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Abstract

Intrinsic and Systematic Variability in Nanometer CMOS Technologies

by

Kedar Kantilal Patel

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas Spanos, Chair

It has been widely recognized that variability is one the most important challenges to scaling
of nanoscale CMOS devices. Intrinsic sources of variation such as discretization effect of
dopant atoms, metal-gate work-function variation, and line width roughness threaten an end
to scaling realized in the past decades. Line width roughness (LWR) is of great importance
as it is a significant fraction of the minimum feature size for nanoscale devices, and it does
not scale at the same pace as the minimum feature size. According to previous studies, a
complete description of LWR can be provided by three parameters: root-mean square (RMS)
roughness (σ), correlation length (ξ), and roughness exponent (α).

A robust method of estimating line width roughness parameters is presented. Specifically,
the proposed method provides a better unbiased estimate of roughness amplitude σ than
existing methods. It also provides an estimate of error in LWR parameters. The proposed
method also allows for more flexibility in capturing SEM images in that we do not need
a special test structure with all lines with same designed CD; any IC layout region with
straight lines and arbitrary CDs would suffice. As an application of this method, LWR
characteristics of many next-generation lithography processes are explored. LWR parameters
are also incorporated in the FinFET device framework, and useful physical insights are
provided in regards to its impact on device performance.

Variability can also be systematic in nature. Systematic spatial variation can occur at
the wafer- or die-level. Accurate estimation of various variability components is necessary
for robust circuit design. To this end, a hierarchical decomposition of semiconductor pro-
cess variation is performed. A holistic discussion on all components of process variation
is provided. Specifically, global (inter-die) variation is modeled in a multivariate normal
framework. The same framework is extended to enable wafer-selection for model estimation.
Least angle regression and agglomerative hierarchical clustering are proposed for selecting
wafers for model estimation. Methodologies to model systematic local (intra-die) variation
and spatial correlation are provided. Spatial correlation in intra-die observations is extracted
using the variogram, and issues in variogram estimation are discussed in detail.
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Ithaca
(Constantine P. Cavafy, 1863 - 1933)

When you set out on your journey to Ithaca,
pray that the road is long,

full of adventure, full of knowledge.
The Lestrygonians and the Cyclops,

the angry Poseidon – do not fear them:
You will never find such as these on your path,

if your thoughts remain lofty,
if a fine emotion touches your spirit and your body.

The Lestrygonians and the Cyclops,
the fierce Poseidon you will never encounter,

if you do not carry them within your soul,
if your soul does not set them up before you.

Pray that the road is long.
That the summer mornings are many,
when, with such pleasure, with such joy

you will enter ports seen for the first time;
stop at Phoenician markets,

and purchase fine merchandise,
mother-of-pearl and coral, amber, and ebony,

and sensual perfumes of all kinds,
as many sensual perfumes as you can;

visit many Egyptian cities,
to learn and learn from scholars.

Always keep Ithaca on your mind.
To arrive there is your ultimate goal.
But do not hurry the voyage at all.

It is better to let it last for many years;
and to anchor at the island when you are old,

rich with all you have gained on the way,
not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.
Without her you would have never set out on the road.

She has nothing more to give you.
And if you find her poor, Ithaca has not deceived you.
Wise as you have become, with so much experience,

you must already have understood what these Ithacas mean.
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Chapter 1

Introduction

1.1 Semiconductor Technology

Semiconductors are ubiquitous these days. There is hardly a part of our life that has not
been improved by semiconductors. New applications are being invented to exploit the minia-
turization of integrated circuits and the performance improvement at that scale. Broadly
speaking, the production of the integrated circuits can be classified into two parts, namely,
circuit design and circuit fabrication.

Traditional circuit design has three primary and competing objectives: maximize perfor-
mance, minimize power consumption, maximize yield. A circuit’s performance is typically
evaluated in terms of speed or delay in the transmission of a signal. The delay in signal
transmission can be reduced with higher transistor drive currents. Higher drive currents
typically result in higher leakage currents which in turn increases the power consumption.
Yield loss of a circuit circuit can be as a result of a defect during fabrication or due to
the failure of circuit to meet its parametric objectives (higher drive currents, lower leakage
current). Other secondary objectives of integrated circuit (IC) industry are cost, level of
integration, functionality, and form factor [1].

Circuit fabrication is enabled by semiconductor technology or process development. Fab-
rication is realized through a series of processing steps, with each step having a specific
objective such as creating a lithographic pattern, depositing or etching a film, etc.. The in-
creased demand for complex circuits with increased performance at very low cost has driven
semiconductor technology development to a record pace, and it has made achieving the afore-
mentioned design objectives more difficult than ever before [1]. The minimum feature size
on a die or chip has decreased exponentially over the years. The scaling trend of minimum
feature size is usually referred to as Moore’s Law [2]. It states that the number of components
per chip doubles approximately every 24 months. Figure 1.1 shows the Moore’s Law scaling
for the past several decades [3]. Since its inception in 1992 by the Semiconductor Industry
Association (SIA), the International Technology Roadmap for Semiconductors (ITRS) has
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Figure 1.1: Moore’s Law scaling trend. After [3]

published the technical capabilities that are required to remain on Moore’s Law trend. Ac-
cording to the ITRS, the scaling of the industry workhorse—the planar CMOS MOSFET,
will face significant challenges in the near-term [1]. New materials and new device architec-
tures, in addition to process control of unprecedented proportion, will be required to break
the scaling barriers. The complexity of process flow also has increased dramatically over the
past decade. The increased number of processing steps (that are commensurate with the
process complexity) have introduced new sources of variability such as strain or stress in thin
films. Variability in physical and electrical characteristics has been further compounded by
discretization of charge and matter at the nanoscale [4].

