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Articles

Subphenotypes in acute respiratory distress syndrome: 
latent class analysis of data from two randomised 
controlled trials
Carolyn S Calfee, Kevin Delucchi, Polly E Parsons, B Taylor Thompson, Lorraine B Ware, Michael A Matthay, and the NHLBI ARDS Network

Summary
Background Subphenotypes have been identifi ed within heterogeneous diseases such as asthma and breast cancer, 
with important therapeutic implications. We assessed whether subphenotypes exist within acute respiratory distress 
syndrome (ARDS), another heterogeneous disorder.

Methods We used data from two ARDS randomised controlled trials (ARMA trial and ALVEOLI trial), sponsored by 
the National Heart, Lung, and Blood Institute. We applied latent class modelling to identify subphenotypes using 
clinical and biological data. We modelled data from both studies independently. We then tested the association of 
subphenotypes with clinical outcomes in both cohorts and with the response to positive end-expiratory pressure 
(PEEP) in the ALVEOLI cohort.

Findings We analysed data for 1022 patients: 473 in the ARMA cohort and 549 in the ALVEOLI cohort. Independent latent 
class models indicated that a two-class (ie, two subphenotype) model was the best fi t for both cohorts. In both cohorts, we 
identifi ed a hyperinfl ammatory subphenotype (phenotype 2) that was characterised by higher plasma concentrations of 
infl ammatory biomarkers, a higher prevalence of vasopressor use, lower serum bicarbonate concentrations, and a higher 
prevalence of sepsis than phenotype 1. Participants in phenotype 2 had higher mortality and fewer ventilator-free days 
and organ failure-free days in both cohorts than did those in phenotype 1 (p<0·007 for all). In the ALVEOLI cohort, the 
eff ects of ventilation strategy (high PEEP vs low PEEP) on mortality, ventilator-free days and organ failure-free days 
diff ered by phenotype (p=0·049 for mortality, p=0·018 for ventilator-free days, p=0·003 for organ-failure-free days).

Interpretation We have identifi ed two subphenotypes within ARDS, one of which is categorised by more severe 
infl ammation, shock, and metabolic acidosis and by worse clinical outcomes. Response to treatment in a randomised 
trial of PEEP strategies diff ered on the basis of subphenotype. Identifi cation of ARDS subphenotypes might be useful 
in selecting patients for future clinical trials.

Funding National Institutes of Health.

Introduction
Acute respiratory distress syndrome (ARDS) is a 
heterogeneous syndrome fi rst identifi ed in 1967 and 
defi ned by the clinical criteria of bilateral pulmonary 
opacities on chest radiograph, arterial hypoxaemia 
(partial pressure of arterial oxygen [PaO2] to fraction of 
inspired oxygen [FiO2] ratio <300), and exclusion of 
cardiac failure as the primary cause of the syndrome.1–3 
This defi nition was derived empirically on the basis of 
clinical experience, with the hypothesis that it would 
identify patients with non-cardiogenic pulmonary 
oedema, characterised by increased protein permeability 
of the alveolar–capillary membrane. Since the time of the 
original identifi cation of ARDS, and increasingly during 
the past two decades, there has been recognition of the 
clinical and biological heterogeneity within ARDS;4,5 this 
hetero geneity might refl ect our incomplete under-
standing of the biology of ARDS and probably contributes 
to the poor track record of phase 2 and 3 trials of new 
treatments for patients with ARDS.6 As a result, some 
investigators have proposed subdividing ARDS on the 
basis of clinical risk factors, or by direct versus indirect 

cause of lung injury. However, no consensus exists on 
the appropriate approach to reduce ARDS heterogeneity.

By contrast with ARDS, research in airways disease 
and cancer has made substantial progress towards 
identifying subphenotypes of disease, with important 
therapeutic implications. For example, subphenotypes 
based on the presence or absence of Th2-dependent 
infl ammation have been identifi ed in asthma, with 
important mechanistic and therapeutic implications.7 
This insight has led to new targeted treatments, such as a 
monoclonal antibody to interleukin-13, which is 
especially eff ective in individuals with Th2-predominant 
infl ammation.8 Despite widespread recognition of the 
heterogeneity within common critical illness syndromes 
such as sepsis and ARDS, and some evidence suggesting 
that subphenotypes might exist within severe sepsis,6,9,10 
little data are available for whether such subphenotypes 
exist in ARDS.

