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ANOMALIES FOR ELECTRONS MOVING ON ANTIFERROMAGNETIC SURFACES 

Myron BANDER 

Received 5 December 1988; accepted for publication 3 1 January 1989 

Communicated by AA. Maradudin 

With a complex arrangement of magnetic fields and magnetic couplings. electrons governed by a standard tight-binding Ham- 

iltonian on a square lattice can be made to obey a Dirac equation with an unequal number of positive and negative masses. This 

induces a spontaneous quantized Hall conductance. 

The Dirac equation in one time and two space di- 
mensions exhibits an anomaly [ 1 ] in that, in the 
presence of an electromagnetic field, the vacuum ex- 
pectation of the current is non-zero. This may be rel- 
evant to the explanation of the quantized Hall effect 
[ 2 1. Another manifestation of this phenomenon is 
that solitons in antiferromagnetic spin systems, cou- 
pled to such a Dirac field, may change statistics and 
turn into fermions [ 31. It is speculated [4] that this 
may have something to do with high T, supercon- 
ductivity. All the above studies involve one or more 
continuum Dirac fields, such that the number of these 
fields with positive mass does not equal the number 
of fields with negative mass. For an electric field in 
the _I’ direction. the induced vacuum current is in the 
x direction. 

i, = c C sign(m,)E, 
I 

For this effect to be of interest to problems of con- 
densed matter physics, these electrons must not only 
obey a Dirac equation, but likewise the number of 
fields with positive and negative masses must be un- 
equal. It is particularly difficult to achieve the latter 
due to the persistent doubling on the lattice [ 5 ] of 

fermion species, or of any system whose Hamilto- 
nian is linear in the momenta. Semenoff [ 61 studied 
the motion of electrons on a honeycombed graphite 
lattice and was able to show that, under certain cir- 
cumstances, each spin state obeys a Dirac equation. 
The number of positive and negative mass species is 

the same and the, above mentioned, anomaly does 
not occur. Recently, Haldane [ 71 extended the pre- 
vious model to include an intrinsic, periodic mag- 
netic field. which, when combined with the lattice 
structure, breaks time reversal invariance; the Dirac 
fields no longer pair off with opposite sign masses, 
and a non-zero value for the current of eq. ( 1) is ob- 
tained. This would be a manifestation of a quantized 
Hall current without the presence of an external 
magnetic field. As mentioned in ref. [ 71, the phys- 
ical realizability of such models is an open question. 
With the last point in mind we wish to present a dif- 
ferent condensed matter situation in which electrons 
obey a Dirac equation. Unlike the cases in the pre- 
vious examples, we will work on a simple, square lat- 
tice. The Dirac equations will result from an unusual 
choice of signs of hopping terms, while the mass will 
appear once we couple the electrons to an antifer- 
romagnetic ordering on the lattice. .4t this stage we 
still have an equal number of positive and negative 
mass Dirac fields. In order to break this symmetry 
we follow Haldane [ 71 by introducing a next nearest 
neighbor hopping term and an internal, periodic 
magnetic field, with a vanishing net flux. 

We shall describe the model in steps. For the mo- 
ment consider electrons hopping only in the hori- 
zontal and vertical directions on the lattice shown in 
fig. 1; also, for the present ignore the difference be- 
tween sites marked with a dot or a cross. The sign of 
an individual hopping term is not physically observ- 
able as it may be changed by a site dependent re- 
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Flp. I. Nearest neighbor bonds on a square lattice. The sign of 

the hopping term on the dashed bonds is opposite to that on the 

solid bonds. . denotes an on site spin up. while x is for spin 

down. 

phasing of the electron fields or gauge transforma- 
tion. What is gauge invariant is the product of the 
signs of hopping terms around a unit square. M’e shall 
corzsider the situation \tahere this product is ttegatitle. 

This may be achie\;ed by setting the sign of the ver- 
tical hopping terms negative along all odd columns 
and keeping all other hopping terms positive. In fig. 
I. the positive hopping terms are denoted by a solid 
line. the negative ones by a dashed one. Physically. 
this may be realized weaving a periodic magnetic field 
through the lattice. If @ is the flux through a unit 
square. the product of the hopping terms around such 
a square is multiplied by exp( ie@): for @= +_x/c the 
usual situation is changed to the one where the prod- 
uct is negative. .As the sign of the flux is irrelevant, 
the above situation can be realized in many ways. 
Two extreme cases are all signs equal. which could 
be due to placing the lattice in an external magnetic 
field. or having the sign of the flux alternate from 
square to square. in an antiferromagnetic order. T/ze 
jirst case is interesting in that an ordinary, tight-hind- 
ing HatCltonian tlrrtts into a Dirac one in the pres- 
ence qf‘a constant magnetic .field $rYth a half unit qf 
quantizrdj7u.u through each unit cell. In the second 
case the net flux through the lattice is zero. 