1.2 Process Variability

Variation is the deviation of realized values from its design intent. In semiconductor process-
ing, variability arises from the multitude of processing steps it takes to fabricate a wafer (the
unit of production), and it causes undesired variation in the performance of electrical circuits
on a die or chip (unit of merit). In a nutshell, variation can result in yield loss or degraded
circuit performance. Figure 1.2 shows the simulated distribution of 6T static random-access
memory (SRAM) signal-to-noise margin (SNM) over an ensemble of 200 SRAM cells for 25-,
18- and 13-nm generations [4]. SNM is a key metric for the performance and reliability of
SRAM. Notice the dramatic widening of distribution as the gate-length is scaled down.

Variation may be systematic or random in nature. Systematic spatial variation can
occur at large (lot or wafer) or small (die) scale. Wafer-level systematic spatial variation is
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Figure 1.2: SNM distribution of 6T SRAM over an ensemble of 200 SRAM cells for 25-, 18-
and 13-nm generations. After [4]

typically found to be slowly varying and smooth function across the wafer. Figure 1.3 shows
an example of wafer-level systematic spatial variation. Systematic spatial variation can
cause spatial dependencies or correlation between collection of structures on a die. Devices
or structures that are in close proximity behave much more similarly than those that are
spaced farther apart. Random variation represents the uncertain component of variation. As
shown in Figure 1.4, random dopant, line edge (or width) roughness, metal gate granularity,
high-k granularity, interface roughness, etc., are examples of random variation [4]. These
sources of variation are intrinsic to semiconductor processing, and as such, the random
variation is also commonly referred to a intrinsic variation.

1.3 Role of Modeling

Models help us gain insight into the physical aspects of a phenomenon. In the IC industry,
modeling has been the foundation of circuit simulation. Figure 1.5 shows the levels of
abstraction in model parameters. Model parameters at each level, at least in theory, can
be expressed in terms of parameters at lower level of abstraction. For instance, expressing
physical parameter in terms of process parameters is not trivial as typically each physical
parameter is influenced by a number of process parameters spanning many steps.

Using LWR as an example, we can demonstrate the relationship of parameters across
different levels of abstraction. LWR is the undesired variation in width of a line, and a
complete description of LWR can be provided by three parameters: root-mean square (RMS)
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Figure 1.3: Example of systematic wafer-level spatial variation in ring oscillator frequency.

Figure 1.4: Sources of intrinsic variation. After [4].
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Figure 1.5: Levels of abstraction in modeling parameters

roughness (σ), correlation length (ξ), and roughness exponent (α) [5, 6]. For self-affine and
isotropic surfaces, LWR can be characterized by a specific functional form of auto-covariance
[7],

C(h;σ, ξ, α) = σ2 exp

(
−
[ |h|
ξ

]2α
)

h ∈ Zd. (1.3.1)

Now consider the line width roughness in gate of planar CMOS transistor. It causes variation
in the gate length along the width. The roughness can typically be approximated by a slice
approach (as shown in Figure 1.6). The gate is approximated by many narrow slices, where
each slice is assumed to be ideal with no roughness. Let ∂L(x) denote the fluctuation of
gate length at position x along the width W , and let L̄ denote the gate length averaged over
W . After first-order Taylor expansion around L̄, the drive current I of this transistor can
be given as

I =

∫ W

0

J
(
L̄+ ∂L(x)

)
dx = J(L̄)W +

∂J(L̄)

∂L̄

∫ W

0

∂L(x)dx+ H.O.T. (1.3.2)

In (1.3.2), J(L) represents the current density for gate length L. The variation in I can be
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Figure 1.6: Schematic view of planar MOSFET shown with 2D slice approximation for gate
LWR.

given as

σ2
I = E(I − Ī)2 =

(
∂J(L̄)

∂L̄

)2 ∫ W

0

∫ W

0

E [∂L(x)∂L(x′)] dxdx′

=

(
∂J(L̄)

∂L̄

)2 ∫ W

0

∫ W

0

C(x− x′)dxdx′ (1.3.3)

=

(
∂J(L̄)

∂L̄

)2

σ2(2ξW ),

where we used Ī = J(L̄)W and the double integral was evaluated using (1.3.1) under the
assumptions α = 0.5 and W � ξ. Now, consider the intrinsic delay of a transistor d = CV/I,
where C is the total gate capacitance, V is the supply voltage, and I is the drive current.
We can express the variability in d as