Latent class analysis is a well-validated statistical 
technique that uses mixture modelling to fi nd the best-
fi tting model for a set of data, based on the hypothesis 
that the data contain several unobserved groups or 
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classes. The statistical approaches underlying this 
method were originally developed more than a century 
ago by investigators analysing whether a population of 
crabs consisted of two subspecies.11 By contrast with 
traditional regression analyses, in which the goal is to 
understand the association between pre-specifi ed 
independent variables and a known outcome, latent class 
analysis models ask whether there are subgroups of 
patients defi ned by a combination of the baseline 
variables, without mandating consideration of the 
outcome. Latent class-based methods have been 
extensively used in the social sciences and in other 
medical disciplines,12,13 for instance in the identifi cation 
of asthma subphenotypes,14 but have not been used 
extensively in critical care. We sought to capitalise on the 
wealth of clinical and biological data available from two 
National Heart, Lung, and Blood Institute (NHLBI)-
sponsored ARDS Network randomised controlled trials 
by using latent class analysis methods to attempt to 
identify and validate novel subphenotypes of ARDS and 
to test their association with clinical outcomes and 
response to treatment.

Methods
Study design
Clinical and biological data were obtained from patients 
enrolled in the NHLBI ARDS Network’s randomised 
controlled trials of lower versus higher tidal volume 
ventilation (trial referred to here as ARMA)15–17 and 
higher versus lower positive end-expiratory pressure 
(PEEP; trial referred to here as ALVEOLI).18 Some 
patients in the ARMA trial were co-enrolled in a trial of 
lisofylline versus placebo;17 after 194 patients were 
enrolled in that trial, the ventilator trial was 
discontinued because of a statistically signifi cant 
reduction in mortality in the lower tidal volume group, 
and the 41 additional patients subsequently enrolled in 
the lisofyilline trial were assigned to lower tidal volume 
ventilation. Details of the trials are available 
elsewhere.15–18 Briefl y, the fi rst ARMA was a multicentre 
randomised controlled trial done in the USA comparing 
ventilation with lower versus higher tidal volumes in 
patients within 36 h of ARDS onset.15 The ALVEOLI 
trial was also a multicentre randomised controlled trial 

done in the USA, which compared ventilation with 
lower versus higher PEEP with similar inclusion 
criteria to ARMA.18 Patients were enrolled in the ARMA 
study between 1996 and 1999; patients were enrolled in 
the ALVEOLI study between 1999 and 2002 (see 
appendix for further details of each trial). We excluded 
data for patients in the ARMA trial who were randomly 
allocated to higher tidal volume ventilation (n=429) 
because of the negative eff ect of higher tidal volumes 
on mortality, which would have precluded analysis of 
the association between latent class and clinical 
outcomes (fi gure 1). We fi rst did analyses of data for 
patients in the ARMA trial treated with lower tidal 
volume (n=473, fi gure 1). We then independently 
repeated analyses with data for patients in the ALVEOLI 
trial (n=549; no patients excluded), to test whether the 
fi ndings would be generalisable to an independent 
sample. All clinical data (other than outcomes) and 
biological data used for this analysis were collected at 
study baseline (pre-randomisation).

Assay Procedures
Plasma samples used for this analysis were drawn at the 
time of randomisation, which occurred within 36 h of 
meeting ARDS criteria. Plasma biomarkers were 
measured in duplicate (ie, two samples per patient) by 
use of ELISA. Details of the methods used to do the 
assays have been reported elsewhere.4,19–25

Statistical analysis
Baseline clinical data and biomarker concentrations were 
considered as class-defi ning variables in the latent class 
analysis model; classifi cation was done without 
consideration of clinical outcomes. Details on clinical 
variable selection, data cleaning, and a complete list of 
the clinical variables included in these models are in the 
appendix. In addition to the baseline clinical data, we 
included as inputs in the latent class model the eight 
plasma biomarkers previously associated with poor 
clinical outcomes in ARDS and that were previously 
measured in both cohorts: surfactant protein D,23 von 
Willebrand factor antigen,19 soluble intercellular adhesion 
molecule-1,24 interleukin-6 and interleukin-8,21 soluble 
tumour necrosis factor receptor-1,22 plasminogen 

See Online for appendix

Figure 1: Study population

861 patients enrolled in ARMA trial, 194 of 
          whom were co-enrolled in lisofylline trial

429 excluded because randomised
         to higher tidal volumes

473 in study cohort

41 patients enrolled into lisofylline trial and 
       assigned to low tidal volumes, due to early 
       stopping of ARMA trial

549 patients enrolled in ALVEOLI trial

549 in study cohort

ALVEOLI cohortARMA cohort
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activator inhibitor-1,20 and protein C.20 The datasets used, 
by virtue of being derived from randomised controlled 
trials with intensive on-site auditing and data quality 
checks, were largely complete. However, data for some 
variables were missing (appendix).

