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Future intensification of Amazon drought resulting from climate
change may cause increased fire activity, tree mortality, and emis-
sions of carbon to the atmosphere across large areas of Amazonia. To
provide a basis for addressing these issues, we examine properties
of recent and future meteorological droughts in the Amazon in 35
climate models participating in the Coupled Model Intercomparison
Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a
group, simulate important properties of historical meteorological
droughts in the Amazon. In addition, this group of models reprod-
uces observed relationships between Amazon precipitation and
regional sea surface temperature anomalies in the tropical Pacific
and the North Atlantic oceans. Assuming the Representative Con-
centration Pathway 8.5 scenario for future drivers of climate change,
the models project increases in the frequency and geographic extent
of meteorological drought in the eastern Amazon, and the opposite
in the West. For the region as a whole, the CMIP5 models suggest
that the area affected bymild and severe meteorological drought will
nearly double and triple, respectively, by 2100. Extremes of wetness
are also projected to increase after 2040. Specifically, the frequency of
periods of unusual wetness and the area affected by unusual wet-
ness are projected to increase after 2040 in the Amazon as a whole,
including in locations where annual mean precipitation is projected to
decrease. Our analyses suggest that continued emissions of green-
house gases will increase the likelihood of extreme events that have
been shown to alter and degrade Amazonian forests.

Amazon Basin | climate | precipitation extremes | CMIP5 | drought

The responses of tropical forests to severe droughts exert
strong influences on the global carbon cycle (1, 2). During

periods of extended soil water stress, changes in forest physiology
and structure reduce the capacity of forests to cycle and store
carbon (3–5). In the 2000s, for example, more than half of the
Amazon experienced droughts that were severe enough to cause
increased tree mortality and reduced tree growth (6). In response
to these droughts, 1–2% of the carbon stocks of Amazonian for-
ests were committed to the atmosphere (6, 7), while large amounts
were combusted due to widespread fires. Although similar
droughts have occurred for millennia (8), and forests have ap-
parently recovered from such events (9), climate change could
intensify hydrological extremes over the basin (10). Together
with warmer climatic conditions, an increase in the frequency
and severity of droughts could push the Amazon region into a
new climate envelope (11), potentially releasing to the atmo-
sphere a large part of the 120 Pg of carbon stored in these forests
(12). These effects on the carbon stocks of the Amazon could be
even more pronounced if forest fires become more common in
the region.
There is disagreement about the potential responses of Amazon

forests to climate change (13). Earlier versions of climate−vege-
tation models projected that as climate changed, many forests
growing in southeast Amazonia would be replaced by savanna-like
ecosystems within the next 50–100 y (14). This shift in vegetation
dominance would result mostly from warm and dry climatic con-
ditions (15). However, other projections are less grim. Instead of

widespread changes in vegetation states, some models project that
increases in air temperature are likely to cause losses in forest
carbon stocks but also that increased atmospheric CO2 concen-
tration would promote forest growth and associated carbon ac-
cumulation (16). The net result of these two opposing forces
appears in some studies to be approximately neutral, although
positive vegetation responses to high CO2 concentration remain
poorly understood (17).
Interestingly, assessments of the potential future trajectories

of Amazonian forests using dynamic global vegetation models
(DGVMs) driven by global climate models (e.g., ref. 16) show
smaller effects than are seen in field observations and experi-
ments. Field-based studies suggest that severe hydrological
droughts tend to reduce both forest growth rates (via reduced
photosynthesis) and carbon stocks (via increased tree mortality)
(18). At least two factors account for the relatively small effects
of hydrological droughts seen in simulations. First, most eco-
system models lack a mechanism to represent short-term carbon
losses resulting from severe drought events (4). Powell et al. (19),
for instance, showed that commonly used DGVMs were unable
to represent the spike in drought-induced tree mortality observed
in two large-scale throughfall exclusion experiments conducted in
east Amazonia. Based on these results, the authors argued that
DGVMs must strive to improve vegetation responses (e.g., mor-
tality) to extreme, relatively short-term weather events.
The second explanation relates to the ability of climate models

to represent basic drought conditions. Climate model results
drive ecosystem models and provide insights into processes that
exert strong influences on the structural dynamics of tropical
forests (e.g., drought-induced tree mortality and forest fires).
Although several studies have demonstrated a strong associa-
tion between historical droughts and anomalies in sea surface
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temperature (SST) [the El Niño−Southern Oscillation (ENSO)
and the Atlantic Multidecadal Oscillation (AMO) (20–22)], it
has been unclear whether this association holds in projections of
future climate, if climate models can reasonably represent basic
drought properties, or whether models project increases in drought
frequency and intensity. For example, previous studies (e.g., refs. 10
and 23) have reported that climate change is likely to cause in-
creases in average air temperature and could alter average pre-
cipitation patterns over the Amazon basin, but they have not
quantified how the rate of short-term extreme dry or wet periods
will shift as the climate changes.
Here we confront these issues by asking how well the latest

generation of climate models (24) simulate observed relation-
ships between SST anomalies and Amazon drought, and what
these models suggest about the future of meteorological drought
in the region.

