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Abstract

Simulating Nonlinear Faraday Waves on a Cylinder

by

Saad Qadeer

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jon Wilkening, Chair

In 1831, Michael Faraday observed the formation of standing waves on the surface of a
vibrating fluid body. Subsequent experiments have revealed the existence of a rich tapestry
of patterned states that can be accessed by varying the frequency and amplitude of the
vibration and have spurred vast research in hydrodynamics and pattern formation. These
include linear analyses to determine the conditions for the onset of the patterns, weakly
nonlinear studies to understand pattern selection, and dynamical systems approaches to
study mode competition and chaos. Recently, there has been some work towards numerical
simulations in various three-dimensional geometries. These methods however possess low
orders of accuracy, making them unsuitable for nonlinear regimes.

We present a new technique for fast and accurate simulations of nonlinear Faraday waves
in a cylinder. Beginning from a viscous potential flow model, we generalize the Transformed
Field Expansion to this geometry for finding the highly non-local Dirichlet-to-Neumann op-
erator (DNO) for the Laplace equation. A spectral method relying on Zernike polynomials
is developed to rapidly compute the bulk potential. We prove the effectiveness of represent-
ing functions on the unit disc in terms of these polynomials and also show that the DNO
algorithm possesses spectral accuracy, unlike a method based on Bessel functions.

The free surface evolution equations are solved in time using Picard iterations carried out
by left-Radau quadrature. The results are in perfect agreement with the instability thresh-
olds and surface patterns predicted for the linearized problem. The nonlinear simulations
reproduce several qualitative features observed experimentally. In addition, by enabling one
to switch between various nonlinear regimes, the technique allows a precise determination of
the mechanisms triggering various experimental observations.
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Chapter 1

Introduction

In this section, we provide an introduction to the Faraday wave problem and briefly describe
some of the theoretical, experimental and numerical studies that have been undertaken to
explore its various facets.

The Linearized Problem

The parametric instability problem in vertically oscillating fluid containers originated with
the work of Faraday in 1831 [20]. While observing the formation of standing waves on
the surface of the fluid, he noted that the frequency of the standing waves was precisely
half the frequency of the applied vibration (i.e., a subharmonic response). Mathiessen [33,
34] reproduced the experiment but found the frequencies to be identical (i.e., a harmonic
response). The first theoretical effort to break the impasse was undertaken by Benjamin and
Ursell [5]. Using the linearized form of Euler’s equations, they showed that the evolution of
the amplitude of each mode was governed by a Mathieu equation. The instability regions
for this equation take the form of tongues in the forcing acceleration-frequency plane. For
frequency ω and infinitesimal forcing, the frequency of the response could be jω/2, where
j is a positive integer indexing the various tongues. In the absence of viscosity, however,
the theory predicted exponential growth for larger forcing accelerations, thus limiting the
validity of the results due to the linearity assumption.

The linear viscous problem was eventually satisfactorily addressed by Kumar and Tuck-
erman [32]. They proceeded by linearizing the Navier-Stokes equations and expanding the
unknowns in terms of the normal modes of the system. Recognizing that the resulting
equations for each modal amplitude were of the Floquet form, they were able to reduce the
determination of the excitation parameters to an eigenvalue problem. Their work showed
that the neutral stability curves from the inviscid problem were raised and smoothed out,
so the accelerations required for the onset of instability had to be necessarily non-zero (see
Figure 1.1). In addition, the frequency of the response was limited to ω/2 (for odd-indexed
tongues) and ω (for even-indexed tongues). In [7], this technique was extended to multiple-
frequency forcing regimes.
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Figure 1.1: The stability diagram obtained from the work of [32]. Here, α is the forcing
acceleration and pmn = 4ω2

mn/ω
2 indicates the nature of the excitation: if the integer closest

to
√
pmn is odd (even), the response is subharmonic with frequency ω/2 (harmonic with

frequency ω).

Understanding Nonlinear Interactions

At the same time, considerable interest was drawn by the nonlinear interactions at play.
By keeping terms upto the third order, Abramson et al [3] developed equations for the
nonlinear self-interactions of small wave-number modes in a cylinder (specifically, the (0, 1)
and (1, 1) modes) and obtained fairly good agreement with experiments. In addition, they
also demonstrated hysteresis, whereby the shape of the excitation regions changed as the
path through the parametric space was varied. Ockendon and Ockendon [47] allowed for
a single mode to be excited to a finite but small amplitude. Using a series approximation
up to the third order, they performed a stability analysis of the evolution equations for the
slow amplitude modulation. Miles [37] developed an averaged Lagrangian approach, keeping
terms up to the fourth order, and used it to obtain a Hamiltonian system for the amplitude
envelopes. This was used to explore the bifurcation structure of the system. This work
also factored in linear dissipation as well as exploring internal resonance between a pair of
modes. It was later complemented by careful experiments in [25] that demonstrated the
presence of 2 : 1 resonance between a (sub-harmonically excited) Faraday wave and its sub
and super-harmonics.

A remarkable series of experiments was performed in the 1980s. Gollub and Meyer [21]
generated Faraday waves on a cylinder and observed the presence of multiple thresholds
above the primary linear threshold. When crossed, in turn these led to pattern precession,
azimuthal modulation and, finally, chaos. This work was followed by the seminal Ciliberto
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and Gollub experiment [12]. They focused extensively on the intersection point of the first
instability tongues for the (4, 3) and (7, 2) modes. By choosing parameter values inside the
tongues close to the bimodal critical point, they observed amplitude modulations, followed
by a bifurcation that doubled the period of the modulations and, finally, chaotic motion (see
Figure 1.2). They made the case that the system was an instance of a strange attractor
and calculated its dimension. In addition, they also developed a four-dimensional system by
describing the amplitude dynamics on the slow time-scale using a pair of coupled Mathieu
oscillators [11].

Figure 1.2: Parameter space close to the bimodal critical point for (4, 3) and (7, 2) from [12].
Here, f0 and A are the frequency and amplitude of the forcing respectively. Mode competition
occurs in the shaded regions with both modes co-existing and exchanging energy in the region
labelled “periodic” before the onset of chaos.

This experiment generated immense interest in the pattern selection community. Meron
and Procaccia [35, 36] used a center-manifold reduction and normal form theory to reduce the
hydrodynamic model to a low-dimensional problem. With parameters chosen phenomeno-
logically, they were able to explain various observations on the slow time-scale but were
unable to address chaos; this was put down to an inability to enforce the no-flow boundary
condition in the experiment. Umeki and Kambe [30] also addressed the problem. By using
the averaged Lagrangian approach pioneered by Miles [37, 39], they were able to accurately
demonstrate a Hopf bifurcation, a period doubling bifurcation and mixed modes. They also
showed that chaotic dynamics were possible. Crawford et al [14] claimed that these findings
may not be relevant to this regime and themselves explained the observations as a con-
sequence of the O(2) symmetry and the subharmonic excitation triggered by the Faraday
phenomenon.
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Numerical Results

Numerical simulations of the Faraday phenomenon are relatively rare in comparison to ex-
perimental or weakly nonlinear studies, with the majority of techniques catering to the
two-dimensional case [10, 52]. The first three-dimensional simulation was carried out by
O’Connor [48] using an arbitrary Lagrangian-Eulerian method on a domain with a square
cross-section. A more thorough technique was developed by Perinet et al [49]. Their method
relied on meshing the domain, using the projection method to solve the full Navier-Stokes
system and advecting the free surface by using the immersed boundary method. Their results
exhibited the formation of various nonlinear patterns such as squares and hexagons in a rect-
angular domain. However, this approach was ill-suited for a cylinder; indeed, an extension to
this geometry was briefly addressed in [28] but the results differed vastly from experiments
and were unable to exhibit Bessel functions, the primary surface wave pattern on a circular
cylinder. Moreover, the low-order accuracy of the method and the Courant-Friedrichs-Levy
time-step condition necessitated small step-sizes, increasing the computational cost. As a
result, this method is infeasible for validating theoretical predictions and experimental ob-
servations.

Numerical studies of this phenomenon in a cylinder were also conducted by Jian et
al [56]. They numerically integrated a third-order system for the free-surface amplitude
and obtained amplitude modulations. Using a commercial software, Krishnaraja and Das
also studied the Faraday wave problem on a cylinder and observed amplitude modulation
and period doubling, tripling and quadrupling before wave-breaking [31]. Their results for
the thresholds for the axisymmetric mode (0, 1) were in fairly good agreement with the
corresponding experiments reported in [15].

In this thesis, we develop a novel technique for the simulation of nonlinear Faraday waves
in a circular cylinder. The underlying model is that of Dias et al [16], which incorporates
linear damping with a potential flow. The latter property allows us to formulate the problem
in terms of surface variables only, with the effects of the bulk accounted for by Laplace’s
equation. This equation in turn is solved by generalizing the Transformed Field Expansion
(TFE) method to a three-dimensional cylinder. A spectrally accurate method is proposed
for computing the solutions rapidly. After proving that this technique is highly suitable for
interfaces of moderate height, we apply it to the Faraday phenomenon. The results show a
high degree of agreement with both linear and nonlinear regimes. We are able to validate
the technique by showing it accurately reproduces several theoretical predictions.

The thesis is structured as follows. We begin by introducing Zernike polynomials and
present analytical and numerical results that demonstrate their effectiveness as an accurate
representational tool on the unit disc. In particular, they are much more accurate than Bessel
functions for representing generic smooth functions. We also show that they allow significant
computational acceleration. In the next section, we extend the TFE method to our domain
and develop the spectral method to solve it, with Zernike polynomials playing a key role. The
accuracy and computational cost of this method are explored at length. The next section
introduces the viscous potential flow model which is used, with the machinery assembled
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earlier, to simulate Faraday waves. We provide details of the time integration method along
with the results from various regimes. We conclude by discussing the limitations of the
technique and identifying further extensions and applications.
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Chapter 2

On Zernike Polynomials

In this chapter, we introduce a special class of functions on the unit disc. Zernike poly-
nomials [2], as these functions are known, are of central importance to the results in the
thesis. We begin by defining them conventionally and detailing the key properties that make
them so attractive. To gain further insights into their effectiveness, we next present an alter-
nate, sharper, characterization. This leads to useful approximation results that shall feature
prominently in the analysis of subsequent algorithms. We also numerically demonstrate that
Bessel approximations do not enjoy the same approximation properties. Finally, we take
advantage of the structure of these functions to derive some results and optimize certain
computations that are ubiquitous in a modal setting.

2.1 Defining Zernike Polynomials

We begin by discussing some key properties of Jacobi polynomials. These are a crucial
ingredient in the construction of Zernike polynomials and hence many of their properties are
carried forward in some shape or form.

Jacobi Polynomials

The Jacobi polynomials {P (α,β)
n }n≥0 are a family of orthogonal polynomials on [−1, 1] with

respect to the weight w(x) = (1− x)α(1 + x)β, for α, β > −1. One way of defining them is
by the Stieltjes procedure, which yields the following recurrence formulas [51]

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) =

1

2
(α + β + 2)x+

1

2
(α− β)

P (α,β)
n (x) = (a(α,β)

n x− b(α,β)
n )P

(α,β)
n−1 (x) + c(α,β)

n P
(α,β)
n−2 (x), n ≥ 2 (2.1)
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where

a(α,β)
n =

(2n+ α + β − 1)(2n+ α + β)

2n(n+ α + β)

b(α,β)
n =

(β2 − α2)(2n− 1 + α + β)

2n(n+ α + β)(2n− 2 + α + β)

c(α,β)
n =

(n− 1 + α)(n− 1 + β)(2n+ α + β)

n(n+ α + β)(2n− 2 + α + β)
.

These choices result in P
(α,β)
n (1) =

(
n+α
n

)
. This recurrence relation is a particularly efficient

way of evaluating these polynomials and hence is used extensively in numerics. It is however
not well-suited for deriving approximation estimates, which is why we consider another
characterization. Consider the second-order linear differential equation

(1− x2)y′′(x) + (β − α− (α + β + 2)x)y′(x) + n(n+ α + β + 1)y(x) = 0.

It can be shown that this equation has exactly one non-trivial polynomial solution (up to

scaling) for each n ≥ 0 and that its degree is n [51]. Denote this solution by y
(α,β)
n (x). The

differential equation admits the Sturm-Liouville form

− 1

w(x)

[
(1− x2)w(x)y′(x)

]′
= n(n+ α + β + 1)y(x). (2.2)

Define the operator Q by (Qu)(x) = − 1
w(x)

[(1− x2)w(x)u′(x)]
′
. It follows from the self-

adjoint nature of Q on L2([−1, 1];w(x)) that its eigenfunctions corresponding to distinct
eigenvalues must be orthogonal. In particular, this holds for the family of polynomials
{y(α,β)

n (x)}n≥0. The uniqueness of orthogonal polynomials then shows that y
(α,β)
n (x) and

P
(α,β)
n (x) are identical up to a scaling factor.

Jacobi polynomials also possess the property

∂xP
(α,β)
n (x) =

(
α + β + n+ 1

2

)
P

(α+1,β+1)
n−1 (x). (2.3)

Using this repeatedly allows us to find ∂kxP
(α,β)
n (x) for k ≤ n. Finally, we also have [2]∫ 1

−1

[
P (α,β)
n (x)

]2
(1− x)α(1 + x)β dx =

2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
. (2.4)

Zernike Polynomials and their Properties

Let D be the unit disc in the plane. For m,n ∈ Z with n ≥ 0, set µmn =
√

1 + |m|+ 2n
and define

ζmn(ρ, θ) = µmnP
(0,|m|)
n (2ρ2 − 1)ρ|m|eimθ



CHAPTER 2. ON ZERNIKE POLYNOMIALS 8

where (ρ, θ) are the polar coordinates. These are known as Zernike polynomials. In [2], these
functions are indexed differently but we prefer this form as it leads to simpler expressions.

The weight ρ|m| and the factor µmn ensure that the family {ζmn}m∈Z,n≥0 is orthonormal
on the unit disc with respect to the inner product

〈v, w〉L2(D) =
1

π

∫ 2π

0

∫ 1

0

v(ρ, θ)w(ρ, θ) ρ dρ dθ. (2.5)

Indeed,

〈ζm1n1 , ζm2n2〉L2(D)

=
µm1n1µm2n2

π

∫ 2π

0

∫ 1

0

P (0,|m1|)
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)ρ|m1|+|m2|+1ei(m2−m1)θ dρ dθ

=
µm1n1µm2n2

2
δm1,m2

∫ 1

−1

P (0,|m1|)
n1

(x)P (0,|m2|)
n2

(x)

(
1 + x

2

) |m1|+|m2|
2

dx

where we used the substitution x = 2ρ2− 1. Continuing, we replace the m2’s by m1’s to get

〈ζm1n1 , ζm2n2〉L2(D) = δm1,m2

µm1n1µm1n2

2|m1|+1

∫ 1

−1

P (0,|m1|)
n1

(x)P (0,|m1|)
n2

(x) (1 + x)|m1| dx

= δm1,m2δn1,n2

because of the orthogonality of Jacobi polynomials and (2.4).
By the Stone-Weierstrass theorem, the algebra generated by {ζmn} is dense in C(D), the

space of continuous complex-valued functions on D. As C(D) in turn is dense in L2(D), we
conclude that {ζmn} forms an orthonormal basis for L2(D). This can be used to define the
modal representation for v ∈ L2(D) as

v(ρ, θ) =
∑

m∈Z,n≥0

〈ζmn, v〉L2(D) ζmn(ρ, θ) (2.6)

where the equality is to be interpreted in the L2 sense. The orthonormality of the basis
functions leads to Parseval’s identity

‖v‖2
L2(D) =

∑
m∈Z,n≥1

∣∣∣〈ζmn, v〉L2(D)

∣∣∣2 .
In practice, however, we do not compute the entire modal representation but instead

truncate it after a certain number of terms have been included. For positive integers M,N ,
define the projection

PMNv(ρ, θ) =
∑

|m|≤M,n≤N

〈ζmn, v〉L2(D) ζmn(ρ, θ). (2.7)

From the remarks above, it is evident that ‖v − PMNv‖L2(D) → 0 as M,N →∞. A precise
bound on the rate of convergence is determined in the next section.



CHAPTER 2. ON ZERNIKE POLYNOMIALS 9

2.2 Accuracy of the Modal Representation

The modal representation described in the previous section provides a powerful way to
represent and manipulate a large class of functions on the unit disc D. However, its accuracy
properties are as yet unclear. In particular, for the approximation error

eMN(v) = ‖v − PMNv‖L2(D) , (2.8)

we would like to study the effect of changing the parameters M and N and bound its rate
of decay. This is precisely the goal of this section. We first establish a characterization of
Zernike polynomials and use it to determine the rate of convergence. This is followed by
numerical results that further support the claim.

Decay of Approximation Error

For any integer r ≥ 0, let Hr(D) denote the corresponding Sobolev space on D.

Theorem 2.2.1 Define the map

Lu = −ρ−1∂ρ
(
ρ(1− ρ2)∂ρu

)
− ρ−2∂2

θu.

Then,

(a) L is bounded from H l+2(D) to H l(D) for any integer l ≥ 0.

