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ABSTRACT Attempts to produce a vaccine to protect against Chlamydia trachomatis-
induced trachoma were initiated more than 100 years ago and continued for several
decades. Using whole organisms, protective responses were obtained. However,
upon exposure to C. trachomatis, disease exacerbation developed in some immu-
nized individuals, precluding the implementation of the vaccine. Evidence of the role
of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s,
and it soon became evident that it can cause acute infections and long-term sequelae in
women, men, and newborns. The main focus of this minireview is to summarize recent
findings and discuss formulations, including antigens, adjuvants, routes, and delivery
systems for immunization, primarily explored in the female mouse model, with the
goal of implementing a vaccine against C. trachomatis genital infections.

KEYWORDS Chlamydia trachomatis vaccines, Chlamydia muridarum, antigens,
adjuvants, routes of immunization, delivery systems, Chlamydia trachomatis,
vaccinology

hlamydiae infections are widespread throughout the animal kingdom (1-3). Until

recently, trachoma was thought to be the most common clinical manifestation in
humans (1, 2). Trachoma likely first appeared in China and Mesopotamia (~2,700 B.C.)
and then spread to the Middle East and the Mediterranean region (1, 2, 4).

HISTORICAL BACKGROUND

In 1907, Halberstaedter and von Prowazek (5), using Giemsa stain, first described the
presence of intracytoplasmic inclusions in conjunctival scrapings from monkeys. How-
ever, it was not until 1957 that Tang et al. (6, 7), utilizing chicken embryos, isolated
Chlamydia from humans with trachoma, although the lymphogranuloma strains have
been grown in the yolk sac since 1942 (2, 8).

In 1913, a group in Tunis, led by Nicolle, initiated vaccine studies in humans and
nonhuman primates (9). Resistance to rechallenge was observed in some individuals,
but in others, inconclusive results occurred. Major efforts to produce a vaccine using
live or inactivated Chlamydia occurred after the isolation of the organisms by Tang et
al. (6, 7). Four research groups (1, 2, 4) performed vaccine trials and reached similar
conclusions: some vaccine formulations were protective for a period of 1 to 3 years, the
protection was serovar/serogroup specific, and certain immunized individuals, upon
reexposure, developed more-severe disease than the placebo-treated groups (8, 10—
16). In a few instances, a higher attack rate was observed in vaccinated children than
in controls (17, 18). Although Bietti’s laboratory manufactured a vaccine, it was never
implemented in humans (16).

Improvements in sanitary and hygienic conditions have resulted in the disappear-
ance of trachoma from most parts of the world. In 1993, with the goal to eradicate
trachoma by 2020, the WHO implemented the SAFE strategy (2, 19). This SAFE plan
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Minireview

includes surgery for trichiasis, antibiotic treatment of active trachoma, facial cleanliness,
and environmental improvements focusing on providing clean water supply and toilets
and reducing the number of flies in the affected areas.

The presence of Chlamydia trachomatis in the genital tract was first indirectly
described when a nongonococcal, or amicrobiana, ophthalmia was observed in new-
borns (20). In 1910, Heymann (21) noted the presence of inclusions in samples from the
cervix of the mother and the urethra of the father of an infant with inclusion blennor-
rhea. It is even possible that the identification of Chlamydia in the genital tract was
described earlier as the cause of an amicrobial urethritis (22). Using the yolk sac
technique, Jones et al. (23) first recovered C. trachomatis from the cervix of a mother
with pelvic inflammatory disease (PID). In the 1970s, the introduction of tissue culture
techniques greatly improved the ability to isolate Chlamydia from the genital tracts of
males and females and the eyes of newborns (1, 2).

C. trachomatis is now recognized as the most common sexually transmitted bacterial
infection, with approximately 100 to 150 million new cases occurring each year
worldwide, affecting 68 million females (24-26). Most of the infections (70 to 80%) in
women are asymptomatic; however, it is estimated that 5 out of 1,000 will develop
tubal factor infertility (27-29). The long-term sequelae of a C. trachomatis infection in
females with PID include chronic abdominal pain, ectopic pregnancy, and infertility (27,
29-37). Screening and treating females may increase the rates of reinfection but
reduces the incidence of PID (31, 38-40). In males, epididymitis, but not infertility, is the
most severe complication (1, 41). Reactive arthritis (Reiter's syndrome [urethritis, con-
junctivitis, and arthritis]) has also been associated with Chlamydia (1, 41). In females,
most cases of upper genital pathology are due to a single episode of PID. For example,
in the pioneering work by Westrom et al. (30), 1,844 women with laparoscopically
verified PID and 657 women with normal laparoscopic results were studied over a
period of several years. Of the 1,241 women who had episodes of PID, 141 were not
able to conceive. Tubal factor infertility was associated with the severity and number of
PID episodes. The majority of women who were not able to conceive, 56% (79/141), had
a single PID episode, and in most of them, 62% (49/79), the episode was severe. The
number of PID episodes also affected the chances of developing tubal infertility. Of the
individuals who had a single episode, 8.0% (79/991) became infertile, while 19.5%
(36/185) of those who had two episodes and 40.0% (26/65) of patients who had three
or more episodes were infertile. The ectopic pregnancy rates for the first pregnancy
after index laparoscopy were 1.4% in controls and 9.1% among patients. Prevention of
these long-term sequelae is the principal goal of a vaccine (26, 42-51).

IMMUNITY TO C. TRACHOMATIS GENITAL INFECTIONS

Natural immunity in humans. It is well-known that genital chlamydial infections
are more frequent in young sexually active individuals, between the ages of 15 to 20,
than in older persons (24, 52, 53). This finding has been interpreted as evidence of
naturally induced protective immunity. Some clinical and experimental evidence sup-
ports this suggestion. For example, in sex workers, resistance to infection correlates
with duration of prostitution, independently of age, indicating development of ac-
quired immunity (54). Geisler et al. (55) also showed that natural immunity occurs in
females with a C. trachomatis genital tract infection. Because antibiotic treatment
interfered with the development of natural immunity, individuals who were not treated
with antibiotics had fewer reinfections than those who were treated with antibiotics.
However, it is important to note that, at least in mice, resistance to a primary genital
infection increases with age, suggesting that some physiological processes may ac-
count for a lower prevalence of chlamydial infections in older individuals (56, 57).

Use of Chlamydia muridarum versus C. trachomatis in vaccinology studies. The
C. muridarum isolate, previously called C. trachomatis mouse pneumonitis (MoPn), has
been extensively utilized to perform studies in mice (44, 45, 58-60). At the genomic
level, C. trachomatis and C. muridarum are highly orthologous, and thus, it is thought
that findings in mice will correlate well with observations in humans (61). There are,
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however, significant differences in the pathogenicity of C. trachomatis versus C. muri-
darum in the mouse model.

Following a vaginal challenge, C. trachomatis serovars (A to K) and C. muridarum
produce quite different acute and chronic diseases in mice. In animals not pretreated
with depot-medroxyprogesterone acetate (DMPA), depending on the strain, stage of
the estrous cycle, and age of the mice, different doses of C. muridarum (50% infective
doses [ID5,] of ~10* to >107 inclusion-forming units [IFU]) produce severe infection
and infertility, while C. trachomatis does not do so (56, 57, 60, 62). When pretreated with
DMPA, all strains of mice tested so far, with the exception of A/J and DBA/2J mice,
develop severe infection and long-term sequelae following a vaginal challenge with a
low dose of C. muridarum (IDs, of ~200 IFU) (45, 63-67). In contrast, a vaginal infection
with C. trachomatis in mice pretreated with DMPA induces only mild, short infections
and no long-term upper genital pathology, i.e., hydrosalpinx and/or infertility (32, 63,
68-72). Even in the highly susceptible C3H/HeJ mice that have a mutated nonfunctional
Toll-like receptor 4 (TLR4), a vaginal infection with C. trachomatis serovar D (strain
UW-3Cx) does not elicit long-term tubal pathology (73).