We did basic two-group comparisons between the two 
cohorts using the t test, Wilcoxon rank sum, or χ² test, 
as appropriate. Next, we fi tted a series of latent class 
models, fi rst using the data from the ARMA cohort and 
then repeated independently using data from the 
ALVEOLI cohort. Criteria for model selection were 
based on the Bayesian information criteria, the Vuong-
Lo-Mendell-Rubin likelihood ratio test, and the size of 
the smallest class. Latent class model estimation was 
based on full-information maximum likelihood 
methods. This approach allows for the use of all data for 
all patients, including those missing some data, in 
estimating the latent class models. Additional details 
about the latent class modelling procedures are shown 
in the appendix.

Once we established the number of classes, we tested 
the associations between class and clinical outcomes 
(90-day mortality, ventilator-free and organ failure-free 
days) using the approach developed by Lanza.26 This 
method incorporates the degree of uncertainty of class 
membership. Finally, for the ALVEOLI cohort, in which 
patients were randomly allocated to lower or higher 
PEEP, we tested models of each outcome using class, 
treatment assignment, and their interaction as covariates 
to fi nd out whether there was a diff erential treatment 
eff ect based on latent class. We did these analyses using 
Poisson regression for ventilator-free and organ failure-
free days and logistic regression for mortality. We used 
Mplus (version 7.11) for the latent class analyses and SAS 
(version 9.3) for all other analyses. 

Role of the funding source
The study funder had no role in the study design, analysis 
or interpretation of the data, or writing of the report for 
these analyses. The corresponding author had full access 
to all of the data and had the fi nal responsibility to submit 
for publication.

Results
Baseline clinical characteristics for patients in both 
cohorts are shown in table 1. We noted several statistically 
signifi cant diff erences between the two cohorts, 
including primary ARDS risk factor, severity of illness as 
measured by Acute Physiology and Chronic Health 
Evaluation (APACHE III) scores, and prevalence of 
vasopressor use at enrolment. Additionally, several 
ventilator variables at randomisation diff ered sub-
stantially between the two cohorts, probably indicative of 
changes in practice resulting from the publication of the 
results of the fi rst trial (ARMA; of lower tidal volume 
ventilation) that had been adopted at the time of the start 
of the second trial (ALVEOLI). Baseline biomarker data 

ARMA cohort 
(n=473)

ALVEOLI cohort 
(n=549)

p value

Age in years 51 (17) 51 (17) 0·96

Sex (female) 284 (60%) 302 (55%) 0·09

Ethnic origin (white) 355 (75%) 412 (75%) 0·93

ARDS risk factor* <0·001

Trauma 59 (13%) 45 (9%) ··

Sepsis 125 (27%) 120 (23%) ··

Aspiration 72 (16%) 84 (16%) ··

Pneumonia 145 (32%) 221 (42%) ··

Other 60 (13%) 52 (10%) ··

APACHE III score 82 (29) 94 (32) <0·001

On vasopressors at enrolment 134/338† (40%) 144/549 (26%) <0·001

PaO2/FiO2 ratio 132 (60) 128 (58) 0·25

Maximum temperature (°C) 38·5 (0·9) 38·5 (1·0) 0·09

Lowest systolic blood pressure (mm Hg) 88 (19) 88 (17) 0·90

Maximum heart rate (beats per min) 127 (22) 125 (24) 0·31

Maximum respiratory rate (breaths per min) 30 (10) 33 (10) <0·001 

Urine output in 24 h before enrolment (L) 2·02 (1·24–2·98) 1·85 (1·13–2·93) 0·06

Lowest haematocrit percentage 30 (6) 30 (6) 0·64 

Peak white blood cell count (in thousands) 12·3 (8·9–17·9) 13·0 (8·7–18·2) 0·68

Platelet count (in thousands) 164 (121) 177 (124) 0·10

Lowest sodium (mEq/L) 137 (5) 137 (5) 0·86 

Highest creatinine (mg/dL) 1·10 (0·80–1·70) 1·10 (0·8–1·9) 0·70

Lowest glucose (mg/L) 135 (57) 133 (64) 0·68

Lowest albumin (g/dL) 2·2 (0·6) 2·1 (0·6) 0·004

Total bilirubin (mg/dL) 1·0 (0·60–2·10) 0·80 (0·5–1·5) <0·001

Bicarbonate (mEq/L) 21 (5) 22 (6) 0·24

Tidal volume (mL) 671 (126) 511 (119) <0·001

Total minute ventilation (L per min) 13 (4) 12 (4) <0·001

Positive end-expiratory pressure (cm H20) 8·6 (3·8) 9·5 (4·3) <0·001

Plateau pressure (cm H20) 30 (8) 27 (7) <0·001

Mean airway pressure (cm H20) 16 (5) 16 (5) 0·38

PaCO2 (mm Hg) 37 (8) 39 (9) <0·001

Body-mass index 27 (7) 27 (7) 0·53 

Data are mean (SD), n (%), n/N (%), or median (IQR). *Denominator was 461 for ARMA and 522 for ALVEOLI due to 
missing data. †Denominator was 338 due to missing data. ARDS=acute respiratory distress syndrome. APACHE=Acute 
Physiology and Chronic Health Evaluation. 