(b) the Zernike polynomials {ζmn} are eigenfunctions of L with eigenvalues λmn = (|m|+
2n)(|m|+ 2n+ 2).

Proof:
(a) This follows easily from rewriting

Lu = −∆u+ (ρ2∂2
ρ + 3ρ∂ρ)u

and using the fact that both operators above are bounded from H l+2(D) to H l(D) for any
integer l ≥ 0.

(b) We solve the eigenvalue problem Lu = λu by separation of variables. Writing
u(ρ, θ) = R(ρ)T (θ) gives

ρ

R(ρ)
∂ρ
(
ρ(1− ρ2)R′(ρ)

)
+ λρ2 = −T

′′(θ)

T (θ)
.

Setting both sides equal to a constant µ gives T ′′(θ) + µT (θ) = 0. The conditions T (0) =
T (2π) and T ′(0) = T ′(2π) lead to µ = m2 for integers m ≥ 0 and Tm(θ) = ame

imθ + bme
−imθ.

The equation for Rm then reads

1

ρ
∂ρ
(
ρ(1− ρ2)R′m(ρ)

)
= (m2ρ−2 − λ)Rm(ρ). (2.9)
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Next, we use the transformation x = 2ρ2 − 1 and set Xm(x) = Rm(ρ). Note that ∂ρ = 4ρ∂x
so we have

ρ(1− ρ2)R′m(ρ) = 4ρ2(1− ρ2)X ′m(x)

= (1− x)2X ′m(x)

⇒ 1

ρ
∂ρ
(
ρ(1− ρ2)R′m(ρ)

)
= 4∂x((1− x2)X ′m(x)).

Plugging this in (2.9) yields

∂x((1− x2)X ′m(x)) =

(
m2

2(1 + x)
− λ

4

)
Xm(x). (2.10)

Decomposing
m2

2(1 + x)
=

[
m2

4

(
1− x
1 + x

)
− |m|

2

]
+

[
m2

4
+
|m|
2

]
allows us to write (2.10) as

∂x
(
(1− x2)X ′m(x)

)
− |m|

2

(
|m|
2

(
1− x
1 + x

)
− 1

)
Xm(x) =

(
m2

4
+
|m|
2
− λ

4

)
Xm(x).

(2.11)

Observe next that

1

(1 + x)|m|/2
∂x

(
(1− x2)(1 + x)|m|∂x

(
Xm(x)

(1 + x)|m|/2

))
=

1

(1 + x)|m|/2
∂x

(
(1− x2)(1 + x)|m|/2X ′m(x)− |m|

2
(1− x)(1 + x)|m|/2

)
= ∂x((1− x2)X ′m(x)) +

|m|
2

(1− x)X ′m(x)− |m|
2(1 + x)|m|/2

[
−(1 + x)|m|/2Xm(x)+

(1− x)(1 + x)|m|/2X ′m(x) +
|m|
2

(1− x)(1 + x)|m|/2−1Xm(x)

]
= ∂x

(
(1− x2)X ′m(x)

)
− |m|

2

(
|m|
2

(
1− x
1 + x

)
− 1

)
Xm(x)

which is exactly the left hand side of (2.11). Thus,

1

(1 + x)|m|/2
∂x

(
(1− x2)(1 + x)|m|∂x

(
Xm(x)

(1 + x)|m|/2

))
=

(
m2

4
+
|m|
2
− λ

4

)
Xm(x).

Comparing this with (2.2), we deduce that this is the eigenvalue problem associated with

P
(0,|m|)
n (x)(1 + x)|m|/2 with eigenvalues −n(n+ |m|+ 1). This gives

λ = m2 + 2|m|+ 4n(n+ |m|+ 1)

= (|m|+ 2n)(|m|+ 2n+ 2)

We conclude that P
(0,|m|)
n (x)(1 + x)|m|/2eimθ, which is precisely ζmn up to scaling, is an

eigenfunction of L with the desired eigenvalue.



CHAPTER 2. ON ZERNIKE POLYNOMIALS 11

Note that the operator L defined in the last theorem is self-adjoint in L2(D). This fact
has a crucial bearing on the following approximation result.

Theorem 2.2.2 Let s be a positive real number and let v ∈ Hs(D). For M,N ≥ 0, let
PMNv be the projection of v on {ζmn} as defined in the previous section. Then,

eMN(v) = ‖v − PMNv‖L2(D) . min(M, 2N)−s ‖v‖Hs(D) .

Proof: We follow the standard argument presented in [6]. First suppose that s = 2k for
some integer k ≥ 1 and let ΛMN = {(m,n) : |m| > M or n > N}. Note then from (2.6) and
(2.7) that

v − PMNv =
∑

m,n∈ΛMN

〈ζmn, v〉L2(D) ζmn.

We have by Theorem 2.2.1(b) and the self-adjoint nature of L

〈ζmn, v〉L2(D) = λ−kmn
〈
Lkζmn, v

〉
L2(D)

= λ−kmn
〈
ζmn, L

kv
〉
L2(D)

.

From Parseval’s identity, it follows that

‖v − PMNv‖2
L2(D) =

∑
m,n∈ΛMN

| 〈ζmn, v〉L2(D) |
2

=
∑

m,n∈ΛMN

λ−2k
mn |

〈
ζmn, L

kv
〉
L2(D)

|2

. min(M, 2N)−4k
∑

m,n∈ΛMN

|
〈
ζmn, L

kv
〉
L2(D)

|2

≤ min(M, 2N)−4k
∥∥Lkv∥∥2

L2(D)

where we used the fact that λmn = (|m|+2n)(|m|+2n+2) ≥ (min(M, 2N))2 for m,n ∈ ΛMN .
By Theorem 2.2.1(a), we have ∥∥Lkv∥∥

L2(D)
. ‖v‖H2k(D)

so we have the desired result in the case that s = 2k. In addition, observe that

‖v − PMNv‖2
L2(D) =

∑
m,n∈ΛMN

| 〈ζmn, v〉L2(D) |
2 ≤ ‖v‖2

L2(D) .

Finally, let s be a positive real number and choose an integer k such that 2k > s. The
operator (I − PMN) is continuous from L2(D) to L2(D) with norm 1 and from H2k(D)
to L2(D) with norm . min(M, 2N)−2k. Interpolating between these, we deduce that it is
bounded from Hs(D) to L2(D) with norm . min(M, 2N)−s. Thus,

eMN(v) = ‖v − PMNv‖L2(D) . min(M, 2N)−s ‖v‖Hs(D) .
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Theorem 2.2.2 shows that the rate of error decay is faster than any power of min(M, 2N)−1.
This is commonly termed spectral accuracy [9]. Also note that if v has a finite highest an-
gular frequency m′ so that 〈ζmn, v〉L2(D) = 0 for m > m′, then applying the same argument

as above shows that the error decay occurs at rate N−s, provided M ≥ m′.

Numerical Results

0 5 10 15 20 25 30
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10
-16
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10
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k = 2,  = 16.3475

k = 3,  = 17.7887

k = 4,  = 19.196

Figure 2.1: L2 errors in the Zernike polynomial-based modal representation. Observe that
the decay decays exponentially against N , as proven in Theorem 2.2.2.

We next confirm the spectral accuracy of the modal representation numerically. For
k ≥ 0, let

f(ρ, θ) = e−αρ
2

ρk cos(kθ).

The coefficients 〈ζmn, f〉L2(D) in the Zernike representation of f can computed by using a high-
order Jacobi-Gauss quadrature rule. Theorem 2.2.2 predicts that the error ‖f − PMNf‖L2(D)

will decay faster than any power of N−1, provided that M ≥ k. Figure 2.1 confirms the
spectral decay for multiple values of k and α with 1 ≤ N ≤ 30 and M = 16.

In order to show that this representation avoids spurious behavior, in Figure 2.2 we
present the L∞ errors for the cases considered in Figure 2.1. These errors are computed by
sampling the functions on a fine mesh consisting of 14230 points. It is clear that represen-
tation is spectrally accurate even in this norm. In addition, we also show that the spread of
the deviation on the mesh for one of the cases with N = 30 is fairly uniform.

Finally, we demonstrate the superiority of Zernike polynomials over Bessel functions for
representational purposes. First, let Jm be the mth Bessel function of order zero and amn
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Figure 2.2: L∞ errors in the Zernike representation vs N. The spread of the deviation on the
unit disc for the case k = 2, α = 16.3475 and N = 30 is also shown.

the nth zero of J ′m(·). It follows from the orthogonality of {Jm(amnρ)}n≥1 that any function
g on the unit disc can then be represented as

g(ρ, θ) =
∑

m≥0,n≥1

βmnJm(amnρ)eimθ

where

βmn =

[
2π

∫ 1

0

(Jm(amnρ))2 ρ dρ

]−1 ∫ 2π

0

∫ 1

0

g(ρ, θ)Jm(amnρ)e−imθ ρ dρ dθ.

In order to compare the two techniques, we represent functions from one family in terms
of the other and vice versa. Figure 2.3 shows the results for the L∞ norm. The plots
show that the error decay for the Bessel function representation is algebraic, as opposed
to the spectral accuracy possessed by Zernike polynomials. An intuitive reason for this is
that Bessel functions are not as oscillatory as Zernike polynomials near ρ = 1 and, as a
result, are less accurate close to the outer boundary. A useful analog is the comparison of
a Fourier sine-series on [0, π] with a Chebyshev expansion. The zeros of the latter cluster
near the boundaries like 1/n2, where n is the mode number, and yield spectrally accurate
representations. Meanwhile, the zeros of the former cluster like 1/n and lead to algebraic
decay of mode amplitudes.

2.3 Computational Matters

In this section, we derive a result concerning Zernike polynomials that illustrates their par-
ticular amenability to Galerkin methods. In addition, we present techniques to efficiently
perform certain computations using the modal representation that will help us greatly going
forward.
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Figure 2.3: On left, the representation of ζmn in terms of Bessel functions is algebraic while,
on right, the representation of Jmn(amnρ)eimθ in terms of Zernike polynomials is exponential.

The Stiffness Matrix

In Galerkin methods, one frequently needs to set up the mass and stiffness matrices with
respect to the chosen basis functions. We here show that these computations are particularly
simple for Zernike polynomials, consequently making them well-suited for use in problems
on circular domains.

Note first that the orthonormality of these functions ensures that the mass matrix will
merely be the identity. The stiffness matrix, on the other hand, requires some work. Fortu-
nately, as we shall see, the structure of these functions enables us to derive a simple closed
form expression for this matrix as well.

Let m,m′, n, n′ ∈ Z with n, n′ ≥ 1 and consider the typical stiffness term

Am′n′,mn =
1

π

∫ 2π

0

∫ 1

0

∇ζm′n′(ρ, θ) · ∇ζmn(ρ, θ) ρ dρ dθ

where ∇ = (∂ρ, ρ
−1∂θ) is the gradient operator in polar coordinates. We have

∇ζmn(ρ, θ) = µmne
imθ

(
4∂ρP

(0,|m|)′
n (2ρ2 − 1)ρ|m|+1 + |m|P (0,|m|)

n (2ρ2 − 1)ρ|m|−1

imP
(0,|m|)
n (2ρ2 − 1)ρ|m|−1

)
. (2.12)

As a result,

1

π

∫ 2π

0

∫ 1

0

∇ζm′n′(ρ, θ) · ∇ζmn(ρ, θ) ρ dρ dθ

= µm′n′µmn
1

π

∫ 2π

0

ei(m−m
′)θ dθ


∫ 1

0

16P
(0,|m′|)′
n′ (2ρ2 − 1)P (0,|m|)′

n (2ρ2 − 1)ρ|m
′|+|m|+3 dρ︸ ︷︷ ︸

(1)
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+ 4

∫ 1

0

|m′|P (0,|m′|)
n′ (2ρ2 − 1)P (0,|m|)′

n (2ρ2 − 1)ρ|m
′|+|m|+1 dρ︸ ︷︷ ︸

(2a)

+ 4

∫ 1

0

|m|P (0,|m′|)′
n′ (2ρ2 − 1)P (0,|m|)

n (2ρ2 − 1)ρ|m
′|+|m|+1 dρ︸ ︷︷ ︸

(2b)

+ (|mm′|+mm′)

∫ 1

0

P
(0,|m′|)
n′ (2ρ2 − 1)P (0,|m|)

n (2ρ2 − 1)ρ|m
′|+|m|−1 dρ︸ ︷︷ ︸

(3)

 (2.13)

Note first that 1
π

∫ 2π

0
ei(m−m

′)θ dθ = 2δm,m′ so we can safely take m = m′ in the subsequent
calculations. We use the substitution x = 2ρ2 − 1 in (1) to obtain

(1) :
16

4(2|m|+1)

∫ 1

−1

P
(0,|m|)′
n′ (x)P (0,|m|)′

n (x)(1 + x)|m|+1 dx

= 21−|m|
[
P

(0,|m|)
n′ (x)P (0,|m|)′

n (x)(1 + x)|m|+1
]1

−1
−

21−|m|
∫ 1

−1

P
(0,|m|)
n′ (x)

[
P (0,|m|)′′
n (x)(1 + x) + (|m|+ 1)P (0,|m|)′

n (x)
]︸ ︷︷ ︸

(A)

(1 + x)|m| dx

where we integrated by parts. Observe that the degree of the expression (A) above is at
most (n − 1). Hence, if n′ ≥ n, the above integral evaluates to zero. Similarly, if n > n′,
we can switch the functions while integrating by parts and still get zero. Thus, the only
contributions are from the first term

(1) : 21−|m|

{
P

(0,|m|)
n′ (1)P

(0,|m|)′
n (1)(2)|m|+1 if n′ ≥ n

P
(0,|m|)′
n′ (1)P

(0,|m|)
n (1)(2)|m|+1 if n > n′

(2.14)

We also have

P (0,|m|)
n (1) = 1, P (0,|m|)′

n (1) =
n(n+ |m|+ 1)

2
.

Setting γn,n′ = min(n, n′) allows us to write (2.14) as 2γn,n′(γn,n′ + |m|+ 1).
Using the same substitution as above in (2a) and (2b) yields

(2a) + (2b) : 2−|m||m|
∫ 1

−1

[
P

(0,|m|)
n′ (x)P (0,|m|)′

n (x) + P
(0,|m|)′
n′ (x)P (0,|m|)

n (x)
]

(1 + x)|m| dx

(2.15)

Leaving this as it is for now, we next turn to (3). Using the same substitution and
integrating by parts yields

(3) :
2m2

4(2|m|−1)

∫ 1

−1

P
(0,|m|)
n′ (x)P (0,|m|)

n (x)(1 + x)|m|−1 dx
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= 2−|m|m2

[
P

(0,|m|)
n′ (x)P (0,|m|)

n (x)
(1 + x)|m|

|m|

]1

−1

−

2−|m|m2

∫ 1

−1

[
P

(0,|m|)
n′ (x)P (0,|m|)

n (x)
]′ (1 + x)|m|

|m|
dx

= |m| − 2−|m||m|
∫ 1

−1

[
P

(0,|m|)
n′ (x)P (0,|m|)′

n (x) + P
(0,|m|)′
n′ (x)P (0,|m|)

n (x)
]

(1 + x)|m| dx︸ ︷︷ ︸
(B)

Observe that the integrals (2.15) and (B) are identical but have opposite signs. Consequently,
when we add (1), (2a), (2b) and (3) as they appear in (2.13), they cancel out and we obtain
the concise expression

Am′n′,mn = 2δm,m′µmn′µmn(2γn,n′(γn,n′ + |m|+ 1) + |m|). (2.16)

Optimizing Computations in Modal Space

We have seen that Zernike polynomials are able to represent functions on the disc in an
accurate and stable manner. However, their usefulness to spectral methods also depends
critically on their amenability to basic operations, such as multiplying two functions whose
modal representations are known. The obvious procedure for doing this is to evaluate the
modal representations at certain points (chosen according to some quadrature rule), multiply
them together and convert those values back. This however proves to be costly. Indeed, a
naive implementation of this method could end up requiring O(M2N2) operations.

We instead present a technique that will enable us to execute such operations inO(M(M+
N)(N + log(M))) complexity. This will result in a significant speed up and make the use of
Zernike polynomials even more appealing.

Let M,N be positive integers and suppose we have functions f and g such that

f(ρ, θ) =
∑

−M<m≤M

∑
0≤n≤N

αmnζmn(ρ, θ), g(ρ, θ) =
∑

−M<m≤M

∑
0≤n≤N

βmnζmn(ρ, θ).

We shall consider three types of operations: (i) fg ; (ii) ∇f · ∇g and (iii) (∆f)g. By
associativity, operations involving more than two functions can be reduced into these types.

