/γ2δ)

2. Next consider an
N ′ := N1 +N2 ≥ N = minγ1,γ2 max{N1, N2}. Noting that γ2 = 1− 2γ1, we have that

N ′ = (∆/γ1δ)
2 log(2/α)/2 + (c(p)/(1− 2γ1)δ)

2.

Our result follows by choosing γ1 = 1/3.
■

3.5 Bounds for Problems

The prior two results bound the sample size n required to achieve (3.3), but their use requires
knowing the Rademacher complexity Rn[f ] for a particular stochastic optimization problem
(3.1). Here, we discuss how the Rademacher complexity can be bounded for various classes of
stochastic optimization problems. We describe a Monte Carlo approach, and we also give
explicit bounds for specific problems.

Monte Carlo Bounds

The first class of problems we consider are those where there exists a surrogate optimization
problem that provides an upper bound of the form

sup
x∈X

∣∣∣ 1n ∑n
i=1 ϵif(x, ξi)

∣∣∣ ≤ max
y∈Y

G(y, {ϵi, ξi}ni=1). (3.13)

Our scenario is where the optimization problem on the right-hand side is easily-solvable.
For example, when the problem on the left-hand side can be represented as a mixed-integer
linear program (MILP) then the problem on the right-hand side could be its continuous
relaxation. Various approximation techniques exist, and how different classes of problems for
the left-hand side can be upper-bounded by a surrogate problem are beyond the scope of this
present paper.

For this scenario, we define a Monte Carlo estimate. Let ξij and ϵij be i.i.d. samples of ξ

and of the Rademacher random variable, respectively. Then a Monte Carlo estimate R̂[f ] of
the Rademacher complexity is given by

R̂n[f ] =
1

m

m∑
j=1

(
max
yj∈Y

G(yj, {ϵij, ξij}ni=1)
)
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where m is the number of repetitions. Our next result concerns the correctness of this Monte
Carlo estimate.

Proposition 11. Suppose 0 ≤ G(y, {ϵi, ξi}n) ≤ σ
2
for all (y, {ϵi, ξi}n) ∈ Y × {±1,Ξ}n, for

some finite constant σ ∈ R+. Then we have Rn[f ] ≤ R̂n[f ] + d with probability at least
1− exp(−2m( d

σ
)2).

Proof. First note that Hoeffding’s inequality implies

P
(
R̂n[f ] < E

(
R̂n[f ]

)
− d

)
≤ exp

(
− 2m

(d
σ

)2)
.

We next define the quantity

F = 1
m

∑m
j=1

(
supxj∈X

∣∣∣ 1n ∑n
i=1 ϵi,jf(xj, ξi,j)

∣∣∣).
But by definition F ≤ R̂n[f ] and EF = Rn[f ] ≤ ER̂n[f ], and so this means that we have

P
(
R̂n[f ] < Rn[f ]− d

)
≤ exp

(
− 2m

(d
σ

)2)
.

The result follows by taking the complement of this. ■

The above result says the Monte Carlo estimate R̂n[f ] upper bounds the Rademacher
complexity Rn[f ] with high probability. The quality of the estimate depends upon two factors.
The first is how weak the upper bound (3.13) of the surrogate optimization problem is. The
second is how large m is, with larger values corresponding to more accurate estimates. We
reiterate that this approach is only feasible when the surrogate problem is easily-solvable,
which enables the use of large values of m in computing the estimate. We will provide a
specific example in the next section.

Explicit Bounds

Next, we provide explicit bounds for specific classes of stochastic optimization problems.
Continuity is needed for logarithmic bounds even with favorable feasible sets. For instance,
Proposition 2 of [37] gives an example f(x, ξ) with X = {x : ∥x∥2 ≤ λ}, where F (x) is
Lipschitz and linear bounds are necessary for a small optimality gap. By defining g(x) such
that g(0) = 0 and g(x) = x · ∥x∥1/∥x∥2 otherwise, we thus construct an example f(g(x), ξ)
with X = {x : ∥x∥1 ≤ λ} where F (g(x)) is not Lipschitz and a linear number of samples is
necessary for a small optimality gap.

Proposition 12. Let g : R→ R be Lipschitz with constant L, and consider the stochastic
optimization problem

min
x∈S

{
Eξ

(
g(ξTx)

) ∣∣∣ ∥x∥1 ≤ λ
}

(3.14)

where S ⊆ Rp and maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Then the Rademacher complexity of the above

problem is bounded by Rn[f ] ≤ λLC
√
2 log 2p/n, and we need

n ≥
(3λLC

δ

)2

·
(
2 log

( 2

α

)
+ 2 log 2p

)
(3.15)

samples to ensure that (3.3) holds.
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Proof. Let Λ = {x : ∥x∥1 ≤ λ}, and note that we have

max
x,y∈Λ

∣∣∣g(ξTx)− g(ξTy)∣∣∣ ≤ Lmax
x,y∈Λ

∣∣∣ξT(x− y)∣∣∣ ≤ 2λLC

where the first inequality follows by Lipschitz continuity of g(·), and the second inequality
follows by Hölder’s inequality. This means the assumption holds for ∆ = 2λLC. Next we
bound the Rademacher complexity of the problem (3.14), which is bounded by L times the
Rademacher complexity for the stochastic optimization problem where g(·) is the identity
function (see Lemma 26.9 in [92], which was originally Lemma 1.1 from the lecture notes [46];
a slightly less general version of this result was first shown by [59]). This second Rademacher
complexity for when g(·) is the identity was bounded in [48], and the final result is as above.
The sample bound (3.15) now follows from Corollary 2. ■

The above single-index model with an ℓ1 constraint is a situation where we need logarithmic
in p samples for SAA, which is a substantial improvement over the standard bound (3.4)
showed by [51, 93, 94] that is polynomial in p.

Next we consider a class of problems similar to [63], and we show a similar logarithmic in
p bound but without using regularization and with a much simpler technical argument.

Corollary 3. Let g : R → R be Lipschitz with constant L, and consider the stochastic
optimization problem

min
x∈X

Eξ
(
g(ξTx)

)
(3.16)

where maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Suppose there is an optimal solution x∗ to (3.16) that is
sparse, meaning that s :=

∑p
i=1 1(x

∗
i ̸= 0) is small with ∥x∗∥∞ ≤ µ < +∞. Then

n ≥
(3µsLC

δ

)2

·
(
2 log

( 2

α

)
+ 2 log 2p

)
samples ensures that (3.3) holds when x̂ is the SAA solution to the stochastic optimization
problem

min
x∈X

{
Eξ

(
g(ξTx)

) ∣∣∣ ∥x∥1 ≤ µs
}
. (3.17)

Proof. Note that ∥x∗∥1 ≤ µs by assumption. Thus x∗ is an optimal solution for both (3.17)
and (3.16), and both problems have the same minimum value F (x∗). The result now follows
by applying Proposition 12 to (3.17). ■

Last we note that our sample bound can be improved when the problem has nonegativity
constraints.

Proposition 13. Let g : R→ R be Lipschitz with constant L, and consider the stochastic
optimization problem

min
x∈S

{
Eξ

(
g(ξTx)

) ∣∣∣ x ≥ 0, ∥x∥1 ≤ λ
}

where S ⊆ Rp and maxξ∈Ξ ∥ξ∥∞ ≤ C < +∞. Then the Rademacher complexity of the above

problem is bounded by Rn[f ] ≤ λLC
√
log p/n, and we need

n ≥
(3λLC

δ

)2

·
(1
2
log

( 2

α

)
+ log p

)
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samples to ensure that (3.3) holds.

The proof is omitted because it is essentially identical to that of Proposition 12, the main
difference being a different bound from [48] is used for the Rademacher complexity.

Explicit Bounds for Matrix Optimization

Next, we provide bounds for specific classes of stochastic matrix optimization problems. We
use ∥X∥∗ to denote the nuclear norm of X ∈ Rp×q, and ∥ξ∥2 in this section denotes the
spectral norm of the random matrix ξ ∈ Ξ ⊂ Rp×q.

Proposition 14. Let g : R→ R be Lipschitz with constant L, and consider the stochastic
optimization problem

min
X∈S

{
Eξ

(
g(tr(ξTX))

) ∣∣∣ ∥X∥∗ ≤ λ
}

where S ⊆ Rp×q and maxξ∈Ξ ∥ξ∥2 ≤ C < +∞. Then the Rademacher complexity of the above

stochastic optimization problem is bounded by Rn[f ] ≤ λLC
√

3 log(min{p, q})/n, and we
need

n ≥
(3λLC

δ

)2

·
(
2 log

( 2

α

)
+ 3 log

(
min{p, q}

))
samples to ensure that (3.3) holds.

Proof. Let Λ = {X : ∥X∥∗ ≤ λ}, and note that we have

max
X,Y ∈Λ

∣∣∣g(tr(ξTX))− g(tr(ξTY ))
∣∣∣

≤ L max
X,Y ∈Λ

∣∣∣tr(ξT(X − Y ))
∣∣∣

≤ L max
X,Y ∈Λ

∥ξ∥2∥X − Y ∥∗

≤ 2λLC

where the first inequality follows by Lipschitz continuity of g(·), and the second inequality
follows by Hölder’s inequality for unitarily invariant norms [15]. This means the assumption
holds for ∆ = 2λLC. Next we bound the Rademacher complexity of (3.14): Observe that this
is bounded by L times the Rademacher complexity for when the function g(·) is the identity
function (see Lemma 26.9 in [92] and Lemma 1.1 in [46]). The Rademacher complexity for
when g(·) is the identity was bounded in [47], and the final result is as above. The sample
bound (3.15) now follows from Corollary 2. ■

The above single-index model with a nuclear norm constraint needs logarithmic in
min{p, q} samples for SAA. This is a substantial improvement over the standard bound (3.4)
showed by [51, 93, 94] that in this case is

n ≳
pq

δ2
log

1

δ
+

1

δ2
log

1

α
.

which is polynomial in p and q.
Next we consider a class of problems similar to [62], and we show a logarithmic in min{p, q}

bound but without using regularization and with a much simpler technical argument.
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Corollary 4. Let g : R → R be Lipschitz with constant L, and consider the stochastic
optimization problem

min
X∈X

Eξ
(
g(tr(ξTX))

)
(3.18)

where X ⊆ Rp×q and maxξ∈Ξ ∥ξ∥2 ≤ C < +∞. Suppose there is an optimal solution X∗ to
(3.18) that is low rank, meaning r := rank(X∗) is small with ∥X∗∥2 ≤ µ < +∞. Then we
need

n ≥
(3µrLC

δ

)2

·
(
2 log

( 2

α

)
+ 3 log

(
min{p, q}

))
samples to ensure that (3.3) holds when X̂ is the SAA solution to the stochastic optimization
problem

min
x∈X

{
Eξ

(
g(tr(ξTX))

∣∣∣ ∥X∥∗ ≤ µr
}
. (3.19)

Proof. Note that ∥X∗∥∗ ≤ µr by assumption. Thus X∗ is an optimal solution for both (3.19)
and (3.18), and both problems have the same minimum value F (x∗). The result now follows
by applying Proposition 14 to (3.19). ■

Alternative Proof

We conclude this section by considering the more general setting of the past bound from [94].
We give an alternative proof of our result for problems with an ℓ1 constraint, which modifies
the proof of Theorem 5.18 in [94].