Two publications have reported infertility, without hydrosalpinx formation, follow-
ing single or multiple vaginal infections with very high doses (~10° or 107 IFU) of C.
trachomatis serovar D or E in mice pretreated with DMPA (74, 75). The lack of
hydrosalpinx in these mice suggests that no gross long-term damage was produced in
the fallopian tube, and therefore, another mechanism(s), which may or may not be
relevant to humans, had to account for the infertility. Hadad et al. (76) recently reported
infertility in mice following a vaginal challenge with 3 X 104 IFU of a clinical serovar D
isolate. The histopathological findings were not discussed. The apparent high virulence
of this serovar D isolate is unusual and needs confirmation.

Sturdevant and Caldwell challenged the validity of using C. trachomatis in vaccin-
ology (77). These authors reported that C57BL/6 Rag1~—/~ mice, which lack mature T-
and B-cell immunity, treated with DMPA cleared a vaginal infection with C. trachomatis
serovar D (D-LC), suggesting that innate immunity is sufficient to control the infection.
Interestingly, C3H/HeN male mice with severe combined immunodeficiency (SCID)
cannot control a urethral challenge with C. trachomatis serovar D (UW-3/Cx), while the
wild-type (WT) mice can (78). Finally, following transcervical, intrauterine, or intrabursal
infections, in mice pretreated with DMPA, not all C. trachomatis serovars/isolates induce
infertility in most strains of animals, while C. muridarum does (79-87).

In conclusion, in our opinion, further testing of C. trachomatis isolates is needed to
validate their use in vaccine studies. The production of a humanized mouse model
could help to address some of the limitations (88). In the meantime, C. muridarum
allows us to reproduce in mice the mild, severe acute, and chronic infections that C.
trachomatis produces in humans. The main shortcoming of C. muridarum is the lack of
isolates that will allow testing for cross-serovar protection.

Immunity to C. muridarum in the mouse model. Characterizing immune re-
sponses in humans is extremely difficult for many reasons (1, 32, 59). Each individual
has a different immunogenetic background. Infection can occur at birth or shortly
thereafter. The infection can be asymptomatic. There is cross-reactivity among different
species of Chlamydia. Keeping track of sexual behavior in humans is difficult. Therefore,
most of what we know about protective immunity against chlamydial infections is
based on work performed in the mouse model. Using WT and knockout (KO) mice for
genes involved in cellular and humoral immune responses, cytokines and chemokines,
and passive transfer of T cells and antibodies, immune components that play a role in
protection against primary and secondary genital C. muridarum challenges have been
determined (44, 45). From these studies, it was found that major histocompatibility
complex class Il (MHC-II)-restricted CD4" T cells are required for protective immunity,
while MHC-I-restricted CD8*F T cells are not essential for resolution of a primary
infection or protection against a genital reinfection (64, 89-91). Human data support
these findings. For example, HIV-1-infected patients, who have low CD4* T-cell counts,
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are at a higher risk of becoming genitally infected with C. trachomatis and developing
long-term sequelae than healthy individuals (92). Although CD8* T cells play a critical
role in protection against most intracellular pathogens, they are not required to control
chlamydial infections. Interestingly, Igietseme et al. (93) showed that clones of CD8* T
cells, likely by producing gamma interferon (IFN-vy), enhance clearance of a C. muri-
darum genital infection, and Nogueira et al. (94) demonstrated that cross-mucosa
protection (respiratory and genital) is mediated by CD4* and CD8* T cells and not by
antibodies.

After vaccination, some of the circulating Th1 lymphocytes may become mucosal
tissue-resident memory cells (Trm) rapidly reducing C. muridarum load upon reinfection
(85, 95). This hypothesis is consistent with the detection of CD4" T cells in the mouse
genital tract tissues long after the infection was cleared (96). Once these lymphocytes
have been deposited locally, they may protect against microbial invasion by both
antigen-specific and -nonspecific means and even undergo autonomous proliferation
(97-99). Thus, as first proposed by Morrison and Morrison (96), an effective C. tracho-
matis vaccine may need to induce Trm in the genital tract mucosa (95).

The role of B cells and/or antibodies against a primary infection is not clear.
However, antibodies have been found to be as protective against reinfection as CD4™
T cells, making them important in vaccine development (90, 100-102). Following a
primary C. muridarum infection of the genital tract, mice are resistant to a rechallenge
if CD4™" T cells and/or antibodies are present (100, 103, 104). Antibody-deficient mice
and those that lack Fc receptors resolve a primary C. muridarum genital infection, but
not a secondary infection, as well as WT animals do (44, 64, 90, 100).

Considering the extraordinary complexity of the antibody response, it is not sur-
prising that in humans and animal models, some antibodies have been found to be
protective, while others correlated with pathogenesis. For example, high levels of
antibodies to the C. trachomatis 60-kDa heat shock protein (Hsp60) have more often
been detected in patients with long-term sequelae than in individuals without com-
plications (105-107). However, high IgA levels in the genital tract protect mice against
a C. muridarum infection and correlate with protection against the long-term sequelae
(108, 109). In humans, mucosal antibodies, especially IgA, correlate with reduced
bacterial shedding (108). Also, even in the absence of T cells, passive immunization of
mice with monoclonal antibodies can control a primary C. muridarum infection (110,
111).

Th1 cytokines, particularly IFN-y and interleukin 12 (IL-12), are needed for protection
against C. muridarum (112, 113). In contrast, IL-10, a Th2 cytokine, was found to be
associated with pathological responses (114). The critical role of IFN-y against chla-
mydial infections has been demonstrated using neutralizing antibodies and by showing
that mice deficient in IFN-y or its receptor do not resolve a primary C. muridarum
genital infection (112, 115). These animals develop systemic dissemination but are
partially protected against reinfection (101, 113, 116). In conclusion, based on the
evidence we have in mice infected with C. muridarum, to elicit optimal protection, a
chlamydial vaccine will have to induce CD4* T cells with Th1-biased cytokines, in
particular IFN-y, and humoral responses, especially mucosal antibodies.

C. TRACHOMATIS VACCINE ANTIGENS

Whole-cell vaccines. In mice, intranasal immunization with live elementary bodies
(EB) was the first approach shown to elicit very robust protection against a C. muri-
darum genital infection (117, 118). Following an intrabursal challenge, vaccinated mice
showed a significant decrease in vaginal shedding and, more importantly, protection
against infertility. This protection was found to be long-lived and also protected
newborn mice, suggesting that a live-chlamydia vaccine could be effective in very
young individuals before sexual maturity (119, 120). As determined by vaginal shed-
ding, intranasal inoculation with live EB was also found to protect mice against a
vaginal challenge with C. trachomatis serovar E (Bour) (121). Protection with C. muri-
darum UV-inactivated EB was not as effective as that obtained with viable organisms,
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and reticulate bodies were not protective (121-124). UV-inactivated serovar E (Bour) EB,
with ASO1B as an adjuvant, were shown to induce cross protection against vaginal and
intrauterine challenges with serovar K (UW-31/Cx) as determined by shedding (125).
Adoptive transfer of dendritic cells pulsed ex vivo with inactivated C. muridarum EB
achieved very strong protection that was considered to depend on IL-12 production by
the pulsed dendritic cells (126, 127). These results support further investigation on
testing nonviable whole Chlamydia organisms as vaccines.