For (i), the modal coefficients are given by

〈ζmn, fg〉L2(D) =
1

π

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmn

∫ 2π

0

ei(m1+m2−m)θ dθ

∫ 1

0

P (0,|m1|)
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+1 dρ

=
1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m
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∫ 1

−1

P (0,|m1|)
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|
2

dr

where we used the substitution r = 2ρ2−1. Observe that the highest degree in the integrand
above is (3N + M). Let {(rj, σj)} be the Ng = (3N + M)/2 + 1 point Gauss-Legendre
quadrature scheme on [−1, 1]. This scheme is guaranteed to evaluate all polynomials up to
degree (3N +M + 1) so it is well-suited for our task. Thus, we have

〈ζmn, fg〉L2(D) =
1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m

Ng∑
j=1

P (0,|m1|)
n1

(rj)P
(0,|m2|)
n2

(rj)P
(0,|m|)
n (rj)

(
1 + rj

2

) |m1|+|m2|+|m|
2

σj.

Even though we have a weight function of the form (1 + r)β in the integral, this quadrature
rule is preferred to a Gauss-Jacobi quadrature scheme because it allows us to write this
expression as

1

2

Ng∑
j=1

 ∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1P
(0,|m1|)
n1

(rj)

(
1 + rj

2

) |m1|
2

σ
1/3
j


 N∑
n2=0

βm2,n2µm2n2P
(0,|m2|)
n2

(rj)

(
1 + rj

2

) |m2|
2

σ
1/3
j

µmnP
(0,|m|)
n (rj)

(
1 + rj

2

) |m|
2

σ
1/3
j .

The terms of the form µmnP
(0,|m|)
n (rj)

(
1+rj

2

) |m|
2
σ

1/3
j can be pre-computed for all the polyno-

mials and quadrature points and weights. Given {αmn} and {βmn}, the sums in the square
parentheses are evaluated at the quadrature points and their Fast-Fourier Transforms com-
puted; this requires O(M(N + log(M))) operations for each i. Multiplying them together
and taking the inverse FFTs executes the convolution inside the curly braces and requires
an additional O(M log(M)) operations. Finally, we can multiply the external factors at cost
O(MN) and sum over the quadrature index i to obtain all the modal coefficients of fg. The
total complexity therefore comes up to O(M(M +N)(N + log(M))).

Similarly, for operation type (ii), we use (2.12) to obtain

〈ζmn,∇f · ∇g〉

=
1

π

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmn

∫ 2π

0

ei(m1+m2−m)θ dθ[∫ 1

0

16P (0,|m1|)′
n1

(2ρ2 − 1)P (0,|m2|)′
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+3 dρ
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+

∫ 1

0

4|m1|P (0,|m1|)
n1

(2ρ2 − 1)P (0,|m2|)′
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+1 dρ

+

∫ 1

0

4|m2|P (0,|m1|)′
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+1 dρ

+(|m1m2| −m1m2)

∫ 1

0

P (0,|m1|)
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)

ρ|m1|+|m2|+|m|−1 dρ
]

=
1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m∫ 1

−1

16P (0,|m1|)′
n1

(r)P (0,|m2|)′
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|+2
2

dr

+

∫ 1

−1

4|m1|P (0,|m1|)
n1

(r)P (0,|m2|)′
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|
2

dr

+

∫ 1

−1

4|m2|P (0,|m1|)′
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|
2

dr

+(|m1m2| −m1m2)

∫ 1

−1

P (0,|m1|)
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|−2
2

dr


=

1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m Ng∑
j=1

16P (0,|m1|)′
n1

(rj)P
(0,|m2|)′
n2

(rj)P
(0,|m|)
n (rj)

(
1 + rj

2

) |m1|+|m2|+|m|+2
2

σj

+

Ng∑
j=1

4|m1|P (0,|m1|)
n1

(rj)P
(0,|m2|)′
n2

(rj)P
(0,|m|)
n (rj)

(
1 + rj

2

) |m1|+|m2|+|m|
2

σj

+

Ng∑
j=1

4|m2|P (0,|m1|)′
n1

(rj)P
(0,|m2|)
n2

(rj)P
(0,|m|)
n (rj)

(
1 + rj

2

) |m1|+|m2|+|m|
2

σj

+(|m1m2| −m1m2)

Ng∑
j=1

P (0,|m1|)
n1

(rj)P
(0,|m2|)
n2

(rj)P
(0,|m|)
n (rj)

(
1 + rj

2

) |m1|+|m2|+|m|−2
2

σj


=

1

2

Ng∑
j=1

16
∑

−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1P
(0,|m1|)′
n1

(rj)

(
1 + rj

2

) |m1|+1
2

σ
1/3
j
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 N∑
n2=0

βm2,n2µm2n2P
(0,|m2|)′
n2

(rj)

(
1 + rj

2

) |m2|+1
2

σ
1/3
j


+4

∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1|m1|P (0,|m1|)
n1

(rj)

(
1 + rj

2

) |m1|
2

σ
1/3
j


 N∑
n2=0

βm2,n2µm2n2P
(0,|m2|)′
n2

(rj)

(
1 + rj

2

) |m2|
2

σ
1/3
j


+4

∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1P
(0,|m1|)′
n1

(rj)

(
1 + rj

2

) |m1|
2

σ
1/3
j


 N∑
n2=0

βm2,n2µm2n2 |m2|P (0,|m2|)
n2

(rj)

(
1 + rj

2

) |m2|
2

σ
1/3
j


+

∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1|m1|P (0,|m1|)
n1

(rj)

(
1 + rj

2

) |m1|−1
2

σ
1/3
j


 N∑
n2=0

βm2,n2µm2n2 |m2|P (0,|m2|)
n2

(rj)

(
1 + rj

2

) |m2|−1
2

σ
1/3
j


−

∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1m1P
(0,|m1|)
n1

(rj)

(
1 + rj

2

) |m1|−1
2

σ
1/3
j


 N∑
n2=0

βm2,n2µm2n2m2P
(0,|m2|)
n2

(rj)

(
1 + rj

2

) |m2|−1
2

σ
1/3
j

×
µmnP

(0,|m|)
n (rj)

(
1 + rj

2

) |m|
2

σ
1/3
j .

The derivatives appearing in the above expression can be evaluated by using the derivative
property (2.3) of Jacobi polynomials. Observe that this decomposition has exactly the same
order of complexity as operation (i). Finally, for case (iii), we first note that

∆ζmn(ρ, θ) = ρ−1∂ρ(ρ∂ρζmn(ρ, θ)) + ρ−2∂2
θζmn(ρ, θ)

= µmne
imθ
[
16P (0,|m|)′′

n (2ρ2 − 1)ρ|m|+2 + 8(|m|+ 1)P (0,|m|)′
n (2ρ2 − 1)ρ|m|

]
.

Thus,

〈ζmn, (∆f)g〉
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=
1

π

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmn

∫ 2π

0

ei(m1+m2−m)θ dθ[∫ 1

0

16P (0,|m1|)′′
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+3 dρ

+

∫ 1

0

8(|m1|+ 1)P (0,|m1|)′
n1

(2ρ2 − 1)P (0,|m2|)
n2

(2ρ2 − 1)P (0,|m|)
n (2ρ2 − 1)ρ|m1|+|m2|+|m|+1 dρ

]
=

1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m∫ 1

−1

16P (0,|m1|)′′
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|+2
2

dr

+

∫ 1

−1

8(|m1|+ 1)P (0,|m1|)′
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|
2

dr


=

1

2

∑
−M<m1,m2≤M

∑
0≤n1,n2≤N

αm1,n1βm2,n2µm1n1µm2n2µmnδm1+m2,m Ng∑
j=1

16P (0,|m1|)′′
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|+2
2

σj

+

Ng∑
j=1

8(|m1|+ 1)P (0,|m1|)′
n1

(r)P (0,|m2|)
n2

(r)P (0,|m|)
n (r)

(
1 + r

2

) |m1|+|m2|+|m|
2

σj


=

1

2

Ng∑
j=1

 ∑
−M<m1,m2≤M

δm1+m2,m

 N∑
n1=0

αm1,n1µm1n1

16P (0,|m1|)′′
n1

(rj)

(
1 + rj

2

) |m1|+2
2

+

8(|m1|+ 1)P (0,|m1|)′
n1

(rj)

(
1 + rj

2

) |m1|
2

σ
1/3
j

×
 N∑
n2=0

βm2,n2µm2n2P
(0,|m2|)
n2

(rj)

(
1 + rj

2

) |m2|
2

σ
1/3
j

µmnP
(0,|m|)
n (rj)

(
1 + rj

2

) |m|
2

σ
1/3
j .

The complexity of this operation is also the same as for the previous types. As we shall see
in the following chapters, being able to do these computations rapidly adds greatly to the
appeal of Zernike polynomials as basis functions on a circular domain.
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Chapter 3

Computing the Dirichlet-Neumann
Operator on a Cylinder

In this chapter, we present a key component of our water-wave simulation algorithm. The
Dirichlet-Neumann operator for the Laplace equation (referred to as DNO henceforth) is
a crucial ingredient in modern studies of the inviscid water-wave problem. Its analysis
and computation pose significant challenges, which become even more pronounced in higher
dimensions. In what follows, we begin by describing the history of the DNO and how it
fits into the larger water-wave problem. We then move on to our take on its computation
on a cylindrical domain and develop a rapid and accurate algorithm with the help of the
tools introduced in Chapter 2. We also discuss some subtleties in its implementation before
demonstrating its effectiveness on a number of test problems.

3.1 Introduction

A History of the DNO

Water-wave equations are notoriously hard to solve numerically because of the nonlinear
nature of the problem and the evolving domain, which is itself an unknown quantity. Modern
formulations of this problem have focused on the evolution of the boundary variables with the
information from the interior of the domain obtained with the help of a Dirichlet-Neumann
operator. The non-locality of the DNO has been noted to pose a severe challenge in both
numerical and theoretical studies [24, 29, 54].

Traditionally, numerical computations of the DNO have been restricted to the 2D case.
Several elegant and robust numerical techniques have been devised including, among others,
conformal mapping, finite element and boundary integral methods. However, these tech-
niques do not carry over successfully to higher dimensions since they either rely inherently
on the geometry of a 2D space or scale poorly with dimension. We therefore need to con-
sider approaches that may not be widely used in 2D but can be extended to 3D. In [54], the
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authors exhaustively analyze a number of these, including the operator expansion of Craig
& Sulem [13], the integral equation formulation of Ablowitz, Fokas & Musslimani [1] and the
transformed field expansion method (TFE) of Bruno & Reitich [8] and Nicholls & Reitich
[44, 45]. The first two are shown to suffer from catastrophic numerical instabilities which
severely limits their utility. In particular, they involve significant cancellations of terms or,
equivalently, a rapid decay of singular values. As a result, these methods require multiple
precision arithmetic to yield accurate solutions.

The TFE method, on the other hand, possesses a straightforward generalization to 3D
and yields a numerically stable high-order algorithm. In addition, it is also able to handle
artificial dissipation [29]. A careful analysis of this technique as applied to problems from
fluid mechanics and acoustics is presented in [46], including proofs of the analytic dependence
of the DNO on the domain shape and the convergence of the method. One shortcoming of
this approach is that it is unable to capture a surface bending back on itself as it requires
the interface to be the graph of a function. For the majority of applications, however, this
is not an issue.

In this chapter, we generalize the TFE method to build a solver for the DNO problem
for Laplace’s equation on a cylinder. We specifically work in this geometry as it poses the
most significant challenges out of all the regular geometries. Rectangular geometries with
periodic boundary conditions essentially avoid the issue of addressing the interaction of the
fluid with a wall and, at any rate, can be treated similarly by an extension of this technique.
The method proceeds by assuming the domain is a perturbation of a simpler geometry
and expanding the DNO in terms of the perturbation parameter. Naive implementations
of this approach however lead to large cancellations, making it unsuitable for numerical
procedures. These cancellations can be avoided by first flattening out the domain; this also
simplifies the geometry of the problem and the PDE to be solved is replaced by a sequence
of related problems. Successful implementations of this technique therefore require the rapid
computation of the solutions to the associated problems.

The DNO in the Water-Wave Problem

Consider a cylinder of unit radius with a flat bottom containing an incompressible, irrota-
tional and inviscid fluid. Denote the cylindrical coordinates on this geometry by (ρ′, θ′, z′).
Suppose the fluid at rest has a depth of h (written z′ = −h) while the interface at the top
is given by z′ = η(ρ′, θ′) (we assume that h > ‖η‖∞).

The irrotationality of the fluid allows us to express its velocity at any point as the gradient
of a potential function φ. The evolution of the fluid is then described by Euler’s equations:

∆′φ = 0 − h < z′ < η (3.1)

∂tφ+
1

2
|∇′φ|2 + (g − F (t))η = 0 z′ = η (3.2)

∂tη +∇′Hη · ∇′Hφ = ∂z′φ z′ = η (3.3)
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where F (t) is an external force. At the lateral and bottom boundaries, we have the no-
flow conditions ∂φ

∂n
= 0 while at the interface, we have the Dirichlet condition φ|z′=η = q.

Here, ∇′H represents the horizontal gradient operator (given by (∂ρ′ , (ρ
′)−1∂θ′ , 0) in cylindrical

coordinates).
These equations can in fact be reformulated as an evolution problem for the surface

variables η and q only [13, 57]:

∂tη = G[η]q. (3.4)

∂tq = −(g − F (t))η − 1

2
|∇′Hq|2 +

(G[η]q +∇′Hη · ∇′Hq)2

2(1 + |∇′Hη|2)
. (3.5)

where G[η]q is the Dirichlet-Neumann operator (DNO) given by

G[η]q = [∇′φ]|z′=η.(−∇′Hη, 1)

= [−∇′Hφ · ∇′Hη + ∂z′φ]z′=η (3.6)

and φ is the solution of (3.1) with the boundary conditions specified above.
Thus, we only need to solve the first-order system (3.4, 3.5) to completely capture the

dynamics of the free surface. The problem, of course, lies in the computation of the highly
non-local DNO as it requires, in principle, the solution of Laplace’s equation on evolving
domain in three dimensions.

3.2 Two Derivations of the Transformed Field

Expansion

In this section, we develop the Transformed Field Expansion (TFE) method for Laplace’s
equation on a cylinder. We present two derivations of this formulation. The first of these
employs techniques from differential geometry and is more concise. The second, following
the method outlined in [43], uses elementary calculus tools and is therefore more accessible.

The key idea of the TFE method is to flatten the boundary of the domain and obtain,
in place of Laplace’s equation, a sequence of associated Poisson equations, the solutions of
which yield the potential in the bulk. This reformulation allows us to build a spectrally
accurate technique for computing the DNO. The first step is the change of variables

ρ = ρ′, θ = θ′, z = h

(
z′ − η
h+ η

)
. (3.7)

Observe then that, as z ∈ [−h, 0], the domain takes the shape of an unperturbed cylinder
C in terms of (ρ, θ, z). In addition, we introduce a new symbol for the bulk potential in the
new coordinates

u(ρ, θ, z) = φ(ρ, θ, h−1(h+ η)z + η) = φ(ρ′, θ′, z′). (3.8)

We now need to determine the transformation that Laplace’s equation (3.1) undergoes. We
present two ways of going about this.
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The First Derivation

Denote the Cartesian coordinates by x̃i = (x̃, ỹ, z̃), the cylindrical coordinates by x′ i =
(ρ′, θ′, z′) and the new coordinates in (3.7) by xi = (ρ, θ, z). Observe that the metric tensor
in the xi is given by G = ET

1 E1 where

E1 =

(
∂x̃i

∂xj

)
=

(
∂x̃i

∂x′ k

)(
∂x′ k

∂xj

)
=

 cos(θ) −ρ sin(θ) 0
sin(θ) ρ cos(θ) 0(

1 + z
h

)
ηρ

(
1 + z

h

)
ηθ 1 + η

h

 .

is the change-of-coordinates matrix. The Laplace-Beltrami operator applied to both sides of
(3.8) yields

1√
detG

∂

∂xa

(√
detG(G−1)abuxb

)
= ∆φ = 0. (3.9)

We have
√

detG = det(E1) = h−1ρ(h+ η) and G−1 = E−1
1 E−T1 = (h+ η)−2E2E

T
2 where

E2 =

 h+ η 0 0
0 ρ−1(h+ η) 0

−(h+ z)ηρ −ρ−1(h+ z)ηθ h

 .

Plugging these in (3.9) allows us to write

div
(
(h+ η)−1EET∇u

)
= 0, where E =

 h+ η 0 0
0 h+ η 0

−(h+ z)ηρ −ρ−1(h+ z)ηθ h

 (3.10)

and div v = ρ−1∂ρ(ρv1) + ρ−1∂θv2 + ∂zv3 and ∇v = (∂ρv, ρ
−1∂θv, ∂zv)T are the divergence

and gradient operators in cylindrical coordinates respectively. Expanding (3.10) leads to

(h+ η)−1div(EET∇u) = −∇((h+ η)−1) · (EET∇u)

⇒ div(EET∇u) = (h+ η)−1(ηρ, ρ
−1ηθ, 0) EET ∇u

= (ηρ, ρ
−1ηθ, 0) ET∇u (3.11)

where we used the fact that

(h+ η)−1(ηρ, ρ
−1ηθ, 0) E = (ηρ, ρ

−1ηθ, 0).