Results
Model Evaluation. The Coupled Model Intercomparison Project
Phase 5 (CMIP5) models have been extensively evaluated else-
where (e.g., ref. 25); we focus on aspects relevant to meteorological
drought in the Amazon. Assessing how well the models reproduce
observed relationships between SST anomalies in specific regions

and Amazon drought addresses physical mechanisms that pro-
duce drought, and increases confidence in their representation of
Amazon drought mechanisms. This bears more directly on the
credibility of future drought projections than does the ability to
reproduce historical drought properties, which might be simu-
lated accurately without capturing the underlying physical pro-
cesses. We also assess the ability of CMIP5 models to capture the
pronounced seasonal cycle of precipitation in the Amazon
(Supporting Information). Yin et al. (26) also evaluate the perfor-
mance of these models in simulating Amazon precipitation, fo-
cusing more on the performance of individual models and of
atmospheric and land surface processes.
We describe how well the CMIP5 models reproduce observed

relationships between area-averaged SST anomalies in specific
ocean regions and precipitation anomalies throughout the Amazon.
This analysis included 29 CMIP5 models for which both SST and
precipitation data were available. Relationships involving SSTs in
regions used to measure ENSO (e.g., Nino 3.4) are relatively well
established (27, 28). Yoon and Zeng (29) pointed out a similar
relationship involving SSTs in a region in the North Atlantic. In
both regions, region-wide SST anomalies show negative corre-
lations with Amazon precipitation anomalies. The CMIP5 models,
as a group, have skill at reproducing these relationships (Fig. 1),

PRINCETON (1950 - 2005) MERRA (1980 - 2005) TRMM (1998 - 2005)

Correlation

Obs.      0.112      Model

    -0.24 -0.12    0      0.12  0.24

Obs.      0.056      Model Obs.      0.130      Model

Obs.      0.073      Model

Obs.      0.145      Model

Obs.      0.104        Model

Fig. 1. Correlation coefficients between monthly SST anomalies in the Niño 3.4 region (Top) or the region in the North Atlantic identified by Yoon and Zeng
(29) (Bottom) and local precipitation anomalies. In each panel, the left-hand map shows the observed correlation, based on HadISST monthly SSTs and one of
three observed precipitation datasets, indicated above Top; the right-hand map shows the multimodel mean correlation based on CMIP5 results for the same
period. The number at the bottom of each panel is the RMS difference between the simulated field of coefficients and that based on observations, calculated
over the Amazon basin. The outline of the basin is visible in Fig. 2.
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although the skill level varies greatly among individual models. Be-
cause the phasing of internal variability is random in climate pro-
jections, the multimodel mean results shown in Fig. 1 are simply the
multimodel mean correlation coefficient, rather than the correlation
coefficient based on multimodel mean results. In case the correla-
tion coefficients depend on the length of the data record, for each
observational dataset, we calculated simulated correlation coeffi-
cients for a period the same length as the observed dataset.
To assess how well individual models perform relative to an

estimate of observational uncertainty, we compared RMS dif-
ferences in spatial patterns of correlation coefficients between
individual models and observations to RMS differences among
observational datasets, which capture structural uncertainties in
the observations. This analysis was performed for the period of
overlap of all three observational datasets (1998 through 2005),

and, of the 29 models analyzed, 5 and 17 have RMS differences
that are less than the smallest of the interobservational differences
for the North Atlantic and El Niño region SSTs, respectively.
Thus, by this measure of model performance, a significant number
of individual models are performing at a level comparable to
apparent observational uncertainties. Also, as we find elsewhere
(and as is common in climate model evaluations generally), the
model mean result compares more closely to observations than
the result of any individual model.

