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Probabilistic Precision Process Planning– P4

Arvind Rangarajan
Sponsored by CODEF

Abstract— Factories of the digital future would require simulation and
optimization of processes and process chains before establishing the actual
line using very specific procedures. There is tremendous scope for
reducing significantly the lead time for production and costs by employing
planning tools for virtual machining. P4 is designed to address challenges
faced by automobile industries to integrate developments in technology
based software and pave way for defect free process plans. P4 presents a
novel way to plan each process as an independent entity that exists as part
of a sequence. Face milling is used as an example in this report to
demonstrate the various concepts that form the core of P4.

Keywords: process planning, probabilistic, precision.

1. Introduction

Process planning has taken two routes in the past, one focusing on capturing the expert
knowledge possessed by planners, the variant planning systems and the other focusing on
generating a plan given the geometry of the part along with specifications, namely the
generative systems. During the late eighties and nineties hybrid systems began to evolve,
primarily, to integrate scheduling and concurrent engineering concepts. Numerous
schemes exist for either kind of approach; CAPP, MIPLAN, CAM-I, ACAPS to name a
few [1]. Previous research in process planning at Berkeley focused on multi-agent
process planning techniques producing alternate process plans dependent on the eventual
goals like machining efficiency and lower cost or environmentally conscious decision
making or higher machining quality [2]. The existing schemes tend to map the
requirements to a set of inference rules resulting in sub-optimal solutions on numerous
occasions. Statistical principles are used only in process control and design of
experiments. These principles haven’t been extended to judicious process selection. A
way of visualizing factor of safety for manufacturing process is in terms of Cp or Cpk. The
limitations of this approach and a way of more objectively using experimental data to
design the process are demonstrated. This is intended to avoid tuning the process
extensively during installation and, theoretically, ensure the ability of the chosen process
and process parameters to satisfy the specifications.

2. Inspiration for probabilistic approach

A recent FAA report states: “Significant cost/weight savings for aircraft industry can be
achieved by adopting probability based design” [3]. Probabilistic design involves the use



of test results to assure success with a certain level of statistical confidence. These cannot
be deterministically guaranteed. In manufacturing processes, the process outcomes
generally tend to be stochastic. The process planners lean towards conservative plans that
yield results much better than the requirements specified by the designer. If we consider a
ratio of specification like Cp, for dimensional control as an equivalent for factor of safety
generally used by a designer, it stays within reasonable bounds around 1.5. But applying
similar ratios for a parameter like surface finish it can be seen that it would be of the
order of 10’s. To restate, the processes are mostly over optimized for a good number of
specifications while one particular variable might be close to limits and under some
circumstances difficult to control. The use of probability brings in a level of certainty for
achieving each of the specifications by planning, leading to realistic “factor of safeties”.

3. Framework development

Various components of a process, each piece of that chain, like tool path, tool geometry
and fixturing can be modified to obtain better results in terms of burr formation, surface
finish, flatness, etc. It should be noted that each process component mentioned here is a
composite entity; e.g. tool geometry would mean defining attributes like rake angles, lead
angles and special angles in some cases. Each optimization step for improving quality
competes for the limited process resources. Allocation of the process resources along the
chain to meet specifications while meeting the objective requires knowledge about each
process outcome.

4. Modeling

Constraints

Figure 1. Constraint set for face milling.
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The importance of achieving the specifications has to be reiterated because the process
must be designed for repeatable and reliable performance. But for a given process there is
a set of relationships that exist and are independent of the specifications. This implies that
they have to be enforced independent of the results we are trying to generate. If the
production scenario is known, as is the case generally, there are certain links that become
active and have to be enforced strictly from the beginning. Establishing the links restricts
the space for the rest of the choices that have to be made. This in general guides and
changes the flow of data during the actual numerical solution procedure. The focus on
information flow is significant because in the future industrial scenarios like virtual
manufacturing initiatives, application software would play a vital role in process
improvement. Data management for such process flows is an important step that has to be
addressed in the beginning of a virtual manufacturing framework. The external
considerations necessary for each piece of software that deals with a specific part of
optimization, for e.g. burr minimization, flatness generation, etc., have to be stored or
obtained from these constraints. The links with no associated software or a theoretical
model also indicate the necessity for establishing such a model for the future.

In Figure 1, the various links are a representation of mutual constraints that exist. For
e.g., consider the links in thick dotted lines, the material of the workpiece limits the type
of inserts that would be used on the workpiece to achieve a good tool life. At this point
there are no considerations for the specifications like flatness or burr formation.
Similarly, the cycle time automatically links the length of tool path at a given feed; this is
independent of final results except the capabilities of the machine, which are indicated by
other links.

The primary objective of the process is to consistently achieve the specifications. Cost,
environmental concerns and machine utilization are secondary objectives which are
important but come into consideration only when the primary objective is satisfied. To
realize this we should be able to characterize, either through an analytical, semi-analytical
or empirical model, the influences of the relevant parameters on the specifications. For
most of the processes such models exist for each of the process outcome. The model
should be based on process physics in addition to capturing the existing knowledge about
the outcome. Integrating them in a way helpful for planning, and enforcing the
constraints discussed previously, it is possible to generate a near optimal solution for the
process. If the models are generated through a mechanism that would help group the
effects, without having to do whole lots of experiments, it would lead to remarkable cost
savings in experimentation.