Ostensibly, we have bartered an elementary equation on a challenging domain for a much
tougher problem on a simple geometry. This form, however, lends itself to a simplification
inspired by boundary perturbation methods. We assume the interface to be a deviation
from a flat surface, to wit, η(ρ, θ) = εf(ρ, θ) for some ε. The conditions under which this
assumption leads to a useful solution will be made precise later on but it is worth noting
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that the actual value of ε is irrelevant. Writing EET = h2I + εA1(f) + ε2A2(f) and the first
and second columns of E as B0 + εB1(f) and C0 + εC1(f) respectively in (3.11) yields

div
[
(h2I + εA1(f) + ε2A2(f))∇u

]
= εfρ(B0 + εB1(f)) · ∇u+ ερ−1fθ(C0 + εC1(f)) · ∇u

Grouping together similar powers of ε leads to

−h2∆u = ε

[
div(A1(f)∇u)−

(
fρB0 +

fθ
ρ
C0

)
· ∇u

]
+

ε2
[
div(A2(f)∇u)−

(
fρB1(f) +

fθ
ρ
C1(f)

)
· ∇u

]
. (3.12)

The Second Derivation

This method relies mainly on the chain rule. Using z = h
(
z′−η
h+η

)
, we have

∂ρ′z = h

(
(h+ η)(−∂ρ′η)− (z′ − η)(∂ρ′η)

(h+ η)2

)
= (−∂ρ′η)

(
h

h+ η
+

h

h+ η

(
z′ − η
h+ η

))
= (−∂ρ′η)

(
h

h+ η
+

z

h+ η

)
= (−∂ρ′η)

(
h+ z

h+ η

)
(3.13)

and similarly

∂θ′z = (−∂θ′η)

(
h+ z

h+ η

)
. (3.14)

At this stage, we define the following useful quantities

M(ρ, θ) = h+ η(ρ, θ)

N1(ρ, θ, z) = −(∂ρη(ρ, θ))(h+ z)

N2(ρ, θ, z) = −ρ−1(∂θη(ρ, θ))(h+ z).

We can therefore write (3.13) and (3.14) as

∂ρ′z = M−1N1, ∂θ′z = ρM−1N2.

Observe then that

∂ρ′φ = ∂ρu+ (∂ρ′z)(∂zu) = ∂ρu+ (M−1N1)(∂zu)
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⇒ (M∂ρ′)φ = (M∂ρ +N1∂z)u (3.15)

∂θ′φ = ∂θu+ (∂θ′z)(∂zu) = ∂θu+ (ρM−1N2)(∂zu)

⇒ (M∂θ′)φ = (M∂θ + ρN2∂z)u (3.16)

∂z′φ = (∂z′z)(∂zu) = (hM−1)(∂zu)

⇒ (M∂z′)φ = (h∂z)u. (3.17)

We then have from (3.1)

0 = M2∆′φ

=
M2

ρ′
∂ρ′(ρ

′∂ρ′φ) +
M2

(ρ′)2
∂2
θ′φ+M2∂2

z′φ

=

[
M

ρ′
∂ρ′(Mρ′∂ρ′φ)−M(∂ρ′φ)(∂ρ′M)

]
+

[
M

(ρ′)2
∂θ′(M∂θ′φ)− M

(ρ′)2
(∂θ′φ)(∂θ′M)

]
+

M∂z′(M∂z′φ)

=

[
M∂ρ′(M∂ρ′φ) +

M

ρ′
(M∂ρ′φ)

]
+

M

(ρ′)2
∂θ′(M∂θ′φ) +M∂z′(M∂z′φ)

−M(∂ρ′φ)(∂ρ′M)− M

(ρ′)2
(∂θ′φ)(∂θ′M)

= [M∂ρ +N1∂z][M∂ρu+N1∂zu] +
M

ρ
[M∂ρu+N1∂zu] +

1

ρ2
[M∂θ + ρN2∂z][M∂θu+ ρN2∂zu] + [h∂z][h∂zu]

−(∂ρM)[M∂ρu+N1∂zu]− (∂θM)

ρ2
[M∂θu+ ρN2∂zu]

= M∂ρ[M∂ρu] +M∂ρ[N1∂zu] +N1∂z[M∂ρu] +N1∂z[N1∂zu] +
M

ρ
[M∂ρu+N1∂zu] +

1

ρ2
(M∂θ[M∂θu] + ρN2∂z[M∂θu] +M∂θ[ρN2∂zu] + ρN2∂z[ρN2∂zu]) +

h∂z[h∂zu]− (∂ρM)[M∂ρu]− (∂ρM)[N1∂zu]− (∂θM)

ρ2
[M∂θu]− (∂θM)

ρ2
[ρN2∂zu]

= [∂ρ(M
2∂ρu)− (M∂ρu)(∂ρM)] + [∂z(MN1∂ρu)− (N1∂zu)(∂ρM)] +

[∂ρ(MN1∂zu)− (N1∂zu)(∂ρM)] + [∂z(N
2
1∂zu)− (N1∂zu)(∂zN1)] +

M

ρ
[M∂ρu+N1∂zu]

+
1

ρ2
[∂θ(M

2∂θu)− (M∂θu)(∂θM)] +
1

ρ
[∂z(MN2∂θu)− (M∂θu)(∂zN2)]

+
1

ρ
[∂θ(MN2∂zu)− (N2∂zu)(∂θM)] + [∂z(N

2
2∂zu)− (N2∂zu)(∂zN2)]

+∂z[h
2∂zu]− (∂ρM)[M∂ρu]− (∂ρM)[N1∂zu]− (∂θM)

ρ2
[M∂θu]− (∂θM)

ρ
[N2∂zu]
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=

(
∂ρ +

1

ρ

){
M2∂ρu+MN1∂zu

}
+

1

ρ
∂θ

{
M2

(
∂θu

ρ

)
+MN2∂zu

}
+

∂z

{
MN1∂ρu+N2

1∂zu+MN2

(
∂θu

ρ

)
+N2∂zu+ h2∂zu

}
−(M∂ρu+N1∂zu) (2∂ρM + ∂zN1)−

(
M

(
∂θu

ρ

)
+N2∂zu

)(
2

(
∂θM

ρ

)
+ ∂zN2

)
.

(3.18)

Observe that
2∂ρM + ∂zN1 = 2∂ρη − ∂ρη = ∂ρη

and

2

(
∂θM

ρ

)
+ ∂zN2 = 2

(
∂θη

ρ

)
−
(
∂θη

ρ

)
=
∂θη

ρ

so, continuing from (3.18), we have

0 = div


M2∂ρu+MN1∂zu

M2
(
∂θu
ρ

)
+MN2∂zu

MN1∂ρu+N2
1∂zu+MN2

(
∂θu
ρ

)
+N2∂zu+ h2∂zu

− (M∂ρu+N1∂zu) (∂ρη)−

(
M

(
∂θu

ρ

)
+N2∂zu

)(
∂θη

ρ

)
.

= div

 M2 0 MN1

0 M2 MN2

MN1 MN2 N2
1 +N2

2 + h2

∇u
− (∂ρη)

M0
N1

 · ∇u− (∂θη
ρ

) 0
M
N2

 · ∇u
= div(A∇u)− (∂ρη)B · ∇u−

(
∂θη

ρ

)
C · ∇u (3.19)

where A,B,C are the respective matrices in the second-to-last step. Observe now that

A =


(h+ η)2 0 −(∂ρη)(h+ η)(h+ z)

0 (h+ η)2 −
(
∂θη
ρ

)
(h+ η)(h+ z)

−(∂ρη)(h+ η)(h+ z) −
(
∂θη
ρ

)
(h+ η)(h+ z) h2 + |∇Hη|2(h+ z)2


= h2I + A1(η) + A2(η)

where

A1(η) =


2hη 0 −h(∂ρη)(h+ z)

0 2hη −h
(
∂θη
ρ

)
(h+ z)

−h(∂ρη)(h+ z) −h
(
∂θη
ρ

)
(h+ z) 0
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A2(η) =


η2 0 −η(∂ρη)(h+ z)

0 η2 −η
(
∂θη
ρ

)
(h+ z)

−η(∂ρη)(h+ z) −η
(
∂θη
ρ

)
(h+ z) |∇Hη|2(h+ z)2

 .

Similarly, we can also write B = B0 +B1(η) and C = C0 + C1(η) where

B0 =

h0
0

 , B1(η) =

 η
0

−∂ρη(h+ z)

 , C0 =

0
h
0

 , C1(η) =

 0
η

−
(
∂θη
ρ

)
(h+ z)

 .

Note that all these matrices have been chosen so that Di(kη) = kiDi(η) and that these are
precisely the same matrices that appeared in the previous derivation. Using these decompo-
sitions in (3.19), we obtain

0 = h2div(∇u) + div(A1(η)∇u) + div(A2(η)∇u)− (∂ρη)B0 · ∇u

− (∂ρη)B1(η) · ∇u−
(
∂θη

ρ

)
C0 · ∇u−

(
∂θη

ρ

)
C1(η) · ∇u

⇒ −h2∆u = div(A1(η)∇u) + div(A2(η)∇u)−
[
(∂ρη)B0 +

(
∂θη

ρ

)
C0

]
· ∇u−[

(∂ρη)B1(η) +

(
∂θη

ρ

)
C1(η)

]
· ∇u. (3.20)

This is the rewritten form of (3.1). For the boundary condition on the lateral walls, we
use (3.15) to get

((h+ η)∂ρ − (∂ρη)(h+ z)∂z)u|ρ=1 = 0.

Similarly, at the bottom boundary, we have from (3.17) that ∂zu|z=−h = 0 while the
Dirichlet condition at the interface is replaced by u|z=0 = q.

As in the previous derivation, we now assume the interface to be of the form η(ρ, θ) =
εf(ρ, θ). Using this in (3.20) and collecting similar powers of ε yields

−h2∆u = ε

[
div(A1(f)∇u)−

(
fρB0 +

fθ
ρ
C0

)
· ∇u

]
+

ε2
[
div(A2(f)∇u)−

(
fρB1(f) +

fθ
ρ
C1(f)

)
· ∇u

]
. (3.21)

which is identical to (3.12). This derivation moreover allows us to determine the boundary
conditions

u|z=0 = q, ∂zu|z=−h = 0, h∂ρu|ρ=1 = ε[−f∂ρu+ (h+ z)∂ρf∂zu]ρ=1. (3.22)



CHAPTER 3. COMPUTING THE DIRICHLET-NEUMANN OPERATOR ON A
CYLINDER 29

Next, we address the effect of the coordinate change (3.7) on the expression (3.6) for the
DNO. We have

MG[η]q =
{
−(M∂ρ′φ)(∂ρ′η)− (ρ′)−2(M∂θ′φ)(∂θ′η) + (M∂z′φ)

}∣∣
z′=η

=
{
−((M∂ρ +N1∂z)u)(∂ρη)− ρ−2((M∂ρ + ρN2∂z)u)(∂θη) + (h∂zu)

}∣∣
z=0

.

Since N1|z=0 = −h∂ρη and N2|z=0 = −hρ−1∂θη, we get

hG[η]q + ηG[η]q = − [h(∂ρu) + η(∂ρu)− h(∂ρη)(∂zu)] (∂ρη)

−
[
h
∂θu

ρ
+ η

∂θu

ρ
− h

(
∂θη

ρ

)
(∂zu)

](
∂θη

ρ

)
+ h(∂zu)

⇒ hG[η]q = h(∂zu) +H(ρ, θ; η, u) (3.23)

where

H(ρ, θ; η, u) = −ηG[η]q − [h(∂ρu) + η(∂ρu)− h(∂ρη)(∂zu)] (∂ρη)

−
[
h
∂θu

ρ
+ η

∂θu

ρ
− h

(
∂θη

ρ

)
(∂zu)

](
∂θη

ρ

)
.

= −ηG[η]q − h(∂ρu)(∂ρη)− η(∂ρu)(∂ρη) + h(∂ρη)2(∂zu)

−h
(
∂θu

ρ

)(
∂θη

ρ

)
− η

(
∂θu

ρ

)(
∂θη

ρ

)
+ h

(
∂θη

ρ

)2

(∂zu).

= −ηG[η]q − (h+ η)∇Hη · ∇Hu+ h|∇Hη|2(∂zu)

As this is evaluated at z = 0, we can safely replace ∇Hu by ∇Hq. In addition, using
η(ρ, θ) = εf(ρ, θ) and collecting like powers gives

hG[εf ]q = h(∂zu) + ε (−fG[εf ]q − h∇Hf · ∇Hq) + ε2
(
−f∇Hf · ∇Hq + h|∇Hf |2∂zu

)
.

(3.24)

The Field Expansion

We now expand the transformed field u(ρ, θ, z) =
∑∞

k=0 ε
kuk(ρ, θ, z) and plug it in (3.12) (or

(3.21)). Comparing coefficients of like powers of ε leads to a sequence of Poisson equations

−∆uk = rk (3.25)

where

rk = h−2 {div(A1(f)∇uk−1) + div(A2(f)∇uk−2)

−
(
fρB0 + ρ−1fθC0

)
· ∇uk−1 −

(
fρB1(f) + ρ−1fθC1(f)

)
· ∇uk−2

}
(3.26)

The boundary conditions can likewise be obtained from (3.22):

uk|z=0 = δk,0q, ∂zuk|z=−h = 0, ∂ρuk|ρ=1 = χk (3.27)
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where χk = h−1 [−f∂ρuk−1 + (h+ z)∂ρf∂zuk−1]ρ=1.
Observe that the right sides of both (3.26) and (3.27) depend on lower order terms in the

expansion. As a result, we can sequentially solve this three-term recurrence for the uk, up
to a sufficiently high order K, and combine them to obtain an approximation to u.

The solutions uk at different orders can then be used to compute the Neumann data.
Plugging in G[εf ]q =

∑∞
k=0 ε

kGk[f ]q and the expansion for u in (3.24) and comparing coef-
ficients yields

hGk[f ]q = h(uk)z − fGk−1[f ]q + h|∇Hf |2(uk−2)z

−δk,1 (h∇Hf · ∇Hq)− δk,2 (f∇Hf · ∇Hq) . (3.28)

Note that the formulation (3.25) with associated boundary conditions (3.27) is exact and,
assuming the expansions converge, yield the true solution to (3.11). In Section 3.4, we shall
show that, under certain conditions, these expansions do indeed converge strongly.

3.3 Solving the Poisson Equations

We next present a method to solve the model Poisson equation −∆w = r on a flat cylinder
C of unit radius and height h with boundary conditions

w|z=0 = q, wz|z=−h = 0, wρ|ρ=1 = χ. (3.29)

We begin by building a basis for a function space on C. Let M,N, J be positive integers.

• Let {zj}0≤j≤J be the (J + 1) Chebyshev-Lobatto points over [−h, 0] defined by

zj = −h
2

(
1 + cos

(
πj

J

))
.

For 0 ≤ j ≤ J , let `j be the jth Lagrange polynomial with respect to these nodes so
that `j(zi) = δij.

• For −M < m ≤ M and 0 ≤ n ≤ N , let ζmn be the (m,n) Zernike polynomial
introduced in Chapter 2.

As basis functions on C, we consider

ψmnj(ρ, θ, z) = ζmn(ρ, θ)`j(z). (3.30)

This choice of basis functions allows us to replace the unwieldy Bessel functions and
hyperbolic functions along the radial and vertical axes respectively by families of polynomials.
These polynomials are easy to evaluate and lend themselves to rapid manipulations. This
considerably simplifies the resulting formulation and speeds up the subsequent computations.
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We also employ the inner product on L2(C)

〈v, w〉 =
1

π

∫ 0

−h

∫ 2π

0

∫ 1

0

vw ρ dρ dθ dz.

For the model problem −∆w = r with (3.29), we begin by imposing the Galerkin condi-
tion

〈ψm′n′j′ ,−∆w〉 = 〈ψm′n′j′ , r〉

for 0 ≤ n′ ≤ N , −M < m′ ≤M , 0 ≤ j′ ≤ J − 1. Integrating by parts gives∫∫∫
C

∇ψm′n′j′ · ∇w dV =

∫∫∫
C

ψm′n′j′r dV +

∫∫
∂C

ψm′n′j′
∂w

∂n
dA (3.31)

where ∂C = Bu ∪ Bd ∪ S; here, Bu and Bd are the upper and lower ends of the cylinder
respectively and S is the curved surface. Note that as ψm′n′j′ |Bu ≡ 0, there is no contribution
from Bu. Meanwhile, the second condition in (3.29) ensures that the integral over Bd is also
zero. As a result, the boundary contributions can be written as∫∫

∂C

ψm′n′j′
∂w

∂n
dA =

∫∫
S

ψm′n′j′wρ dA =

∫∫
S

ψm′n′j′χ dA := Im′n′j′(χ).

Next, write w =
∑

m,n,j cmnjψmnj and decompose r =
∑

m,n,j dmnjψmnj, where

dmnj = 〈ζmn, r(·, ·, zj)〉L2(D) , (3.32)

to obtain∑
m,n,j

cm,n,j

∫∫∫
C

∇ψm′n′j′ · ∇ψmnj dV =
∑
m,n,j

dmnj

∫∫∫
C

ψm′n′j′ψmnj dV + Im′n′j′(χ).