Proposition 15. Consider the stochastic optimization

min
x∈S

{
Eξf(x, ξ)

∣∣∣ ∥x∥1 ≤ λ
}

(3.20)

where S ⊆ Rp. Let Λ = {x ∈ S : ∥x∥1 ≤ λ}, and suppose two assumptions hold. First,
for any x′, x ∈ Λ there exists constant σx′,x > 0 such that the moment-generating function
Mx′,x(t) = Eξ exp(tYx′,x) of random variable Yx′,x = [f(x′, ξ) − F (x′)] − [f(x, ξ) − F (x)]
satisfies Mx′,x(t) ≤ exp(σ2

x′,xt
2/2) for all t ∈ R. Second, there exists a (measurable) function

κ : Ξ → R+ such that its moment-generating function Mκ(t) is finite valued for all t in a
neighborhood of zero and |f(x′, ξ)− f(x, ξ)| ≤ κ(ξ)∥x′ − x∥ for almost everywhere ξ ∈ Ξ and
all x′, x ∈ Λ. Then (3.3) holds whenever

n ≥ 8σ2

δ2
· log 64λ2L2p

δ2
+
(8σ2

δ2
+

1

β

)
· log

( 2

α

)
, (3.21)

where σ2 = supx′,x∈Λ(σx′,x)
2, L = Eξκ(ξ), and we have that β = supt∈R

(
2Lt− logMκ(t)

)
.

Proof. We first show there exists a set V = {x1, . . . , xk} with log k ≤ 32(λL/δ)2 log p so
maxx∈Λminx′∈X ∥x− x′∥ ≤ δ/8L. To show this, we use the Sudakov minoration [100] that
says

√
log k ≤ E(supx∈Λ gTx)/2(δ/8L), where g ∈ Rp is a vector whose entries are i.i.d.

Gaussian random variables with zero mean and unit variance. Hölder’s inequality and the
symmetry of Λ imply that we have E(supx∈Λ gTx) ≤ E(supx∈Λ ∥x∥1 ·maxj |gj|) ≤ λ

√
2 log p

where we have used the basic bound E(maxj |gj|) ≤
√
2 log p for gj that are the j-th entry of
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(a) log-log plot (b) semi-log plot

Figure 3.1: Comparison of 95% upper confidence bound of SAA solution gap (solid blue)
with bounds on 95% upper confidence bound gap predicted by [51, 93, 94] (dash-dotted red),
our Proposition 10 (dashed orange), and our Corollary 2 (dotted green). The left shows
results on a log-log scale, and the right shows results (excluding the [51, 93, 94] bound) on a
semi-log scale. In both plots, the x-axis is the dimension p of the decision variable, and the
y-axis is the 95% upper confidence bound gap.

the vector g. Thus Sudakov’s minoration gives that
√
log k ≤ λ

√
2 log p/2(δ/8L). Rearranging

this inequality gives the desired bound log k ≤ 32(λL/δ)2 log p.
Next choose any x∗ that minimizes (3.20) and consider the modified stochastic optimization

problem minx∈V∪{x∗} F (x). Let x∗,v ∈ argminx∈V∪{x∗} F (x), and define the solution x̂vn ∈
argminx∈V∪{x∗} Fn(x). Note Fn(x̂n) ≤ Fn(x̂

v
n) since V ∪ {x∗} ⊆ Λ. The second assumption

implies that with probability one we have |Fn(x′) − Fn(x)| ≤ κ̂n∥x′ − x∥ for all x′, x ∈ Λ,
where κ̂n = 1

n

∑n
i=1 κ(ξi). By construction of V , there exists x′ with ∥x′ − x̂n∥ ≤ δ/8L. Thus

Fn(x
′) ≤ Fn(x̂n) + κ̂n · (δ/8L) ≤ Fn(x̂

v
n) + κ̂n · (δ/8L).

We continue our analysis under the event that κ̂n ≤ 2L. Here, Fn(x
′) ≤ Fn(x̂

v
n)+δ/4. Thus

Theorem 5.17 of [94] says that P
(
F (x′)−F (x∗,v) ≤ 3δ/4

)
≥ 1−α/2 for n ≥ (8σ2/δ2)×log(2(k+

1)/α). But F (x∗,v) = F (x∗) by construction of the modified stochastic optimization, and also
F (x̂n) ≤ F (x′)+L·(δ/8L) since the second assumption implies that |F (x′)−F (x)| ≤ L∥x′−x∥
for all x′, x ∈ Λ. This means we have F (x̂n) ≤ F (x∗) + 3δ/4 + δ/8 with probability at
least 1 − α/2. Note the Chernoff bound implies that κ̂n ≤ 2L with probability at least
1− exp(−nβ) = 1− α/2 when n ≥ log(2/α)/β. Thus (3.3) holds when (3.21) holds. ■

The significance of this alternative proof is that it shows that the logarithmic rates arise
because of the properties of ℓ1 constraint. A similar alternative proof can also be constructed
for nuclear norm constraints. The boundedness and Lipschitz continuity assumptions we
make in previous subsections are artifacts of the proof technique that we use.



CHAPTER 3. SAMPLE AVERAGE APPROXIMATION 30

3.6 Numerical Experiments

Consider a scenario where we would like to choose a portfolio that allocates investments into
some combination of p risky assets and 1 risk-free asset, while considering a tradeoff between
maximizing the expected return of the portfolio and the risk tolerance of the investor. The
Markowitz portfolio selection model [66, 19] is a simple framework to pose such a problem.
Let ξ ∈ Rp is a random variable of the returns from the p risky assets, and define µ = Eξξ
and Σ = Eξ((ξ − µ)(ξ − µ)T). Then one formulation of the problem involves solving a convex
quadratic program

min
x∈Rp

{
xTΣx− γ · xT(µ− r1)

∣∣∣ x ≥ 0, ∥x∥1 ≤ 1
}

(3.22)

where: r is the rate of return for the risk-free asset, γ > 0 trades-off betewen the returns
and risk of the portfolio, and each entry of the vector x gives the fraction of the portfolio
allocated to the p risky assets; hence 1−

∑p
i=1 xi is the fraction of the portfolio allocated to

the risk-free asset.

Sample Bounds

To bound the Rademacher complexity of (3.22), we can use an existing calculus for Rademacher
complexity [59, 11].

Proposition 16. If ∥ξ∥∞ ≤ s, then the Rademacher complexity for (3.22) is bounded by
Rn[f ] ≤ (4s2 + γs)

√
log p/n. Also, the assumption is satisfied for ∆ = 4s2 + γs.

Proof. Using the identity Σ = Eξ(ξξT)− µµT, we have xTΣx− γ · (µ− r1)Tx = Eξ
(
(ξTx)2 −

γ · ξTx
)
−

(
Eξ

(
ξTx

))2
+ γ · r1Tx. Thus we can rewrite (3.22) as

min Eξ
(
(ξTx)2 − γ · ξTx

)
−
(
Eξ

(
ξTx

))2
+ γ · r1Tx

s.t. x ≥ 0, ∥x∥1 ≤ 1

The above is useful for bounding Rademacher complexity. Deterministic terms have a
Rademacher complexity of zero, and the Rademacher complexity for the sum of problems
is upper-bounded by the sum of the individual Rademacher complexities [59, 11]. So
we conclude the proof by bounding the Rademacher complexity of three problems: First,
consider the problem min{Eξ((ξTx)2) | x ≥ 0, ∥x∥1 ≤ 1}. Since ∥ξ∥∞ ≤ s, Proposition 13

says Rn[f1] ≤ 2s2
√

log p/n with ∆1 = 2s2, since g(u) = u2 is Lipschitz with L = 2s when
u ∈ [−s, s]. Second, consider the optimization problem min{−(Eξ(ξTx))2 | x ≥ 0, ∥x∥1 ≤ 1}.
Proposition 13 with Corollary 1 gives Rn[f2] ≤ 2s2

√
log p/n with ∆2 = 2s2, since h(u) = u2 is

Lipschitz with L = 2s when u ∈ [−s, s]. Third, consider the problem min{Eξ(−γ · ξTx) | x ≥
0, ∥x∥1 ≤ 1}. Proposition 13 gives Rn[f3] ≤ γs

√
log p/n with ∆3 = γs. The result follows by

noting that Rn[f ] ≤ Rn[f1] +Rn[f2] +Rn[f3] and that ∆ ≤ ∆1 +∆2 +∆3. ■

We can compare various sample bounds on n to ensure (3.3) holds. We begin by calculating
the specific previous bound from [94]: Hoeffding’s lemma [42] bounds variance of (3.22) by
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∆2

4
for the ∆ from Proposition 16. Moreover, the Lipschitz constant of the objective (without

expectation) in (3.22) is L ≤ √p(4s2 + γs). Consequently, the previous bound from [94] is

n ≥ 2 ·
(4s2 + γs

δ

)2

·
(
p log

8
√
p(4s2 + γs)

δ
+ log

2

α

)
. (3.23)

In contrast, combining Proposition 16 with Corollary 2 gives our bound to be

n ≥
(12s2 + 3γs

δ

)2

·
(1
2
log

( 2

α

)
+ log p

)
. (3.24)

The difference is our bound (3.24) is logarithmic in p whereas the past bound (3.23) is
quasi-linear in p.

Results of Experiment

To experimentally compare the above bounds with the actual SAA performance, we consider
this next scenario: We assume returns for the assets are distributed as

ξ ∼ U1(− s
2
, s
2
)1p + Up(− s

2
, s
2
),

where Uk(l, u) is a k-dimensional uniform distribution with the support of the distribution
in each dimension of [l, u], and 1p is a p-dimensional vector of ones. The interpretation is
that the first term U1(− s

2
, s
2
)1p describes a strongly correlated component of the returns,

while the second term Up(− s
2
, s
2
) describes an independent component of the returns. We

also assume γ = 1, s = 1, and r = 0.
To compare the bounds with the actual SAA solution gaps, we used n = 50 and computed

the 95% upper confidence bound of the SAA solution gap by solving SAA a total of 10,000
times each for different values of p. The 95% upper confidence bound is the smallest value of
δ for α = 0.05 in (3.3). We also compute the smallest value of δ for α = 0.05 for the different
bounds available to us. Specifically, we compare the actual upper confidence bound to

• bound (3.23), which is the past bound from [51, 93, 94]

• bound (3.10), which is the implicit sample bound from our Proposition 10

• bound (3.24), which is the simplified sample bound from our Corollary 2 for when
limn δ = 0

The results are shown in Fig. 3.1. The past bound from [51, 93, 94] grows much faster than
the actual SAA solution gap. In contrast, our bound (3.10) from Proposition 10 visually
matches the growth rate of the actual SAA solution gap. Our bound (3.24), which is the
simplified bound using Corollary 2, grows grows faster than the actual SAA solution gap;
however, the bound (3.24) is a reasonably accurate approximation to (3.10) from Proposition
10. This suggests the simplified bound of Corollary 2 is useful for qualitative understanding
of scaling, whereas the more accurate bound of Proposition 10 is more useful for determining
necessary sample sizes for SAA.
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Chapter 4

A Philosophical Framework for OIT

Following the presentation of stochastic models, theory, and analysis techniques in the last
two chapters, we now move to propose a framework for OIT, based in stochastic optimization
and modelling. This chapter provides the philosophical framework for optimal intervention
theory, and is based in economic theory, with special attention paid to behavioral psychology
and other fields that contribute to the study of optimal incentive and contract design. OIT is
the study of population adoption of socially beneficial goods and services (SBGs). While much
work has been done to form theoretical and empirical basis for global poverty alleviation and
the development of under-resourced communities, we feel that far too little attention has
been dedicated to the study of how information and incentives drive learning, and how, in
turn, the learning process deepens a populations commitment to adopt and consistently use
SBGs.

The negative consequences of this lack of attention paid to adoption in mechanism and
incentive/contract design is easily seen in the failure of costly interventions domestically
and globally, where almost all of the effort is placed into mechanism design and automation
practices (using digital technologies), and far too little effort is placed in understanding
consumer behavior and psychology, sociological underpinnings of the intervened society, and
classical economic thought and processes in the intervened locale, such that the procurement
and continued use of the marketed good or service, shortly after the initial intervention period,
becomes negligent, causing an overall failure of the intervention procedure, and a devastating
economic and psychological loss to the spirit of altruistic poverty alleviation programs.

Our focus on incentive and contract design hinges on the importance of decision-makers
having access to reliable preference sets of the various stakeholders. We call for and emphasize
a renewed focus on listening to the reason and rationality of populations targeted in our
intervention schemes, rather than prescribing (basic) rational behavior to simulated agents in
our mathematical intervention framework.