σ2
d = σ2

I

(
∂d

∂I

)2

=

(
∂J(L̄)

∂L̄

)2

σ2(2ξW )

(
CV

I2

)2

. (1.3.4)

Statistical static timing analysis (SSTA) is an analysis of delay between various circuit nodes
[8, 9, 10, 11, 12, 13]. The variability in intrinsic transistor delay (1.3.4) can subsequently be
incorporated into SSTA along with delay due to interconnects. Doing so allows us to draw
meaningful conclusions regarding the impact of each LWR parameter on the speed of the
circuit. Our simple LWR example demonstrates how fundamental roughness parameters can
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be linked to the variability in delay at the circuit level. This approach can be extended on
a grander scale through the use of SPICE or BSIM models. Key physical parameters such
as gate length, gate dielectric thickness, etc., are captured in the transistor models. These
models are validated against silicon data, and they are subsequently used to simulate the
circuit behavior.

Semiconductor IC fabrication involves multitude of processing steps, and each step con-
tributes a degree of uncertainty in some physical parameter. Variability, which originated
during processing, propagates to higher levels in Figure 1.5. An estimate of variability at
higher levels of abstraction can be made through the use of SPICE models; variability in
physical parameters such as transistor gate length can be transformed into variability of
electrical characteristics such as threshold voltage or drive current.

1.4 Modeling Challenges

Models can be used for describing a phenomenon (such as LWR) or even to describe vari-
ability. For instance, knowledge of how the variance of a particular physical or electrical
parameter decomposes across the semiconductor hierarchy (lot, wafer, die, and within-die)
is essential in robust circuit design. Models of variability can be stipulated at any level of
abstraction shown in Figure 1.5.

Irrespective of what is being modeled, there are fundamental challenges associated with
the problem of modeling:

• Existence of suitably compact representation and methods for characterization

Our earlier example of LWR was based on the premise that the LWR phenomenon
can be completely described by only three parameters. However, not all phenomena
can be represented compactly. Random dopant fluctuation is a good example of one
such case. Dopants are impurities implanted in CMOS transistors to tailor electri-
cal characteristics. The implantation process involves an energetic beam of either n-
or p-type impurity atoms. With highly scaled transistors, an incorrect final resting
position of even a singular impurity atom can alter the electrical performance of a
transistor. Randomness in the location of these dopants does not have a compact rep-
resentation. There is also no non-destructive method of accurately characterizing the
post-implantation positions of these dopants. In cases such as random dopant fluctu-
ations, the physical to electrical transformation can only be accomplished by a brute
force Monte-Carlo simulation [14]. However, further propagation of variability up to
the circuit-level becomes prohibitively expensive and intractable due to computational
limitations.

• Availability of data at a level of abstraction conducive to being used for circuit simula-
tion
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Even when models and methods of their estimation do exist, the data is not always
available at a level of abstraction that is conducive to be used in circuit simulation. For
instance, if the modeled parameter is an electrical parameter like the threshold voltage
of a transistor, then it can be incorporated much more easily in the circuit simulation
than a material parameter such as film stress or annealing temperature. The latter
choice would involve more elaborate simulation setups, and in many cases may require
simplifying assumptions. Generally speaking, electrical parameters are more desirable
choice for modeling purposes as they tend to incorporate all underlying physical and
material phenomena.

• Scarcity of rich enough spatial and temporal data to accurately estimate model param-
eters

In early stages of the process development cycle, there is often scarcity of rich enough
spatial and temporal data to accurately model process variation. Accuracy or reliability
of any variation model is directly proportional to the amount of data available during
the extraction phase. Electrical data collected from test structures on production
chips or test chips can provide substantial view of variability, and can readily be used
in circuit simulation.

With increasing process complexity due to aggressive scaling, the set of model parameters
at each level has exploded. Incorporating variability information from all processing steps
for all model parameters is intractable. However, through a judicious choice of model pa-
rameter, preferably estimated at the electrical level of abstraction, we can use the variability
information to create a robust circuit design.

1.5 An Overview of This Work

According to previous studies ([5, 6]), a complete description of LWR can be provided by
three parameters: root-mean square (RMS) roughness (σ), correlation length (ξ), and rough-
ness exponent (α). Estimation of LWR parameters is necessary for semiconductor process
optimization, comparison of next-generation lithography (NGL) processes as well as device
performance simulation.

In chapter 2, we propose a robust method of estimating LWR parameters. Using a
vectorized block or block of blocks bootstrap technique for dependent data and a weighted
least squares (WLS) fitting procedure, we fit a specific form of a variogram model. Block of
blocks bootstrap is used to estimate the variance of a variogram, which in turn provides the
WLS weights. Additionally, the bootstrap approach also allows us to estimate the error in
the estimated LWR parameters, a vital requirement that has not been addressed by any of
the previously reported procedures on this subject. Our procedure is shown to work even
in the presence of some unknown local CD variation or if there is a systematic difference in
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CD (by design or otherwise) between the lines. We validated our procedure with simulated
roughness profiles with deterministic LWR parameters.