(3.33)

The Dirichlet condition in (3.29) implies that {cmnj} is known for j = J so those terms
can be moved to the right as well. We therefore have a system of the type Sc = Td + κ,
where S and T are the stiffness and mass matrices respectively and κ is a vector generated
by the boundary data χ and {cmnJ}.

These stiffness and mass integrals can be computed by exploiting the structure of the
basis functions. Define the matrices Am, Σ and Σ̃ by

Am,n′n =
1

π

∫ 2π

0

∫ 1

0

∇Hζmn′ · ∇Hζmn ρ dρ dθ

Σj′j =

∫ 0

−h
`j′(z)`j(z) dz

Σ̃j′j =

∫ 0

−h
`′j′(z)`′j(z) dz. (3.34)
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Then,
Tm′n′j′,mnj = 〈ζm′n′ , ζmn〉H Σj′j = δm′mδn′nΣj′j

where we used the orthonormality of the ζmn. In addition,

Sm′n′j′,mnj = δm′m(Am,n′nΣj′j + δn′nΣ̃j′j). (3.35)

Finally, define the matrices Γm,nj = cmnj, Em,nj = dmnj and Km,nj = κmnj and set Gm =
EmΣ +Km to get

AmΓmΣ + ΓmΣ̃ = Gm. (3.36)

This is a sparse linear system of size 2MJ(N + 1). Instead of using an iterative or direct
solver, we design an alternative, well-conditioned method for this problem. First note that,
from (2.16), we have

Am,n′n = 2µmn′µmn(2γn′n(γn′n + |m|+ 1) + |m|)

where γn′n = min{n′, n}. The symmetric positive definiteness of Am allows the eigen-
decomposition Am = WmD

2
mW

T
m.

Next, let {(xi, ωi)} be the (J + 1) point Gauss-Legendre quadrature scheme over [−h, 0].

Defining the matrices Eij = `j(xi)ω
1/2
i and Ẽij = `′j(xi)ω

1/2
i for 0 ≤ j ≤ J − 1 allows us to

write
Σ = ETE, Σ̃ = ẼT Ẽ.

Note that the columns of E (and Ẽ) must be linearly independent: any linear combination
of the columns that equals zero would correspond to a polynomial of degree at most J (J−1
for Ẽ) that has (J+1) zeros (at the quadrature points) so that polynomial must be identically
zero; the coefficients in the linear combination must necessarily be all zero since the Lagrange
polynomials are linearly independent. Thus, the QR factorizations E = QR and Ẽ = Q̃R̃
yield invertible upper triangular matrices. Plugging these decompositions into (3.36) gives

(WmD
2
mW

T
m)Γm(RTR) + Γm(R̃T R̃) = Gm

D2
m(W T

mΓm)RT + (W T
mΓm)R̃T R̃R−1 = W T

mGmR
−1

Perform the singular value decomposition RR̃−1 = UΛV T to obtain R̃T = RTUΛ−1V T

and R̃R−1 = V Λ−1UT . This gives R̃T R̃R−1 = RTUΛ−2UT and hence

D2
m(W T

mΓmR
T ) + (W T

mΓmR
T )UΛ−2UT = W T

mGmR
−1

D2
m(W T

mΓmR
TU) + (W T

mΓmR
TU)Λ−2 = W T

mGmR
−1U (3.37)

As both D2
m and Λ are diagonal, we have

(W T
mΓmR

TU)nj =
(W T

mGmR
−1U)nj

D2
m,nn + Λjj
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which can then be used to solve for Γm.
From a numerical perspective, using the decompositions above avoids squaring the con-

dition number. For a computational analysis, assume that M and J are O(N) as well. The
bulk of the computation essentially involves finding the coefficients {dmnj} and perform-
ing the matrix multiplications specified in (3.37). The latter require O(N3) operations for
each m. The former requires the computation of the expressions for rk in (3.26) and the
projection-interpolant in (3.32). Upon expanding the formulas for rk, we obtain

rk(ρ, θ, z) = −2h−1f∆Huk−1 + h−1(h+ z)(2∇Hf · ∇H(∂zuk−1) + (∂zuk−1)∆Hf)

−h−2f 2∆Huk−2 + h−2f(h+ z)(2∇Hf · ∇H(∂zuk−2) + (∂zuk−2)∆Hf)

−h−2(h+ z)|∇Hf |2(2(∂zuk−2) + (h+ z)(∂2
zuk−2)). (3.38)

Note that the solutions {uj} for j < k are already calculated in terms of the basis functions;
in particular, at each vertical slice indexed by j, these solutions are linear combinations of
Zernike polynomials. We can also find the Zernike modal representation for f by (2.6) and
(2.7). Hence, carrying out the computation (3.32), for every j, comes down to a sequence of
computations of the sort

〈ζmn, v1v2〉L2(D) , 〈ζmn,∇Hv1 · ∇Hv2〉L2(D) and 〈ζmn, (∆Hv1)v2〉L2(D)

where v1 and v2 are functions onD with known Zernike modal representations. In Section 2.3,
we presented techniques for the rapid computation of these types of operations and showed
that it could be done in O(M(M+N)(N+log(M))) complexity. Under the assumption that
M is O(N), the procedure requires O(N3) operations for each j. With J = O(N) as well,
we conclude that the assembly of the coefficients {dmnj} can be executed in O(N4) steps,
which is the total complexity of our Poisson solver on a flat cylinder.

3.4 A Proof of Convergence

In this section, we present a proof of convergence for the transformed field expansions. We
begin by establishing the error estimates for the projection-interpolant as defined in (3.32).
The subsequent result for the solution from the TFE method provides a precise rate of decay
for the errors appearing in the numerical solutions and describes the dependence on the
various parameters. In particular, it sheds light on the role of the “perturbation parameter”
ε.

Let s ≥ 1 be an integer. As in Chapter 2, let Hs(D) be the respective Sobolev space on
the unit disc D and let Hs

ω((−h, 0)) be the Sobolev space equipped with the norm

‖v‖2
Hs
ω((−h,0)) =

∫ 0

−h

s∑
k=0

|v(k)(z)|2ω(z) dz

where ω(z) = 1
2

(−z
h

(
1 + z

h

))−1/2
. Note that under the transformation x = 1 + 2z/h, the

weight function gets changed to the Chebyshev weight (1− x2)−1/2 on [−1, 1].
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Recall the definition of the polynomials {`j}: if {zj}0≤j≤J denote the Chebyshev-Lobatto
nodes on [−h, 0], then `j is the jth Lagrange interpolating polynomial on these nodes. For
a function u defined on [−h, 0], setting

uJ(z) =
J∑
j=0

u(zj)`j(z),

gives the Jth Chebyshev interpolant for u. We then have the following result (Statement
5.5.22 from [9]).

Lemma 3.4.1 Let s, J ≥ 0 be integers. Take u ∈ Hs
ω((−h, 0)) and let uJ be the Jth Cheby-

shev interpolant for u. Then,

‖u− uJ‖L2
ω((−h,0)) . J−s ‖u‖Hs

ω((−h,0))

Recall that C = D × (−h, 0) is the flat cylinder. For w ∈ Hs(C) = Hs(D)Hs
ω((−h, 0)),

define the projection-interpolant wMNJ by

wMNJ(ρ, θ, z) =
∑

0≤j≤J

PMNw(ρ, θ, zj)`(z).

We next combine the approximation estimate Theorem 2.2.2 for Zernike polynomials on D
and Lemma 3.4.1 along the z-axis to obtain approximation estimates for the projection-
interpolant on the entire cylinder.

Theorem 3.4.1 Let s,M,N, J ≥ 0 be integers. Let w ∈ Hs(C) and let wMNJ be the
corresponding projection-interpolant. Then,

‖w − wMNJ‖L2(C) . (min(M, 2N)−s + J−s) ‖w‖Hs(C) .

Proof: Observe that

‖w − wMNJ‖L2(C) ≤ ‖w − PMNw‖L2(D)L2
ω((−h,0)) + ‖PMNw − wMNJ‖L2(D)L2

ω((−h,0))

(3.39)

We have by Theorem 2.2.2

‖w − PMNw‖L2(D)L2
ω((−h,0)) . min(M, 2N)−s ‖w‖Hs(D)L2

ω((−h,0))

≤ min(M, 2N)−s ‖w‖Hs
ω(D)Hs((−h,0))

and by Lemma 3.4.1

‖PMNw − wMNJ‖L2
ω((−h,0))L2(D) . J−s ‖PMNw‖L2(D)Hs

ω((−h,0))

≤ J−s ‖w‖Hs(D)Hs
ω((−h,0)) .

Putting these together in (3.39) gives the desired result.
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We now use this approximation estimate to obtain a convergence result for our TFE-
Zernike-Chebyshev algorithm. We closely follow the proof strategy outlined in [46] with a
few modifications to account for the difference in domain and numerical method.

We first have the following result from standard elliptic PDE theory [19].

Lemma 3.4.2 For any integer s ≥ 0, if r ∈ Hs(C), q ∈ Hs+3/2(D) and χ ∈ Hs+1/2(∂D ×
(−h, 0)), then there exists a unique solution of

−∆w = r in C, w|z=0 = q, ∂zw|z=−h = 0, ∂ρw|ρ=1 = χ,

such that for some constant c1 > 0,

‖w‖Hs+2(C) ≤ c1

{
‖r‖Hs(C) + ‖q‖Hs+3/2(D) + ‖χ‖Hs+1/2(∂D×(−h,0))

}
.

Recall the system (3.25,3.27)

∆uk = rk in C, uk|z=0 = δk,0q, (uk)z|z=−h = 0, (uk)ρ|ρ=1 = χk, (3.40)

where

rk = h−2 {div(A1(f)∇uk−1) + div(A2(f)∇uk−2)

−
(
fρB0 + ρ−1fθC0

)
· ∇uk−1 −

(
fρB1(f) + ρ−1fθC1(f)

)
· ∇uk−2

}
, (3.41)

χk = h−1 [−f(uk−1)ρ + (h+ z)fρ(uk−1)z]ρ=1 . (3.42)

For the k = 0 case, the assumptions of Lemma 3.4.2 clearly hold. Next, we need to show
that these are satisfied for the Poisson equations for k ≥ 1. We have the following lemma.

Lemma 3.4.3 Given integers s, k ≥ 1 and constants B,E > 0 such that

‖uj‖Hs+2(C) ≤ EBj, ∀j < k,

there exists E1 > 0 such that rk and χk satisfy

‖rk‖Hs(C) ≤ E1

{
‖f‖Hs+2(D) B

k−1 + ‖f‖2
Hs+2(D) B

k−2
}

‖χk‖Hs+1/2(∂D×(−h,0)) ≤ E1 ‖f‖Hs+2(D) B
k−1.

Proof: Let rk,1 = h−2div(A1(f)∇uk−1). As

A1(f)∇uk−1 =

(
2hf∇Huk−1 − h(h+ z)∂zuk−1∇Hf

−h(h+ z)∇Hf · ∇Huk−1

)
,

we have

‖rk,1‖Hs(C) = h−2 ‖A1(f)∇uk−1‖Hs+1(C)
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≤ 2h−1 ‖f∇Huk−1‖Hs+1(C) + ‖∇Hf∂zuk−1‖Hs+1(C) + ‖∇Hf · ∇Huk−1‖Hs+1(C)

≤ 2Ah−1 ‖f‖Hs+1(D) ‖∇Huk−1‖Hs+1(C) + 2A ‖∇Hf‖Hs+1(D) ‖∇Huk−1‖Hs+1(C)

≤ 2Ah−1 ‖f‖Hs+1(D) ‖uk−1‖Hs+2(C) + 2A ‖f‖Hs+2(D) ‖uk−1‖Hs+2(C)

≤ E11 ‖f‖Hs+2(D) B
k−1

where E11 = 2AE(h−1 + 1). Here, we made use of ‖h+ z‖L∞(−h,0) = h and the algebra
properties of Sobolev spaces

‖g1G‖Hl(C) ≤ A ‖g1‖Hl(D) ‖G‖Hl(C)

‖g1g2‖Hl(D) ≤ A ‖g1‖Hl(D) ‖g2‖Hl(D)

for l > 3/2 and for some constant A. Here, g1, g2 are functions defined on D and G is defined
on C. As we are using this result for l = s + 1, we require s > 1/2 which is indeed true.
(Note that for the second property, we can relax this to s > −1/2)

Next, set rk,2 = h−2div(A2(f)∇uk−2). We have

A2(f)∇uk−2 =

(
f 2∇Huk−2 − f(h+ z)∂zuk−2∇Hf

−(h+ z)f∇Hf · ∇Huk−2 + (h+ z)2|∇Hf |2∂zuk−2

)
so that

‖rk,2‖Hs(C) = h−2 ‖A2(f)∇uk−2‖Hs+1(C)

≤ h−2
∥∥f 2∇Huk−2

∥∥
Hs+1(C)

+ h−1 ‖f∇Hf∂zuk−2‖Hs+1(C) +

h−1 ‖f∇Hf · ∇Huk−2‖Hs+1(C) +
∥∥|∇Hf |2∂zuk−2

∥∥
Hs+1(C)

≤ A2h−2 ‖f‖2
Hs+1(D) ‖uk−2‖Hs+2(C) + A2 ‖f‖Hs+2(D) ‖uk−2‖Hs+2(C) +

2A2h−1 ‖f‖Hs+1(D) ‖f‖
2
Hs+2(D) ‖uk−2‖Hs+2(C)

= A2
(
h−1 ‖f‖Hs+1(D) + ‖f‖Hs+1(D)

)2

‖uk−2‖Hs+2(C)

≤ E12 ‖f‖2
Hs+2(D) B

k−2

where E12 = A2E(1 + h−1)2.
Next, set rk,3 = h−2 (fρB0 + ρ−1fθC0) · ∇uk−1. Observe that we can write

rk,3 = h−1∇Hf · ∇Huk−1

so that

‖rk,3‖Hs(C) = h−1 ‖∇Hf · ∇Huk−1‖Hs(C)

≤ Ah−1 ‖f‖Hs+1(D) ‖uk−1‖Hs+1(C)

≤ E13 ‖f‖Hs+2(D) B
k−1
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where E13 = AEh−1.
Define rk,4 = h−2 (fρB1(f) + ρ−1fθC1(f)) · ∇uk−2. This can be rewritten as

rk,4 = h−2
(
f∇Hf · ∇Huk−2 − (h+ z)|∇Hf |2∂zuk−2

)
so that

‖rk,4‖Hs(C) = h−2
∥∥f∇Hf · ∇Huk−2 − (h+ z)|∇Hf |2∂zuk−2

∥∥
Hs(C)

≤ A2h−2 ‖f‖Hs(D) ‖f‖Hs+1(D) ‖uk−2‖Hs+1(C) + A2h−1 ‖f‖2
Hs+1(D) ‖uk−2‖Hs+1(C)

≤ E14 ‖f‖2
Hs+2(D) B

k−2

where E14 = A2Eh−1(1 + h−1).
Finally, note that

‖χk‖Hs+1/2(∂D×(−h,0)) = h−1 ‖−f(uk−1)ρ + (h+ z)fρ(uk−1)z‖Hs+1/2(∂D×(−h,0))

≤ h−1 ‖f(uk−1)ρ‖Hs+1/2(∂D×(−h,0)) + ‖fρ(uk−1)z‖Hs+1/2(∂D×(−h,0))

≤ Ah−1 ‖f‖Hs+1/2(∂D) ‖(uk−1)ρ‖Hs+1/2(∂D×(−h,0)) +

A ‖fρ‖Hs+1/2(∂D) ‖(uk−1)z‖Hs+1/2(∂D×(−h,0))

≤ Ah−1 ‖f‖Hs+1(D) ‖(uk−1)ρ‖Hs+1(C) + A ‖fρ‖Hs+1(D) ‖(uk−1)z‖Hs+1(C)

≤ Ah−1 ‖f‖Hs+1(D) ‖uk−1‖Hs+2(C) + A ‖f‖Hs+2(D) ‖uk−1‖Hs+2(C)

≤ E15 ‖f‖Hs+2(D) B
k−1

where E15 = AE(h−1 +1). Choose E1 = max{E11, E12, E13, E14, E15} to complete the result.

Next, we combine Lemmas 3.4.2 and 3.4.3 to obtain an analyticity result for the trans-
formed field expansion.

Theorem 3.4.2 Given an integer s ≥ 1, if q ∈ Hs+3/2(D) and f ∈ Hs+2(D), then there
exist constants E2, E3 > 0 such that

‖uk‖Hs+2(C) ≤ E2 ‖q‖Hs+3/2(D) B
k

for any constant B > E3 ‖f‖Hs+2(D).

Proof: We prove this by induction on k. For k = 0, the result follows from Lemma 3.4.2:

‖u0‖Hs+2(C) ≤ c1 ‖q‖Hs+3/2(D) .