.Ais we shall see. the above scenario is sufficient to 
yield a massless Dirac equation. In order to obtain 

a mass we shall put a magnetic moment on each lat- 
tice site. again. fully antiferromagnetically ordered. 
and couple it to the electrons through a local spin- 
spin interaction. The dots and crosses on the sites 
indicate the magnetic moment directions. The Ham- 
iltonian for this model is 

l t(-l)‘(x,.,*,+x,.,-,)I 

+gc (-1) ‘+‘X:.I~:X,., . (‘1 
I.\ 

In the above. x_, I is a two-component electron field 

at site s. ~3: we take the lattice spacing to be unity and 
thus .Y, 1’ are integers. t is the hopping strength and 
the ( - 1 )’ inside the hopping part of the Hamilto- 
nian is. as discussed above. a result of choosing the 
product of the signs of the hopping terms to be neg- 
ative. The strength of the coupling of the electron to 
the lattice spin is denoted by g and the ( - 1 1‘” is 
due to the antiferromagnetic ordering. 

In terms of a new field. ty,.,, related to ,y ,., by 

XL, =’ .‘+‘(G, )‘(rr,)‘w, (1 (3) 

the Hamiltonian of eq. (2 ) takes the form 

H=-~~W:,[o,(y/.+,.,-(v.-I.,) 

+a,(V/,.,+, -v*..,-I )I 

We recognize the lattice Dirac Hamiltonian in two 
space dimensions with a mass proportional to g. In 
momentum space 

H= 
? 
*s [tV/+(k,.k,.)((7,sink, 

+cr, sin k,)u/(k,, k, )+gll/+(k,. k,.)0,v/(k,. k,.)]. 
(5) 

The integration runs over the Brillouin zone. 
- ~:ek,,,.<~c. The eigenvalues. OJ. are given b, 

W(k,.k,.)=~,,,g’+t~(sin’li,-sin~li,.). (6) 

The separation of the two bands is minimal at (k,, 

k,)=(O. 0). (0, K). (n, 0) and (7~. n). Wedefine 
four fields: 
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Yl(q,T G)=W(4,7 41.1. 

W~(q,.q~)=a,W(4,,9,.-K), 

Y3(4,> 41) =~N(q.! - xc, qt.), 

Y4(9,. a.1 =gz;r//(q., -K. q>r- Kc). (7) 

The continuum Hamiltonian turns into a sum of four 
Dirac Hamiltonians, two with positive mass and two 
with negative mass, 

+m,Yf(qb,Y,(q) I. (8) 

with v,.~= + 1 and I]?.~= - 1. .4t this stage no parity 
anomalies will occur. 

In order to break this symmetry we follow ref. [ 71 
by introducing a next nearest neighbor (nnn) hop- 
ping term, u/4, and, yet another periodic magnetic 
field. This one with a vanishing total flux through 
each unit cell. This configuration is shown in fig. 2; 

the vector potential, A, may be chosen to reside on 
the nnn links with directions indicated by the ar- 
rows: note that with this choice V*A=O. With 
@=qiA*dr, and the integral running along the di- 
rected nnn links, the term that is added to the Ham- 
iltonian of eq. (2 ) is 

:x’x:x:x:x: 
:x’x:x’>;:x-” 
:x:x:x:~:x: 
$(:gQ&: 
+x;x+x:x:x: 
0 0 x 0 X 

Fig. 7. Next nearest neighbor bonds. (For clarity, the nearest 

neighbor bonds are not shown.) The arrows show the directions 

of the vector potential. A, and the sign of the flux through various 
tilted squares is indicated by + and - 

+X r+,.,‘-,+X,-,.I+,)COSO 

+i(-l)‘(x,+I.,.+l+x,-l.,~, 

-xL+1.,.- I -x.\--r.l.+l ) sin $1. (9) 

Using the related field variables of eq. (3). 

-W\--,.~~-l +wv+,.,.-I +Y.v-,.>~+r) cm Q 

-(w,+,.\-+I +w,-I.J~-I +L?\+,.,-I 

+v,-I.r+~) sin@]. 

In momentum space, this becomes 

(10) 

H, =--u s d”k 
o2 y+(k,, ki,.)a, 

x [iyl(k, + rt. k,.) sin k., sin k,. cos Q 

+ ty( k,, k, ) cos k, cos k,. sin $1. (11) 

Using the definition of the four continuum fields in 
eq. ( 7) and keeping only terms constant and linear 
in the momenta, H, contributes a common mass term 
to the Hamiltonian of these fields. 

(12) 

Combining this result with the Hamiltonian of eq. 
( 8 ) we find that fields I+V, ,j have masses proportional 
to g-u sin @, while the masses of v~.~ are propor- 
tional to -g-usin@. For [usin@] > lg] the Hall 
conductance, (any,,= ue’/2&_ with Y= i 2. 

We were able to show that electrons moving on a 
simple two dimensional lattice with a fairly complex 
set of antiferromagnetically ordered fields will obey 
a Dirac equation with an unequal number of positive 
and negative masses. This will induce a spontaneous 
quantized Hall conductance. The question remains 
whether such a situation can be physically realized. 
In ref. [ 71 a possible mechanism for inducing such 
an order was presented. 

This work was supported in part by the National 
Science Foundation under Grant No. PHY-86-05552. 
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