The use of a live attenuated EB vaccine is another potential approach. Mice
inoculated vaginally with a plasmid-cured isolate of C. muridarum developed an
infection with a course similar to that following inoculation with the WT isolate, but no
upper genital pathology was observed (128, 129). Following a subsequent challenge
with the WT isolate, animals first infected with plasmid-cured C. muridarum had less
upper genital pathology than those first inoculated with the WT. However, there was
minimal protection against vaginal shedding, and the fertility of the mice was not
tested. Similar findings were reported when plasmid-cured C. muridarum was inocu-
lated into the ovarian bursa (129). Mice vaccinated with a plasmid-cured C. trachomatis
serovar L2R had reduced shedding but no upper genital tract protection against a
challenge with serovar D (UW-3Cx) (130).

Studies of nonhuman primates have also shown that vaccination with plasmid-
cured C. trachomatis serovar A, at least in animals that shared a common MHC-II class
allele, can induce protection against ocular infection and disease (131). However,
additional work is required before this approach is tested in humans. For example, Qu
et al. (132) showed that cervical inoculation of rhesus macaques with WT or plasmid-
deficient C. trachomatis serovar D (UW-3Cx) resulted in the same levels of infection,
immunity, and pathology in the genital tract. This suggests that the plasmid is not
required for C. trachomatis to colonize the genital tracts of rhesus macaques. However,
the plasmid appears to be important for C. trachomatis infection of the human genital
tract, since most human isolates are plasmid competent (133, 134).

It is not clear why live Chlamydia induced better protective immunity than killed
organisms (122-124). Replication and dissemination of live Chlamydia will broaden and
expand the antigenic load (135). Also, one distinguishing feature is that inactivated
organisms load far fewer peptides onto dendritic cell MHC-Il molecules than do viable
organisms (123). However, it will be worth comparing the levels and types of Trm in the
genital tracts of mice immunized with live or dead EB, since it was recently demon-
strated that the requirement for viability to induce protective immunity could be
overcome by using adjuvantized nanoparticles, which correlated with the induction of
transmucosal Trm (85).

Subunit vaccines. (i) Introduction. Safety concerns about the negative effects
observed during the trachoma vaccine trials and costs of production have encouraged
the formulation of a C. trachomatis subunit vaccine. Based on the trachoma vaccine
trials, protection against an ocular challenge was found to be serovar/serogroup
specific, an observation supported in experiments with mice (1, 2, 136, 137). DNA
sequencing of the major outer membrane protein (MOMP) and computational analysis
established that MOMP was likely responsible for the protection observed during the
trachoma vaccine trials (137-140). Initial attempts to vaccinate animals with C. muri-
darum recombinant MOMP (rMOMP), peptides corresponding to the variable domains
(VD), or with DNA plasmids that expressed this protein were not encouraging (65,
141-145). In addition, the expected serovar/serogroup specificity of the protection
elicited with MOMP was, and still is, a significant concern. For these reasons, the search
for additional protective antigens was undertaken. Initially, an empirical approach was
used, and several proteins, particularly those localized to the outer membrane of
Chlamydia, were tested. Since the availability of the Chlamydia genome sequence and
implementation of protein microarrays, it became possible to identify chlamydial
antigens that can induce antibody- and/or cell-mediated immune responses in infected
individuals (107, 146-158). Identification of immunogenic components using these
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approaches, however, does not imply that they will be protective. Therefore, it is
necessary to test these antigens in animal models to demonstrate their protective
ability.

(ii) Major outer membrane protein. The major outer membrane protein (MOMP)
is a 40-kDa protein that accounts for approximately 60% of the mass of the outer
membrane of Chlamydia (159, 160). Structurally, MOMP has four VD, which define the
uniqueness of each serovar, alternating with five constant domains (CD) (138, 139). Like
porins from other Gram-negative bacteria, MOMP has a trimeric structure (161). How-
ever, unlike most bacterial membrane proteins, MOMP is highly disulfide cross-linked
with other cysteine-rich proteins, forming an intermolecular network that may account
for the structural rigidity of the outer membrane of EB, since Chlamydia has limited
amounts of peptidoglycan (162-165). In humans and animals, MOMP is an immuno-
dominant antigen that has multiple T-cell and B-cell epitopes and can induce T-cell
immunity and neutralizing antibodies (166-170).

The first evidence that a subunit Chlamydia vaccine could protect mice against a
genital challenge was reported in 1997 (171). Mice immunized using a detergent-
extracted chlamydial outer membrane complex (COMC) and incomplete Freund’s
adjuvant were protected as determined by the numbers of C. muridarum IFU recovered
and fertility rates (171). This study also showed that MOMP, extracted with several
detergents, was not as protective as the COMC. The authors postulated that the
enhanced protection elicited by the COMC was due to the conservation of the native
conformation of MOMP and not due to the additional antigens present in the COMC.
In 2001, mice vaccinated with MOMP in its native trimeric conformation (hnMOMP) with
Freund'’s adjuvant were significantly protected against shedding and infertility, while
those vaccinated with denatured nMOMP were not, supporting the critical role of the
structure of MOMP in protection (172). The humoral immune responses were lower, but
the cell-mediated immune responses were higher, in mice immunized with nMOMP
versus denatured nMOMP. Pal et al. (169, 173) vaccinated mice with nMOMP, using CpG
plus Montanide ISA 720 as adjuvants, and showed very robust protection against an
intrabursal challenge with C. muridarum. Animals immunized with nMOMP were as
protected against shedding and infertility as those immunized intranasally with live EB.
The importance of the conformation of MOMP for protection was further demonstrated
when rMOMP and nMOMP were directly compared, using CpG plus Montanide ISA 720
as adjuvants, for their ability to elicit protection against a respiratory C. muridarum
challenge in mice (174). Based on changes in body weight, lung weight, and number
of IFU recovered from the lungs, n(MOMP was significantly more protective than rMOMP
was. These results have now been confirmed in the genital challenge model (103, 175,
176). Vaccination with nMOMP can protect mice against intrabursal and intravaginal
challenges, with significant decreases in the number of mice that have positive vaginal
cultures, the number of IFU recovered, length of shedding, and infertility rates. In the
vaginal model, it was shown that nMOMP-induced protection requires both CD4*+ T
cells and antibodies (103). Importantly, vaccination of nonhuman primates with the C.
trachomatis serovar A (A2497) nMOMP, formulated with CpG-2395 and Montanide ISA
720, protected against an ocular challenge with the same serovar, as shown by a
significant decrease in shedding (177). However, no protection against inflammatory
responses was observed.

Immunization with C. muridarum rMOMP using various adjuvants has shown prom-
ising results in animal models (174, 176, 178, 179). For example, Hansen et al. (178)
immunized mice with rMOMP and the cationic liposome 1 (CAF01) and, as determined
by a reduced chlamydial load, obtained protection against a vaginal challenge, but
hydrosalpinx formation was not prevented. Hickey et al. (179) administered rMOMP
orally with a novel lipid-based adjuvant, resulting in significant protection against
vaginal shedding, although C. muridarum was still present on the last culture day (18
days postinfection). No difference in the inflammatory response in the genital tract was
noticed at 28 days postinfection. The authors proposed that the lack of protection
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against tissue pathology in the rMOMP-immunized animals was due to the influence of
the treatment with DMPA before the vaginal challenge (179). Carmichael et al. (176),
using C. muridarum rMOMP, CpG plus Montanide ISA 720 as adjuvants and a combi-
nation of mucosal and systemic routes for immunization, showed for the first time
protection against vaginal shedding and infertility using a recombinant antigen.
Badamchi-Zadeh et al. (180) constructed a consensus MOMP from variant sequences of
C. trachomatis serovar E. The consensus MOMP transgene was delivered using plasmid
DNA, human adenovirus 5 (HuAd5) and/or modified vaccinia Ankara (MVA). The
DNA-HuAd5-MVA-protein regimen was used to immunize BALB/c and B6C351 mice.
Based on vaginal shedding, minimal protection against an intravaginal challenge with
serovar D (UW-3/Cx) was observed.