Set E2 = c1. Assume now that the result holds for all j < k. Using this with Lemma 3.4.3
and E = E2 ‖q‖Hs+3/2(D) yields

‖rk‖Hs(C) ≤ E1

{
‖f‖Hs+2(D) B

k−1 + ‖f‖2
Hs+2(D) B

k−2
}
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‖χk‖Hs+1/2(∂D×(−h,0)) ≤ E1 ‖f‖Hs+2(D) B
k−1.

where E1 is the constant from Lemma 3.4.3. Note that it depends linearly on E so, for some
α > 0, we have E1 = αE = αE2 ‖q‖Hs+3/2(D). Combining these estimates with Lemma 3.4.2
gives

‖uk‖Hs+2(C) ≤ c1

{
‖rk‖Hs(C) + ‖χk‖Hs+1/2(∂D×(−h,0))

}
≤ E2E1

{
2 ‖f‖Hs+2(D) B

k−1 + ‖f‖2
Hs+2(D) B

k−2
}

= αE2
2 ‖q‖Hs+3/2(D)

{
2 ‖f‖Hs+2(D) B

k−1 + ‖f‖2
Hs+2(D) B

k−2
}

≤ E2 ‖q‖Hs+3/2(D) B
k

if B > E3 ‖f‖Hs+2(D) where E3 = αE2 +
√
α2E2

2 + αE2.

This result demonstrates that the transformed field expansion
∑∞

k=0 ε
kuk converges for

Bε < 1. Hence, this technique is guaranteed to yield the exact solution u of (3.10). More
critically, as B scales linearly with ‖f‖Hs+2(D), this result proves that the true determinant
of convergence is ‖η‖Hs+2(D). As a result, the precise value of ε is actually irrelevant to the
success of this method.

Finally, we show that our numerical solution converges in an appropriate sense to u. Let
ukMNJ be the solutions to the Poisson problems (3.25) obtained from the spectral method
and let

uKMNJ =
K∑
k=0

εkukMNJ

denote the numerical approximation to u. We then have the following convergence result.

Theorem 3.4.3 Assume that for some integer s ≥ 3, f ∈ Hs(D) and q ∈ Hs−1/2(D). Then,

‖u− uKMNJ‖L2(C) . (Bε)K+1 + (min(M, 2N)−s + J−s) ‖q‖Hs−1/2(D)

for any constant B ≥ E3 ‖f‖Hs(D) such that Bε < 1, where E3 is the constant from Theorem
3.4.2.

The proof combines the analyticity result from Theorem 3.4.2 and the approximation esti-
mate on the cylinder from Theorem 3.4.1. See the proof of Theorem 2.1 of [46] for details
on how to combine these.

3.5 Numerical Results

In order to test the DNO algorithm, we consider a case where the Laplace equation can
be analytically solved and we have a closed form for the Neumann data. Let (ρ, θ, z′) be
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Figure 3.1: Convergence of Neumann data vs TFE order K. The parameter choices are
M = 16, J = 20, N = 32, h = 0.5 and ε = 0.2.

the cylindrical coordinates for the unflattened cylinder (so the interface is z′ = η). The
general solution of (3.1) on a cylinder with homogeneous Neumann boundary conditions on
the lateral and bottom walls is

φ(ρ, θ, z′) =
∑

m∈Z,n≥1

bm,nJ|n|(a|m|nρ)eimθ cosh(a|m|n(z′ + h)) (3.43)

where Jm is the mth Bessel function of order zero and amn is the nth zero of J ′m(·). Note
that as φ is real valued, we must have b−m,n = bm,n for all m,n. Fix m′ ≥ 0, n′ > 0 and
suppose that for a given interface η(ρ′, θ′), we have

q(ρ, θ) = Jm′(am′n′ρ) cos(m′θ) cosh(am′n′(η + h)).

The particular solution of (3.43) then is

φ(ρ, θ, z′) = Jm′(am′n′ρ) cos(m′θ) cosh(am′n′(z
′ + h))

which can be used to compute the the Neumann data N explicitly by (3.6). Figure 3.1
displays the decay in the L2 errors in the computed Neumann data Nc for f(ρ, θ) =
J1(a1,1ρ) cos(θ) and (i) (m′, n′) = (1, 3), (ii) (m′, n′) = (3, 2) and (iii) (m′, n′) = (5, 1).

An indication of the role played by the size of the interface η can be garnered by comparing
the rates of convergence for different values of ε. Figure 3.2 shows that the rate slows down
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Figure 3.2: Errors in Neumann data vs. TFE order K for different values of ε, for case (i)
in Fig. 3.1.

for larger values, as suggested by Theorem 3.4.3. For too large a value, the method fails to
converge. This poses a limitation on the applicability of this technique, in that it is only
guaranteed to work for interfaces of moderate amplitude. When the criterion in Theorem
3.4.3 does not hold, the bulk potential, and hence the Neumann data, may blow up. It
is important to realize, however, that the choice of ε itself is immaterial and that the true
determinant of convergence is ‖η‖Hs(D).

However, for systems that are supposed to be stable, this technique serves as an extremely
efficient simulation tool. We present a qualitative validation of our technique. Consider a
fluid at rest with the initial profile η(ρ, θ) = 0.05ρe−15ρ2 cos(θ). Using our DNO solver in
conjunction with the time integration scheme described in Section 4.3, we can numerically
evolve the system and validate it qualitatively. Figure 3.3 shows various stages in the pro-
gression of the fluid. In particular, one can note the collapse of the crest and trough, their
outward dispersion and reflection after striking the lateral boundaries.

3.6 Conclusion

We have presented a new technique for computing the DNO for the Laplace equation on a
cylinder of finite depth. Its novelty lies in the fact it is primarily tailored for a 3D geometry
and does not rely on periodic boundary conditions to avoid dealing with the fluid-boundary
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Figure 3.3: Evolution of the interface at t = 0, 1/80, 2/80, . . . , 14/80. We use M = 4, J =
20, N = 40, K = 2, h = 0.5, ε = 0.01 and a time-step of ∆t = 1/1200.
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interactions. Hence, this method represents a major step-up from the methods that are
currently in use. In addition, it is easily applicable to other regular domains in 3D, i.e.,
prisms, parallelepipeds, etc. and may also find use in domains with structured irregularities
(for instance [42]).

The development of the technique is a generalization of the three-term recurrence for-
mulation presented in [43]. However, using tools from differential geometry, we were able to
significantly cut down on the tedious algebra. We allied the formulation with a particular
choice of basis functions on the cylinder that are amenable to various operations and hence
yield a fast algorithm. The preference for Jacobi polynomials over Bessel functions in the
radial direction is born out of the need for faster manipulations and spectral accuracy. It is
notable that the infinite series representation for the latter is of the form

Jm(r) = r|m|(c0 + c1r
2 + c2r

4 + . . .)

and that the Jacobi polynomials, with the orthogonality weight, also possess a similar form,
namely, r|m|P

(0,|m|)
n (2r2−1). Thus, these polynomials serve as effective substitutes for Bessel

functions but with superior approximation properties for representing functions on the disc.
In addition, Jacobi polynomials come with quadrature rules, orthogonality, recurrence rela-
tions, derivatives and closed forms of eigenvalues, among other desirable properties. These
are harder to obtain for Bessel functions. For instance, orthogonality only occurs when the
radial axis is scaled by the zeros of Jm (or its derivatives), which in turn need to be computed
beforehand.

A similar advantage is gained by the use of Lagrange polynomials with respect to the
Chebyshev-Lobatto nodes across the z-axis in place of hyperbolic functions. These poly-
nomials possess a fast transformation to Chebyshev polynomials, which can in turn be dif-
ferentiated and evaluated accurately at arbitrary points; this comes in handy when, for
instance, setting up the quadrature matrices. While not affecting the computational cost
and accuracy, they allow us to apply the boundary conditions more easily than would be
possible for other function families. The structure of the basis functions therefore yields a
fast, well-conditioned solver and ensures that implementation boils down to a sequence of
linear algebra operations that can be performed rapidly using BLAS and LAPACK routines.

The approximation estimate for Zernike polynomial established in Chapter 2 leads to
a rigorous convergence proof for the TFE method. In particular, it establishes that the
convergence hinges only on ‖η‖Hs(D): the strength of the error decay, as well as possible
divergence, is controlled wholly by this value. The result also shows that the parameter ε is
merely a book-keeping device to help group together terms of the same order when deriving
the recurrence formulas. We can conclude that this technique yields a fast and accurate
solver for nonlinear water-wave equations when the amplitude does not grow too large.

Since this approach relies on the potential form of the water-wave equations, it disallows
dissipation as it appears in the Navier-Stokes equations. To counter this, one can use models
of potential viscous flows that artificially introduce dissipation. These have been noted to
lead to correct results in the linear wave limit [29] and have found use in various applications
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[40]. The TFE technique lends itself to these models in a fairly straightforward manner, as
shown in the next chapter.
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Chapter 4

Simulating Three-Dimensional
Faraday Waves

In this section, we use the machinery developed in the earlier sections to numerically sim-
ulate Faraday waves on a cylinder. For a number of reasons, the tools developed so far
lend themselves particularly well to this task. Firstly, as established in Theorem 3.4.3, the
Dirichlet-to-Neumann solver is highly accurate for moderate interface heights. As Faraday
waves fall primarily in this category, our solver is well-suited to simulating them. Secondly,
the Transformed Field Expansion approach allows us to precisely control the degree of non-
linearity in the system. Indeed, by varying the index of the highest allowed order K, we can
transition between linear, weakly nonlinear and full nonlinear regimes. Finally, as we shall
see, the Zernike basis on the unit disc provides an accurate and computationally efficient
framework for evolving the system in time.

4.1 The Viscous Model

In Chapter 3, we introduced the Euler equations for an incompressible, irrotational and
inviscid fluid. These assumptions are necessary to be able to describe the fluid equations
as a potential flow with the potential satisfying Laplace’s equation. Indeed, a viscous fluid
cannot be irrotational and it is the irrotationality that allows us to define the potential in
the first place. Hence, these assumptions are crucial in order to use the Euler equations and
the equivalent surface formulation.

However, viscosity is an essential part of a Faraday system. It is needed to balance the
effect of resonance produced by the externally applied vibrations and yield stable standing
waves. In order then to marry the two seemingly incompatible requirements of a potential
flow and viscosity, we need to consider models that have been termed viscous potential flows
[27]. The most popular of these is the artificial dissipation model of Dias et. al. introduced
in [16]. Its well-posedness has been studied in [4] while it has also appeared extensively in
numerical studies [29, 40, 42]. Similar linear dissipative models have been studied in [38,
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55].
We begin from the same point as in Section 3.1. Let φ denote the velocity potential of a

fluid in a unit cylinder with the interface shape described by z′ = η(ρ′, θ′) and a flat bottom
at z′ = −h. The Dias et. al. model is then given by

∆′φ = 0 − h < z′ < η (4.1)

∂tφ+
1

2
|∇′φ|2 + (g − F (t))η + 2ν∂2

z′φ = 0 z′ = η (4.2)

∂tη +∇′Hη · ∇′Hφ− 2ν∆′Hη = ∂z′φ z′ = η (4.3)

where F (t) is the externally applied force and ν is the kinematic viscosity. Here, ∇′H and
∆′H represent the horizontal gradient and Laplacian operators respectively. At the lateral
and bottom boundaries of the cylinder, we impose the no-flow conditions ∂φ

∂n
= 0 while at

the interface, we have the Dirichlet condition φ|z′=η = q. Note that this model differs from
(3.1) – (3.3) only by the inclusion of an extra term each in (4.2) and (4.3).

As in Section 3.1, this system can be rewritten in terms of the surface variables η and
q. Here, however, we present the full derivation since we also need to determine how the
additional viscosity terms turn out. Defining the Dirichlet-Neumann operator (DNO)

G[η]q = [−∇′Hφ · ∇′Hη + ∂z′φ]z′=η (4.4)

gives us, by (4.3),

∂tη = G[η]q + 2ν∆′Hη. (4.5)

We also impose the boundary condition ∂ρη|ρ=1 = 0. Note that this additional condition
is required for the problem to be well-posed on a bounded domain since this model contains
a higher order spatial derivative of η. In addition, as q = φ|z′=η, we have

∇′Hq = ∇′Hφ+ (∂z′φ)∇′Hη (4.6)

which, combined with (4.4), gives

∂z′φ|z′=η =
G[η]q +∇′Hη · ∇′H · q

1 + |∇′Hη|2
. (4.7)

We also have ∂tq = ∂tφ+ (∂z′φ)∂tη which, together with (4.2), (4.6) and (4.7), yields

∂tq = −1

2
|∇′Hφ|2 −

1

2
(∂z′φ)2 − (g − F (t))η − 2ν∂2

z′φ+ (∂z′φ)∂tη

= −1

2

(
|∇′Hq|2 − (∂z′φ)2|∇′Hη|2 − 2(∂z′φ)∇′Hφ · ∇′Hη

)
− 1

2
(∂z′φ)2 −

(g − F (t))η − 2ν∂2
z′φ+ (∂z′φ)[∂z′φ−∇′Hφ · ∇′Hη + 2ν∆′Hη]

= −(g − F (t))η − 1

2
|∇′Hq|2 +

1

2
(∂z′φ)2(1 + |∇′Hη|2) + 2ν[∂z′φ∆′Hη − ∂2

z′φ]
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⇒ ∂tq = −(g − F (t))η − 1

2
|∇′Hq|2 +

(G[η]q +∇′Hη · ∇′Hq)2

2(1 + |∇′Hη|2)
+ 2νV [η]q (4.8)

where V [η]q is the viscosity operator defined as

V [η]q =
[
∂z′φ∆′Hη − ∂2

z′φ
]
z′=η

(4.9)

As before, the first-order equations (4.5) and (4.8) capture the complete dynamics of the
free surface, provided we can compute (4.4) and (4.9). Observe that the operator V is similar
to G in the sense that it requires knowledge of the potential function φ in the bulk of the
fluid. As a result, the techniques employed in Chapter 3 for the computation of Neumann
data will also come in handy when we need to compute the dissipation terms.

4.2 The Modal Formulation

The subject of evaluating the DNO was covered extensively in Chapter 3. We present a short
summary here. We first perform the change of coordinates (3.7) so that the problem is posed
on a flat cylinder C = D × (−h, 0) instead of a domain deformed by the interface; here, D
is the unit disc in the plane. The Laplacian of the potential in the new coordinates does not
necessarily vanish, as in (4.1), since the change of coordinates may not be a conformal map.
As a result, we obtain an equation of the form

−∆u = H(u, η) (4.10)

for some operator H. Here, u is the symbol for the bulk potential in the new coordinates.
Next, we write η = εf and expand u =

∑
k≥0 ε

kuk as a formal power series; as established
in Section 3.4, the value of ε is irrelevant to the success of this technique. Plugging these
decompositions into the Poisson equation (4.10) and comparing coefficients of similar powers
of ε yields a system of Poisson equations of the form

−∆uk = H̃(uk−1, uk−2, f) (4.11)

for k ≥ 0 with associated boundary conditions. Since the right hand sides of (4.11) depend
only on the lower order terms, the {uk} can be solved for sequentially up to a sufficiently
high order K and combined to yield an approximation to u.

The procedure can also be used to get a recurrence relation for the DNO. WritingG[εf ]q =∑
k≥0 ε

kGk[f ]q gives the formula (3.28)

Gk[f ]q = ∂zuk − h−1fGk−1[f ]q + |∇Hf |2(∂zuk−2)

−δk,1 (∇Hf · ∇Hq)− δk,2
(
h−1f∇Hf · ∇Hq

)
. (4.12)

We can similarly apply the technique for determining the viscosity operator V [η]q. Using
(3.17) gives

(h+ η)2V [η]q = h(h+ η)(∂zu)(∆Hη)− h2∂2
zu.
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Using the expansion for u with V [εf ]q =
∑

k≥0 ε
kVk[f ]q and collecting similar powers of

ε results in the recurrence formulas

Vk[f ]q = −∂2
zuk − 2h−1fVk−1[f ]q − h−2f 2Vk−2[f ]q +

(∆Hf)(∂zuk−1) + h−1(f∆Hf)(∂zuk−2). (4.13)

In order to solve the equations (4.11) and hence evaluate the operators (4.12) and (4.13),
we developed a fast spectral method in Section 3.3. This method operates by using the
polynomial-based basis functions on C as defined in (3.30). The corresponding modal-nodal
representation is extremely accurate and is computationally feasible. Indeed, the framework
is so appealing for computational purposes that we extend their use to the integration of the
first-order system (4.5) and (4.8).