Projected Average Precipitation. Our results for projected future
drought and periods of unusual wetness are best understood in
the context of projected changes in mean precipitation, by region
and by season. Although mean annual precipitation (MAP) av-
eraged over the Amazon basin is projected to remain largely
unchanged, this results from a cancellation of significant regional
and seasonal trends (Figs. 2 and 3). Geographically, MAP is
projected to increase in the western Amazon and to decrease in
the eastern part of the region (Fig. 2). Seasonally, projections
indicate that the wettest months (December−April) may become
slightly wetter, the driest months (July−September) get drier, and
autumnal transition months (September−November) experience
strong, drying trends (Fig. 3).
Projected regional and seasonal changes may be explained by

differential warming of regional SSTs. Yoon and Zeng (29)
showed that SSTs in both the eastern tropical Pacific and a specific
region of the North Atlantic anticorrellate with precipitation in
the Amazon as a whole. More localized analysis shows that the
Pacific SSTs correlate most strongly with precipitation in the
eastern Amazon, and the North Atlantic SSTs correlate with
precipitation more in the western Amazon. We find that SSTs in
the Pacific region are projected to warm relatively rapidly,
whereas those in the North Atlantic region identified by ref. 29
warm relatively slowly (Supporting Information). Based on ob-
served the relationships just described, this would suggest that
projected precipitation should increase in the western Amazon
and decrease in the east, as is, in fact, the case. In addition, Yoon
and Zeng (29) show that the Pacific region SSTs correlate with
rainy season precipitation; hence, relatively rapid warming in this
region could contribute to a wetter rainy season.

Projected Drought and Wet Periods. We use the Standardized
Precipitation Index (SPI) (30) to assess spatial−temporal changes
in precipitation variability. Because the SPI is based solely on

-5                            -2.5                              0                              2.5                            5.0

Fig. 2. Linear trends in simulated multimodel mean annual mean pre-
cipitation in the Amazon, 1950–2099. The black line denotes zero trend; we
perform some analyses separately for locations with negative and positive
trends. Hatching (dots) indicate regions where >2/3 of models have a posi-
tive (negative) trend. Units are millimeters per day per century.

January  July     
February August     
March  September 
April  October     
May  November  
June  December  

Annual     

Fig. 3. Projected changes in the seasonal cycle of precipitation in the Amazon. Each curve shows monthly mean precipitation for one month of the year, as a
multimodel mean of 35 CMIP5 models, and is smoothed by applying a 10-y running mean. Error bars measure of intermodel agreement (the SE across 35 CMIP
models based on smoothed results), and are displayed every 20 y. Vertical axis units are millimeter per day. Note that the error bars are temporally offset from
one another for clarity.
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precipitation, it does not account for the tendency of warming
temperatures to cause soil drying. We thus focus here on me-
teorological rather than agricultural or hydrological drought, and
note that increasing temperatures may exacerbate the impacts of
projected meteorological droughts. In this paper, we show results
for yearlong droughts (as measured by 12-mo SPI); results for
3-mo SPI are shown in Supporting Information.
We start by assessing projected changes in the area affected by

severe drought and wet periods in the Amazon basin. The CMIP5
models project about a 10-fold increase by 2100 in the drought
area (here defined as SPI < −2; Fig. 4) in regions where mean
precipitation is projected to decrease (“drying regions”)—most of
the Amazon basin. The mechanism responsible for this appears to
be a differential warming of SSTs in the eastern tropical Pacific
(Supporting Information). SSTs in this region are projected to
increase more rapidly than elsewhere, and, as noted above, warm
anomalies in this region are associated with Amazon drought in
both observations and in the CMIP5 model results. In the rela-
tively small portion of the basin where annual mean precipitation
is projected to increase, the area affected by severe drought is
projected to decrease slightly (Fig. 4).
The area affected by unusual wetness—defined here as percent

area where SPI exceeds 2—is projected to increase by about an
order of magnitude in regions where mean precipitation is pro-
jected to also increase (Fig. 4). This results from a combination of
increasing mean precipitation and increasing temporal variability
in precipitation, which we discuss in the following paragraph. In
drying regions, the area of unusual wetness is projected to de-
crease (Fig. 4).
To assess projected changes in drought frequency, we look at

the multimodel mean number of months per year experiencing
SPI < −2. This is projected to increase across most of the region
(Fig. 5), but not in the western Amazonian region, where MAP is
predicted to increase (compare Fig. 5 vs. Fig. 2). Projections of
increasing drought frequency are robust in most locations, as in-
dicated by the large area where at least two-thirds of models project
an increasing trend.
The CMIP5 models project trends in the frequency of un-