Organization

In this chapter, we will introduce philosophical beginnings that formalize our goals and
challenges for Optimal Intervention Theory (OIT). In the following chapter, we provide the
most rigorous treatment of the models provided under OIT. We encourage the reader to refer
to Appendix A (glossary) for a list of terms, before reading this and the following chapter.
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4.1 The Problem

From a socioeconomic viewpoint, our main issue in sustainable global development theory for
permanent, worldwide poverty alleviation is the fact that “no one wants to pay for positive
externalities”, or simply, that in “free-market” societies, producers are concerned only for
the impact of systems (transportation, infrastructure, customs, software access, etc.) as they
impact producers, and the same is said of consumers. Social benefit is a positive externality,
and long-term dynamic contracting for the adoption of socially beneficial goods is specifically
focused on maximizing the production of positive externalities. The “tragedy of the commons”
that results from this fact has led Western (and other) governments to tax its citizens as a
whole in order to fund things like University research, public education, public healthcare,
government pension provision to combat elderly poverty (Social Security), and many other
goods and services.

We clearly see, throughout the world, that such systems that aim to provide benefits
beyond the producers and consumers (i.e., positive externalities) need large public funding
concessions, or else will provide suboptimal service. Thus, we view a public-private partnership
under the guise of the Principal Agent Model as the primary funding scheme in Heavily
Indebted Poor Countries (HIPC) countries, especially [26]. We posit a global development
theory where our objective is to provide the environmental characteristics necessary for the
global citizenry to live healthy and active lifestyles, so that they can solve their own society’s
most pressing problems, which is the only sustainable practice for global development the
author finds feasible in the long-run (vs. long-term dependence on foreign aid, tourism, and
the like).

A Catalogue of Development Economics/Engineering Problems

Here, we provide an non-exhaustive list of current problems in development engineering
and economics that lend themselves to system science and engineering based solutions,
in partnership with experts from legal studies and business/finance. These disciplines
(engineering, law, finance) must be interlinked in any sustainable development plan, to ensure
the plausibility and integrity of proposed engineering solutions, the legitimacy of designed
mechanisms, laws, and customs, and the liquid availability of assets necessary for development
(as well as a low-cost, fixed rate funding scheme through public-private partnership).

1. Supply Chain Logistics

2. Trading infrastructure: Ports (air and sea), transportation vehicles (ships, trains, trucks)
and networks, customs personnel, software, and practices, contracts and bargaining
agreements, resilience plans and supply redundancies

3. Transportation networks, especially efficient last-mile delivery in “specially-constrained”
environments

4. Interface of technology and development

Fintech

Biotech
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Food, water, and energy technologies

Online optimization and personalization predictions

5. Well-privatized consumer identification schemes (for resource provision)

6. Software for trade and development

7. Education and training for trade officers, merchants, and citizens

8. Effective, localized consumer behavioral understanding and models

9. Private-Public funding schemes

10. Private-Public research & development schemes

11. Academic-based evaluation schemes

especially those used to pivot/update interventions

12. Government management and peace relations

13. Local, regional, national, and transcontinental organization of trade unions and low-tariff
contracts (for a specified development period, a “golden age” of global development)

Closely related to the areas for engineers, economists, philanthropists, investors, and other
interested parties given above are the statistics for the end-users (consumers in developing
areas) that detail progress in local and regional development. In C. West Churchman’s book,
Challenge to Reason, he provides a very succinct explanation that elucidates the difficulty
of measuring human progress objectively [24]. In order to avoid contention and resources
dedicated towards defining development goals, we feel that overall development goals, and
thus statistics of progress, should be measured according to the enumeration provided by the
UN’s Sustainable Development Goals, and are thus referenced in this work and defined in our
glossary [91]. Whereas Maslow’s hierarchy still identifies relevant physiological needs (food,
shelter, water), in this current globalized society, transportation and energy access must now
be included as necessary to promote healthy and active lifestyles, and other considerations
may be necessary.

4.2 Economic Theory and Contributions

In OIT, our sole purpose is to improve the utility of the agent, in some “markets” the principal
cares about (i.e. desires a high utility for the agents in that market), over time, through the
use of adaptive processes (i.e. exchanges between the agent and principal). To this end, this
section introduces work from Roy Murphy on adaptive economic systems [72], R.H. Coase on
transactions cost [25], and C. West Churchman and others on Game Theory [24].

We take the Coase based view of markets with “transactions costs” being the fundamental
economic driver of economic processes, rather than the Robbins’ view of allocation of scarce
resources for maximizing utility and, in commonplace now, point to the 2019 Nobel Prize
in Economics as reason to study interventions under this framework [25]. We do, however,
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take the bidirectional hypothesis that the rate of generation of information in the the
economic system controls the rate of decision making (i.e. time epochs where the contract
is “renegotiated”), and thus indirectly the rate of growth of the system’s resources (utility).
This gives us direction for the formulation of the dynamic intervention process, and those
things which effect the rate of change of the resource (or system utility) of interest.

Murphy and Adaptive Processes in Economic Systems

This section introduces work by Murphy, and defines what we describe as adaptive intervention
processes [72]. In the preface of Murphy’s work, he points out four issues with economic
theory at that time: (1) Partial information is de facto where full information is de jure i.e.
that most models assume full information. Full information is useful, however, for the study
and construction of the basic structures of human and physical systems, in which we wish to
show the power of full information. However for policy purposes, this in no way can be a
rational casting of the problem. (2) Adaptive economic processes have not been studied in
generality. (3) The theory of communication and information exchange must be treated more
thoroughly, with transactions cost. (4) The analogies of an economic market under stochastic
exchange and other scientific models with a stochastic number of events, each with associated
payoff/utility, has not been properly exploited for modeling and analysis contributions.

Game Theory

C. West Churchman defines game theory as “a theory that tries to describe rational conduct
in the context of conflict” [24]. Furthermore, he states, “It sets forth ‘rational’ rules governing
“fair play” and tries to discover optimal strategies that can be followed by an individual when
he is facing his opponent in a situation governed by certain recognizable rules.” He believes,
as do we, that the rules set forth here are still ineffective at helping management scientists
make rational decisions (or policies).

According to these beliefs, we posit that operations engineering thinking, mixed with
Game Theory, is the right academic basis for envisioning, designing, building, activating, and
evaluating societal scale interventions. These are the “big scientific problems of our day”.
Utilizing data and engineering, mathematical, and statistical process to design intervention
pathways for the adoption of social or population-based beneficial goods. There is an especial
interest in designing systems that are tractable, meaning their impact lasts far past the
intervention period, as measured by the indicators used to determine progress during the
intervention cycle.

Churchman writes “In other words, the axioms of rational behavior provide the way of
processing the basic information for rational plans, provided that information concerning
preferences is available” [24]. Therefore, our focus on incentive and contract design hinges
on the importance of decision-makers having access to reliable preference sets of the various
stakeholders. We call for and emphasize a renewed focus on listening to the reason and
rationality of populations targeted in our intervention schemes, rather than prescribing (basic)
rational behavior to simulated agents in our mathematical intervention framework.

We make one final note in this section on the importance of population “typing”, a clus-
tering procedure, and its effect on intervention procedures. Now many of these interventions,
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taking food systems as an example, can only be adopted in marginalized communities, such
as those qualifying for SNAP or WIC benefits, due to our ability to influence them directly.
However, for both the long-term entrenchment of the intervention goals and consistency
(in the adaptive sense) over the intervention, socially beneficial goods and goals should
be adopted for large segments of the population. Again, returning to food, although only
x% of Americans qualify for SNAP, y% of Americans are overweight or obese. Clearly,
then, we need to consider spillover effects, both negative and positive, over the lifetime of
our intervention, and we may want to take the successes gained from adoption of those
we can directly influence, and expand the program, through neighborhood-based models
(e.e. community colleges, public broadcasting), to include the surrounding populations, and
mainstream populations buffered from the margins of society. This idea has both moral
(intervening on the most intervened, causing more instability) and practical applications (i.e.
tractability of intervention procedure, herd immunity type arguments for overeating, lack of
exercise, irregular sleep patterns, etc.

Transaction Costs and the Social Economy

Nobel Prize winning economist R.H. Coase is most widely recognized for his view of economics
through the lens of transaction costs, and in his seminal work “ The Firm, The Market, and
The Law”, Coase introduces the idea of transaction through both the perspective of the firm
and market, stating of the market “Markets are institutions that exist to facilitate exchange,
that is, they exist in order to reduce the costs of carrying out exchange transactions”; and
of the firm writes, “The limit to the size of the firm is set where its costs of organizing
a transaction become equal to the cost of carrying it out through the market” [25]. Now,
these precepts of transaction costs, when applied to the social economy, gives us a deeper
understanding of the work needed for successful social, political, and economic (SPE) system
realignment in this lifetime.

Since transaction costs of many types (safety, infrastructure, education status, language
barriers, etc.) are very high in the areas of our country, and in the developing world, where
we will seek to intervene, we must invest in model programs with the understanding that they
will have most of their resources absorbed into transaction costs. This phase of intervention
is called capacity-building. However, these resources need not be wasted if the object of
their use, the betterment of a certain locale for quality of life indicators, is utilized well in
subsequent interventions in similar locales. With a large enough pool of model programs
and interventions, we can utilize this information in dissimilar locales, once we are able to
measure the specific interventions and their benefits in our model programs. This, again,
brings in the ideas of statistical learning theory, to assure the methods and procedures added
to the docket of best practices has been rigorously proven, and allowed the sensitivity to mold
itself into a different locale, region, or culture. This is the idea of “measuring” or “managing”
intervention dosage.
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Social Welfare Functions (SWF’s) and the Ramsey-Cass-Koopmans
(RCK) Model for Economic Growth

RCK Model Applications

The Ramsey-Cass-Koopmans model has been used several times in the literature to model
long term economic growth. In a study investigating long run output growth of multiple
countries, the RCK model was used in the empirical analysis. Results reveal that the countries’
growth levels do not converge using the RCK model.[1]

One of the assumptions of the RCK model is the homogeneity of the customers. In 2000,
tools to study the evolution of the distribution of consumptions, assets and incomes in a
market with heterogeneous customers were developed and applied as an extension to the
standard RCK model.[22]

The RCK model has been used to investigate the positive correlation between saving and
growth across different countries. In this study, precautionary saving motives are introduced
into the basic Ramsey-Cass-Koopmans growth model in a manner that keep the model
tractable. In addition, the author argues that the adding precautionary saving motives to
the standard growth model can imply that increase in growth can cause increase in saving
[54]. For this portion of the research work, we concern ourselves with firms (or groups of
agents) characterized as nonprofit organizations in the American society, and have sought
to quantify their decision-making processes. Most notably, we seek the formation of utility
functions which address a nonprofit firm’s tendency to balance these three business goals:

1. Own Provision: Firms maximize their own provision of goods min(Qn, Dn), where Qn

is the amount of the good supplied by the firm and Dn is end consumer demand for
their good [87] [2].

2. Market Surplus : Firms maximize end consumer market surplus CSm [56] [104].

3. Net Revenue: Firms receive utility from net revenue Rn − Cn(Qn). This monetary
return is primarily passed to firm members through higher salaries or benefits [79] [30].

Here, we seek to present tailored examples of the use of the Ramsey-Cass-Koopmans
model, known classically as the Ramsey model of economic growth. The model’s main formula
is given as:

max
c
U0 =

∫ ∞

0

e−(ρ−n)tu(c)dt (RCK)

subject to c = f(k)− (n+ δ)k − k̇

where the constraint represents the evolution of capital accumulation, and our value function
is some social planner’s social welfare function. Capital accumulation (human and physical)
in the world of OIT is paramount, and closely related to the idea of capacity building and
intervention sustainability. Any and all intervention efforts must seek to raise, maintain, and
permanently entrench human capital systems (i.e. education and training based-systems, as
well as retention and recruitment of personnel) and physical capital systems (transportation
networks and vehicles, customs and customs software, structures and architectural design,
energy and power systems, water source management and discovery, etc.).
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Therefore, in this research work, we seek to illuminate the potential value of Social welfare
functions, with a focus on the Ramsey-Cass-Koopmans model and its applications. The
model discounts social utility over time, with respect to a firm’s (agents) ability to accumulate
capital while fulfilling the firm’s (principals) specific utility function (social and economic
motives). The idea of a firm must be gathered from context here (i.e. when it describes the
agents goals of the PAM, and the principals). We explore different solution methods that
have been implemented to solve this problem. In addition, we present tailored examples of
the use of the Ramsey-Cass-Koopmans model, known classically as the Ramsey model of
economic growth, in the context of Non-profit organizations and climate change economics.
We discuss the formulation of these two problems, with particular emphasis on construction
considerations for the utility function critical in the RCK model.