In chapter 3, we conduct a comprehensive comparative study of LWR in NGL processes
using the estimation method developed in chapter 2. In this chapter, we investigate main-
stream lithography options such as double patterning lithography (DPL), self-aligned double
patterning (SADP), and extreme ultra-violet (EUV), as well as alternatives such as directed
self-assembly (DSA), and nano-imprint lithography (NIL). The correlation length indicates
the distance along the edge beyond which any two line width measurements can be consid-
ered independent. For NGL processes, it is found to range from 8 to 24 nm. It has been
observed that LWR decreases when transferred from resist into the final substrate; all NGL
technology options produce < 10% final LWR. We make meaningful comparison with LWR
values stipulated by ITRS [15]. Additionally, spatial frequency transfer characteristics for
DSA and SADP are also reported. Based on our study, the roughness exponent (which
corresponds to local smoothness) is found to range from ∼0.75-0.98; it is close to being ideal
(α = 1) for DSA.

Earlier in section 1.3, we demonstrated how LWR parameters can be related to electrical
parameter such as the transistor drive current of a planar CMOS transistor. However, the
planar CMOS transistor may no longer be a viable device architecture in the near-term
[1]. New device architecture such as multi-gate field effect transistor (MuGFET) and fully-
depleted silicon-on-insulator (FDSOI) are expected to replace planar CMOS architecture
[1]. FinFET is one such leading candidate for MuGFET. In chapter 4, we conclude our
work on LWR by presenting a model for estimating the impact of gate line width roughness
on the performance of double-gate (DG) FinFET devices. In this chapter, we present a
framework to link device performance attributes (such as threshold voltage, drive current
and off-state leakage) to LWR descriptors σ, ξ, and α. We provide physical insight into how
LWR impacts device performance for 13nm gate length DG FinFETs, and we demonstrate
that our modeling approach is more efficient than Monte-Carlo TCAD simulations, and it
provides comparable results with appropriately selected input parameters. The FinFET
device architecture is found to be robust to gate LWR effects. Furthermore, a spacer-
defined gate electrode (vs. a resist-defined gate electrode) provides for reduced variability in
performance, indicating that the gate-length mismatch has more impact than lateral offset
between the front and the back gates.

In chapter 5, we perform a hierarchical decomposition of semiconductor process variation,
and we closely examine the inter-relationship of across-wafer and across-die components
specifically in terms of spatial correlation. The multivariate framework proposed for wafer-
level variation is capable of handling scenarios where the across-wafer spatial variation has
some unknown distribution. We also present method for rejecting outlier wafers and strategy
for selecting wafer for model estimation.

Chapter 6 summarizes the contributions of this work, and suggestions for further research
are offered therein.
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Chapter 2

Robust Estimation of Line Width
Roughness (LWR) Parameters

2.1 Introduction

2.1.1 Motivation and Background

The formation of line edge roughness is a stochastic phenomenon. It has been shown to
originate from many sources such as shot noise, mask roughness, resist diffusion statistics,
chemical statistics, and quantum mechanics. During resist development, polymer aggregates
along the edge are non-uniformly dislodged from their surrounding polymer matrix due to
their different dissolution rates [16, 17]. Line edge roughness from two coupled edges leads
to line width roughness. From a practical standpoint, line width is a more useful physical
parameter than line edge for gate and interconnect definition. For convenience, we will use
the term LER to describe the phenomenon that causes LWR.

With aggressive scaling of technology, LWR is increasingly becoming a larger component
of the total variation [15]. It has generally been accepted that a complete description of
LWR can be provided by three parameters: root-mean square (RMS) amplitude or standard
deviation of line width (σ), correlation length (ξ), and roughness exponent (α) [5, 6]. These
parameters can then be used for process characterization, transistor performance modeling
or defining a roadmap [18, 19, 20, 15].

Scanning electron micrograph (SEM) image is the most practical source of data for esti-
mating LWR parameters. However, the estimation of the aforementioned LWR parameters
from the SEM image is a non-trivial task. The primary challenge in the estimation process
is the limited availability of data in the SEM image. The SEM image presents us with
few lines of finite length, and our objective is to estimate the parameters of the underlying
LER process that generated this sample of data. It has been recognized that in presence of
correlation between line widths at a given separation, the estimate of σ for a finite length
of line can be significantly biased [5, 21]. Let σ̂ and σ̂LWR denote the unbiased and biased
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estimators of σ respectively. Figure 2.1 shows a plot of σ̂LWR as a function of line length
L for simulated data. Note that σ̂LWR → σ̂ as length of the line L → ∞, but there is a
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Figure 2.1: Biased estimate σ̂LWR shown as a function of length of the line for (a) different
correlation length values with α = 0.5, and (b) different roughness exponent values with
ξ = 20. The roughness profiles were simulated with σ = 1.

significant bias in σ̂LWR for short line lengths.
The Semiconductor Industry Association (SIA) is semiconductor industry’s leading con-

sortium of global chip manufacturers, equipment suppliers and research communities. Ac-
cording to the guidelines provided by SIA in the International Technology Roadmap for
Semiconductors (ITRS), σ̂LWR is determined as the biased estimate of line width variation
over a length greater than or equal to 2 µm measured at less than or equal 4 nm intervals
[15]. However, most SEM images are captured at much higher resolution in order to accu-
rately measure the average line width or critical dimension (CD) of lines. For example, figure
2.2 shows an SEM image of 40 nm full-pitch lines created by double patterning lithography
(DPL). It shows 8 lines of approximately 288 nm length. The resolution of the image shown
in figure 2.2 is 0.65 nm/pixel. Thus, contrary to the ITRS guidelines, the typically available
SEM image has shorter lines scanned at higher resolution.