usually wet periods, as estimated by the number of months per

year experiencing SPI > 2 (Fig. 5). In particular, comparison of
Figs. 2 and 5 shows that more wet periods are projected in some
locations where MAP is projected to decrease and/or the fre-
quency of severe drought (SPI < −2) is projected to increase.
There is even an area in the eastern part of the basin where the
frequency of extreme wet periods and extreme drought are both
robustly projected to increase (defined as at least two-thirds of
the CMIP5 models agreeing on an increase).
This raises the question of whether precipitation will become

more variable in the Amazon basin. To address this issue, we
calculated historical and future probability density functions for
12-mo SPI independently in locations where MAP is projected to
increase and decrease (Fig. 6). In both types of regions, we find
small increases in the projected interannual and seasonal variability
of precipitation, as measured by the variance of 12-mo SPI. This is
most easily seen in Fig. 6 by looking at the heights of the SPI dis-
tribution functions; because the area under all of the distributions is
the same, a shorter distribution function is also wider.
More frequent periods of unusual wetness contribute to pro-

jected increases in precipitation variability. Fig. 7 shows that pe-
riods of unusual wetness are projected to increase in frequency
in regions where MAP is projected to increase (Fig. 7, Top Right)
and, after 2040, in regions where MAP is projected to decrease
(Fig. 7, Bottom Right). Fig. 7 also shows large increases in drought
frequency in drying regions (Fig. 7, Bottom Left); in wetting re-
gions, drought frequency decreases until about 2040, and shows
no trend or a slow increasing trend (Fig. 7, Bottom Right). Fig. 7
shows projected increases after 2040 in the frequency of both
drought and wet periods throughout the Amazon, with the likely
exception of increases in drought frequency in wetting regions
(Fig. 7, Top Left), where trends are weak.

Discussion
Previous studies have shown that mean and seasonality of pre-
cipitation in Amazonia could change with increasing green-
house gases and changing patterns of aerosols (e.g., ref. 31).
Here we extend and corroborate these findings, and show that
climate change is also expected to affect the frequency of pe-
riods of both drought and wetness in different regions within
the Amazon basin. In particular, western Amazonia (sub-
stantially less than half of the basin) is projected to experience
increases in mean annual precipitation, more frequent wet pe-
riods (especially after 2040), and decreases in drought fre-
quency, at least until 2040. In contrast, eastern Amazonia (most
of the basin) is projected to experience less annual and dry-
season precipitation, more frequent droughts, and, eventually,

Fig. 4. Multimodel mean projections of percent area in the Amazon af-
fected by severe drought, defined here as SPI < −2 (Left) or unusual wetness,
defined as SPI > 2 (Right). Shown are results for regions where annual mean
precipitation is projected to increase (Top) and decrease (Bottom). Red curve,
monthly results; blue curve, 10-y running mean.

 -0.4          -0.2            0             0.2           0.4

Fig. 5. Linear trends in number of months per year experiencing drought or
unusual wetness, 1950–2099. (Left) Months per year experiencing SPI < −2
and (Right) months per year experiencing SPI > 2. Shown are the mean of
results from 35 CMIP5 models. The black line denotes zero trend; i.e., it
separates regions of increasing and decreasing drought frequency. Hatching
(dots) indicate regions where >2/3 of models have a positive (negative)
trend. Units are months per year per century.
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an increasing trend in periods of unusual wetness. These pro-
jections derive from CMIP5 models that, as a group, capture well-
established positive relationships between Amazon droughts and
SST, as well as some basic drought properties. In addition to an
intensification of the hydrological cycle, the CMIP5 models project
increased dry-season length due to reduced precipitation in au-
tumnal transition months.
The recent droughts in 2005 and 2010 in some ways are

analogs for projected future conditions. First, droughts of similar
intensity (with SPI values less then −2) are projected to greatly in-
crease in frequency; hence the impacts of these recent droughts
may offer some insight into future drought impacts. Second,
both the 2005 and 2010 droughts were accompanied by unusual
wetness in the northeast part of the basin; the CMIP5 models
project increased frequency of extreme wetness in the same
region (21).
Our analyses reveal that CMIP5 models project contrasting

behavior in precipitation between eastern and western Amazo-
nian regions. Although the specific mechanisms driving such
differences should be explored, they may result from differential
warming in Atlantic vs. Pacific ocean SSTs (23). Below-average
SSTs in the Pacific tend to trigger periods of extreme wetness in
the western Amazon. We observed strong associations between
Amazon drought and SST in CMIP5 model simulations. Assuming
that this association will hold in the future, an increase in the am-
plitude of ENSO or AMO could explain the projected increases in
drought and extreme wetness in the eastern and western Amazon
basin, respectively.
By 2100, the CMIP5 simulations project roughly a tripling of