This model provides a method to consider trade-offs between altruistic and capitalistic
business practices, which may be combined in a manner beneficial to equilibrium-based
markets. Researchers believe that the necessity to accumulate capital to fulfill any business
goal can be quantified, and therefore, optimized for business sustainability and growth. The
author intends to make the following contributions to OIT using this theory, which encompass
both technical considerations and social welfare notions:

1. Catalog some existing solution methods to the RCK model

2. Present Models for tailored examples using RCK in the context of Non-profits and
discuss potential solution implications.

A literature review of the Ramsey-Cass-Koopmans model and its applications to date can be
given by the author for any interested parties.

Ramsey-Cass-Koopmans (RCK) model

The standard neoclassical models of economic growth are those associated with Ramsey, Cass
and Koopmans, in which growth is a function of saving, investment and capital accumulation.
The Ramsey-Cass-Koopmans (RCK) model aims only at explaining long-run economic growth
rather than business cycle fluctuations, and does not include any sources of disturbances
like market imperfections, heterogeneity among households, or exogenous shocks. Originally
Ramsey set out the model as a central planner’s problem of maximizing levels of consumption
over successive generations. Only later was a model adopted by Cass and Koopmans as a
description of a decentralized dynamic economy. Subsequent researchers extended the model,
allowing for government-purchases shocks, variations in employment, and other sources of
disturbances, which is known as real business cycle theory.

RCK Model Formulation

The Ramsey-Cass-Koopmans model is an extension of the Solow growth model whereby the
new feature is that saving rate is not exogenously given. The objective of the RCK model
is for firms is to maximize profits while maximizing individual/household utility [31]. This
model has several underlying assumption, stated below:

• Capital is endogenous while knowledge and labor are exogenous
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• Capital and output are the same commodity. Thus, capital can be consumed

• No depreciation (of capital)

• Households earn profits as if they owned the firms

• Saving and consumption are endogenous.

RCK Model Solution Methods

Solving this problem, for instance by converting it into a Hamiltonian function, yields a
non-linear differential equation that describes the optimal evolution of consumption,

ċ = − uc(c)

c · ucc(c)
[fk(k)− δ − ρ] · c

which is known as the Keynes-Ramsey rule.
One of the methods of solving the RCK model is by simulation. The core equation in

the RCK model is the capital and wealth accumulation differential equation. The RCK
model is simulated by solving the set of two coupled ODE’s. A non-negativity constraint is
imposed on the solutions to the two equations. A trajectory of the solution path, showing the
time evolution of capital and consumption is created. Steady states are obtained by setting
differential equations to zero. [18]

Application of RCK model to Nonprofits

In this section, we discuss applications of the RCK model as Social Welfare Functions (SWF)
for specific applications in the context of non-profit organizations. With reference to the
infinite period model in [30], we have a discounted utility function of the form

V (Xnt, St|ρn, ρ−n) = Eρn,ρ−n

[ τi∑
k=t

βk−tU(Xnt, St) +
∞∑
t=τi

βk−tYnt|Xnt = X,St = S
]

where τi is a random stopping time based on some nonprofits strategy profile, denoting the
period in which they leave the market (for outside option Ynt) Then we seek to maximize
this value function with regards to a Markov strategy (for each firm) ρn : S ⇒ An, for a set
of available options Ant for firm “n” at time t, and a market state St ∈ S. The assumed
constraint in the original model is written as

Eρn,ρ−n

[ ∞∑
k=t

βk−tCnt(Xnk, Sk)
]
≤ ωnt + Eρn,ρ−n

[ ∞∑
k=t

βk−tRnt(XnkSk)
]

where ωnt is the assets of the firm in period t and β = 1
1+r

, where r is a constant real
interest rate. As this value function takes the form of a utility function, to be maximized, its
application to the RCK model is apparent. Hence, we move to form constraints (time-varying)
that align with the RCK model’s, and to describe and construct some considerations on
forming a concrete utility function for community-based nonprofits (excluding large, NGO-like
organizations such as large art studios, missionary organizations, etc. whose budgets exceed
most corporations.)
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Design of the Utility Function

As the notion of creating a utility function dependent on some universal set of firm character-
istics is futile, we attempt to make considerations for “most” firms that fit within our frame
of community-based nonprofits. Here are a list of firm characteristics our model wishes to
quantify for social impact:

1. Service to the surrounding community

Metric created to analyze the demand for the good in the Nonprofits immediate
vicinity, and how much of this demand is met. This notion yields a beneficial social
surplus for nonprofits located in areas where the demand for their good or service is
high. Mathematical Representation: This variable can be represented as a normalized
ratio describing the amount of local demand met by the organization, with regards
to the organization’s human and physical capital. The score can be thought of as an
“Own Provision” scheme where we seek to min(Qn, Dn) where Dn is some forecasted
demand and Qn is the proportion fulfilled by Nonprofit firm i.

2. Service to the (regional and) national community

Metric created to analyze the demand for the good outside the Nonprofits immediate
vicinity, and how much of this demand is met, with considerations for international
impact as well. Mathematical Representation: This variable can be represented in the
same manner as the first descriptor, with special attention paid to the normalization of
this ratio based on business size and (general field) scope.

3. Policy Impact

Local, Regional, and National measures, likely in a hierarchal system as listed, with
National impact being regarded as the most important to the measure. Mathematical
Representation: This predictor variable will be a threshold-based Bernoulli that measures
whether or not a Nonprofit’s leaders and methodologies affect national conversation
and/or legislation in the firm’s target area.

4. Donor consistency

We consider a measure of a philanthropic gift’s resonance with the donating group,
after the completion of the contract work. This can be measured on a standard Likert
scale. Mathematical Representation: Likert Scale based on the survey of past Donors,
with answers averaged.

5. Donor versatility

We consider a measure of versatility for donations with regards to the field or target
area of a philanthropic organization. This can be (initially) modeled as an indicator
variable with some positive weight (adding value to the company). Mathematical
Representation: This variable may be one of the hardest to quantify, but should
consider both the firm’s past and current donor versatility, as well as the areas in
which they may have some future impact, based on current business assets. We suggest
a Bernoulli indicator based on this criterion at first, and the development of more
accurate measures when the model is created.
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These characteristics describe a Nonprofits characteristic vector xnt at time epoch t. Given
available data in the area, we may wish to construct a multiple regression model with linear
function

∑5
i=1 βntixnti For now we assume the proper tuning of these weights (which would

be industry specific), such that
U(Xnt, St) = βntxnt. (4.1)

In this section, we hoped to motivate consideration of Optimization techniques that can
be developed to accurately qualify social welfare in the contexts of market equilibrium-based
economics. The explored topics represent only two of many social ills for which a philanthropic
based market could help realign imbalances. Furthermore, we conduct research in the era of
Big Data, which will allow the active training of our models using real-world data, and, when
necessary, could find it useful to help generate some the data with the existing firms in this
sector.

As a first step to the study of this area rigorously, in the next chapter introduce notation
from several fields to build a coherent notational base for adaptive intervention processes.
The main tributary field is dynamic programming (DP), for models and notation. Other
fields of optimization theory, especially stochastic (i.e. with randomness), such as optimal
control and queuing theory, as well as thee economic models presented here, will be consulted
for the task.
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Chapter 5

A Mathematical Framework for OIT

Following the introduction to models and modelling concepts from the social sciences in the
previous chapter, we will fully develop the mathematical elements introduced, and provide
results from outside literature that will help us form a holistic theory. We provide narrative
where appropriate to connect these results and formulations to the design and analysis of
societal scale interventions.

In this chapter, we present the main model of OIT, which is an intervention model whose
output is a dynamic optimal contract of interventions between a principal and agent under
a time-indexed version of the quartic knapsack problem. Recall that the main thrust of
adaptive processes is that decision makers (or processes) increase their knowledge by the
cumulative experience of “doing while learning”. Therefore the models we have seen up until
this point will now be revisited. In particular, sample average approximation results for
stochastic problems involving ℓ1 constraints will be a part of the OIT model, and our sample
bounds in that chapter will be relevant for estimating the principal’s investments over the
intervention period, as well as learning the principal and agent’s true utility functions over
time. The tensor completion problem represents the work we can do with data structures
which hold our realized random variables’ value over time, again helping us to predict the
future value random variables through completion, and also gives us insights through the
direct use of factorization techniques, similar to singular value decomposition in the matrix
world.

5.1 Mathematical and Statistical Formulations and

Analysis

This section provides formal theory to bridge the gap between classic, expert-based iterative
methods for global poverty alleviation and international development, and new data-driven
approaches that collect and analyze large amounts of data to form prediction and classification
models that increase intervention efficiency. In particular, classic social science and business-
like approaches to the alleviation of global poverty and its associated development issues may
be described as a “theory of experts”, and the nature of NSF and other like organizations’ calls
for proposals where multidisciplinary teams use data-driven approaches to solve national-scale
problems are an example of our nations’ experts’ commitment to a new academic and research
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regime. “In-between” the meetings and offerings of these experts in multidisciplinary teams,
experts in data science, machine learning, algorithm development, cybersecurity, and other
mathematical and statistical approaches to data utilization, combined with the large amounts
of data and computing power we now have access to, will help to “fit” the content offered by
these experts to the current realities for the populations we intend to impact.

5.2 Optimization Models and their Interpretations

and Uses for OIT

The Principal-Agent Model

Following the structure of the Principal-Agent Model (PAM), where a principal contracts
with an agent to do some task the principal cannot see (moral hazard) and/or cannot estimate
effort properly (hidden information/adverse selection), in OIT, our sole purpose is to improve
the utility of the agent, in some “markets” the principal cares about (i.e., desires a high
utility for the agents in that market), over time, through the use of adaptive processes (i.e.,
learning-based exchanges between the agent and principal). Examples can be seen with
governments and economic markets, such as in agriculture and financial technology (fintech)
markets, especially in the developing World [3]. Perhaps a better example is the government
contracting of external parties for defense (e.g., Raytheon, GE, Locheed Martin, etc.). Then,
in any contractual agreement between principal and agent in this view, must begin with
answering the three basic questions for adaptive behavior [72]. Importantly, we view our
PAM as a two-way contract, in which the principal must use the adaptive process to improve
its behavior and actions towards the agents as well.

1. Under what conditions does the adaptive process always improve the behavior of the
decision makers (principals and agents)?

2. What controls the rate at which the expected improvements in behavior occur (esp. for
agents)?

3. Can the adaptive process explain (e.g., by Principal Component Analysis) the diversity
of observed behavior of supposed rational decision makers without appeal to the
existence of (unknowable) individual utility functions?