Olsen et al. (181) recently tested a multivalent vaccine containing the VD4 and
surrounding CD of MOMP from C. trachomatis serovars D, E, and F. This construct,
adjuvanted with CAFO1, elicited immune responses in mice; some of the immune
responses were serovar specific, while other responses were to the conserved VD4
epitope (LNPTIAG) and neutralized serovars D, E, and F in vitro. Vaginally challenged
mice were protected as determined by the number of C. trachomatis serovar D
(UW-3/Cx) IFU recovered from the vagina and prevention of the inflammatory response
in the upper genital tract. T-cell depletion and passive transfer of serum experiments
provided evidence of the critical role of CD4* T cells and antibodies in protection.
Using the same MOMP construct, plus CT043 and CT414 antigens, investigators from
the same laboratory elicited neutralizing antibodies and weak protection against
vaginal shedding in minipigs challenged with serovar D (182). Hadad et al. (76) have
reported that a construct consisting of the VD2/VD4 regions of C. trachomatis serovar
E, adjuvanted with cholera toxin (CT), protected mice against a vaginal challenge with
a clinical serovar D isolate. The authors observed a decrease in vaginal shedding during
the first 2 weeks after the challenge and partial protection against infertility.

(iii) Polymorphic membrane proteins. Genome sequencing uncovered the pres-
ence of a family of polymorphic membrane proteins (Pmps) unique to Chlamydiales
(138). In C. trachomatis and C. muridarum, there are nine pmp genes, and based on the
presence of a C-terminal phenylalanine and a peptide leader sequence and the results
of proteomic studies, these proteins were predicted to be located in the outer mem-
brane (183-185). Pmps have molecular masses ranging from ~100 to 150 kDa, contain
B-barrel domains in the C terminus, and exhibit motifs that have been associated with
adhesion to the host cells in their N-terminal regions (186). On the basis of their
structure, they are considered to be type V secretion autotransporters, which mediate
the translocation of the N terminus to the bacterial surface. In addition, some of these
proteins contain poly(G) tracts that control the phase-variable expression of the genes,
providing a means by which organisms can evade host immune responses (187). Pmps
have been found to be immunogenic in humans, nonhuman primates, and mice
infected with C. trachomatis or C. muridarum (151, 153, 156, 188, 189). Antibodies to
PmpA have been associated with decreases in fertility and live births (190).

In 2006, Crane et al. (191) reported that antibodies to PmpD could neutralize all the
C. trachomatis serovars in vitro. Paes et al. (192) vaccinated mice with PmpD from C.
trachomatis serovar E (Bour), using a synthetic agonist to TLR4 as adjuvant, and based
on vaginal shedding, observed protection against a challenge with serovar D (UW-3/
Cx). In 2008, Karunakaran et al. (193) using an immunoproteomic approach discovered
novel T-cell epitopes in several C. muridarum Pmps (serovars E, F, G, and H). Vaccination
of C57BL/6, BALB/c, and C3H/HeN mice with N-terminal fragments from each of these
four proteins was shown to confer protection against a vaginal challenge as deter-
mined by accelerated clearance of C. muridarum. In particular, PmpG elicited the best
protection. A polyvalent recombinant vaccine, consisting of the four Pmps from serovar
D and MOMPs from serovars D, F, and J, formulated with the Th1-polarizing adjuvant
dimethyldioctadecylammonium (DDA)-monophosphoryl lipid A (MPL), as determined
by vaginal shedding, protected C57BL/6 mice against a transcervical challenge with C.
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trachomatis serovar D (86). Interestingly, Inic-Kanada et al. (194) found that PmpC from
C. trachomatis serovar E elicited limited protection against an ocular challenge with
Chlamydia caviae in guinea pigs.

(iv) Chlamydial protease-like activity factor. Chlamydial protease-like activity
factor (CPAF) is a secreted protease highly conserved among all the Chlamydia species
(99% amino acid identity among the C. trachomatis serovars). CPAF is produced as a
zymogen and as an internal segment and inhibits proteolytic activity (195). Following
dimerization and trans-autocatalytic cleavage, active CPAF behaves as a serine protease
consisting of a homodimer of catalytic domains, each with two distinct subunits (196).
Once in the host cell cytosol and/or released extracellularly, CPAF may act as a virulence
factor by degrading eukaryotic proteins that potentially affect chlamydial colonization
(197-201).

CPAF has been found to be a dominant antigen in Chlamydia-seropositive humans
and mice (107, 151). Vaccination of mice with C. muridarum CPAF, using IL-12 or CpG
as an adjuvant, shortens the duration of infection, decreases oviduct pathology, and
elicits cross-serovar protection (202, 203). No protection against infertility was obtained
following a primary C. muridarum vaginal challenge, but it was observed against a
secondary challenge (204). The protection against vaginal shedding elicited by CPAF
starts 1 to 2 weeks postchallenge. The delay may be because activated secreted CPAF
is detected only after 24 h postinfection. A T-cell epitope from C. muridarum CPAF has
been found to be protective in HLA-DR4 transgenic mice, suggesting that this antigen
may be protective in humans (205). The protection elicited by CPAF is conformation
independent, since both the active and inactive forms of the protein elicit the same
levels of protection, and protection is mainly dependent on CD4* T cells, producing
IFN-v, with contribution from CD8" T cells and antibodies (124, 206, 207).

(v) Plasmid glycoprotein 3. Most C. trachomatis isolates have a plasmid that codes
for eight proteins, including plasmid glycoprotein 3 (Pgp3) (molecular mass of 28 kDa)
(134, 208, 209). Crystallization of this protein from C. trachomatis serovar D showed it
to be an ~84-kDa homotrimer (210). Pgp3 was found in the chlamydial envelope and
also in the cytoplasm of the host cell (211, 212). This protein appears to be the major
virulence factor encoded in the chlamydial plasmid. Pgp3-deficient C. trachomatis and
C. muridarum were highly attenuated, and this protein may promote chlamydial
colonization by neutralizing host immune effectors (129, 213). However, the precise
mechanism by which this protein promotes chlamydial pathogenicity remains unclear.
Sera from humans and mice identified the homotrimer but not the monomer as an
immunodominant antigen (151, 214). Donati et al. (215) vaccinated C3H/HeN mice with
a DNA plasmid expressing C. trachomatis serovar D Pgp3 and a control group with the
same plasmid containing an irrelevant insert. As determined by the number of positive
salpinx cultures, mice vaccinated with the Pgp3 plasmid were partially protected
against a genital challenge with C. trachomatis serovar D. Vaccination of mice with C.
muridarum Pgp3, using CpG as an adjuvant, elicited protection against a genital
challenge (216). Although the role of the plasmid in chlamydial pathogenesis is still not
fully elucidated, the possibility that some of the plasmid gene-encoded proteins may
be pathogenic casts doubts about their use as a vaccine. In addition, although relatively
rare, plasmidless or with variant plasmids, C. trachomatis has been isolated from
humans that may not be protected by vaccines using only plasmid antigens such as
Pgp3 (134, 208, 217).