Leunissen, Lawrence and Ercken proposed a two-parameter (σ and ξ) model (henceforth
referred to as ‘LLE’); they assumed α = 0.5 based on the data available to them at the time
[21]. A two parameter model is less desirable, because it assumes some value of α (typically
α = 0.5 or α = 1). The value of α may vary depending on the type of lithography process
used to generate the lines. Additionally, in regards to the estimation of σ̂, the LLE approach
suffers from two drawbacks: (1) local non-LER related variations in CD are attributed to
σ̂ and (2) the estimate of σ̂ rapidly deteriorates with reduction in number of lines in SEM
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Figure 2.2: SEM image of lines generated by litho-freeze-litho-etch DPL process [22]

image [21]. Independently, Constantoudis et al developed a more flexible model that allows
α to be fitted to data [5, 6], but the estimation of σ̂ suffered from the same drawback as the
LLE method. We will have a detailed discussion of the LLE method in section 2.3.

In summary, there is need for a robust extraction procedure that can provide a complete
and accurate description of LWR for arbitrarily short and fewer number of lines.

2.1.2 Our Work

In this chapter, we present a procedure that provides a robust estimate of LWR parameters—
σ̂, ξ̂, and α̂. Our estimation procedure is a confluence of spatial statistics and fractal concepts
developed to understand the surface growth phenomena. Using the block of blocks bootstrap
technique for dependent data and weighted least squares (WLS) fitting procedure, we fit a
specific form of variogram model. Our procedure is shown to perform robustly in practical
scenarios with limited data. Block of blocks bootstrap is used to estimate the variance
of variogram, which in turn is used as weights in the WLS procedure. We first validate
our procedure with simulated roughness profiles with deterministic LWR parameters, and
then we test the robustness of the procedure using actual profiles from variety of different
lithographic processes.

We use the term robust here to describe the stability of the proposed inference proce-
dure in the presence of limited data without the central assumption of a Gaussian process.
Moreover, our procedure works even in the presence of some unknown local CD variation
or if there is a systematic difference in CD (by design or otherwise) between the lines. This
aspect of our procedure (a) prevents non-LER sources of variation from being attributed to
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LER, and (b) it allows for more flexibility in capturing SEM images in that we do not need a
special test structure with all of the lines having the same designed CD; any IC layout region
with straight lines and arbitrary CDs would suffice. Additionally, the bootstrap approach
also enables us to estimate the standard error in the estimated LWR parameters; to our
knowledge, this vital and basic need has not yet been addressed by any of the previously
reported procedures on this subject.

The rest of the chapter is organized as follows: In section 2.2, we provide a brief intro-
duction to the LWR parameters and describe the LWR model. In section 2.3, we discuss the
estimation of LWR parameters—σ̂, ξ̂, and α̂. A detailed outline of the complete procedure
can be found in section 2.4. In section 2.5 we discuss the application of our procedure to
simulated and actual data. Concluding remarks are made in section 2.6.

2.2 Line Width Roughness Model

2.2.1 LWR Parameters

A brief introduction to the LWR parameters is provided here for completeness. The RMS
roughness or standard deviation (σ) is the most fundamental parameter to characterize LWR.
Figure 2.3(a) shows two simulated roughness profiles with different values of σ, and it is fairly
evident that larger values of σ correspond to greater roughness of the line. However, the
statistic σ only provides a measure for transverse (to the line) fluctuations, and it does not
describe any correlations between different lateral or longitudinal (along the line) locations.
For instance, both simulated profiles shown in Figure 2.3(b) have the same value of σ. The
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Figure 2.3: Illustration of the impact of (a) Roughness amplitude, RMS roughness or stan-
dard deviation of line width from its mean (σ), (b) auto-correlation length (ξ), and (c)
roughness exponent (α) on line edge roughness. Note the differences in the oscillatory be-
havior of the peaks in (b). In (c), the higher value of α results in a smoother profile.
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top (blue) roughness profile gives the appearance of being more rough than the bottom (red)
profile. The lateral scale of fluctuations is noticeably different between the two profiles. In
order to describe the spatial variation, we need to relate line widths at two different locations
along the edge. The autocorrelation function ρ is a useful tool in describing such correlation.
Generally for LER, ρ is described by a monotonically decreasing function expressed in terms
of distance between the two locations along the line (defined as the lag h). It is characterized
by a single parameter called correlation length ξ, defined as ρ(ξ) ≡ 1/e. ξ is a representative
lateral dimension used to describe the roughness profile. For h < ξ, the line widths at these
locations are considered to be correlated. Conversely, for h � ξ, the two locations can be
considered independent. Unlike σ (lower the better), the desired trend in ξ is not obvious.
However, as shown in chapter 1, a shorter correlation length is desirable as it leads to lower
variability in the electrical parameters.