 Table 1: Comparison of baseline characteristics of patients between the ARMA and ALVEOLI cohorts

ARMA cohort ALVEOLI cohort p value

Protein C (% control) 47 (32–66) 78 (45–122) <0·001

Plasminogen activator inhibitor-1 (ng/mL) 70 (40–138) 61 (30–144) 0·002

Interleukin-6 (pg/mL) 264 (109–766) 238 (93–741) 0·26

Interleukin-8 (pg/mL) 43 (20–93) 40 (16–98) 0·001

Soluble tumour necrosis factor receptor-1 
(pg/mL)

3255 (2128–5600) 4265 (2599–8448) <0·001

Soluble intercellular adhesion molecule-1 (ng/mL) 627 (345–1038) 924 (605–1385) <0·001

Surfactant protein D (ng/mL) 84 (40–162) 101 (50–218) 0·004

von Willebrand factor antigen (% control) 284 (173–436) 398 (247–624) <0·001

Data are median (IQR). 

 Table 2: Comparison of key baseline biomarker values between the ARMA and ALVEOLI cohorts
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are shown in table 2. As with the clinical data, we noted 
substantial diff erences in all baseline biomarker 
concentrations other than interleukin-6 between cohorts, 
probably due to diff erences in severity of illness, pre-
randomisation ventilation variables, or both.

In each cohort, analysis of latent-class models suggested 
that a two-class model provided the best fi t (table 3). In 
both cohorts, the p value testing the number of classes 
indicated that a two-class model was a signifi cant 
improvement over a one-class model, but that the three-
class model did not signifi cantly increase the explanatory 
power. The value of the Bayesian Information Criteria 
continued to decrease as the number of classes increased—
this decrease suggests that the addition of more classes is 
worth the added model complexity (table 3). This decrease 
was also seen in both the Akakie Information Criteria and 
sample-sized adjusted-Bayesian Information Criteria (data 
not shown). To ensure that a two-class model provided the 
best fi t, we also explored a three-class model, which 
produced one class with only 46 participants in the ARMA 
cohort. In the ALVEOLI cohort, the third class consisted of 
only four participants. Although the decrease in the 
Bayesian Information Criteria would suggest adding 
additional classes to the model, on consideration of the 
p value (favouring a two-class model) and the small 
number of participants in the third class, the two-class 
model was retained. For simplicity, we will henceforth 
refer to the two classes as phenotypes 1 and 2, respectively. 
In the two-class model, the average latent class probabilities 
for the most likely class in the ARMA cohort were 0·95 for 
phenotype 1 and 0·92 for phenotype 2; in the ALVEOLI 
cohort, the analogous probabilities were 0·97 and 0·94, 
indicating good model fi t and very strong probabilities of 
class assignment (appendix).

We next sought to understand the clinical and biological 
characteristics that distinguished each phenotype. To do 
this, in view of the high probabilities of class membership, 

we assigned study participants to their most likely 
phenotype and examined the mean values of the variables 
used in the model for each phenotype. Figure 2 shows 
the continuous variables for the two phenotypes in the 
ARMA cohort, sorted by the degree of separation between 
the phenotypes. Compared with phenotype 1, phenotype 2 
was defi ned by higher plasma concentrations of 
interleukin-6, interleukin-8, soluble tumour necrosis 
factor receptor-1, and plasminogen activator inhibitor-1; 
higher heart rate and total minute ventilation; and lower 
systolic blood pressure, bicarbonate, and protein C 
concentration. Figure 3 shows diff erences in the 
categorical variables between the phenotypes in the 
ARMA cohort. Although sex and ethnic origin diff ered 
with statistical signifi cance but not substantially between 
the phenotypes, vasopressor use at baseline was more 
than three times as common in phenotype 2 compared 
with phenotype 1. Furthermore, participants in 
phenotype 1 were more likely to have trauma-associated 
ARDS and less likely to have sepsis-associated ARDS 
than those in phenotype 2 (fi gure 3).

The latent class models were derived again independently 
in the ALVEOLI cohort, and the contribution of the key 
variables is shown in fi gures 2 and 3. The characteristics of 
the two subphenotypes in this cohort were similar to those 
in the ARMA cohort, with phenotype 2 characterised by 
more profound infl ammation, acidosis, and shock 
compared with phenotype 2. Specifi cally, as in the ARMA 
cohort, phenotype 2 was characterised by higher plasma 
concentrations of infl ammatory biomarkers, higher heart 
rate, and minute ventilation, and by lower systolic blood 
pressure, bicarbonate, and protein C concentration, 
compared with phenotype 2 (fi gure 2). As in the ARMA 
cohort, there were statistically signifi cant diff erences in 
vasopressor use and in ARDS risk factors between the two 
phenotypes (fi gure 3).