Multivalent vaccines. Antigens formulated in a multivalent vaccine may have
synergistic, additive, neutral, or antagonistic effects (155, 218, 219). Several C. muri-
darum antigen combinations have been tested in the mouse model. For example, Finco
et al. (155) identified chlamydial antigens that elicited humoral and cell-mediated
immune responses, and combinations of these proteins were tested for their ability to
protect mice against an intranasal C. muridarum challenge. Mice immunized with
TC0106, TC0210, TCO313, or TC0741, adjuvanted with LTK63 plus CpG, had a 0.5 to 0.9
log,, reduction in the number of IFU recovered from the lungs. Two four-antigen
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combinations (one combination was TC0106, TC0210, TC0313, and TC0741, and the
other combination was TC0106, TC0431, TC0551, and TC0890) were also tested. The first
antigen combination resulted in a 4.1 log,, reduction and the second antigen combi-
nation resulted in a 2.2 log,, reduction in the yield of C. muridarum from the lungs,
indicative of additive effects. Yu et al. (219) also found additive effects in the genital
model. Three C. muridarum proteins, PmpE/F, PmpG, and MOMP, and a combination of
these proteins were formulated with three different adjuvants, CpG, Abisco, and CAF01,
and used to immunize mice. The combination of the three proteins, adjuvanted with
CAFO01, as determined by vaginal shedding, exhibited the greatest degree of protection
against a genital challenge. C57BL/6, BALB/c, and C3H/HeN mice immunized with a
multisubunit recombinant vaccine that included PmpE, PmpF, PmpG, PmpH, and
MOMP, and DDA-MPL as the adjuvant, also conferred better protection against a
genital challenge than immunization with single antigens (220). Coler et al. (125) also
showed that MOMP combined with CT875 and adjuvanted with ASO1B elicited better
protection against a vaginal challenge with C. trachomatis serovar K (UW-31/Cx) than
the individual antigens.

Neutral effects by combining C. muridarum antigens have also been reported. Yu et
al. (221) vaccinated mice with PmpE, PmpF, PmpG, Aasf, RplF, TC0420, or TC0825,
adjuvanted with DDA-MPL, and challenged the animals in the genital tract. PmpG
elicited the most robust immune response and the best protection as shown by a
decrease in the number of IFU recovered. However, three combinations of antigens
(PmpE-PMpF-PmpG-PmpH-Tarp, Aasf-RplIF-RecO, and TC0420-TC0825-TC0285) only pro-
tected as well as the best individual protein in the formulation. Similar neutral findings
were reported when testing combinations of antigens in the respiratory model (222).
Mice were immunized with components of the C. muridarum putative ATP synthase
complex TC0580, TC0581, TC0582, and TC0584 or with MOMP. In addition, TC0582 was
formulated in combination with TC0580, TC0581, or MOMP. Animals immunized with
combinations of two of these three antigens were protected only as well as mice
vaccinated with MOMP, the most protective protein in the formulation. Also, Li et al.
(203) reported that the addition of CPAF to MOMP, or IncA, from C. trachomatis serovar
D (UW3-Cx) did not enhance the CPAF-induced effect on C. muridarum clearance or
oviduct pathology. On the basis of these results, when formulating a multivalent
subunit chlamydial vaccine, it will be necessary to evaluate the interactions between
the antigens before implementation.

Other potential vaccine antigen candidates. In addition to the above-discussed
antigens, other chlamydial proteins have been tested for their ability to induce immune
responses and/or protection against infection and/or disease. Several excellent reviews
have discussed these findings (45-47, 223-228). Some of the antigens that have been
found to elicit protection in the mouse model include the outer membrane protein B
(OmcB), putative type Ill secretion effector protein Tarp, macrophage infectivity poten-
tiator (MIP), CopB, CopD, Cap1, and CT584, the inclusion membrane protein (IncA),
porin protein B (PorB), the ribonucleoside reductase (NrdB), and glycogen phosphory-
lase (229-238). The ability of these antigens to induce robust protective immune
responses is limited and requires additional testing.

ADJUVANTS

Most of the current vaccines against microbial pathogens are formulated using live
attenuated or whole inactivated organisms (239, 240). Since the discovery of Toll-like
receptors (TLRs), it has become clear that microbes contain not only antigenic com-
ponents but also other products that, by activating these eukaryotic cell receptors, have
an adjuvant effect and help stimulate robust and well-defined innate and adaptive host
immune responses. According to C. A. Janeway, this mechanism explained the efficacy
of whole-cell vaccines: “the immunologist’s dirty little secret” (241-245). Thus, when the
vaccinated host is exposed to a pathogen, rapid and focused immune responses occur.

The implementation of subunit vaccines, like those for hepatitis B virus (HBV) and
human papillomavirus (HPV), has required the inclusion of several adjuvants in their
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formulation to replicate the robust immunological responses elicited by whole-
organism vaccines (239, 240, 246, 247). Because individual adjuvants are only moder-
ately effective at eliciting broad long-lasting protective immune responses and are
often targeted to a single type of TLR, there is a need to use several adjuvants for
subunit vaccines. In addition, the distribution of TLRs varies among tissues and thus the
need to test adjuvant combinations against pathogens, such as C. trachomatis, that
have multiple portals of entry.

The bacterial components with TLR immune adjuvant activity are called pathogen-
associated molecular patterns (PAMPs) (248-254). Examples of PAMPs include mem-
brane components, i.e., lipopolysaccharide (LPS), flagellin, lipoteichoic acid, porins, and
intracellular components, such as nucleic acids (241, 243). Following a primary infec-
tion, some pathogens elicit solid protective immune responses. For these responses, we
can assume that the native antigens and PAMPs present in the organisms are inducing
innate and adaptive immune responses that protect the host against reinfection (239,
240, 248-254). However, many bacterial, parasitic, and viral primary infections do not
elicit robust protection against a secondary infection. Therefore, against these patho-
gens, including Chlamydia, it may be necessary to formulate vaccines that elicit
“unnatural immunity” (255). During a Chlamydia infection, TLR- and nucleotide-binding
oligomerization domain 1 (NOD1)-mediated activation occurs (256-258). Several chla-
mydial PAMPs, including LPS, MOMP, macrophage infectivity potentiator (MIP), and
heat shock protein 60 (Hsp60), are involved in this process, resulting in signaling mainly
through TLR2 and TLR4 (257, 259-262). However, all these chlamydial PAMPs, including
LPS, induce weak immune responses, and this may explain the lack of robust protection
elicited by a primary infection (262).

Initial chlamydial vaccine trials were performed using alum and oil in water adju-
vants, now known to be Th2-biased adjuvants. When it was found that, at least in the
mouse model, Th1-biased immune responses were necessary to induce protection, new
adjuvants were tested. Several studies have used single adjuvants and adjuvant com-
binations in vaccine formulations to protect mice against a C. muridarum challenge.