One final parameter, α, that is used to describe LWR is illustrated in Figure 2.3(c).
It shows two simulated roughness profiles with the same values of σ and ξ. The profile
pictured on top (blue) appears to be more jagged than the one shown on the bottom (red).
This demonstrates that the two-parameter description of LWR is insufficient. To complete
the description of roughness, fractal concepts from thin-film materials science have been
employed [23]. A self-affine object remains scale invariant under an affine transformation.
That is, one can re-scale the roughness profile laterally and longitudinally, and obtain a new
profile that is statistically identical to the original profile. A self-affine roughness profile has
the property [23]

f(x) = ε−αf(εx), (2.2.1)

where α is the roughness exponent, ε is a scale factor, and f(x) is the line width at location
x. Thus, for a self-affine function f , the function values scale as a power law. The roughness
exponent α (also known as the Hurst exponent) characterizes short-range roughness and
for a d-dimensional surface it is directly related to the fractal dimension D by the identity
α = d−D [23]. Physically, α can be thought of as a local smoothness parameter. It can be
shown that 0 ≤ α ≤ 1 [23]. As shown in Figure 2.3(c), higher value corresponds to a locally
smooth roughness profile.

2.2.2 A Variogram Model

In this section we use concepts from spatial statistics to formulate a model using the LWR
parameters discussed above. Subsequently, we will estimate the LWR parameters by fitting
this model to the roughness data.

The line width roughness profile can be generalized as a spatial sequence of random vari-
ables. A spatial sequence is considered intrinsically stationary if its finite dimensional joint
distributions do not change when shifted in position. Consider an intrinsically stationary
spatial sequence in region R, i.e., let Xs = {Xi : i ∈ Z}, be a collection of random variables
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with an unknown mean µ ∈ IR such that

E(Xi −Xi+h) = 0, (2.2.2)

and
Var(Xi −Xi+h) = Var(X0 −Xh) = 2γ(h) (2.2.3)

for all (i, h) ∈ Z. (2.2.2) implies that the mean is constant everywhere in region R. (2.2.3)
implies that the variance of the difference is constant everywhere in region R, and that it
depends only on h. In spatial statistics, 2γ is known as the variogram, and γ is known as
the semi-variogram. In thin film material science, the variogram is also known as the height-
height correlation function [23, 24]. Additionally, if Xs is second-order or weakly stationary,
then (2.2.2) holds, and Xs has a common auto-covariance function C(h) = Cov(X0, Xh) such
that

Var(Xi −Xi+h) = Var(Xi) + Var(Xi+h)− 2Cov(Xi, Xi+h) (2.2.4)

= 2 [C(0)− C(h)] . (2.2.5)

Thus, second-order stationarity implies intrinsic stationarity, and we have

2γ(h) = 2 [C(0)− C(h)] (2.2.6)

for h ∈ Z. Previously, we introduced auto-correlation function ρ as a tool to describe the
spatial correlation between line widths at two locations along a line. The auto-correlation
function can be defined in terms of the auto-covariance function as

ρ(h) ≡ C(h)

C(0)
, (2.2.7)

where C(0) = σ2 is the variance of spatial sequence Xs. Using (2.2.6) and (2.2.7), we can
define the variogram in terms of the auto-correlation function as

2γ(h) = 2σ2 [1− ρ(h)] (2.2.8)

The auto-correlation function ρ has the following important properties:

1. ρ(0) = 1

2. ρ(h) = ρ(−h)

3. |ρ(h)| ≤ ρ(0)

4. limh→∞ ρ(h) = 0



CHAPTER 2. ROBUST ESTIMATION OF LWR PARAMETERS 16

The last relation holds for a wide class of stationary processes, including the spatial process
considered here, but not in general. As previously mentioned, the correlation length ξ
represents a characteristic lateral dimension of the roughness profile. Several analytic forms
exist that satisfy (2.2.1) [24]. For self-affine and isotropic surfaces, a specific functional form
was proposed by [7],

ρ(h; ξ, α) = exp

(
−
[ |h|
ξ

]2α
)
, h ∈ Zd. (2.2.9)

Let θ ≡ (ξ, α)′ ∈ (0,∞) × [0, 1] denote the structural parameter of the auto-correlation
function defined by (2.2.9). A phenomenologically correct self-affine form for ρ was proposed
by [25], but we prefer (2.2.9) because it lends itself better for fitting purposes. Note that the
choice of a particular form for ρ does not alter our procedure other than a simple change of
fitting function. Using (2.2.9), we can now rewrite (2.2.8) as

2γ(h;σ2, θ) = 2σ2
[
1− exp

(
−
[ |h|
ξ

]2α)]
, h ∈ Z. (2.2.10)

Using the Taylor expansion of the exponential function, it can be shown that the variogram
(2.2.10) satisfies the self-affine property (2.2.1), and exhibits power law behavior 2γ ∼ h2α

for h� ξ.