In particular, we will focus on societal scale interventions for adoption of socially beneficial
goods (SBG’s), services and actions. To begin the theoretical study of human behavior under
this theme, causal relationships are not necessary, and correlative effects are important, as
our primary concern is the efficiency of the agent. With “ensemble” intervention methods
(many different models combined), it will often be difficult to know which factors were most
important, until we have generated lots of (unique) data. The Quadratic Knapsack Problem
(QKP) does give some structure to measuring synergistic effects; that is, the impact that
individual interventions may have in combination, which can be negative as well (i.e., Negative
feedback loops have negative synergy) [80].
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We will also use an ensemble method in measuring the effectiveness of intervention
strategies; whereas most models focus on only one intervention goals (access-, resource-,
education-, or network-based), our models will maximize a combination of the overall, average,
and maximum socially beneficial character-actions and character-states. Then, following
Paulson’s example for the bi-level program for optimal interventions [60], the upper level of
our optimization models will measure some statistic related to the overall adoption of SBG’s
in our intervention context, and the lower level will consist of a consumer behavioral model
which combines known qualitative and quantitative information on the intervention context
and agents, in order to move them along an optimal path towards adoption. Here is the main
contribution of our work and similar, nascent work. To expel the academic-centered “rational
actor” model and institute a consumer behavioral model that uses the latest information
provided from psychology and other social sciences to accurately reflect the psyche (or
strategic behavior) of agents and types of agents in new intervention contexts [8].

The mathematical beginnings for the PAM can be found in the incentive theory work
by Laffont [55]. The book gives a mathematical basis for considering contracting over
time through the PAM, including analysis of systems with adverse selection (privately held
information) and moral hazard (inability to observe the agent’s work). What is unique
and relevant in our model is that we consider interventions where our work is to bring
the agent from the starting characteristic state to an agreed-upon ending characteristic
state, over the contract period, rather than the typical production-based principal agent
relationship. Therefore, our optimal contracting policy cannot be based upon acute actions
from the principal to the agent, but instead we require that the agent act for itself for
the overwhelming majority of the contracting period, to help itself reach the agreed upon
pre-intervention “success state”, over the contracting period.

This type of intervention style is especially relevant to our main application area, diet-
based health disparity alleviation. In these cases, such as for diabetic patients, the agent
(patient) must make the majority of its actions (what to eat, exercise, sleep patterns, etc.)
on its own, unobserved by the agent. Then, our job in contract design is to set incentives in
such a way that the agents have motivation to act, often, in their best interest (e.g., ∼ 80%
of actions are positive). A combination of education-, resource-, access-, and network-based
(or group/type-based) interventions can be offered from the principal to achieve this goal.
We introduce concepts that rely heavily on the agents’ type and past actions, which, under
the guise of operations research, is referred to as the agent’s historical information vector, or
filtration (or sigma algebra).

We will provide a complete treatment of the use of the PAM later, but will provide
basic formulas for the principal and agents’ utility functions (i.e., incentive structures),
and introduce terms detailing the action space of the principals and agent in a dynamic,
repeated-game setting. Here, the agent takes two types: Efficient (θ̄) and inefficient (θ), and
we assume an agent is efficient or inefficient with probabilities v and 1− v respectively. This
can be easily generalized (and will be) to include more types. In OIT, we study socioeconomic
problems where both the principal and agent can influence (i) their individual effort levels,
and thus payoffs, according to the a priori, agreed upon compensation structure, as well as
(ii) their environments, by “economic” methods such as system investments, and “social”
methods such as updating their utility functions, for example, to provide more reward (or
value) for producing social good/positive externalities.
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According to Laffont’s work, the principal’s general payoff (optimization) function is with
respect to a “menu of contracts”, and takes the form:

max
{(t̄,q̄);(t,q)}

v(S(q)− t) + (1− v)(S(q̄)− t̄)

subject to : t− θq ≥ t̄− θq̄
t̄− θ̄q̄ ≥ t− θ̄q

t− θq ≥ 0

t̄− θ̄q̄ ≥ 0

(5.1)

where t̄ and t are the transfers (payoffs) for an efficient and inefficient agent in a single
period, respectively, and q̄ and q are the quantities of goods (or service level for service
products) produced in that contracting period. Constraints 1 and 2 are called incentive
compatibility constraints, and constraints 3 and 4 are called participation constraints. In
some (many) contexts, one or both of these sets of constraints are unnecessary, but they’re
meaning is important to interpret. Definition 2.2 of the text says that a menu of contracts is
incentive feasible if it satisfies both incentive and participation constraints, and that these
constraints fully characterize the set of incentive feasible menus of contracts.

The agent’s general payoff (objective) function is utility maximizing, and takes the form.

max
{(t̄,q̄);(t,q)}

U = t− C(q, θ)

subject to: C(q, θ) = θq + F

C(q, θ̄) = θ̄q + F

U = t− C(q, θ) ≥ t̄− C(q̄, θ)
Ū = t̄− C(q̄, θ̄) ≥ t− C(q, θ̄)

U = t− C(q, θ) ≥ 0

Ū = t̄− C(q̄, θ̄) ≥ 0

(5.2)

Here the first two constraints define the agent’s cost functions, given its respective type, and
the last four constraints are again incentive (compatibility) and participation constraints.
The book and most papers on the PAM begin to discuss the optimal contract after these
incentive and modeling notions are understood and represented mathematically.

Then, the general PAM has an objective where the principal maximizes its payoff subject
to eliciting a minimum effort level from the agent, for which they compensate the agent. This
notion is called the “The Rent Extraction-Efficiency Trade-Off”, and is the title of chapter
2 of Laffont’s work, previously mentioned. We will view the dynamics between an agent’s
observed actions, and the principals response to either continue in contract, renegotiate,
retire the agent, replace the agent, or promote the agent, and similarly the agent’s decision
to continue in contract, or quit (abandon the system), as decisions made in an infinitely
repeating, two-player game. Chapter 8 of Laffont’s work gives us base models for this regime
[55]. It is simple to make the reward structure zero sum, or use other game theoretic notions
that lend themselves to useful and interpretable analysis.
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Dynamic Programming (DP) and Optimal Control

One of the most powerful tools from statistical learning theory for OIT is Dynamic Program-
ming (DP) and optimal control, and its subsequent derivations, such as Model Predictive
Control (esp. learning-based). The DP algorithm solves problems in stages, and calls for the
“balance”, or trade-off, of the current stage’s decision with an approximation function for all
future periods. In other words, the algorithm calls us to be optimal, in a very specific sense,
over all possible decisions in our current state, and to approximate the cost of the remaining
stages, as to avoid a decision in the current stage that causes us to incur suboptimal cost in
the future (due to a deviation from the optimal “path” of decisions). The basis of this work
has been consolidated into the well-known work by Bertsekas, which is printed in two volumes
[14]. First, we discuss aspects of the DP algorithm and how they relate to OIT. Dynamic
programs can be completely characterized by (1) an underlying discrete-time dynamic system
(can be continuous, and is discretized using the notion of entropy time), (2) a cost function
[gk(xk, uk, wk)] that is additive over time, related to the current system. The system has the
form

xk+1 = f(xk, uk, wk), k = 0, 1, . . . N − 1

where k indexes time, xk is the state of the system and summarizes past information that is
relevant to future optimization, uk is the “control” or decision variable to be selected at time
k, wk is a random parameter (also called disturbance or noise depending on the context), N
is the “horizon” or number of times control is applied, and fk is a function that describes they
system and in particular the mechanism by which the state is updated. This is all taken from
the introduction in chapter 1 of volume one of Bertsekas’ work on Dynamic Programming
and Optimal Control [14]. Next we provide interpretations for OIT.

System State, xk

For the purposes of OIT, our system state, xk, describes the summation of the information
we have concerning a population for which we desire altruistic, benevolent intervention. The
theoretical underpinnings of data generation are of import here. We describe the importance
of a few categories of measurement that apply to human systems we hope to optimize.
Communities of people can be “typed” (or classified) based on these measurements, through
simple procedures such as k-means or k-median clustering [49], or more sophisticated data
clustering tools/models [44]. All of our interventions fall into four categories, namely: (1)
Access, (2) Resource, (3) Education, (4) Network (Group-based). Herein is the first reference
to integer programming. Many of the states above can be crudely measured as binary
variables describing the presence or non-presence of specific access, resource, or educational
availability to the individuals and communities involved. Using the example of food nutritional
interventions, “access” may refer to the proximity of grocery stores and restaurants (food
deserts [12]), or to cookware, energy, and water availability for needed for cooking and food
storage. Then, the simplest consumer behavioral descriptions exist within the convex hull of
0-1 polytopes, where vertices represent known (a priori) resources that citizens may or may
not have available to them. The fourth list item is also interesting, as network analysis often
lends itself to integer, linear, and mixed integer linear approaches.
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Something to be studied in this field of information transfer and availability, and its
relation to learning and adoption of SBGs, is the effect of network (community) influencers on
the intervened population, which can be gauged classically by weighting nodes representing
individuals by the cardinality of their connections (i.e., how many people they are connected
to), or the nature of their connection. For example, and again looking at food nutritional
interventions, the grocery purchaser and preparer of foods in a household is the most important
influencer for a family’s nutrition, and our models (and past interventions) would suggest, by
network analysis, that this is where our controls, or interventions, should be focused in this
context. Extrapolations can be made for different intervention environments and tasks.

In constructing behavioral models in new intervention contexts, we will be concerned with
people-based system states, which we have and will refer to as “characteristic” or “character”
states. These notions lead us to population “typing”, or group classification. Some of these
classically exist and are used in policy and intervention practice, most notably things like
race, socioeconomic status (SES), and other demographic notions, as well as marital status
and number of dependents (important for time and resource availability), and participation
in affinity and belong groups. There is also subcategories related to people that relate to
the four overall categories given above. For education, for example, this includes formal
and informal education (myths, cultural barriers, etc.). From our studies in international
interventions, many have concluded that “Most people, as it relates to interventions, are
either not ready, unsure, or ready (to adopt)”. Each of these states requires different methods
for state improvement.

The DP algorithm is typically written, for N stages, as:

JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk(xk)

Ewk
{gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))}

k = 0, 1, . . . , N − 1

(DP)

The interpretation for OIT is this: There is a fixed end state (more specifically, character-
state), xN , which we want agents and groups of agents to reach in some specified time period.
The “stage cost” for this end stage is fixed as gN(xN). Similarly, stage 0 consists of given
initial conditions, which will describe the consumer behavioral models at the beginnig of
our intervention period. Then, the DP algorithm proceeds at each stage “k” to minimize
the “expected” value of the current stage costs (say, an intervention subinterval of 1 month)
with a prediction/estimation of future costs (the rest of the life of the intervention scheme).
Overall, with a well-defined end-goal in mind, say for diet-based health disparities, an end-goal
representing consistent healthy eating, exercise routines, and sleep/rest patterns, we want to
move as much as we can in one stage towards this optimal end-goal, while keeping in mind
that we can take actions in future stages to recenter our agents on the optimal pathway (if
they have deviated), or to further encourage optimal behavior in the next period (if they
fulfilled all goals for that subinterval). The following proposition is taken from the text given
above, and formally explains the use of the DP algorithm.

Proposition 17 (Proposition 1.3.1 of [14]). For every initial state x0, the optimal cost J∗(x0)
of the basic problem is equal to J0(x0), given by the last step of the above algorithm, which
proceeds backwards in time from period N − 1 to period 0.
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The expectation in the second equation of (DP) is taken with respect to the probability
distribution of wk, which depends on xk and uk. Furthermore, if u∗k = µ∗

k(xk) minimizes the
right hand side of the second equation above for each k and xk, the policy {µ∗

0, . . . , µ
∗
N−1} is

optimal.

This proposition and its use in “deterministic” settings (i.e., optimization problems where
all information is known and unchanging from the outset of the problem) means that we can
move “backwards in time” from our well-defined end goal, optimizing the actions at each stage,
until we have reached stage zero, at which time the optimal backwards path can be inverted
for a forward path. This is taught most often with small routing problems in DP classes,
including the Traveling Salesperson Problem [45]. For stochastic problems (i.e., imbued with
randomness, some of which can be estimated using probability theory and statistics), which
are our interest, as human behavior always introduces stochasticity, we cannot determine
optimal paths from the beginning of the problem. Perhaps the best known DP problems with
stochasticity today are the problems solved by connected and automated vehicles (CAV’s,
self-driving cars), in which they predict obstacles and conditions that may affect their travel
path, but still must attune in every stage (which is usually about 5 second intervals) to the
realization of those predicted, stochastic elements [7]. Similarly, in creating dynamical systems
that measure optimal interventions for OIT, we must predict random human behaviors to
the best of our ability for current and future periods, and make adjustments.pivots as more
behaviors are realized, which will be captured in our information-gathering procedures, over
the lifetime of our interventions.