We begin by expanding the unknowns η and q in terms of their Zernike-polynomial modal
representations (2.6)

η(ρ, θ, t) =
∑
m,n

αmn(t)ζmn(ρ, θ), q(ρ, θ, t) =
∑
m,n

βmn(t)ζmn(ρ, θ) (4.14)

where αmn(t) = 〈ζmn, η(·, ·, t)〉L2(D) and βmn(t) = 〈ζmn, q(·, ·, t)〉L2(D). Projecting the equa-
tions (4.5) and (4.8) on ζmn leads to

α′mn(t) = 〈ζmn, G[η]q〉L2(D) + 2ν 〈ζmn,∆Hη〉L2(D) (4.15)

β′mn(t) = −(g − F (t)) 〈ζmn, η〉L2(D) −
1

2

〈
ζmn, |∇Hq|2

〉
L2(D)

+

1

2

〈
ζmn,

(G[η]q +∇Hη · ∇Hq)
2

1 + |∇Hη|2

〉
L2(D)

+ 2ν 〈ζmn, V [η]q〉L2(D) . (4.16)

The modal representations of η and q allow us to compute the terms appearing in these
equations. The orthonormality of Zernike polynomials yields 〈ζmn, η〉L2(D) = αmn. Similarly,

the computation of 〈ζmn, |∇Hq|2〉L2(D) can be carried out by using the second operation type
outlined in Section 2.3. Meanwhile, the term 〈ζmn,∆Hη〉L2(D) in (4.15) can be integrated by
parts to yield

〈ζmn,∆Hη〉L2(D) =
1

π

∫
∂D

ζmn
∂η

∂n
ds− 1

π

∫∫
D

∇Hζmn · ∇Hη dA

where n is the unit outward normal vector to ∂D. Using the condition ∂η
∂n

∣∣
∂D

= ηρ|ρ=1 = 0
and the expansion for η, we obtain

〈ζmn,∆Hη〉L2(D) = − 1

π

∑
m1,n1

αm1n1

∫∫
D

∇Hζmn · ∇Hζm1n1 dA. (4.17)

The integrals appearing above are precisely the stiffness terms for which a closed form formula
was worked out in Section 2.3.
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The algorithm for the computation of the bulk potential u finds the unknown in terms
of the basis functions {ψmnj}. Thus, the results for G[η]q and V [η]q are already known in
terms of their Zernike-representation since they are evaluated at j = J . As the Zernike
polynomials are orthonormal, the terms 〈ζmn, G[η]q〉L2(D) and 〈ζmn, V [η]q〉L2(D) are simply
the coefficients in these representations. Finally, in order to find the modal representation

of (G[η]q+∇Hη·∇Hq)2
1+|∇Hη|2

, we express it as

(G[η]q +∇Hη · ∇Hq)
2

1 + |∇Hη|2
= (G[η]q +∇Hη · ∇Hq)

2
(
1− |∇Hη|2 + |∇Hη|4 − |∇Hη|6 + . . .

)
.

(4.18)

This expansion is valid as long as |∇Hη| < 1. Observe that this condition is precisely of
the type required in Theorem 3.4.2. Also note that the products in (4.18) can be computed
by using the first operation type described in Section 2.3. Thus, the entire right-hand side
of the first order system can be computed efficiently in terms of the modal representation.
As a result, we can express the system to be solved as

~α′(t) = P
(
t, ~α(t), ~β(t)

)
~β′(t) = Q

(
t, ~α(t), ~β(t)

)
~α(0) = ~α0, ~β(0) = ~β0

(4.19)

4.3 Time Integration

For integrating the system (4.19), we employ a modified Spectral Deferred Corrections
method. In this section, we provide a brief overview of the technique before describing
our modifications and its application to our problem.

Spectral Deferred Correction Methods

Spectral deferred correction (SDC) methods were introduced in [17] as a solution refinement
technique. An extension of classical deferred correction methods, this method replaces the
unbounded and unstable differentiation operators by integration operators based on quadra-
ture rules. An initial solution obtained from a simple method (say, a Runge-Kutta or a
multi-step scheme) is refined by performing several sweeps. The added stability promises
that the order of convergence is improved from the original O((∆t)p) to O((∆t)(J+1)p), where
J is the number of sweeps performed. In [22, 23], proofs of this fact are presented for both
the cases where one-step and multi-step schemes are used for the initial solution. Much
progress has been made on developing this technique further, such as its acceleration and its
extension to semi-implicit methods [26, 41].

Classical deferred corrections operate by developing, at each stage of a refinement sweep,
a differential equation satisfied by the residual δ(t) between the true solution and the nu-
merical solution. This equation uses the Lagrange interpolating polynomial in place of the
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numerical solution at some s points. Using the same pth order method on this equation gives
an approximation to δ(t) which, when added to the previous numerical solution, increases
the order of accuracy from O(hm) to O(hm+p). In principle, one can keep performing these
corrections to get solutions that are accurate to any arbitrary order as long as the interpo-
lation is accurate. In practice, however, one is constrained by the instabilities introduced
by the differentiation operator which is required in the differential equation above. This
discourages the use of a large number of interpolation points and hence limits the accuracy
of the procedure.

This problem was solved by [17] by replacing the differential equation for δ by a Picard
equation. The integrals required in this equation were computed by integrating the corre-
sponding Lagrange interpolating polynomials; in practice, this was represented as a linear
operator acting on the function sampled at s points. The spectral accuracy of the integration
matrix supplied the “spectral” in the title of the technique. Even this method (and all its
extensions), however, used a primitive Forward Euler technique to solve the Picard equation
(and Backward Euler for stiff equations). Thus, the only point at which the highly accurate
and stable integration operator was made use of was while prescribing the equation obeyed
by the residual.

Picard Refinement Scheme

Here, we consider a modification of this method where the refinements are carried out entirely
by application of the integration matrix. In addition, we completely do away with the
definition of the residual δ(t) and consider directly the Picard equation.

Consider the first order scalar problem{
y′(t) = f(t, y), a ≤ t ≤ b
y(a) = ya.

We then have the equivalent Picard equation

y(t) = ya +

∫ t

a

f(τ) dτ (4.20)

for any t ∈ [a, b]. We refine this interval by introducing equi-spaced points {ti}0≤i≤N with
step-size ∆t = (b − a)/N and ti = a + i∆t. Furthermore, we chop up every sub-interval
[ti, ti+1] into

ti = t
(0)
i < t

(1)
i < . . . < t

(s−1)
i < t

(s)
i = ti+1

where {t(j)i }0≤j≤s−1 are the s left-handed Radau quadrature points on [ti, ti+1].
We obtain φ0(t), as above, from a Runge-Kutta or a multi-step scheme. Let φk(t) be

the numerical solution after k refinements on [ti, ti+1] and let φ(t) be the accepted numerical
solution for t ≤ ti. In a pure Picard iteration, the next refined solution is obtained by

φk+1(t) = φ(ti) +

∫ t

ti

f(τ, φk(τ)) dτ. (4.21)
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Observe that (4.21) can be seen as a fixed-point iteration for solving the corresponding
Picard equation. This can also be used to furnish a simple convergence proof: assume that
φ(ti) = y(ti) and that, if L is the Lipschitz constant for f in the y variable, then there exists
some K such that (∆t)L ≤ K < 1. Then

|φk+1(t)− y(t)| =

∣∣∣∣∫ t

ti

f(τ, φk(τ))− f(τ, y(τ)) dτ

∣∣∣∣
≤

∫ t

ti

|f(τ, φk(τ))− f(τ, y(τ))| dτ

≤
∫ t

ti

L|φk(τ)− y(τ)| dτ

⇒ ‖φk+1 − y‖L∞([ti,ti+1]) ≤ L ‖φk − y‖L∞([ti,ti+1])

∫ ti+1

ti

1 dτ

≤ L(∆t) ‖φk − y‖L∞([ti,ti+1])

≤ K ‖φk − y‖L∞([ti,ti+1]) .

As K < 1, we conclude that limk→∞ ‖φk − y‖L∞([ti,ti+1]) = 0.

For a stronger statement about (4.21), let φk(t) − y(t) = O((∆t)r) for t ∈ [ti, ti+1] and
for some integer r ≥ 0. The above calculation then shows that φk(t)− y(t) = O((∆t)r+1) so
the Picard refinement improves the order of accuracy by one at each sweep.

In practice, we evaluate (4.21) only at the points {t(j)i }0≤j≤s−1 since that aids us in the
iterative process. Only when we have the most refined solution do we compute the value at
t = t

(s)
i = ti+1 and the process is repeated for the next sub-interval.

In order to describe how the integration in (4.21) is carried out, let g be a function with

values gj = g
(
t
(j)
i

)
for 0 ≤ j ≤ s − 1 and let Gj =

∫ t(j)i
ti

g(t) dt. We can approximate

the integrals by replacing g by the Lagrange interpolating polynomial constructed from
{gj}0≤j≤s−1:

Gj ≈
∫ t

(j)
i

ti

s−1∑
l=0

glLl(t) dt =
s−1∑
l=0

gl

∫ t
(j)
i

ti

Ll(t) dt =
s−1∑
l=0

gl

∫ t
(j)
i

ti

∏
0≤m≤s−1,m 6=l

t− t(m)
i

t
(l)
i − t

(m)
i

dt.

Define the s× s matrix S by

Sjl =

∫ t
(j)
i

ti

∏
0≤m≤s−1,m 6=l

t− t(m)
i

t
(l)
i − t

(m)
i

dt.

We then have G ≈ Sg. These matrix entries can be calculated by breaking them up into

Sjl =

j∑
r=1

∫ t
(r)
i

t
(r−1)
i

∏
0≤m≤s−1,m 6=l

t− t(m)
i

t
(l)
i − t

(m)
i

dt
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and evaluating the integrals
∫ t(r)i
t
(r−1)
i

∏
0≤m≤s−1,m 6=l

t−t(m)
i

t
(l)
i −t

(m)
i

dt for 1 ≤ r ≤ s − 1 by using the

Radau quadrature rule.
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Figure 4.1: L∞([0, 10]) errors vs ∆t for the test problem (4.22) solved by the s-point left-hand
Radau Picard refinement scheme. The initial solution was computed by the RK4 method,
followed by (2s− 5) refinement sweeps.

While the order of accuracy is increased by one at each step of the Picard refinement
scheme, it is bounded by the accuracy of the integration procedure. The s-point left-handed
Radau quadrature scheme is accurate for polynomials up to degree 2s − 2; thus, it is able
to produce solutions accurate to O((∆t)2s−1). If a pth order method is used for the initial
solution, we need to perform (2s − 1 − p) refinements to attain the maximal order. We
use p = 4 as it is the highest order for which the number of stages equals the order of the
method. Figure 4.1 shows the convergence plots for the test problem{

y′(t) = t+ y(t), 0 ≤ t ≤ 10
y(0) = 1

(4.22)

with the exact solution y(t) = −1 − t + (y(0) + 1)et. As claimed, the rates of convergence
are fairly close to O((∆t)2s−2). In practice, one can stop refining the solution once the norm
of the corrections falls below a pre-determined tolerance.

This method can be suitably extended to solving the system (4.19). For every i, we first

find the coarse solution
(
~α(0)(t

(j)
i ), ~β(0)(t

(j)
i )
)

0≤j≤s−1
by the Runge-Kutta-4 method. Here,
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we are interpreting the vectors ~α etc. as row vectors with j indexing the rows. Having

obtained an acceptable solution
(
~α(ti), ~β(ti)

)
0≤j≤s−1

at the end of the (i − 1)st step, the

solutions are successively refined by computing, for k ≥ 0,(
~α(k+1)(t

(j)
i ), ~β(k+1)(t

(j)
i )
)

=
(
~α(ti), ~β(ti)

)
+ S

(
P
(
tji , ~α

(k)(t
(j)
i )
)
, Q
(
tji ,
~β(k)(t

(j)
i )
))

.

4.4 Linear Results

We now apply the machinery we have assembled to the Faraday wave problem. Note that
simply setting the external forcing to F (t) = α cos(ωt) takes us into the Faraday regime.
The aim of the next two sections is to simulate Faraday waves in this setting and compare
them with theory and experiments.

In this section, we present the results in the linear regime. Note that our approach makes
it extremely easy to control the strength of nonlinearity by fixing the shape of the interface
f and varying ε. In addition, we can specify the largest order of nonlinear interactions by
fixing K. For the linear regime, we set K = 0 and ε = 10−6. In addition, we use g = 981
cm s−2, ν = 3.0 × 10−3 cm2 s−1 and h = 0.5 cm and set the computational parameters to
M = 8, N = 10 and J = 20.

We begin by determining the theoretical critical acceleration thresholds for given values
of ω and compare them with the numerical simulations. We also study the variation in the
nature of the resonances by performing a temporal-spectral analysis of the waveforms.

The Damped Mathieu Equation

We first simplify the system (4.5) and (4.8) by keeping only the linear terms and dropping
all quadratic terms and higher. We obtain

∂tη = ∂z′φ|z′=η + 2ν∆′Hη (4.23)

∂tq = −(g − α cos(ωt))η − 2ν∂2
z′φ|z′=η (4.24)

where φ solves Laplace’s equation (4.1) with the no-flow boundary conditions at the walls
and φ|z′=η = q. The general solution to φ is

φ(ρ′, θ′, z′, t) =
∑

m≥0,n≥1

Jm(amnρ
′)
(
b(1)
mn(t) cos(mθ′) + b(2)

mn(t) sin(mθ′)
) cosh(amn(z′ + h))

cosh(amnh)

(4.25)

where Jm is the mth Bessel function of order zero and amn is the nth zero of J ′m(·). Let us
focus on the evolution of a normal mode of the system (i.e. an eigenfunction of ∆′H with
homogeneous Neumann conditions) X(ρ′, θ′) = Jm(amnρ

′) cos(mθ′). Write

η(ρ′, θ′, t) = A(t)X(ρ′, θ′) and q(ρ′, θ′, t) = B(t)X(ρ′, θ′).
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As φ|z′=η = φ|z′=0 to leading order, we have

φ(ρ′, θ′, z′, t) = q(ρ′, θ′, t)
cosh(amn(z′ + h))

cosh(amnh)
.

Using these decompositions in (4.23) and (4.24) yields

A′(t) = amn tanh(amnh)B(t)− 2νa2
mnA(t),

B′(t) = −(g − α cos(ωt))A(t)− 2νa2
mnB(t).

Combining them gives

A′′(t) + 2δmnA
′(t) +

[
ω2
mn

(
1− α

g
cos(ωt)

)
+ δ2

mn

]
A(t) = 0 (4.26)

where ω2
mn = amng tanh(amnh) is the dispersion relation for finite-depth waves and δmn =

2νa2
mn is the damping coefficient. This is referred to as the damped Mathieu equation.
The amplitude of every mode therefore satisfies an equation of this form. For a given

value of ω, the α vs. amn plane is split into regions depending on whether the flat interface
η ≡ 0 is stable or unstable in that parameter regime. The boundaries of the unstable regions
indicate the critical amplitude αc/g: for α < αc/g, we have exponential decay while α > αc/g
leads to exponential growth, causing the small amplitude assumption to be violated.

In order to determine the critical value αc/g of the forcing amplitude, we use the technique
developed in [32]. This method relies on the observation that the explicit time dependence
in (4.26) occurs via a periodic function so its solutions must be of the Floquet form

A(t) = e(µ+iξ)t
∑
n∈Z

Ane
inωt

where (µ + iξ) is the Floquet exponent. If ξ = 0, the response is harmonic with the realty
conditions A−n = An while ξ = ω

2
is yields a subharmonic response with A−(n+1) = An.

Plugging this ansatz into (4.26), decomposing cos(ωt) = eiωt+e−iωt

2
and comparing coefficients

of einωt yields

α

g
(An−1 + An+1) =

2

ω2
mn

[
ω2
mn + (µ+ i(ξ + nω) + δmn)2

]
An. (4.27)

By restricting n ≤ N for some large enough N , this is expressible as an eigenvalue problem
for α/g. Choosing µ = 0 allows us to search for steady solutions and the corresponding
critical accelerations αc/g. Setting ξ = 0 or ω

2
switches between a harmonic or subharmonic

response respectively.
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Comparing the Critical Amplitudes

In order to numerically determine the rate of growth for a certain α, we need to measure the
energy of the system over time. Define the energy function

E(t) =
1

2

∫∫∫
V

|∇′φ|2 dV +
1

2
g

∫∫
D

η2 dA.

It can be shown that in the inviscid case with no forcing, this function is constant. Hence,
it serves as an ideal device to study the energy content of the system. Note that we can
write ∫∫∫

V

|∇′φ|2 dV =

∫∫
∂V

φ
∂φ

∂n
dS −

∫∫∫
V

φ∆′φ dV =

∫∫
D

qG[η]q dA

because of (4.1) and the boundary conditions. Thus, we have

E(t) =
1

2

∫∫
D

qG[η]q + gη2 dA.

Mode Type ω/2π (Hz) ωmn/2π (Hz) αc/g (theor.) αc/g (comp.) Rel. Error
(0, 1) SH 18.6368 9.54854 0.0960226 0.0960248 2.34× 10−5

(3, 1) SH 20.6540 10.0655 0.104835 0.104833 −1.77× 10−5

(2, 1) H 8.26893 8.31017 0.157309 0.157312 2.08× 10−5

(1, 3) H 14.4892 14.5615 0.200724 0.200725 1.90× 10−6

(1, 2) SH 7.24446 11.4545 0.625639 0.625639 6.55× 10−12

(0, 3) SH 10.0555 15.8991 0.629509 0.629509 −1.11× 10−8

Table 4.1: Comparison of critical amplitudes for various modes in different regimes. SH
stands subharmonic and H for harmonic.