To determine the relative efficacy of single adjuvants, the following nine ligands to
TLR or NOD receptors were screened for their ability to protect against a C. muridarum
respiratory infection: Pam,CSK, (TLR2/6), poly(I-C) (TLR3), monophosphoryl lipid A
(MPL) (TLR4), Bacillus subtilis flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline
R848 (TLR7/8), CpG-1826 (TLR9), M-Tri-DAP (InvivoGen) (NOD1/2), and muramyl dipep-
tide (NOD2) (263). Mice were vaccinated with rMOMP, adjuvanted with each individual
agonist, and challenged intranasally, and protection was determined based on changes
in the weight of the body and lungs and the number of IFU recovered from the lungs.
On the basis of these parameters, the most efficacious adjuvants were Pam,CSK, and
poly(l-C). CpG-1826 elicited intermediate protection, while monophosphory! lipid A
induced minimal protection (263). Based on the 1gG2a/IgG1 ratio in serum, Pam,CSK,
and MPL elicited Th2-biased immune responses, while CpG-1826 induced strong Th1
responses and poly(l-C) induced balanced Th1/Th2 responses. The lack of correlation
between Th1/Th2 responses, as determined by the 1gG2a/IgG1 ratio, and protection
suggests that, by itself, this may not be an adequate immunological parameter to
predict protection. CPAF formulated with CpG-1826 or recombinant murine IL-12, as
single adjuvants, elicited similar Th1 immune responses and limited protection against
a genital challenge (124, 203, 264, 265).

Several studies have characterized the use of adjuvant combinations to protect
against C. muridarum infections. For example, Yu et al. (219) formulated recombinant
PmpG-1, PmpE/F-2, and MOMP individually or in combination with three different
adjuvants, CpG-1826, AblSco-100 or CAFO1. The combination of PmpG-1, PmpE/F-2,
and MOMP plus CAF01, as determined by C. muridarum shedding, was the most
efficacious to protect C57BL/6 and BALB/c mice against a vaginal challenge. The
CpG-1826 formulation failed to protect, supporting the need for the use of adjuvant
combinations. This group of investigators confirmed those results by testing four
combinations of adjuvants, DDA-MPL, CAF01, CAF04, and Montanide ISA 720 VG plus
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CpG-1826, in addition to alum. PmpG was used as the test antigen. The most robust
immune responses and best protection against vaginal shedding were observed when
DDA-MPL or CAFO1 was utilized as the adjuvant (221). These two adjuvant combinations
elicited the highest frequency of multifunctional CD4 T cells coexpressing IFN-y and tumor
necrosis factor alpha (TNF-a), supporting the role of these cytokines in protection.

Adjuvant combinations have also been tested using MOMP as the antigen. In the
genital model, the combination of CpG-1826 plus Montanide ISA 720 VG, a non-Toll
receptor adjuvant, has been found to be quite effective at eliciting protective immune
responses, using both nMOMP and rMOMP as antigens (169, 176, 266). MF59, a
detergent-stabilized oil-in-water emulsion containing squalene and currently in human
use, was found to elicit better protection against a genital C. muridarum challenge in
mice than when single adjuvants, LT-K63 or LT-RT2, derived from Escherichia coli
enterotoxin, were formulated with nMOMP (267). Cheng et al. (268) compared combi-
nations of CpG-1826 with Pam,CSK, or with Montanide ISA 720 VG. The Pam,CSK, plus
CpG-1826 combination was found to elicit the most robust protection against a C.
muridarum respiratory challenge (268). IC31 is an adjuvant that combines the oligode-
oxynucleotide d(IC),5; (ODN1a) with the peptide KLKLLLLLKLK (KLK) (269). IC31 gener-
ates a depot at the injection site and provides immune stimulation via the TLR9/MyD88
pathway (270-272). This adjuvant combination formulated with nMOMP elicited sig-
nificant protection against a respiratory challenge with C. muridarum (273).

ROUTES OF IMMUNIZATION AND DELIVERY SYSTEMS

The utilization of a mucosal route for immunization appears to be relevant for
protection against mucosal pathogens such as C. trachomatis. Mucosal tissues comprise
the largest source of immunity in the body and are the first line of defense against
many pathogens (274-280). The genital tract is considered to be a component of the
common mucosal immune system (CMIS). It is assumed that stimulation of the CMIS
results in immune responses at remote mucosal effector sites, but stimulation of the
various mucosal inductive sites results in uneven distribution of immune responses at
the effector sites. Overall, the most effective way to induce immune responses at a
specific effector site is to locally administer the vaccine or, perhaps, stimulate sites with
related lymph drainages (117, 176, 279, 281-283).

In addition to eliciting a solid immune response at the entry site, deciding what
route to use for vaccination requires evaluation of other factors, including safety, ease
of use, cost, societal acceptance, and adjuvant availability. Immunization by the intra-
vaginal route seems the most appropriate choice for eliciting protection against genital
pathogens. Intravaginal immunization through use of a gel has been successful against
cholera, and both intravaginal and rectal immunizations have been utilized against HIV
(239, 240, 284-287). The main limitation of this route is patient acceptance. Further-
more, low levels of IgA and IgG in vaginal fluid after vaginal vaccination alone have
been reported (279, 281). Oral immunization is readily acceptable (286). A good
example is the live-poliovirus vaccine. Yet, for subunit vaccines, the need for a suc-
cessful delivery system and the large amounts of antigen required for robust immune
responses severely limit this approach. The sublingual route may be a more desirable
alternative and has been successful in mouse models (176, 283, 288). Colonic immu-
nization may also be a possibility, since it has been shown to induce higher vaginal and
serum IgA levels than oral and intramuscular immunizations (176, 289). The ease of use
and patient acceptance will have to be improved by utilizing oral delivery systems. The
intranasal route induces mucosal IgA and stimulates immunity not only in local tissues
but also in the genital tract (117, 290, 291). Unfortunately, intranasal immunization may
negatively affect the central nervous system, and this safety issue is why some vaccines
have been pulled from the market (287, 292).

Systemic (intramuscular and subcutaneous) and mucosal (sublingual and colonic)
routes, alone and in combination, were tested by Ralli-Jain et al. (283) for their ability
to protect mice against a C. muridarum respiratory challenge. The best protection was
achieved when mucosal, followed by systemic, immunizations were utilized. Carmichael
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et al. (176) also tested combinations of mucosal (intravaginal, colonic, and intranasal)
and systemic (intramuscular and subcutaneous) routes to immunize mice against a
vaginal challenge with C. muridarum. The strongest Chlamydia-specific humoral and
cell-mediated immune responses were obtained in the groups immunized by a com-
bination of mucosal and systemic routes. As determined by vaginal shedding and
fertility rates, animals vaccinated by a combination of mucosal and systemic routes
were also the best protected. Mucosal immunization by itself elicited weak immune
responses and minimal protection.

Work by Stary et al. (85) supports enhanced protection using a mucosal route for
immunization. These authors vaccinated mice with UV-inactivated C. trachomatis sero-
var D (UW-3/Cx) EB by the intranasal or intrauterine route using nanoparticles coupled
to R848. Mucosal immunization elicited Trm that migrated to the uterine mucosa,
eliciting protection against a transcervical challenge, while subcutaneous immunization
failed to induce Trm and protect.

Several delivery systems, including DNA plasmids, poliovirus, adenovirus, hepatitis B
virus, influenza virus, Vibrio cholerae ghosts, and nanoparticles, have been used to
vaccinate mice with various chlamydial antigens (65, 141, 144, 293-300). Although
some of these delivery systems offer interesting opportunities, such as the ability to
carry antigens from several pathogens, so far the results obtained do not appear to
offer significant advantages over well-established approaches. Furthermore, including
antigens that are not medically relevant from the delivery system in a vaccine intro-
duces unknown safety issues and may divert immune responses. The use of edible
plants is certainly an interesting approach but needs to be carefully evaluated for its
possible negative impact (301). Therefore, more work is needed before any of these
delivery systems is implemented.