2.3 Estimation of Model Parameters

Both sources of roughness data employed in our work—the simulated data and the SEM
image, generate data on a regular grid. We can generalize both of these sources into a
common framework as follows. Consider M independent realizations of a stationary LER
process:

Xn ≡ {Xis : s = 1, . . . , L, i = 1, . . . ,M} (2.3.1)

with unknown line-wise means µi ∈ IR and common auto-covariance function C(h)

E[(Xis − µi)(Xi(s+h) − µi)] = C(h) = σ2ρ(h). (2.3.2)

Here σ2 and ρ(h) denote the variance and the auto-correlation function of the underlying
LER process respectively, M denotes the number of available lines, and Ld is the physical
length of each line with grid spacing d ∈ IR. L is the length of the line normalized to grid
spacing, and will be used interchangeably with Ld. The generalized framework is graphically
illustrated in figure 2.4.

2.3.1 Estimation of ξ and α

We adapt ideas from spatial statistics and estimate the structural parameter θ ≡ (ξ, α)′ of
the variogram (2.2.10). We use a version of Matheron’s classical variogram estimator [26]
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Figure 2.4: Generalized framework of simulated and digitized SEM data. A typical SEM
image can be generalized to consist of M lines where each line has L number of measurements
collected at a spacing d. Xis denotes the line width at location s on line i and X̄i denotes
the average line width (or CD) of the i-th line.

to fit our model (2.2.10) using the weighted least squares (WLS) method. Our estimation
procedure closely follows method described in [27]. A version of the classical variogram
estimator based on all ML observations can be given as [26]

2γ̂(h) =
1

Nh

M∑

i=1

L−h∑

s=1

(
Xis −Xi(s+h)

)2

, (2.3.3)

where
Nh = M(L− h) (2.3.4)

denotes the number of pairs available at lag h.
Recall that the variogram and covariogram are related by (2.2.6). We prefer using vari-

ogram estimation over covariogram estimation for two reasons: (i) it completely avoids the
estimation of the mean parameters µi’s (that are of little interest in this case), and (ii) it
ensures a higher level of accuracy (a mean squared error of order O([ML]−1) that is not
masked by the error of estimating the individual mean parameters based on observations
from a single line (giving MSEs of the order O(L−1)). Additional statistical arguments in
favor of the variogram have also been made [28].

Note that (2.3.4) indicates that fewer pairs are available at higher lag values. Thus, the
variogram estimation error increases with the lag. The WLS method automatically provides
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heigher weights for early lags and lower weights for the lags at which number of contributing
pairs is low [27]. Several methods have been proposed for fitting variogram models [28], but
the robustness of WLS, and the absence of any distributional assumptions, makes it the most
practical method for fitting variogram [29]. Assuming heteroskedasticity, the WLS criterion
is to minimize

(2γ̂ − 2γ(θ))′ V −1 (2γ̂ − 2γ(θ))

where V is diagonal matrix of variances of variogram. Thus, we can define the WLS estimator
of (σ2, θ) as

(σ̂2
WLS, θ̂) = argmin

σ2,θ

h0∑

h=1

w(h)
[
2γ̂(h)− 2γ(h;σ2, θ)

]2
, (2.3.5)

where h0 is a user specified upper range of lag values, 2γ̂(h) and 2γ(h;σ2, θ) are given by
(2.3.3) and (2.2.10) respectively, and w(h) are the weights given to observations with lag h
such that

w(h) =
1

Var(2γ̂(h))
. (2.3.6)

Bootstrap and subsampling methods for dependent data can be employed to estimate the
variances of the variogram at different lags [30, 31]. However, at the time of Cressie’s
publication in 1985, such methods had not yet been developed. Cressie suggests the following
approximation for the variance of 2γ̂ [27]

Var(2γ̂(h)) ≈ 2[2γ(h;σ2, θ)]2

Nh

. (2.3.7)

Using this approximation, (2.3.5) can be rewritten as

(σ̂2
WLS,CA, θ̂CA) = argmin

σ2,θ

h0∑

h=1

Nh

[
2γ̂(h)

2γ(h;σ2, θ)
− 1

]2

. (2.3.8)

As an alternative to the Cressie approximation (2.3.7), in section 2.4 we will use block of
blocks bootstrap method to compute Var(2γ̂(h)). We will compare the bootstrap weight based
θ̂ from (2.3.5) with the Cressie approximated θ̂CA in the discussion section.