To establish whether phenotype prediction would be 
potentially feasible with fewer variables, we used three of 
the measures with the greatest diff erence in mean 
absolute values between phenotypes in the ARMA cohort 
as predictive markers in a receiver-operator characteristic 
curve analysis. With three variables (interleukin-6, 
soluble tumour necrosis factor receptor-1, and 
vasopressor use [yes or no]), the area under the curve for 
phenotype prediction was 0·937 in the ARMA cohort and 
0·929 in the ALVEOLI cohort, suggesting that phenotype 
can be accurately predicted with a small number of 
variables (appendix). The addition of one to two additional 
variables further increased the area under the curve 
slightly in both cohorts (appendix).

To establish whether the two phenotypes had diff erent 
natural histories, we tested the association between 
probable phenotype assignment and clinical outcomes, 
incorporating the degree of uncertainty regarding 
phenotype assignment as described in the methods. In 
the ARMA cohort, participants in phenotype 2 had fewer 
organ failure-free and ventilator-free days than did those 

Bayesian Information 
Criterion

Entropy* Number of individuals per class or 
subphenotype

p value†

1 2 3 4 5

ARMA cohort

2 classes 39947·9 0·78 318 155 ·· ·· ·· 0·036

3 classes 39760·2 0·88 308 119 46 ·· ·· 0·59

4 classes 39656·7 0·86 212 126 43 92 ·· 0·28

5 classes 39583·8 0·86 150 120 36 36 131 0·64

ALVEOLI cohort

2 classes 49709·5 0·87 404 145 ·· ·· ·· 0·016

3 classes 49383·7 0·92 400 145 4 ·· ·· 0·58

4 classes 49098·8 0·94 386 129 4 30 ·· 0·35

5 classes 48955·1 0·87 242 154 4 30 119 0·80

*Entropy is an index of how well the classes are separated: it ranges from zero to one and values of about 0·8 or higher 
are thought to be a sign of a useful model. †By Vuong-Lo-Mendell-Rubin test, testing whether the number of classes 
provides improved model fi t compared with a model using one fewer class.

 Table 3: Fit statistics for latent class models from two to fi ve classes
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Figure 2: Diff erences in standardised values of each continuous variable by phenotype in the ARMA cohort (A) and the ALVEOLI cohort (B)
The variables are sorted on the basis of the degree of separation between the classes from maximum positive separation on the left (ie, phenotype 2 higher than 
phenotype 1) to maximum negative separation on the right (ie, phenotype 2 lower than phenotype 1). Variable standardisation, in which all means are scaled to 
zero and SDs to one, is described in the appendix. A value of +1 for the standardised variable signifi es that the mean value for a given phenotype was one SD 
higher than the mean value in the cohort as a whole. TNFr1=tumour necrosis factor receptor-1. PAI-1=plasminogen activator inhibitor-1. MinVent=total minute 
ventilation. ICAM-1=intercellular adhesion molecule-1. MAP=mean airway pressure. VWF=von Willebrand factor. PEEP=positive end-expiratory pressure. 
Urine=urine output over prior 24 h. BMI=body-mass index. SBP=systolic blood pressure. SPD=surfactant protein D. PaCO2=partial pressure of carbon dioxide in 
arterial blood.
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in phenotype 1 (table 4). Furthermore, participants in 
phenotype 2 had higher mortality compared with those 
in phenotype 1 (44% vs 23%, p=0·006; table 4). Likewise, 
in the ALVEOLI cohort, participants in phenotype 2 had 
much worse clinical outcomes than those in phenotype 1, 
including a much higher mortality rate (51% vs 19%, 
p<0·001; table 4). Clinical outcomes analysed without 

adjustment for uncertainty about phenotype assignment 
showed a similar pattern (appendix).

Finally, we used data from the ALVEOLI trial to 
establish whether inter-phenotype diff erences existed in 
response to randomly assigned treatment (mechanical 
ventilation with higher vs lower PEEP). We saw that 
PEEP strategy had diff erent eff ects on mortality in the 
two diff erent phenotypes (p=0·049 for interaction). 
Specifi cally, within phenotype 1, 48 (24%) of 202 patients 
randomly allocated to the higher PEEP strategy died, 
compared with 33 (16%) of 202 patients randomly 
allocated to the low PEEP strategy. In phenotype 2, 
31 (42%) of 74 patients randomly allocated to the higher 
PEEP strategy died, compared with 36 (51%) of 71 patients 
randomly allocated to the low PEEP strategy. We saw 
even stronger interactions between phenotype and PEEP 
strategy for the outcomes of ventilator-free and organ 
failure-free days, showing signifi cantly diff erential eff ects 
of high versus low PEEP on these clinical outcomes in 
the two diff erent phenotypes (table 5).