Multiple stage face milling is planned to achieve a certain finish and flatness along with a
good dimensional tolerance. There are significant trade-offs between each selection that
has to be made for the process like tool, machine tool, fixture setup, tool path, and
process parameters. The main goals for finish in a face milling process are good surface
finish, flatness and dimensional tolerance. But there are unavoidable results of face
milling like burrs and sub-surface damage. These are not generally specified in a
technical drawing and are difficult to control but also have to be limited to maximum
possible extent as it would necessitate subsequent processing. Flatness and burrs are



modeled through an analytical scheme; Figure 2 shows the model for flatness. Finish is
modeled empirically using interpolated data and some basic findings on its relations to
various parameters. The diagram for empirical model can be seen as a post-processed
Ishikawa or fishbone diagram. The effects are known to influence in a particular fashion
but the model has unknown coefficients which have to determined for the specific case.

Process Outcome

Figure 2. Analytical model for flatness.

5. Specification coupling diagram (SCD)

 A distinction is made at this point of the different kinds of specifications encountered
while designing a process. They have to be treated differently in view of the fact that the
effects of deviation from a given value are different. There are four basic categories,
those with upper bound or lower bound; finish and flatness typically are of this category.
Acknowledging the designers intent, any value that satisfies the bound can be deemed
acceptable. The second category is bounded from above and below; a perfect example is
dimensional tolerance. The deviation for this type can be measured in terms of Taguchi
quadratic loss function. Furthermore, there are others which aren’t necessarily specified
on the drawing sheets but are nevertheless important. They have no bounds, but are
detrimental to the process results. Burrs for example are of “lower the better” class and
this in general is also associated with subsequent processing and cost savings in terms of
tool life.  

A specification coupling diagram is built by placing all the specifications on a frame and
connecting them together. The individual process components that affect more than one
outcome simultaneously are identified and placed on the links connecting the various
process goals. This helps in transferring the relevant data from their respective individual
models to another. Figure 3 shows one such highly simplified model for face milling.
This comes into play during the software interface design.
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Figure 3. SCD for face milling.

6, Data management and probability model

The visualization tool developed for P4 performs the job of interpreting experimental
data for the application in view. The various elements of the empirical model developed
have to be tested experimentally to identify its influence. Parameters are either
continuous as in feed and speed, or discrete steps like depth of cut and rake angles. In
general, it is easier to change the continuous parameters compared to the discrete blocks.
The axes are chosen from the most influential parameters, found either statistically when
no prior information is available, or from semi-analytical models. The data points are
interpolated using the appropriate regression model: linear, quadratic, or other commonly
accepted relation. The variances can either be assumed constant or variable according to
experimental conditions.  The feasible region can be charted out from the interpolated
surface imposing the relational condition:

Herein, alpha is the % confidence interval like 99.9% or 99.99% for the parameter we
wish to control, and the value of t depends on the number of samples used to characterize
variance. The mean and standard deviation can be improved with more data points and
can be updated using a Bayesian approach as more experiments are conducted. The
output after performing such an analysis is for each discrete step of influential elements a
feasible region from parameter space. Examining the model for surface finish, feed,

Expected mean value [experimental values] + t1-alpha/2 * Standard deviation [experimental
values] <  Upper bound of specification or > Lower bound of specification or both



speed and depth of cut are known to play a role in the final value for various cutting
angles and nose chamfer dimensions.  Feed and speed are continuous parameters, while
depth of cut and cutting angles can only vary in steps (user requirement). Experiments are
performed on aluminum silicon alloy and multiple measurements are made for each feed
and speed. Interpolating feed and speed, using an Rt requirement of 2 microns, we can see
that the feasible region for each depth of cut is different (Figure 3). New regions come
into play at different depths of cut, which would imply case specific choice for
optimization. The information from this step is supplied as blocks for every depth of cut
and rake angle to perform open optimization for burr formation and flatness. Moreover,
additional information like stability of the chosen condition can be seen by examining the
spacing of these lines. Closer spaced lines show unstable operating conditions. Inherent
trade-offs between reliable design and aggressive design can be modeled relatively easily.
It is also possible to reuse data and group experiments using the above scheme. For e.g.,
finishing face milling is performed on the various faces of cylinder heads, cylinder
blocks. Data from a controlled set of experiments for face milling performed on a
material with those blocks can be interpreted suitably for each application.

Figure 4. Feasible region for surface finish in an AlSi alloy.

The use of probability in achieving each specification helps veering away from using
high factor of safeties for certain specifications. Identical probability scale, which only
depends on the amount of knowledge possessed means that each specification is
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values for t distribution it can be ensured that only one part in million produced with this
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plan would be out of specification. Therefore, this can be seen as a six sigma approach
extended to process planning.

7. Solution procedure

To finally solve the problem to obtain numeric values that have to be supplied to the shop
floor we undertake the following steps:

• Define the feasible space for the various parameters that influence the specifications
with limits like finish, flatness and dimensional tolerance.

• Merge the regions for common parameters on the links that exist in the specification
coupling diagram.

• Optimize the open ended specification without bounds like burr size. Modify feasible
space for the common parameters like feed, speed, depth of cut.

• Further optimize to improve quality for specifications with both upper and lower
bound.

• Finally optimize the open-ended choices still not clamped down to reduce the overall
cost for process.

8. Conclusion

This report is the first step in establishing a framework for machining process
optimization in a virtual factory setup for mass production. This is designed as a
mathematical tool that could be used by a process planner for optimizing a skeleton plan.
By rigorous use of experimental data, the concepts of six-sigma from process control can
be extended to process planning, which we hope would eventually lead to defect-free
process plans. Working in the realms of probability enables aggressive manufacturing
leading to optimality with respect to planning and parameter selection. The concept will
be tested in the future using case studies from automobile industry. The future work
involves creating some of the appropriate software pieces and establishing the links to
create an integrated virtual machining tool for face milling. This concept will also be
extended for other basic machining processes like drilling and turning.
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