CROSS-SEROVAR PROTECTION

The low virulence of C. trachomatis in mice and the lack of C. muridarum serovars
present a major challenge for testing cross-serovar protection in the mouse model.
However, several investigators have addressed this problem. For example, Tuffrey et al.
(302) used a recombinant fragment of C. trachomatis serovar L1 MOMP to immunize
mice and challenged them by the vaginal or uterine route with serovar F (NI1). In some
groups of vaccinated mice, there was a reduction in the duration of colonization and
the severity of salpingitis. Li et al. (203) constructed a multivalent vaccine that included
three recombinant proteins, CPAF, MOMP, and IncA, from serovar D. Vaccinated mice
were challenged vaginally with C. muridarum. Immunized mice had less shedding and
upper genital tract pathology than the negative-control animals did. Eko et al. (303)
immunized mice with V. cholerae ghosts expressing PorB and/or PmpD from serovar D
and challenged them vaginally with C. muridarum. The groups vaccinated with one or
both antigens had a significant decrease in vaginal shedding. A different approach was
taken by Olivares-Zabaleta et al. (130). Mice were vaccinated intravaginally with the
plasmid-free C. trachomatis serovar L2 (25667R) and subsequently challenged vaginally
with serovar D (UW-3/Cx). Immunized mice were not protected against infection or
inflammatory disease but had a reduced infectious burden. By taking advantage of the
respiratory model, Tifrea et al. (304) showed that mice immunized with C. trachomatis
recombinant MOMP from serovars D (UW-3/Cx), E (Bour), and F (IC-Cal-3) can be protected
against disease and bacterial burden from a challenge with C. muridarum. In conclusion,
although we do not have a good mouse model, these results suggest that by using a
multivalent vaccine, it may be possible to elicit solid cross-serovar protective responses.

CAN THE IMMUNOLOGICAL AND PROTECTION FINDINGS IN MICE BE DIRECTLY
TRANSLATED TO HUMANS?

In evolutionary terms, differences in innate and adaptive immune responses be-
tween humans and mice have developed over the last 100 million years when primates
and rodents were separating (305-307). Living in contrasting habitats and being
exposed to different microorganisms have resulted in significant divergence of their
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immune systems (308-313). In the last 100 years, the establishment of inbred strains of
mice has added another layer of immunological differences (314). As a result, we cannot
be certain that the findings obtained in the mouse model will be directly applicable to
humans. Even more, results in one strain of mice may not directly extrapolate to
another strain. Here, we will briefly discuss some differences between the innate and
adaptive immune systems of humans and mice that may impact the development and
implementation of a C. trachomatis vaccine.

One of the main defense mechanisms against pathogens in humans and mice is the
presence of pattern recognition receptors (PRR), such as the TLRs (10 present in humans
and 13 in mice) that activate the innate immune system by binding molecular patterns
of microorganisms, such as LPS (312, 313, 315, 316). In humans, binding of ligands to
TLRs causes significant inflammatory responses that help protect against pathogens by
limiting their burden. In contrast, mice respond very weakly to TLR agonists. For
example, in humans, a dose of ~15 ug of LPS/kg of body weight causes severe
diseases, including shock, while in mice, the 50% lethal dose (LDs) is ~10 mg/kg (309,
317). Furthermore, significant differences are also found between different strains of
inbred mice. For example, agonists of TLR3 were the most effective adjuvants to elicit
IFN-y-producing NK, CD4, and CD8 T cells in C57BL/6 mice, while in BALB/c mice,
TLR7/8 was found to be the most effective (318, 319).

IFN-vy is released in humans and mice during inflammation to trigger innate immune
responses. In mice, IFN-y induces the expression of the p47 immunity-related GTPase
(IRG) proteins that include proteins encoded by 18 genes, and IRG knockout mice are
highly susceptible to pathogens (320). Humans express only two IRG proteins, and
neither of the two proteins is induced by IFN-y. In mice, IFN-y induces three different
IRG genes against C. trachomatis, which leads to rerouting of the inclusions to autopha-
gosomes (321). In contrast, C. muridarum has a large toxin with homology to Yop7 that
blocks the interaction of IRG proteins with the inclusion membrane (112). In addition,
in human epithelial cells, IFN-y elicits expression of indoleamine 2,3-dioxigenase,
which, by depleting the host tryptophan pools, inhibits the growth of C. muridarum.
However, C. trachomatis can grow by producing a tryptophan synthase that may use
indole generated by microbes in the human genital tract to produce tryptophan (88,
322).

The leukocyte compositions of humans and mice are also significantly different.
Humans have 50 to 70% neutrophils and 50 to 30% lymphocytes, while mice have
only 10 to 30% neutrophils and 90 to 70% lymphocytes (312, 313). In addition to
differences in the proportions, there are functional differences between human and
mouse neutrophils. For example, human neutrophils express many defensins, while
mouse neutrophils express only a few (323-325). Similarly, myeloperoxidase levels
in mouse neutrophils are 80 to 90% lower than in human neutrophils (326).
Significant differences also exist between human and mouse eosinophils, granulo-
cytes, monocytes/macrophages, NK cells, and mast cells (313).

Fc receptor (FcR) represents a link between innate and adaptive immune responses.
FcaR1 (CD89) is an important IgA receptor in humans and is expressed in neutrophils,
eosinophils, monocytes/macrophages, and dendritic and Kupffer cells, while mice lack
FcaR1 and use alternative receptors (310).

There are also clear differences in the adaptive immune responses between humans
and mice (310). For example, IL-7 receptor (IL-7R) deficiency in mice blocks develop-
ment of both B and T cells (327). In humans, however, IL-7R deficiency blocks only the
development of T cells, suggesting that B-cell development is not dependent on IL-7
(328). Also, mice, but not humans, exclusively express CD5 and CD23 in B cells, while
CD38 is expressed in human, but not mouse, plasma cells (329). Mice produce IgA, IgD,
IgE, 19G (IgGT, IgG2a, IgG2b, and IgG3) and IgM, while humans express IgA (IgA1 and
IgA2), IgD, IgE, and IgG (IgG1, IgG2, IgG3 and IgG4). Interestingly, C57BL/6, C57BL/10,
SJL, and NOD mice produce IgG2c instead of IgG2a (330). In mice, IL-4 induces IgG1 and
IgE, while in humans, it elicits IgG4 and IgE.

An important component of adaptive immunity is the differentiation of T cells
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toward the Th1 or Th2 phenotype. Mosmann and Coffman (331) first demonstrated in
mice the polarization of T cells. While Th1 and Th2 cells can be found in human
diseases, the polarization is not so clear. For example, in mice, IL-10 is a Th2 cytokine,
while in humans, both Th1 and Th2 cells can make IL-10 (332). Also, in humans, IFN-«
is produced by several types of cells in response to viral infections inducing Th1
development by activation of STAT4. In contrast, in mice, IFN-a does not induce Th1
cells and does not activate STAT4 (333).

From this brief analysis, we can conclude that there are many differences between
the immune systems of humans and mice and even between various strains of inbred
mice. From the vaccinology perspective, it is likely that the antigens that are effective
in mice will also be effective in humans. In particular, MOMP, already indirectly
identified in the original trachoma vaccine trials as a dominant protective antigen, will
likely be protective in humans. Other chlamydial antigens, such as Pmps and CAF,
known to elicit humoral and cell-mediated immune responses in humans and protec-
tion in mice will also likely be protective in humans. However, an adjuvant(s) found to
be the most efficacious in mice might not be the most effective in humans. To broaden
the chances of success, testing adjuvants in inbred and outbred mice is recommended.
Routes and delivery systems for vaccines are fairly restricted in humans. Utilizing one of
the most common routes currently used for delivery of human vaccines, the intramus-
cular or subcutaneous route, will greatly facilitate implementation. Combining mucosal
and systemic routes will likely improve Chlamydia vaccine efficacy, but it may pose
significant safety and practical challenges.