The Quadratic Knapsack Problem and Extensions to Quartic

In this section, we will first introduce the quadratic knapsack problem and discuss its
improvement to the classic linear Knapsack problem, which is the introduction of synergistic
effects, which are benefits (or consequences) gained from the combination of individual items
in the knapsack, which will represent our intervention levers (bandit-arms) available to tthe
principal for any given stage in the intervention process. The binary quadratic knapsack
problem (QKP) was first introduced by Gallo et. al. Its formal definition is as follows: Assume
that n items are available, where item j has a positive integer weight wj. Additionally, we
are given an n× n nonnegative integer matrix P ={pij}, where pjj is the profit achieved if
item j is selected and pij + pji is a “synergy” profit achieved if both items i and j are selected
for i < j. Given the indices [n] := {1, . . . , n} to denote the item set N , we introduce a binary
variable xj to indicate whether item j is selected. The QKP calls for selecting an item subset
that maximizes the overall profit, while fulfilling the knapsack capacity (budget) constraint.

The quadratic knapsack problem (QKP) can be written as:

max
∑
i∈N

∑
j∈N

pijxixj

s.t.
∑
j∈N

ωjxj ≤ c

xj ∈ {0, 1}, j ∈ N

(QKP)



CHAPTER 5. A MATHEMATICAL FRAMEWORK FOR OIT 49

Without loss of generality we assume that maxj∈N ωj ≤ c <
∑

j∈N ωj and that the profit
matrix is symmetric, i.e., pij = pji for all j > i.

Note, some formulations write the objective as

max
n∑
i=1

pixi +
n∑
i=1

∑
j=1
i ̸=j

Pijxixj

to make the synergy profit more explicit; however, this is covered in our formulation for the
construction of P as described. In particular, our formulation has

pii · x⊤i x = pixi,

and we can scale synergy profits to p̂ij = pij/2 so that

pijxixj = p̂ijxixj + p̂jixjxi

for any pairs xi, xj selected in the knapsack (including the “double count” of singleton items).
We prefer (QKP) for its compactness. Much work has been done in both the realms of
nonlinear programming and continuous relaxations for the 0-1 knapsack problem. For a
course project, the author took a look at some of the leading contributors to the origin
of solution methodologies detailed improvements made by several practitioners since the
creation of these foundations. For those interested in Integer Programming and the problem
in generality, the author can be contacted for provision of this full report.

Pisinger’s survey [80] provides a comprehensive review on the development of QKP’s upper
bounds and their application in variable reduction, as well as some heuristics, approximation
algorithms, valid inequalities, and branch and bound algorithms. The survey’s main focus
concerned the introduction of each upper bound to the field, and their incorporation into
different solution techniques. The survey also provided a comparison of the efficiency
of different upper bounds. The QKP is usually solved by deriving good upper bounds
and using approximation techniques until some tolerance parameter is satisfied, i.e., we
have an integer (binary) solution that is “close enough” to the upper bound. Techniques
to reduce the complexity of deriving these upper bounds include relaxation from upper
planes, linearization, reformulation, Lagrangian relaxation, Lagrangian decomposition, and
semidefinite programming [80]. Since any feasible integer solution, gained from heuristics
or exploitation of the problem structure, gives lower bounds, solution techniques focus on
closing the gap between the upper and lower bounds [81].

This method will be extended in this next chapter to include four sets of intervention
categories, which are access-based, resource-based, education-based, and network-based
interventions. As mentioned in the beginning of this subsection, the power of updating
the linear knapsack problem to higher polynomial dimensions is the inclusion of synergistic
effects, which requires us to determine the relationship between the variables that represent
our principal’s actions in the intervention space. This method will be used to form the
higher-level optimization problem (our principal’s problem) and is naturally additive over
time, lending itself to use as a cost function in an optimal control regime. Additionally, the
idea of utility maximization subject to resource constraints is described by this model, and
can be used in the construction of our lower-level (consumer behavioral) models.
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Multiobjective (Simulation) Optimization

Based on the economic notion of solution trade-offs, there has formed, recently, a profound
interest in developing engineering and financial optimization theory which produces efficient
sets of solutions, rather than unique minima/maxima, to optimization problems. This interest
has proliferated into the field in general, and has been consolidated into Multiobjective
Optimization (MOO), in particular. The problem is generically written as:

min
x∈X

(f1(x), f2(x), . . . , fn(x)) (MOO)

MOO methods produce efficiency fronts that most often align with the notion of Pareto
Optimality, although other definitions for efficiency in the context of optimization have been
offered [105]. Similarly, nondominated points, or efficient points, are solutions to MOO
problems for which there is no other (known) point that is at least as small in all objectives,
and strictly smaller in at least one objective.

MOO methods are applied to problems which, unlike the convention of single objective
optimization, consider multiple, generally conflicting objectives at once, and, from the desk
of the problem-solver, offers multiple efficient solutions to the decision makers, each with
their identifiable trade-off. The field, then, takes an important humanistic approach, in that
it distinguishes the problem-solver from the decision-maker. Indeed, the role of the decision-
maker and problem-solver are entwined under the guises of MOO, wheras single-objective
optimization sees no divide here.

MOO is further subdivided into three categories in the annals of the current literature,
based on the approach desired from the decision-maker. These three categories are based on
the timing of the decision-maker’s influence on the system, and can be described as:

• No-preference, in which any solution to the multiobjective formulation is acceptable;

• a priori prefernces, in which information provided to the problem-solver by the decision-
maker is used in the formulation of the model, usually quantified by (weighted) scalar-
ization techniques, which reduces the MOO problem into a single-objective optimization
problem. However, more elaborate schemes than scalarization exist [cite].

• a-posteriori preferences, in which the decision maker reveals her preferences after the
problem is solved to its finest, or most robust, precision. The decision-maker can then
choose from the list of non-dominated solutions, i.e., those solutions which use all
available resources efficiently, based on her preferences and the breadth of solutions
presented by the problem-solver.

In a fuller work, we develop a method which addresses the third category above. An important
note is that we address misspecification of the preference by specifying an interval around the
decision-maker’s preference. In this work, we introduce MOO for its use in our OIT model,
specifically in determining future utilities for our principal and agent. We will take the a
prioiri technique of scalarization as a basic introduction to MOO in our model, but have
introduced the use of more sophisticated techniques here, including the computationally-heavy
process of producing the entire efficiency front for a posteriori use by the decision maker.
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5.3 A General Model for Human System Interventions

Following our discussion of the OR models that lend themselves to a global theory of
intervention goal-setting and path-setting, under the guise of long-term dynamic contracting,
we formally present our model and its implications for the field.

Notation

Let It be the set of all access-based (A), resource-based (R), education-based (E), and
network based (N ) interventions available at the beginning of time step t to form contract
Ct(t̄t, et, pCt), with profit pCt =

∑
t pijkℓ for the principal, which uses available strategies

(i, t) ∈ At, (j, t) ∈ Rt, (k, t) ∈ Et, and (ℓ, t) ∈ Nt, and where transfer t̄t is given (at the end of
the period) to a contracting agent (or group of agents) for effort et. At each time step t+ 1,
the principal changes the intervention environment by selecting a subset {it+1, jt+1, kt+1, ℓt+1}
of interventions based on its valuation of the previous period’s profits, which is a convex
combination of a predictive consumer behavioral model,∑

i∈At

∑
j∈Rt

∑
k∈Et

∑
ℓ∈Nt

u∗Ct+1
(xi,t xj,t xk,t xℓ,t)

and the previous periods true profit function∑
i∈At

∑
j∈Rt

∑
k∈Et

∑
ℓ∈Nt

pCt ( xi,t xj,t xk,t xℓ,t)

Alternatively, at each time step t + 1, the agents change the intervention environment by
selecting a subset {it+1, jt+1, kt+1, ℓt+1} of interventions based on a convex combination of its
utility maximizing function∑

i∈At

∑
j∈Rt

∑
k∈Et

∑
ℓ∈Nt

u∗Ct+1
(xi,t xj,t xk,t xℓ,t)

and its belief of the evolution of the intervention environment, which includes changes its
own utility function ut+1, and its expected change in the principal’s profit function pCt+1

at time t+ 1, and its expected change in the intervention environment (possible contracts
Ct+1(t̄t+1, et+1, pCt+1)

Our Model

Our model is a bilevel optimization model, whose higher-level objective is a time-indexed quar-
tic knapsack problem (QuKP), that tracks individual and combinatorial investments/interventions
into the access, resource, educational, and network (or group-based) variables representing the
contracted population (i.e., agents) by the members of the social economy as principals, and
whose lower-level objective is a consumer behavioral model with incentive and participation
constraints from the PAM (enforced when necessary).

Inputs: Let It be the set of all access-based (A), resource-based (R), education-based (E),
and network based (N ) interventions available at the beginning of time step t to form contract
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Ct(t̄t, et, pCt), with profit pCt =
∑

t pijkℓ for the principal, which uses available strategies
(i, t) ∈ At, (j, t) ∈ Rt, (k, t) ∈ Et, and (ℓ, t) ∈ Nt, and where transfer t̄ is given (at the end of
the period) to a contracting agent (or group of agents) for effort et.

Model: Quartic Knapsack Problem for a Dynamic (Adaptive) Principal-Agent Model
Output: Next period’s contract (Ct+1) with selected interventions

(i, t+ 1) ∈ At+1

(j, t+ 1) ∈ Rt+1

(k, t+ 1) ∈ Et+1

(ℓ, t+ 1) ∈ Nt+1

The upper level objective is the principal’s expected profit:

p∗t+1 = max
Ct+1

∑
i∈At+1

∑
j∈Rt+1

∑
k∈Et+1

∑
ℓ∈Nt+1

E
(
pCt+1

(
xi,(t+1) xj,(t+1) xk,(t+1) xℓ,(t+1)

)
| pt

)
where pt is

pt = λ
∑
i∈At

∑
j∈Rt

∑
k∈Et

∑
ℓ∈Nt

pCt (xi,t xj,t xk,t xℓ,t) + (1− λ) E[u∗t+1(xi,t xj,t xk,t xℓ,t)]

xj,t ∈ {0, 1}It , (j, t) ∈ It
xj,(t+1) ∈ {0, 1}It+1 , (j, t+ 1) ∈ It+1

The lower level objective is a consumer behavioral model:

u∗t+1 = max
Ct+1

∑
i∈At+1

∑
j∈Rt+1

∑
k∈Et+1

∑
ℓ∈Nt+1

E
(
uCt+1

(
xi,(t+1) xj,(t+1) xk,(t+1) xℓ,(t+1)

)
| ut

)
where

ut = λ
∑
i∈At

∑
j∈Rt

∑
k∈Et

∑
ℓ∈Nt

uCt

(
xi,(t+1) xj,(t+1) xk,(t+1) xℓ,(t+1)

)
+

(1− λ) p∗t+1(xi,t xj,t xk,t xℓ,t)

xj,t ∈ {0, 1}It , (j, t) ∈ It
xj,(t+1) ∈ {0, 1}It+1 , (j, t+ 1) ∈ It+1

Lastly, there is a capacity (budget) constraint each period, of the form:∑
(j,t+1)∈It+1

ωj,t+1xj,t+1 ≤ Bt+1
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Then, we can combine these to form the QuKP:

max
Ct+1

∑
i∈At+1

∑
j∈Rt+1

∑
k∈Et+1

∑
ℓ∈Nt+1

E
(
pCt+1 xi,(t+1) xj,(t+1) xk,(t+1) xℓ,(t+1) | pt

)
s.t. E[pt+1(·)] ≥ αt

E[u∗t+1(·)] ≥ βt∑
(j,t+1)∈It+1

ωj,t+1xj,t+1 ≤ Bt+1

xj,t ∈ {0, 1}It , (j, t) ∈ It
xj,(t+1) ∈ {0, 1}It+1 , (j, t+ 1) ∈ It+1

(QuKP)
From the expression of the DP stage cost

Jk(xk) = min
uk∈Uk(xk)

Ewk
{gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))}

k = 0, 1, . . . , N − 1

we estimate future cost by optimizing lower-level objective u∗t+1(xi,t xj,t xk,t xℓ,t), and can
choose how much we want to rely on this prediction model, versus our observed past actions
and profits.