As a sensitivity analysis to determine whether general 
severity of illness scores could supplant phenotype 
identifi cation, we tested for interactions between 
APACHE III score and PEEP. By contrast with the 
analyses using phenotype, we detected no statistically 
signifi cant interactions between APACHE score and 
PEEP strategy for the outcomes of mortality, organ 
failure-free days, or ventilator-free days (p=0·58 for 
mortality, p=0·69 for ventilator-free days, and p=0·99 for 
organ failure-free days for interactions).

Discussion
Our fi ndings suggest the existence of two diff erent 
subphenotypes in patients with ARDS. These two 
subphenotypes have very diff erent natural histories, 
clinical and biological characteristics, clinical outcomes, 
and response to treatment, fulfi lling the criteria necessary 
to defi ne a subphenotype.7 Clinicians caring for patients 
with ARDS and researchers studying ARDS have long 
appreciated the heterogeneity within this complex 
syndrome, but the critical care community has not had 
empirical data for whether or how to refi ne our 
defi nitions and further subdivide ARDS. The 
subphenotypes identifi ed here were evident in 
independent analyses of two clinical trial samples, 
despite substantial diff erences in the baseline clinical 
and biological profi les of these two cohorts. Furthermore, 
subphenotype was strongly and consistently associated 
with clinical outcomes in both cohorts, with pronounced 
diff erences in ventilator-free days, organ failure-free 
days, and mortality. Perhaps most importantly, the two 
subphenotypes had diff erent responses to treatment 
(lower vs higher PEEP) in the ALVEOLI cohort, 
suggesting that identifi cation of subphenotypes might be 
crucial for future clinical trials in ARDS.

Taken together, the variables that characterise 
phenotype 2 (high plasma concentrations of infl am-

Figure 3: Diff erence in categorical variables (A, B) and ARDS risk factors (C, D) by phenotype assignment
(A) p=0·007 for comparison of sex, p<0·0001 for other comparisons. (B) p=0·96 for comparison of sex, p=0·004 
for ethnic origin, p<0·0001 for vasopressor use. (C) p<0·0001 for diff erence across all variables. (D) p<0·0001 for 
diff erence across all variables. ARDS=acute respiratory distress syndrome.
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matory biomarkers, severe shock, and metabolic 
acidosis) paint a portrait of a hyper-infl ammatory ARDS 
sub phenotype that could affl  ict patients across the 
demographic spectrum of age, sex, ethnic origin, and 
cause of ARDS (although there are some diff erences in 
the latter factors by subphenotype). By contrast with 
phenotype 2, phenotype 1 seems to be characterised by 
less severe infl ammation and shock. Of note, neither the 
severity of ARDS (PaO2/FiO2 ratio), the severity of renal 
or hepatic failure, or the extent of leucocytosis 
distinguished the two phenotypes from each other, since 
the specifi ed variables had similar values in the two 
phenotypes (fi gure 2). In concert with the results of our 
sensitivity analysis that incorporated APACHE III 
scores, these data suggest that phenotype is not just an 
indicator of severity of illness as measured by traditional 
prognostic indices.

No one clinical or biological variable was suffi  cient to 
identify subphenotype; put diff erently, none of the 
clinical characteristics typically used to subdivide 
ARDS—eg, ARDS risk factor, presence or absence of 
sepsis, direct versus indirect lung injury, or the use of 
vasopressors—was strictly associated with one or the 
other subphenotype (fi gure 3). When considered as a 
group, however, the clinical variables that characterise 
phenotype assignment form a coherent and plausible 
cluster that has face validity from a clinical and research 
perspective. For instance, phenotype 2 is characterised by 
a high prevalence of vasopressor use, more severe 
acidosis, and a high minute ventilation—a collection of 
clinical datapoints that forms a recognisable pattern of 
more severe ARDS and systemic injury to the practising 
intensivist. Hypothetically, if phenotype 2 had been 
characterised by a low prevalence of vasopressor use, 
severe acidosis, and a low minute ventilation, then it 
would not seem recognisable from a clinical perspective.

Of the continuous variables, the plasma protein 
biomarkers generally contributed more prominently to 
the phenotype defi nitions than did most of the clinical 
variables (including biomarkers used in clinical practice 
such as serum creatinine and white blood cell counts; 
fi gure 2). This fi nding suggests that the plasma protein 
biomarkers might be capturing aspects of 
pathophysiology that are not otherwise well-captured in 
our clinical data, and also that development of the 
capability to measure these biomarkers in an expedient 
point-of-care method might be necessary to incorporate 
subphenotype determination into clinical trials.