This formula is preferred to the earlier one since it uses the surface quantities only,
which are exactly what we are explicitly updating at each time-step. In addition, using the
Zernike modal representation considerably simplifies the computation of the integral since it
is replaced by

E(t) =
π

2

∑
m,n

〈q, ζmn〉L2(D) 〈ζmn, G[η]q〉L2(D) + g
∣∣∣〈ζmn, η〉L2(D)

∣∣∣2 .
Given any time interval [ti, ti+1], we can estimate the growth rate at ti by

µ̃ =
1

ti+1 − ti
log

(
E(ti+1)

E(ti)

)
.
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For a given wave-number amn, determining the critical amplitude αc/g is carried out by
calculating the growth rates for a number of different amplitudes and interpolating between
them to find the value that results in zero growth. Initially, the interface is at rest and set
in the shape of the appropriate mode with noise of the same magnitude added in. The noise
eventually dissipates away, leaving only the desired mode, which in turn dictates the growth
rate. Table 4.1 compares the theoretical and computed critical thresholds for a few modes
for various excitation types. Note that the errors are much smaller than the corresponding
values calculated in [49].

The primary difficult in studying linear excitation is that a mode other than the desired
one may also be excited and eventually grow uncontrollably. Essentially, this is because the
solutions are super-positions of various modes and, as nonlinear effects are neglected, the
unconstrained growth cannot be reined in. For this reason, we have carefully chosen the
background frequency ω so that only the desired mode is excited.

0 5 10 15 20 25 30
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0

0.2

0.4

0.6

0.8

1

1.2

/g

Figure 4.2: Critical amplitudes vs. p. The solid lines are the theoretically calculated values
while the circles indicate the results from the simulation.

We run the simulations for 600 forcing periods; the pattern typically stabilizes much
earlier than that but we find an extended run to be useful for predicting the critical acceler-
ations more accurately. Each forcing period is chopped into 20 equal intervals; the equations
are solved by RK4 and refined by the 8-point left-Radau Picard scheme described earlier.
The tolerance for the Picard refinement is set at 10−12. The run-time is around 20 minutes
on a single core (the performance in fact suffered upon parallelization).



CHAPTER 4. SIMULATING THREE-DIMENSIONAL FARADAY WAVES 56

Type p22 ω/2π (Hz) αc/g (theor.) αc/g (comp.) Rel. Error
(i) SH 0.98 26.0481 0.0428505 0.0428505 −7.45× 10−7

(ii) SH 1.10 24.5863 0.184652 0.184652 1.93× 10−8

(iii) H 3.98 12.9255 0.274609 0.274609 2.46× 10−11

(iv) H 4.56 12.0756 0.554786 0.554786 −1.09× 10−12

(v) SH 9.40 8.41057 0.447046 0.447046 −2.22× 10−12

(vi) H 16.56 6.33664 0.489857 0.489857 −1.44× 10−8

(vii) SH 27.20 4.94430 0.680603 0.680606 3.69× 10−6

Table 4.2: Comparison of critical amplitudes for various types of excitations undergone by
the mode (2, 2). SH stands subharmonic and H for harmonic.

We next focus on a particular mode to study the possible variation in the types of
excitations. As in [5], define

pmn =
4w2

mn

w2
(4.28)

for the mode (m,n). This quantity is an extremely useful way of determining the nature of
the excitation that the mode (m,n) undergoes for a given ω. For infinitesimal forcing in the

inviscid case, the instability occurs only when pmn is a perfect square with period
√
pmn
2
ω.

This precise relationship is somewhat lost in the presence of viscosity and finite forcing.
However, the parity of the integer β closest to

√
pmn determines the nature of the excited

wave: subharmonic for odd values of β and harmonic for even. Moreover, even though the
standing wave contains multiple time modes, the dominant frequency is β

2
ω. The proximity of

β to
√
pmn suggests that pmn is still useful in illustrating the type of excitation. In Table 4.2,

we present the results for the mode (2, 2) (for this mode, we have wavenumber a22 = 6.70613
cm−1 and natural frequency ωmn/2π = 12.8932 Hz). In addition, Figure 4.2 gives the critical
acceleration against p22, comparing the theoretical and numerically calculated values.

Figures 4.3 – 4.7 show the temporal profiles f(t) for some of the cases shown in Table 4.2.
The numerical results are calculated by using the computed critical acceleration values. The
temporal profiles are obtained by evaluating the interface at the point (−0.3531,−0.3016) as
that leads to significant variation. Note the high degree of agreement between theoretical and
numerical results. Letting T stand for the period of forcing, it can be seen that the period of
a subharmonic (harmonic) excitation is 2T (T ). Moreover, the profiles change from mostly
sinusoidal to ones containing many different sinusoidal modes. Also shown are the (absolute
valued) Fourier spectra for these profiles; ω1 stands for the frequencies appearing in the
profile. Note that the peaks occur only at odd (even) multiples of ω/2 for a subharmonic
(harmonic) excitation. Moreover, the largest peaks occur at ω1 = jω/2, where j is the index
of the corresponding stability tongue in Figure 4.2.
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Figure 4.3: Temporal and spectral profiles for case (i) in Table 4.2. The solid line is obtained
from the damped Mathieu equation and the crosses from the numerical results. Observe that
the time profile is almost perfectly sinusoidal with period 2T .

0 0.5 1 1.5 2 2.5 3 3.5 4

t/T

-0.15

-0.1

-0.05

0

0.05

0.1

f(
t)

0 1 2 3 4 5 6

1
/

0

0.02

0.04

0.06

0.08

0.1

a
m

p
lit

u
d
e

Figure 4.4: Temporal and spectral profiles for case (iv) in Table 4.2. Observe that the time
profile is almost sinusoidal with period T . There is a constant offset and a small contribution
of period T/2.
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Figure 4.5: Temporal and spectral profiles for case (v) in Table 4.2. While the period is still
2T for this subharmonic response, the dominant contribution has period 2T/3.
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Figure 4.6: Temporal and spectral profiles for case (vi) in Table 4.2. Similar to Figure 4.5,
the dominant contribution period T/2 while the overall period is T .
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Figure 4.7: Temporal and spectral profiles for case (vii) in Table 4.2. The dominant period
is 2T/5 with overall period 2T .

4.5 Nonlinear Results

Having seen that our algorithm reproduces the linear results extremely accurately, we can
now apply it to the nonlinear problem. As mentioned at the beginning of the last section,
our formulation allows us to precisely control the degree of nonlinearity. Firstly, by choosing
ε to be relatively large, the quadratic terms in (4.8) become relevant. In addition, the highest
order of allowed nonlinear interactions is given by (K+1). For instance, by choosing K = 3,
at most fourth-order interactions are allowed and hence we are in the weakly nonlinear
regime. Since theoretical results so far have only been worked out under these assumptions,
we shall compare our algorithm against them. Setting K to higher values leads to fully
nonlinear Faraday waves. In these regimes, therefore, our algorithm breaks fresh ground and
aims, in the future, to serve as a benchmark for the validation of theoretical results, and to
help guide future experiments.

Stability Curves

The parameter values that lead to the onset of instability in the nonlinear regime were
first predicted by Miles in [37] and improved in [39] to account for capillarity. Their method
assumed that a primary mode was excited sub-harmonically and that the forcing acceleration
was small. Keeping terms up to the fourth order and factoring in linear dissipation, they
determined the dependence of the response on the forcing parameters. While the resulting
curves are qualitatively similar to those obtained in the linear regime in the previous section,
the presence of the nonlinear terms induces a minor shift (see Figure 4.8).

As before, we can use our simulation to determine the instability parameters. The earlier
approach of calculating the growth rates for various acceleration values and interpolating
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between them to obtain zero growth is still applicable since it takes into account the entire
energy of the system. However, as some higher-order modes may be produced by quadratic
interactions and retain some energy, the discretization parameters M and N need to be
sufficiently large to account for them.

Figure 4.8 compares the theoretical and numerical critical accelerations for the axisym-
metric mode (0, 1). In order to reproduce the theoretical assumptions, we set K = 3 and
ε = 0.1. Observe that the results are in close agreement with the nonlinear predictions.
Moreover, the deviations from the curve corresponding to the linear regime show that the
nonlinear corrections are indeed accounted for correctly.
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Figure 4.8: Numerically computed instability parameters for the mode (0, 1) compared
against the nonlinear predictions from [37] and the linear regime from the previous section.

The comparison is however limited by the fact that the theoretical predictions are only
applicable for small values of the forcing acceleration and frequency deviation (ωmn − ω/2).
In addition, none of the secondary modes that may be produced by quadratic interactions
should be resonantly unstable. This requires that the forcing frequency be chosen extremely
carefully.

Secondary Modes

Quadratic interactions between primary modes may give rise to secondary modes. Let

X1(ρ, θ, t) = βm1n1(t)Jm1(am1n1ρ)eim1θ, X2(ρ, θ, t) = βm2n2(t)Jm2(am2n2ρ)eim2θ
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describe the evolution of a pair of primary modes. Since we can write

Jm1(am1n1ρ)Jm2(am2n2ρ) =
∑
n≥1

cnJm1+m2(am1+m2,nρ)

for some cn, it follows that

[X1X2](ρ, θ, t) = βm1n1(t)βm2n2(t)
∑
n≥1

cnJm1+m2(am1+m2,nρ)ei(m1+m2)θ.

Thus, we expect that modes with angular frequency (m1+m2) will appear. Moreover, the
amplitudes of these new modes should be proportional to the product βm1n1(t)βm2n2(t) of the
amplitudes of the primary modes. This process of generating new modes can be expressed
concisely by the notation (m1, n1) + (m2, n2)→ (m1 +m2, n).

In order to realize this phenomenon, we choose the forcing parameters such that two
modes may be excited simultaneously. This is achieved by superimposing the stability plots
of α vs. ω for different modes, identifying pairs of modes whose curves intersect in a relatively
sparse region (so that spurious modes are not excited) and finding their points of intersection.
We use the stability curves from the fourth-order model above, despite the fact that it is
derived under the assumption that exactly one primary mode is excited. In a sense, our
numerical experiments serve as tests to determine the widest applicability of the theory.
Table 4.3 lists the parameter choices for various pairs of modes.

Modal Pairs ω/2π (Hz) αc/g
(i) (2, 1) & (0, 1) 17.542225 0.259107
(ii) (0, 1) & (3, 1) 19.535932 0.103774
(iii) (3, 1) & (1, 2) 21.169971 0.242101

Table 4.3: Parameters for simultaneous excitation of a pair of modes via the fourth-order
nonlinear model.

Figure 4.9 shows the results for case (iii) from Table 4.3 (with K = 3 and ε = 0.01).
The amplitudes of the newly generated modes are plotted against the products of parent
amplitudes and the correlations computed. The high correlation coefficients indicate that
the mechanism for the excitation of these modes is precisely the one suggested above. The
secondary modes may in turn interact with other primary or secondary modes to generate
further modes. Figure 4.10 demonstrates this for two such pairs.

The frequency of the response for a new mode can be worked out by considering the
frequencies of the parent modes: if βmjnj(t) ∼ eirjωt + e−irjωt for j = 1, 2, then

βm1n1(t)βm2n2(t) ∼ ei(r1+r2)ωt + e−i(r1+r2)ωt + ei(r1−r2)ωt + e−i(r1−r2)ωt.

Thus, the frequency of the resulting mode should be |r1 − r2|ω if r1 6= r2 and |r1 + r2|ω
otherwise. This is confirmed by the time and spectral profiles of the various modes in Figure
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Figure 4.9: Amplitudes of secondary modes |βmn| vs. products of amplitudes |βm1n1βm2n2|
of the primary modes. On the left, we have (1, 2) + (3, 1)→ (4, 2) and on the right, (3, 1) +
(3, 1)→ (6, 1).
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Figure 4.10: Secondary modes may interact with primary or other secondary modes to
produce tertiary modes. On the left, we have (3, 1) + (6, 1) → (9, 1) and on the right,
(6, 1) + (6, 1)→ (12, 1).



CHAPTER 4. SIMULATING THREE-DIMENSIONAL FARADAY WAVES 63

4.11. The mode (3, 1) is excited sub-harmonically; as (3, 1) + (3, 1) → (6, 1), the response
for this mode should be harmonic. Similarly, (3, 1) + (6, 1) → (9, 1) implies that (9, 1) is
sub-harmonic.
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Figure 4.11: The time evolution of various modes with their spectral profiles. As expected,
the response is sub-harmonic for (3, 1) and (9, 1) and harmonic for (6, 1).

Amplitude Modulation

Another consequence of nonlinearity is that the amplitudes of the constituent modes may
be modulated on a slow time-scale. Thus, we can write βmn(t) = γmn(t)β̃mn(t) where β̃mn
is periodic (with frequency ω/2 or ω, depending on the response) and γmn(t) is the enve-
lope. These modulations may be periodic, indicating that the envelopes underwent a Hopf
bifurcation as the stability thresholds are crossed [12]. By moving appropriately through
the parameter space, the period of the modulations may double before leading to chaos (see
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Figure 1.2). However, an approximation up to the fourth-order, as we have been consider-
ing, is not rich enough to yield even limit cycles. In the presence of damping, all envelopes
converge to stable fixed points [37].

In order to further validate our algorithm, we simulate case (ii) from Table 4.3 with
K = 3 and ε = 0.1. According to the bifurcation structure determined in [37], the zero fixed
point for the mode (0, 1) loses its stability at this point so its envelope should tend towards
a non-zero value. On the other hand, the zero fixed point for (3, 1) becomes stable so we
would expect it to gradually vanish. Figure 4.12 shows that this is indeed the case. Another
notable aspect is the small phase difference between the two curves. This was noted in [12]
to be indicative of energy transfer between the modes. Finally, Figure 4.13 shows that the
phase-plane trajectory for the envelopes of the competing modes indeed tends to a stable
fixed point at approximately (0.5672, 0).
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Figure 4.12: Evolution of modes (0, 1) and (3, 1) along with the amplitude envelopes |γmn(t)|.
As predicted, the envelope for (0, 1) converges to a non-zero fixed point while that for (3, 1)
converges to zero.

The ability of our algorithm to accurately reproduce these predictions from the fourth-
order model suggests that it should be similarly effective for fully nonlinear simulations. It
would be interesting to see if we are able to capture limit cycles, period-doubling and chaos
for the envelopes as the parameters are adjusted. However, this must be preceded by a
complete determination of the neutral stability curves for the nonlinear problem so we can
navigate accurately through the parameter space.

4.6 Conclusion

We have developed a novel technique for simulating nonlinear Faraday waves in a circular
cylinder. As opposed to [28], in which a low-order Navier-Stokes solver was developed, we
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Figure 4.13: The phase-plane trajectory of the amplitude envelopes γmn(t). Observe that it
tends towards the stable fixed point ≈ (0.5672, 0).

opted for the viscous potential flow model of Dias et al. This model incorporates artifi-
cial dissipation into the ideal fluid equations. The damping occurs at the rate 2νa2 for
each normal mode with wave-number a and, is in that sense, referred to as linear. This
choice simplifies the problem in that Neumann conditions at the boundaries are sufficient
for its solvability. We are, as a result, unable to study the effects of boundary layers on
the subsequently generated waves, as proposed in [53]. Nevertheless, this choice of damping
mechanism has been used successfully to explain many experimental observations [37, 30].

Among its advantages, this model admits a surface formulation in terms of the Dirichlet-
to-Neumann and viscosity operators. Allied with the Transformed Field Expansion, this
approach allows one to precisely control the extent of nonlinearity. As established in Sections
4.4 and 4.5, we can easily transition from linear to weakly nonlinear regimes by varying the
highest expansion order. The high degree of agreement between theoretical predictions and
our results over various regimes indicates that our algorithm is well-suited for identifying the
particular mechanisms that trigger experimental observations.

Further challenges for this technique include studying fully nonlinear mode competi-
tion, analyzing multiple-frequency forcing regimes and investigating the formation of richer
patterns on the surface. Determining the neutral stability curves at a particular order of
nonlinearity is a necessary first step to reproducing the conditions for mode competition and
chaos onset, as observed by [12]. By necessity, the region of the parameter space that leads
to these observations is close to several bifurcation boundaries and, consequently, the results
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Figure 4.14: The amplitude envelopes for both (0, 1) and (3, 1) decay with (ω/2π, α/g) =
(19.5971, 0.1056). This demonstrates the sensitivity of the results to small changes in pa-
rameter values close to the critical thresholds.

are extremely sensitive to small changes in parameter values. Figure 4.14 displays the evo-
lution of the amplitude envelopes with the parameters chosen at the point of intersection of
the stability curves from the linearized problem. The decay for both envelopes, as opposed
to one envelope converging to a non-zero value in Figure 4.12, illustrates the hazard in using
even slightly incorrect parameter values.

The linear theory for multiple-frequency forcing has been developed in a similar manner
to the single frequency case [7]. Such regimes serve as logical extensions of the cases that
have been studied in Section 4.4. In addition, two forcing frequencies have been noted to gen-
erate elaborate patterns, termed super-lattices, in rectangular domains [18]. Applying this
idea to a cylinder and testing it numerically would be an interesting application of our algo-
rithm. Another striking illustration would be the numerical reproduction of unconventional
patterns, such as pentagons and stars, that have been reported for a cylinder [50].
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