Note, one could formulate the two-variable objective in a nonlinear knapsack problem as

max
n∑
i=1

pixi +
n∑
i=1

∑
j=1
i ̸=j

Pijxixj

to make the synergy profit more explicit. There would be
(
4
2

)
= 6 two-variable summations,(

4
3

)
= 4 three-variable summations, and one four-variable quartic summation (the one seen

in the model above) that contribute to each periods profits, as well as the profits derived
from the singleton items. We prefer (QuKP) for its compactness. Without loss of generality
we assume that maxj∈I ωj ≤ c <

∑
j∈I ωj and that the profit matrix is constructed to avoid

double counting of rewards/profits.
Incentive and participation constraints lend themselves towards the effective “typing” of

individuals and groups in the intervention scheme, which can be technically described as an
inverse optimization procedure for the elicitation of the agents’ true “type”, which is their
efficiency score towards learning/adaptation, mainly, and controls the rate at which the agent
(or group of agents) learn and apply their learning in the intervention environment. There
are also other “types” that are of interest, and are domain specific, such as the intensity
of the agent’s impact on nodes close to it in the social network, which can be used to add
precision to network-based intervention actions (on the part of the principal).

Inherently, consumer behavioral models are utility maximizing, and we will stick to this
regime, assuming the principal and agent, according to the PAM, negotiate the expected effort
level of the agent and the nature of compensation for the output produced by that effort, which
in the context of Global Poverty Alleviation & International Development, should include
capacity-building efforts (i.e., efforts to expand the capabilities of the agents’ production
systems, which do not in themselves produce output, things like hirings, updated supplier
lists and relationships, obtainment of more production space or resources, etc.).
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Motivating example: Food Interventions

Here we reduce our model to the main model presented in this paper by Levi et al. [60].
Their model is a bilevel optimization method whose main equation is written as:

max
β,δ,ν

h∗/T (h∗, u∗; v(ν), d(δ))

s.t. β + δ + ν ≤ U

β, δ, ν ≥ 0

h∗, u∗ = argmaxM c(B(β), d(δ), v(ν))

(M g)

where U is the governments budget per customer. The functions v(·), d(·), and B(·) link the
government’s monetary investments in each intervention to (the agents’) value of nutrition,
disutility (time cost), and food budget, respectively. Here the customer (agent’s) utility
function, our consumer behavioral model, M c(B, d, v) is given in §2.1 of the Levi paper. The
principal’s objective of maximizing healthy foods, given by the objective function in their
model, can be represented by requiring the quality of some resource category, like resources
spent on healthy eating, to be true, that is, valued “1”.
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Chapter 6

Conclusions and Future Work

Here we conclude this dissertation work with a discussion on shared costs and savings
models, which are the main management tools to track the dynamic progression of our
intervention framework. Policy and practice recommendations, generated by the solutions to
the simulations we conduct using our game theoretic models, will be built on this. Finally,
we conclude with a note on pedagogical contributions to the field of development engineering
and engineering ethics, and leave a future note towards the importance of simulation and
computing technology, training, and strategy going forward.

6.1 Cost Savings Models

At the national, state, and city level in the United States, large amounts of cost savings and
shared benefits will be gained if we can discover and implement the best characteristic states
for individuals and communities on an array of issues that cause and reify poverty and other
social ills. In short, the impact one can have with intervention models on a small scale may
be negligible given the investment necessary to intervene and optimally track the intervention
pathway; however, if we can understand common themes across hundreds of cities, dozens
of states, and up to the entirety of sovereign nations, we can both permanently eradicate
socially detrimental practices and behaviors, and produce large national and subnational cost
savings and shared benefits across peoples, that will be inherited by future generations of
Americans and international citizens.

Definitions here are from the business world. Cost reduction is a raw dollar-savings
approach with the primary objective of cutting necessary expenses by changing the scope
of maintenance services without negatively impacting the end result. For example: a retail
store might reduce its monthly floor cleaning service to quarterly during the down season.
That methodology, however, does not account for the non-hourly expenditures associated
with maintenance, such as additional service trip costs, emergency repair fees, and overtime
charges. That means potentially bloated true costs when all is said and done. In contrast,
cost savings is a holistic strategy to maintenance budgeting that looks at more than just the
upfront dollar amount of services. Rather than cutting those monthly floor cleaning services,
for example, a retailer would consider alternative measures to compress service costs—such as
leveraging a service provider network instead of standalone contractors—while still fulfilling
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their objectives. This is also known as a total cost approach.
Similar to the cost savings models is the idea of shared savings programs, which will

be integral to the success of OIT. For example, the Medicare Shared Savings Program
(MSSP) offers providers and suppliers (e.g., physicians, hospitals, and others involved in
patient care) an opportunity to create an Accountable Care Organization (ACO). An ACO
agrees to be held accountable for the quality, cost, and experience of care of an assigned
Medicare fee-for-service (FFS) beneficiary population. The Shared Savings Program has
different tracks that allow ACOs to select an arrangement that makes the most sense for their
organization. The Shared Savings Program is an important innovation for moving the Centers
for Medicare & Medicaid Services’ (CMS’) payment system away from volume and toward
value and outcomes. Towards this end, the referenced “artistic integration of independent
systems” with OIT hinges on the creation and maintenance of optimal subsystems which
work together to consistently measure and promote shared savings character states, and thus
future interventions.

6.2 Future Work

In addition to our mathematical and statistical training, there is a need for OR practitioners
to return to the early days of the field, where they were trained in computation techniques
and were knowledgeable of computer structures. With the advance of scientific and high
performance computing, and with the scale of the models we hope to simulate, appropriate
parallelization, memory storage, usage, and transfer, and cloud/server computing strategies
will be important for the simulation side of OIT. We hoped to have a subsection with a fuller
treatment on simulation and computing concerns for OIT and similar AI/ML for social good
practitioners, but will have to leave this to future work.

6.3 Personal Reflections on Engineering Ethics and

other Pedagogical Contributions

Following a course in engineering ethics, the thing that stuck closest to my mind and heart
was the concept of utilitarianism. The concept of deriving the most good for the largest
amount of people with our technical engineering solutions is another way, perhaps a better
way, to express the way I feel about the future of engineering science. I consider myself an
engineering interventionist. I use statistical learning theory as the basis to understand how
we train systems, and will prescribe methods and policies that help us train entire human
systems towards a well-defined objective. This new age, this new researcher, that uses her
skill in all disciplines to intervene in society’s most marginalized communities, where the
government, by way of the tragedy of the commons, fails them, is my passion in engineering.

This semester assured me that engineering ethics is the right field inside of academia to
address philosophical questions on where and what we should study as engineers. Community-
based participatory research (CBPR) seems to be the right term outside of the academia.
Putting these two together, I feel very strongly about the way engineers should choose what
they work on (ensuring that those who need the most help get the most constructive help),
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how they should consult stakeholders (human-centered design), and how they should use
their position in society, to bring about a higher quality of physical and social life amongst
the masses.

I recall a conversation I had with a few colleagues when we were in Uganda over winter
break, concerning this concept of the outsider ascribing to some society their “quality of
life”. It is true that we should always be culturally humble [101]; however, the prospects
of physical quality of life, in my opinion, must be reached by World consensus. To say a
people are happy in their society where 5% of the country is electrified, as in Uganda, is a
disservice from an engineering ethics lens. How would they know about desalination, steam
purification, hydroelectricity, etc., things that they could readily use and train their own
engineers to use, if we do not take a leading role in society as engineers? Towards this end,
and back to the discourse, utilitarianism is a great way to think about my passion, and to
explain it to others. Are engineers doing the best they can for the greatest amount of people
in the World? Or do our engineering innovations in the West only serve to further worldwide
disdain and disillusionment with Western technology and power.
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Appendix A

Glossary

Here we provide definitions as I consider them, for engineering, economic, and academic
concepts integral to Optimal Intervention Theory. Some definitions are taken from dictionaries
and other academic works, while some are personal to the author. Each definition here will
be used in-context in the text of the research manifest. A thorough reading of this word
guide before, or apart from, the rest of the document should provide the reader with clarity
towards the work, and therefore is an independent abstract in itself. Of import here are
the following definitions: Iterative engineering, Optimal Intervention Theory, (the) Social
Economy, and the Principal Agent Model.

A.1 List of terms

• Bilevel program

• Consumer Behavioral Model

• Contract Theory

• Control Theory

• Digital Technology

• Dynamic Programming

• Economic Decision Analysis (EDA)

• Game Theory

• Healthy and Active Lifestyles (HAL)

• Incentive Design

• Iterative Engineering

• Machine Learning (ML)

• Mechanism Design
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• Optimal Intervention Theory (OIT)

• Positive Externality

• Principal Agent Model (PAM)

• Reinforcement Learning

• Shared Cost/Savings

• Social Economy

• Social Welfare Functions (SWF’s)

• Socially Beneficial Goods and Services (SBGs)

• Statistic

• Tractable Solutions

• Tragedy of the Commons

• Transaction Costs

• United Nations’ Sustainable Development Goals (UN SDGs)

A.2 Definitions

Definition 1 (Bilevel Program). A bilevel program is an optimization problem which has an
optimization problem as a constraint as well; that is, both valuating the objective function and
determining feasible solutions to the constraint sets require solving an optimization problem
[95]. An example taken from this reference characterizes the objective function as the “upper-
level” objective function and the (optimization-based) constraint as the “lower-level” objective
function. These objectives are typically “unordered”, in the sense that either objective function
can serve as the starting point for the optimization procedure, which alternates between to the
levels of the program, using thee output of one optimization procedure as input into the other
level’s program.

Definition 2 (Consumer Behavioral Model). A consumer behavior model is a theoretical
framework for explaining why and how customers make purchasing decisions. The goal of
consumer behavior models is to outline a predictable map of customer decisions up until
conversion/adoption of the marketed good or service.

Definition 3 (Contract Theory). Refer to [96], contract theory is the study of how people
and organizations construct and develop (formal and informal) legal agreements. It analyzes
how parties with conflicting interests build formal and informal contracts, even tenancy.
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Definition 4 (Control Theory). Control theory deals with the control of dynamical systems in
engineered processes and machines. The objective is to develop a model or algorithm governing
the application of system inputs to drive the system to a desired state, while minimizing any
delay, overshoot, or steady-state error and ensuring a level of control stability; often with the
aim to achieve a degree of optimality [106].

Definition 5 (Digital Technology). Embracing digital technologies is referred to as a new
strategic imperative in this work [32]. Digital technologies are electronic tools, systems, devices
and resources that generate, store or process data. Well known examples include social media,
online games, multimedia and mobile phones. Digital learning is any type of learning that uses
technology. An important theme in the field of development engineering, and the associated
economics of global poverty reduction, is the “digital transformation” of societies and peoples
due to the ubiquitous presence of digital technologies.

Definition 6 (Dynamic Programming). Using Bertsekas’ introduction, DP “deals with
situations where decisions are made in stages. The outcome of each decision may not be
fully predictable but can be anticipated to some extent before the next decision is made. The
objective is to minimize a certain cost (or maximize a certain utility)— a mathematical
expression of what. is considered an undesirable outcome). Notions such as controllability,
stability, observability, and convergence are paramount in the study of dynamical systems.

Definition 7 (Economic Decision Analysis (EDA)). From Georgia Tech ISyE’s site, a leading
systems engineering program, we have the definition “In the area of Economic Decision
Analysis, faculty and student researchers at ISyE apply analytical, quantitative, and empirical
techniques to planning, contracts, and decisions that involve economic, financial, or social
valuations.”