Two important branch points in the analytic strategy 
warrant further discussion. First, we deliberated 
carefully at the inception of the analyses about whether 
to include the high tidal volume patients in the analyses 
of the ARMA cohort, which would have enabled us to 
test for an interaction between tidal volume and 
subphenotype in that cohort. We decided not to include 
these patients because to do so would have precluded 
analysis of the association between subphenotype and 

mortality in that cohort. We thought this aspect of the 
analysis was too important to discard, and therefore 
decided to exclude the patients treated with high tidal 
volume. Second, the ultimate decision as to the 
optimum number of classes identifi ed by the models 
requires consideration of several factors. Latent class 
models seek to fi nd the best model fi t, assuming that 
there are a given number of latent classes in the data. If 
there are only two classes but we fi t a three-class model, 
the third class will be forced in by selecting a small 
number of cases with a more extreme or unique set of 
values. The p value for the Vuong-Lo-Mendell-Rubin 
test strongly suggests that a two-class model is 
preferable to a three-class model in both cohorts. That 
data, combined with the small size of the third class, led 
us to focus on a two-class model. A class that is very 
small, relatively, off ers little information and might be 
more of an anomaly than a useful fi nding.

Although latent class modelling has not to our 
knowledge been previously applied in classic diverse 
ARDS cohorts (panel), Shah and colleagues used latent 
class-based models to identify subphenotypes within 
primary graft dysfunction, a type of acute lung injury that 
occurs after lung transplantation.27 These models focused 
exclusively on the timing of onset and resolution of lung 
dysfunction, using only grades of primary graft 
dysfunction at various timepoints to generate latent 
classes, and the analyses showed that patients with 
severe persistent dysfunction (one of three identifi ed 
classes) had the worst clinical outcomes. Similarly, Reilly 
and colleagues from the same research group did a latent 
class analysis of timing of ARDS after severe trauma.28  
In addition to their focus on a diff erent population, these 

ARMA cohort ALVEOLI cohort

Phenotype 1 
(n=318)

Phenotype 2 
(n=155)

p value Phenotype 1 
(n=404)

Phenotype 2 
(n=145)

p value

Mortality (at 90 days) 23% 44% 0·006 19% 51% <0·001 

Ventilator-free days 17·8 7·7 <0·001 18·4 8·3 <0·001 

Organ failure-free days 14·5 8·0 <0·001 16·5 8·4 <0·001 

Values are estimated means that take into account the uncertainty of class membership. 

 Table 4: Association between phenotype assignment and clinical outcomes, adjusted for degree of 
uncertainty regarding phenotype assignment

Phenotype 1 (n=404) Phenotype 2 (n=145)

Low PEEP 
(n=202)

High PEEP 
(n=202)

Low PEEP 
(n=71)

High PEEP 
(n=74)

p value*

Mortality at 90 days 33 (16%) 48 (24%) 36 (51%) 31 (42%) 0·049

Ventilator-free days 20 (10–25) 21 (3–24) 2 (0–21) 4·5 (0–20) 0·018

Organ failure free-days 22 (11–26) 22 (9–26) 4 (0–18) 6·5 (0–21) 0·003

Data are n (%) or median (IQR). *p value for interaction between positive end-expiratory pressure (PEEP) assignment and 
phenotype.

 Table 5: Diff erences in response to PEEP strategy by phenotype (ALVEOLI cohort only)
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approaches diff er from ours in their exclusive use of 
timing of onset and resolution of lung injury as inputs in 
the latent class models; whether consideration of 
additional clinical data points or biomarkers as class-
defi ning variables would lead to identifi cation of diff erent 
subphenotypes remains unknown.

The fi nding of diff erential response to PEEP by ARDS 
subphenotype has face validity in view of fi ndings from 
other studies that have shown interactions between 
PEEP response and ARDS severity. Findings from a 
meta-analysis of 2299 patients with ARDS (including the 
549 patients from the ALVEOLI cohort) showed that 
those with a PaO2/FiO2 ratio of less than 200 had a 5% 
lower hospital mortality with higher PEEP strategies 
compared with lower PEEP strategies (p=0·049).29,30 

These approaches contrast with ours in two important 
ways. First, although PaO2/FiO2 ratio was considered in 
subphenotype identifi cation, it was not one of the 
variables that contributed most prominently to the 
classifi cation (fi gure 2). Second, the interaction between 
PEEP and subphenotype that we identifi ed is 
quantitatively larger and was statistically signifi cant in a 
much smaller sample size than in the meta-analysis, 
suggesting that the interaction between subphenotype 
and PEEP response is substantially stronger than that 
between the PaO2/FiO2 ratio and PEEP response. It is 
important to emphasise that while the interactions 
identifi ed between PEEP and clinical outcomes are 
potentially provocative, we are reticent to make any 
recommendations for clinical care on the basis of a 
subgroup analysis. Rather, we view these results as 
hypothesis-generating, and think that they lend support 
to the need for more rapid or bedside assays of the 
molecular phenotype of critically ill patients to validate 
these fi ndings in future trials. 