In summary, as Gibbons and Spencer (311) concluded after reviewing human and
mouse intestinal immunity: “Although the value of animal models should not be
underestimated, close attention should be given to the detail; the functional outcome
may seem the same but the mechanism might be different.” Recent genomic studies
support this conclusion (308, 309).

PROSPECTS FOR A HUMAN C. TRACHOMATIS VACCINE

Although great progress has been made over the last 4 decades, the prospects of
implementing a Chlamydia vaccine against genital infections in the near future are still
under discussion. C. trachomatis causes significant morbidity but no mortality. There-
fore, the first priority for the implementation of a C. trachomatis vaccine is safety. Based
on the findings observed during the vaccine trachoma trials, the development of a
delayed-type hypersensitivity reaction and increase in susceptibility to infection, or any
other negative effect, has to be avoided. The use of a live attenuated or inactivated
whole-organism vaccine may be justifiable to protect against trachoma, but it is highly
unlikely that it will be used against genital infections. In addition to safety issues, the
costs of producing such a vaccine will be difficult to justify. Therefore, a subunit
recombinant vaccine will probably be deployed.

A therapeutic C. trachomatis vaccine may have some efficacy if it is delivered before
irreversible damage occurs in the female genital tract. Yet, a therapeutic vaccine,
although possible, is highly unlikely to be implemented, since at least with our current
methodologies, detection of early onset of upper genital tract pathology is a major
challenge (334). In the case of trachoma, it may be worthwhile to explore the effects of
a therapeutic vaccine, particularly since there is already evidence that it can be effective
in humans (335-337).

It is likely that most of our current vaccines do not induce sterilizing immunity (239,
240). To block chlamydial infection, a vaccine will have to elicit high levels of mucosal/
systemic protective antibodies that are maintained throughout the life of the individual,
or at least their reproductive life, a goal not easily achievable. Existing vaccines control
the pathogen at the site of entry and therefore minimize disease, including long-term
sequelae. Additionally, they decrease shedding and therefore transmission. At the
population level, this is a critical effect, since the number of newly infected individuals
can rapidly decline. Using a computer model, it was determined that in the case of a
C. trachomatis vaccine, over a period of at least 10 years, even when its efficacy was only
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50%, the decline in new infections will be dramatic (338). This conclusion was sup-
ported by other studies that also determined that vaccination was cost-effective (339,
340). Vaccinating both males and females will further expedite the control of this
pathogen (341).

Based on the experimental work done with single-antigen vaccines, N(MOMP induces
the most robust protection against shedding and infertility. Producing enough nMOMP,
by direct extraction from Chlamydia, will be extremely expensive. In addition, due to
the serovar/serogroup specificity of the protection, a vaccine may need to be formu-
lated with MOMPs from two to four serovars (45, 137, 342). As shown by Olsen et al.
(181), a synthetic MOMP vaccine that includes specific epitopes from various serovars
is a potentially attractive alternative. Another possibility is to formulate a multivalent
vaccine with rMOMP and other well-conserved recombinant antigens, such as CPAF
and/or the Pmps. Advantages of CPAF include cross-serovar protection and a lack of
dependence on its native conformation for protection, which greatly facilitate produc-
tion and formulation. Shortcomings include limited protection against vaginal shed-
ding and infertility. The Pmps are large proteins (>100 kDa), and the recombinant
constructs tested so far have used only N-terminal fragments, usually less than 50% of
the entire protein. The N-terminal fragments of Pmps are thought to represent the
surface-exposed domains. Full-size Pmps, particularly if they can be refolded into their
native conformation, will likely induce robust cross-serovar protective immune re-
sponses, since they are well conserved among all the human serovars. However, phase
variation expression could limit the protective ability of Pmps, especially for PmpG (187,
189). Vaccines based on Pmps will therefore require the addition of other antigens.
Also, there is no evidence yet that Pmps can protect mice against infertility.

In addition to the antigens, evaluation of adjuvants, routes, and delivery systems for
immunization that are not only effective but also safe and convenient is going to be
critical before a C. trachomatis vaccine is implemented. On the basis of the findings we
have in the mouse model, the adjuvants will have to elicit robust cell-mediated and
humoral immune responses. The number of adjuvants currently licensed for human use
is quite limited. The recent positive experience with the implementation of a highly
efficacious systemic subunit vaccine to protect against HPV-induced cervical cancer is
highly encouraging. HPV infects the transitional zone of the human cervix, the same
area of the epithelium C. trachomatis infects. This observation implies that it may also
be possible to formulate an efficacious Chlamydia vaccine that is delivered by a
systemic route (intramuscular or subcutaneous) and not a mucosal route, using the
appropriate adjuvants. However, in the case of HPV, humoral immune responses appear
to play the major role in protection, while for C. trachomatis, cell-mediated and humoral
immune responses will likely be required to elicit optimal protection (59, 246, 343, 344).
Therefore, the adjuvants and routes of immunization for C. trachomatis may differ
significantly from those needed for HPV.

Once a vaccine that elicits robust protection in animal models has been found, a set
of criteria will need to be defined to measure protection during the human clinical
trials. Having a single parameter to assess protection may not be possible. To determine
whether or not protection against tubal factor infertility is achieved by vaccination is
not a realistic criterion, since it will require many years and a very large number of
subjects to ascertain that effect. Assessment of PID episodes in the vaccinated and
control populations will likely be the most robust endpoint to evaluate the efficacy of
the vaccine. As shown by Westrom et al. (30), single, not multiple, severe PID episodes
are the leading cause of infertility in women.

There are other parameters that can assist in evaluating the efficacy of the vaccine.
In the mouse model, there is a good correlation between vaginal shedding and
development of upper genital pathology. The number of animals with positive cultures
and the length and severity of vaginal shedding are parameters that could be used to
evaluate the efficacy of the vaccine. With these parameters, even if we do not have
specific data to determine protection against upper genital pathology in a particular
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individual, we could estimate the impact on transmission rates and, therefore, control
of the infection in the population (338, 340).

During the vaccination trials, noninvasive radiological techniques, such as magnetic

resonance imaging (MRI), could also help to assess the development of upper genital
pathology (345-347). However, in addition to the high cost, the lack of sensitivity and
specificity may limit the usefulness of our current methods. Serological testing of
individuals before and after vaccination, using whole-genome Chlamydia protein mi-
croarrays to test serum and vaginal samples, could provide supportive information
(148, 151, 154, 156). Measurement of inflammatory cytokines and chemokines in
cervical vaginal secretions may also assist assess vaccine efficacy (348-350). Impor-
tantly, careful short-term and long-term follow-up will be required to make sure no
negative effects occur at the time of vaccination and later on when the individual is
exposed to Chlamydia.

CONCLUDING REMARKS

Work over the last 4 decades has identified vaccine components, including antigens,

adjuvants, and immunization routes, that can induce significant protection against a C.
muridarum genital challenge in the mouse model. In our opinion, to expedite the
implementation of C. trachomatis vaccines, the next step should be to test in parallel
the most promising formulations reported by various investigators. The two or three
most efficacious vaccine formulations could then be evaluated in various inbred and
outbred mice and other animal models, such as the guinea pig, and, if necessary, in
nonhuman primates. A cooperative international effort between vaccinologists, gov-
ernment agencies, and private companies could result in the implementation of a C.
trachomatis vaccine in the next decade. Currently, a MOMP-based vaccine is in phase
| clinical trials (26).
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