Definition 8 (Game Theory). From [36], game theory is the study of multiperson decision
problems, which is also described as a setting wherein “multiple strategic agents interact in a
strategic environment in order to maximize their individual or group utilities”. At the micro
level, models of trading processes (such as bargaining and auction models) involve game theory.
At an intermediate level of aggregation, labor and financial economics include game-theoretic
models of the behavior of a firm in its input markets (whereas at the oligopoly level, this is
done in the output markets)... Finally, at a high level of aggregation, international economics
include models in which countries collude or compete in choosing tariffs or trade policies.

Definition 9 (Healthy and Active Lifestyles (HAL)). Unique to the author, this describes
a thrust to provide sufficient nutritional and caloric quantity and quality, opportunities
for physical exercise and rest, and sleep/rest patterns, as well as a host of other mental,
emotional, and psychological health factors, so that the global citizenry can actively learn
and build solutions to its societies most pressing problems. Many social interventions view
adequacy of resource provision of the end goal, and this will promote health only. In order to
promote active lifestyles, which are needed for citizens to prescribe and carry-out long-term
interventions for themselves and their communities, we must expect and provide sufficient
environments for the growth and comfort of communities of people.
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Definition 10 (Incentive Design). Defined in [38], Incentive design is a careful process of
crafting a system that connects performance measurement with performance rewards, with
the goal of motivating employees/citizens to perform according to the expectations of the
organization/intervention and principal. In OIT, Incentive design is a means of aligning the
interests of a principal and its agents.

Definition 11 (Iterative engineering). Construction and engineering methods and practices
which are built with a specific concern for iterative design; that is, they can be easily changed
to accommodate improvements in system strategy or available technologies.

An example in prototyping transportation networks includes the use of gravel lots/roads
over cement/asphalt. Whereas asphalt-based roads require heavy machinery that may be
expensive to procure and transport around the world, gravel lots can be used and changed
easily (to greenery, reverted to dirt or clay, etc.), and in this context, represent a better
iterative construction process that asphalt.

Definition 12 (Machine Learning). Machine learning (ML) is a type of artificial intelligence
(AI) that allows software applications to become more accurate at predicting outcomes without
being explicitly programmed to do so. Machine learning algorithms use historical data as input
to predict new output values.

Definition 13 (Mechanism Design). Mechanism design is a branch of microeconomics that
explores how businesses and institutions can achieve desirable social or economic outcomes
given the constraints of individuals’ self-interest and incomplete information.

Definition 14 (Optimal Intervention Theory). Optimal Intervention Theory (OIT) is a
method for improving human systems based on Statistical Learning Theory (SLT), which is
the basis for learning in machines.

OIT considers the classic trade-off between statistically rigorous methods and large-
scale methods, often referred to, respectively, as precision/specificity and the “curse of
dimensionality”. The Dynamic Programming algorithm, which solves problems with well-
defined end-goals in stages, is the basis of the SLT applicable to OIT.

By improving independent systems with OIT, and integrating systems through the use
of artistic engineering methods, we can solve large-scale societal issues, especially those
stemming from historical and contemporary social, political, and economic misalignment due
to oppressive tribalism (ie. nationalism, racism, sexism, classism, ageism, ableism, etc.)
by constructing collective intelligence gathered from solving these large-scale problems at
the subsystem scale (i.e. Community-Based Operations Research), such that we intervene
optimally in new communities based on gathered best practices.

The ability to solve problems (i.e. intervene) at the community-scale can be thought of
as exploration, and the use of best practices in subsequent interventions can be looked at as
exploitation, from the classic RL (Reinforcement Learning) paradigm.

Definition 15 (Reinforcement Learning). Reinforcement learning is a machine learning
training method based on rewarding desired behaviors and/or punishing undesired ones. In
general, a reinforcement learning agent is able to perceive and interpret its environment, take
actions and learn through trial and error.
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Definition 16 (Positive Externality). In economics, an externality or external cost is an
indirect cost or benefit to an uninvolved third party that arises as an effect of another party’s
(or parties’) activity. Externalities can be considered as unpriced goods involved in either
consumer or producer market transactions. Air pollution from motor vehicles is one example.
The cost of air pollution to society is not paid by either the producers or users of motorized
transport to the rest of society [107].

Closely related to the idea of the tragedy of the commons, and the adoption of socially
beneficial goods and services (SBGs), is the idea of positive externalities. Positive externalities
are the benefits from the adoption of SBGs, such as reduced healthcare costs for low-income
communities and the nation’s health infrastructure due to improved diet, exercise, and
sleep/rest regimens, which reduce diet-based health problems. These positive externalities
can be captured in cost savings models (see Ch. 6) and should be included in our predictions
of intervention impact. In fact, this is the main benefit to our objective functions that we
introduce, and follows the lines of work done by others in social welfare functions.

Definition 17 (The Principal Agent Model (PAM)). The PAM describes the problem where
“there exists a conflict in priorities between a person or group and the representative (i.e
principal) authorized to act on their behalf. The principal-agent problem is as varied as the
possible roles of principal and agent.” [cite].

This is one of the most important models and analysis tools in this work. Importantly,
most expositions and solution methods to the problem solve an incentive problem for the
principal towards the agent, assuming the agent to be a rational utility maximizer. We will
discuss a principal agent model where the principal’s sole objective is to move the agents
along an optimal pathway towards the adoption of some socially beneficial good or service.
As another note of the importance of this concept, beyond the time and space dedicated
to describe different arrangements of the social economy as principal, and communities of
people (esp. in the developing world) as agents, the original title of this work was ”Long-term
dynamic contracting under the Principal-Agent Model for the Adoption of Socially Beneficial
Goods.

Definition 18 (Shared Cost/Savings Models). These are specific models in economics, and
games in Game Theory, which describe the situation where the costs of a public good or
service is reduced whenever more users adopt the good/service. This is important to Optimal
Intervention Theory (OIT), as many private-public funding schemes must be funded at-scale;
that is, there must be predictive evidence that the good or service marketed has an increasingly
impactful effect on the targeted population, while simultaneously decreasing the cost for the
community of people to access, learn about, and resource the common good or service, in
order to make investment in the projects worthwhile (private capital investment requires a
(long-run) rate of return).

Definition 19 (The Social Economy). In the U.S. context, the social economy is comprised
of:

1. The Academy (Institutions for Higher Education)
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2. Private Philanthropy

3. The Government, at all levels

4. Community-based nonprofits

5. Context-agnostic emulsifiers, who have expertise in financial, engineering (and other
technical), and/or evaluation techniques.

Many pathways/networks of interaction exist. One of import to us as academics is
government funding of universities to produce research (that solves society’s problems).

Definition 20 (Social Welfare Functions (SWF’s)). A social welfare functions (SWF), most
common in welfare economics, is defined as a process or rule, which for each set of individual
orderings for alternative social states (one ordering per individual), yields a corresponding
ordering of alternative social states. An SWF ranks social states as less desirable, more
desirable, or indifferent for every possible pair of social states.Each state is a possible complete
description of the society. Inputs of the SWF include any variables considered to affect the
economic welfare of the chosen society [5].

Definition 21 (Socially Beneficial Goods and Services). An important namesake for our work,
socially beneficial goods and services (SBG’s) are goods and services that have both a direct
benefit after adoption for the user, and a positive impact on social and socioeconomic structures.
The positive impacts beyond direct benefits to the user which adopts the SBGs are called positive
externalities, or social benefits. SBGs encompass development themes such as food, water,
and energy security, literacy and learning development, financial literacy/understanding
and savings-based (rather than debt-based) funding of daily life, and many other issues
circumscribed by the UN’s Sustainable Development Goals (SDG’s).”

Definition 22 (Statistic). A statistic (singular) or sample statistic is any quantity computed
from values in a sample which is considered for a statistical purpose. Statistical purposes
include estimating a population parameter, describing a sample, or evaluating a hypothesis.
The average (or mean) of sample values is a statistic. The term statistic is used both for the
function and for the value of the function on a given sample. When a statistic is being used
for a specific purpose, it may be referred to by a name indicating its purpose.

Definition 23 (Tractable Solution). In the intervention concept, this means “interventions
that last long beyond the intervention period, as measured by those indicators used to measure
utility in the original intervention”.

In the mathematical and statistical world, tractable refers, loosely, to “useful/usable”
models for a specific problem, that produce a usable result (as compared to intractable, where
we cannot make much use. Classic economic models are often called intractable for economic
practice, as opposed to theory. This is addressed by current authors as well as Murphy, in
the motivation for his work.
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Definition 24 (Tragedy of the Commons). An important economic notion for the adoption
of SBG’s is the tragedy of the commons, “in which individual users, who have open access to
a resource unhampered by shared social structures or formal rules that govern access and use,
act independently according to their own self-interest and, contrary to the common good of all
users, cause depletion of the resource through their uncoordinated action [108].”

This describes the main line of argument against social investments. It is a good concept
and model to implore governments and socially-focused private investors to act in a way that
alleviates a tragedy of the commons. This is why we have public education departments,
elderly care programs (e.g. medicare, social security), and other social safety nets. Public
goods such as parks, roads, and sanitation services must be maintained by a central body
elected by citizens to reduce the effects of a tragedy of the commons, These central bodies
are most commonly called “governments”, at all levels.

Definition 25 (Transaction Costs). The well-known economist R.H. Coase in his essay ”The
Firm, the Market, and the Law” provides a new economic viewpoint for analysis which the
author follows, which states that transaction costs should be the focus of economic theory
and modelling. He defines transaction costs originally as the costs of market transactions,
and writes, “In order to carry out a market transaction, it is necessary to discover who it
is that one wishes to deal with, to inform people that one wishes to deal and on what terms,
to conduct negotiations leading up to a bargain, to draw up the contract, to undertake the
inspection needed to make sure that the terms of the contract are being observed, and so
on. Dahlman crystallized the concept of transaction costs by describing them as “search and
information costs, bargaining and decision costs, policing and enforcement costs”[25].

Many, if not all, of these concepts are integral to the (dynamic) contracting arrangement of
a continuous-time Principal-Agent Model, and will be described therein (in fact, the original
title of this work was “Long-term dynamic contracting under the Principal-Agent Model for
the Adoption of Socially Beneficial Goods”). From Ch. 1, section 7 “The way ahead”, Coase
writes, “I have suggested that economists need to adopt a new approach when considering
economic policy... To do this it is not necessary to abandon standard economic theory, but it
does mean incorporating transaction costs into the analysis, since so much that happens in
the economic system is designed either to reduce transaction costs or to make possible what
their existence prevents.”

In the context of international development and global poverty alleviation, there are both
physical (infrastructure, transportation networks, technology and energy availability, etc.)
and human (political and economic disorganization, war and other sources of gainless loss,
bribery and (risk-heavy) informal economies) system arrangements which cause large transac-
tion costs for practitioners in the field. Hence, much of our theory makes the assumption that
legal and political experts will, simultaneous to the development of our models and theory,
lay out a theory for global peace practices and assured deterrents of war and chaos based
political movements and regimes, so that investment in development projects are worthwhile
(we can think of war, especially, as a stochastic (randomly occurring)“big M” cost; if it cannot
be contained, no system can ever be “stable” or “controllable” (see control theory).
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Definition 26 (United Nations’ Sustainable Development Goals). Found on the UN’s website,
a simplified list of the 17 goals are given here. Since the author does not prescribe any goals
for societal improvement apart from these (and focuses mainly on food and housing security
for application areas), we strongly suggest the reader visits the website and reads the additional
information provided, especially for the areas of your concern.

1. No Poverty

2. Zero Hunger

3. Good Health and Well-Being

4. Quality Education

5. Gender Equality

6. Clean Water and Sanitation

7. Affordable and Clean Energy

8. Decent Work and Economic Growth

9. Industry, Innovation, and Infrastructure

10. Reduced Inequalities

11. Sustainable Cities and Communities

12. Responsible Consumption and Production

13. Climate Action

14. Life Below Water

15. Life on Land

16. Peace, Justice, and Strong Institutions

17. Partnerships for the Goals
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