Our study has several strengths. First, the latent class 
models were generated independently in each of the 
two cohorts. Specifi cally, fi ndings from the ARMA 
cohort were not considered in the modelling strategy in 
the ALVEOLI cohort. In view of this approach, the 
similarity of the fi ndings in the two cohorts is 
noteworthy. Likewise, since clinical outcomes were not 
considered as class-defi ning variables, the strengths and 
consistency of the associations between subphenotype 
and clinical outcomes are striking. Second, because we 
studied patients within the framework of a randomised 
controlled trial, we were able to draw stronger 
conclusions about causal associations between treat-
ment (with PEEP) and clinical outcomes, with the usual 
caveats regarding subgroup analyses. Third, by virtue of 
using data from patients enrolled in multicentre trials, 
the samples studied are from demographically diverse 
cohorts of patients with ARDS. Fourth, the two cohorts 
diff ered substantially on many clinical and biological 
measures (tables 1 and 2), strengthening the 
generalisability of our fi ndings and making the 
similarity of the subphenotypes identifi ed in the two 
cohorts more signifi cant.

This study has some limitations. First, the patients 
included in these analyses were drawn from randomised 
controlled trials of ARDS; diff erent subphenotypes might 
be present in less carefully selected populations of 
patients with ARDS. Second, the biomarkers included in 
these analyses were restricted to those that had been 
measured already in both cohorts. Although these 
biomarkers have value for prognosis and pathogenesis, 
other informative biomarkers have emerged in ARDS 
research over the past several years, including 
angiopoietin-2,31–33 the receptor for advanced glycation 
endproducts,34 club (formerly known as Clara) cell 16,35 
brain natriuretic peptide,36 interleukin-1 receptor 
antagonist,37 and others. Consideration of these 

Panel: Research in context

Systematic review
We did not do a formal systematic review before the inception 
of these analyses; however, we knew from our engagement 
with the literature that there have been few attempts to use 
analytic mixture-model based methods to identify 
subphenotypes of ARDS.  Since the time of the original 
identifi cation of ARDS and increasingly over the past two 
decades, there has been recognition of the clinical and 
biological heterogeneity within the syndrome.  As a result, 
some investigators have proposed subdividing ARDS on the 
basis of clinical risk factors, or by direct versus indirect aetiology 
of lung injury; however, there is no consensus in the fi eld on the 
appropriate approach to reducing ARDS heterogeneity.  Some 
previous analyses have attempted to identify ARDS subgroups 
using traditional regression-based methods; additionally, 
investigators have used latent class models to analyse the 
timing of lung injury after lung transplantation and after severe 
trauma.  After completion of this study, we searched PubMed 
using the terms (ARDS OR “acute lung injury) AND (“latent 
class” OR subphenotype OR endophenotype OR endotype) and 
identifi ed only one study of severe trauma and one editorial. 
We applied no language restrictions. We did our last search on 
May 9, 2014. To our knowledge, this paper is the fi rst report of 
the use of latent class models to identify subphenotypes of 
ARDS using both clinical and biomarker data within two diverse 
and heterogeneous samples of patients with ARDS. 

Interpretation
We identifi ed two subphenotypes within ARDS, one of which is 
characterised by more severe infl ammation, shock, and 
metabolic acidosis, substantially worse clinical outcomes, and a 
diff erential response to treatment with positive end-expiratory 
pressure. These fi ndings provide proof-of-concept that the 
clinical syndrome of ARDS contains distinct subphenotypes and 
should prompt future studies aimed at further elucidating these 
subphenotypes with comprehensive clinical and biological data. 
This novel approach to identifi cation of subphenotypes 
could inform the design of future randomised controlled trials 
of new treatments for ARDS.
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biomarkers, or of alternative genomic or metabolomic 
markers, might result in more comprehensive 
subphenotypes being identifi ed or may lead to the 
recognition of these biomarkers as important classifi ers. 
Third, analyses of possible classifying variables was 
restricted to the data obtained in the original studies; 
clinical variables such as alcohol use,38 cigarette smoking,39 
or other comorbidities could contribute to subphenotype 
identifi cation but were not available for this analysis. 
Likewise, much histopathologic variability has been 
shown within ARDS in autopsy series; whether or how 
consideration of pathology fi ndings would infl uence 
subphenotype identifi cation remains unknown.40,41

We suggest that these fi ndings provide proof-of-concept 
that the clinical syndrome of ARDS contains distinct 
subphenotypes and should prompt future studies aimed 
at further elucidating these subphenotypes with 
comprehensive clinical and biological data. In view of the 
diff erential response to treatment by subphenotype 
identifi ed here, this area of research has the potential to 
directly inform future randomised controlled trials of 
novel treatments for ARDS.
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