the area experiencing meteorological droughts in Amazonia (for
both 3-mo and 12-mo droughts), and there is reason to suspect
that they may underestimate future drought intensity and extent.
The projected changes in the CMIP5 simulations described here
are driven by increases in atmospheric greenhouse gases and
other human forcings. However, other important processes,
which are highly uncertain and poorly represented in CMIP5
models, could also intensify Amazon droughts. For example,
rainfall in the eastern Amazon has a strong dependency on
regional evapotranspiration, so a reduction in tree cover due to
deforestation could reduce precipitation (32). This suggests
that if processes related to changes in land use and land cover
(including feedbacks on climate) were better represented in
more of the CMIP5 models, drought intensity could be even
more frequent than projected here (33). Furthermore, our analysis
does not consider effects of warming or CO2 on evapotranspira-
tion and soil moisture.

Previous field-based studies and modeling exercises suggest
that the projected increases in drought frequency and severity
described above could exert strong influences on the ecology and
productivity of Amazonian forests. For example, two rainfall
exclusion experiments found that soil water stress caused re-
duced tree growth and triggered a fourfold increase in mortality
of large trees (5), which store most of the aboveground carbon in
tropical forests. Two recent Amazon droughts had similar effects
on the ecology of tropical forests, when mortality increased to
levels that were large enough to transform tropical forests from
carbon sink to source (6). By altering forest microclimate and
fuel dynamics, droughts also tend to increase forest flammability
(1). In the 2000s, for example, more than 85,000 km2 of primary
forests burned, mostly in the drought years of 2005, 2007, and
2010 (34, 35). It is important to note that our study focuses on
precipitation; increases in temperature could worsen the severity
and effects of droughts (36–38).
Historical droughts altered the ecology of Amazonian forests

(39). However, it remains unclear whether the future changes in
drought intensity and frequency that CMIP5 models project will
have influences similar to past changes. We still lack quantitative
analyses of the effects of historical droughts compared with fu-
ture projections. Without such studies, it is difficult to define
what constitutes a dangerous or catastrophic change in drought
frequency and intensity for the stability of Amazonian forests.
Likewise, it is important to consider the combined effects of re-
duced precipitation and increased temperatures, which together
can reduce the capacity of tropical forests to cycle and store car-
bon. The eastern Amazon, in particular, may experience increases
of air temperature between 4 °C and 5 °C, and this portion of the
basin is already close to the lower rainfall limit for moist tropical
forests (40), so minor changes could have important consequences.
Further research on these types of thresholds is needed now to
inform policy development processes.

Wetting Regions Drying Regions

Fig. 6. Probability density functions of simulated 12-mo SPI values, in re-
gions where annual mean precipitation is projected to increase (Left) and
decrease (Right). These regions are shown in Fig. 2. In both “wetting” and
“drying” regions, interannual variability in precipitation, as measured by the
variance of 12-mo SPI, is projected to increase. Red curve, results for 2071–
2100; blue curves, results for 1950–1979.

Fig. 7. Simulated frequency of drought or unusual wetness, as measured by
months per year when the absolute value of SPI exceeds specified thresh-
olds. Shown are results in locations projected to experience an increase
(Top) or decrease (Bottom) in annual mean precipitation. (Left) Results for
drought and (Right) results for periods of unusual wetness. Red curves show
results for SPI < −1 (Left) or SPI > 1 (Right). Blue curves show results for SPI <
−2 (Left) or SPI > 2 (Right).
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Methods
We analyzed results from simulations performed with up to 35 climate
models participating in CMIP5 (24). Each simulation spanned the years
1950 through 2099. For 1950 through 2005, estimates of historical cli-
mate forcings (atmospheric greenhouse gas concentrations, etc.) were
used. After 2006, forcings corresponded to the Representative Concen-
tration Pathway 8.5 scenario, which assumes a relatively rapid buildup
of atmospheric greenhouse gases. We used one simulation from each
model; whenever possible, this was the r1i1p1 simulation. All model
results used are reported as monthly means, and are regridded to a
1° × 1° latitude by longitude grid before analysis (these are available

from gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html). Most
analyses were restricted to the Amazon watershed; exceptions include eval-
uation of simulated correlations with SST. We find that the CMIP5 models
have demonstrable skill in representing observed relationships between
SST anomalies in specific regions in the North Atlantic and tropical Pacific
oceans, as well as in simulating basic properties of observed Amazon drought
(Supporting Information).
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