The WLS estimator for (σ2, θ) defined in (2.3.5) can be solved by any non-linear optimiza-
tion procedure. Most mathematical packages such as MATLAB provide built-in functions
for constrained non-linear optimization [32]. Lastly, we would like to remark on an impor-
tant practical consideration—the choice of maximum lag h0. In our framework, for lines of
length L, the largest possible lag is H = (L− 1). A practical choice of h0 is then [27]

h0 = argmax{h : h ≤ H/2 and Nh ≥ 30}. (2.3.9)
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2.3.2 Estimation of σ2

Pursuant to the framework defined earlier, the sample mean of each line (commonly referred
to as the critical dimension or CD) can be given by

X̄i = L−1

L∑

s=1

Xis. (2.3.10)

We can estimate the variance in CD or variance in (2.3.10) as

σ̂2
CD =

1

M − 1

M∑

i=1

(X̄i − X̄)2, (2.3.11)

where X̄i is given by (2.3.10), and X̄ is the grand average defined as X̄ = M−1
∑M

i=1 X̄i.
The mean-adjusted sample variance (an estimator of σ2) is given by

σ̂2
LWR =

1

ML

M∑

i=1

L∑

s=1

(Xis − X̄i)
2. (2.3.12)

Figure 2.1 shows a plot of σ̂2
LWR as a function of length L using simulated data. Note that

σ̂2
LWR is a poor estimator of σ2, and it has a significant bias at short lengths when ξ is large

or α is small [5, 21]. The guidelines provided in the ITRS roadmap stipulate that σ̂2
LWR

should be measured over lengths greater than or equal to 2 µm [15]. For typical values of ξ
and α, σ̂2

LWR would be approximately unbiased if L ≥ 2µm. However, for L ∼ 200−1000 nm,
we need a explicit bias correction in σ̂2

LWR. One such bias correction method was proposed
by Leunissen, Lawrence and Ercken (henceforth referred to as ‘LLE’)[21]. It was empirically
observed that adding (2.3.11) to (2.3.12) provided the necessary bias correction, and it was
proposed that [6, 21]

σ̂2
LLE ≡ σ̂2

LWR(L) + σ̂2
CD(L) = σ̂2. (2.3.13)

In other words, the sum of variances defined by (2.3.11) and (2.3.12) is invariant with
the length of line L, and that it equals the unbiased variance of an infinitely long line.
The relationship (2.3.13) was demonstrated to hold by using simulated data [6]. Under
independence, this is a well-known result in the Linear Models theory in Statistics [33].
However, to the best of our knowledge, a mathematical proof for the assertion (2.3.13) has
not yet been provided in the literature for dependent variables. We provide a proof for
relation (2.3.13) in Appendix B. Equation (2.3.13) does not perform well when the number
of lines in the SEM image M is greatly reduced. Indeed, (2.3.13) was demonstrated to hold
with M = 500 [6]. However, for typical values of M ∼ 10 − 12, (2.3.13) provides a poor
estimate. This poses a real problem for advanced lithographic technologies such as DPL.
There are two lithographic sequences in DPL, and every alternate line belongs to the same
lithographic sequence. LER characteristics of each lithographic sequence can be significantly
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different, and they need to be analyzed separately [22]. As such, in case of DPL, only half
of the lines are available for estimating σ̂ of each lithographic step. The LLE method can
be modified for DPL; the σ̂2

CD term in (2.3.13) can be separated into two terms based on
alternate lines and for each of these terms the value of M could be as low as 3! Thus,
although a simple modification of the LLE procedure circumvents this limitation for DPL,
it comes at a cost of reduced accuracy, because only half the number of lines can now be
used for each lithographic step. Thus, σ̂2

LLE is not a robust estimator of σ2. But even more
importantly, the use of (2.3.13) to estimate the bias corrected value of σ2 can fundamentally
be flawed. The σ̂2

CD term in (2.3.13) incorporates all local non-LWR sources of variability
such as mask CD variation (among other factors). This variation can also be lithography
process induced systematic or random. An estimate of σ2 based on (2.3.13) would be inflated
by the amount of local variability present in the SEM lines.

We propose a more explicit bias correction to σ̂2
LWR. It is straightforward to show (see

Appendix A) that
E[σ̂2

LWR(L)] = σ2f(L) (2.3.14)

where f(L) represents the bias factor. For the special case of α = 0.5, Leunissen et al did
recognize the need for explicit bias correction, but they did not develop any procedure to use
it further [21]. For the assumed form of the auto-correlation function given by (2.2.9), it is
possible to derive a closed form expression for f(L) for α = 0.5 and α = 1 (see Appendix A).
However, it is better to use the numerical representation

f(L; θ) ≡
(

1− 1

L2

L∑

s=1

L∑

t=1

ρ(s− t)
)
, (2.3.15)

because it applies for any choice of α and ξ. Here ρ is defined by (2.2.9) with a structural
parameter θ ≡ (ξ, α)′. Substituting the estimates of the structural parameter found in the
previous by WLS, we can define our estimator of σ2 as

σ̂2
BBB = σ̂2

LWR

[
f̂(L; θ̂)

]−1

. (2.3.16)

In summary, we have four available estimators of σ2: σ̂2
LWR, σ̂2

WLS, σ̂2
LLE, and σ̂2

BBB. σ̂2
LWR

is a biased estimator of σ2, and σ̂2
WLS, σ̂2

LLE, and σ̂2
BBB are the unbiased estimators of σ2.

We will compare the performance of each estimator in section 2.5.

2.4 Robust Estimation of LWR Parameters

In a 1979 seminal paper, Efron introduced a non-parametric resampling technique in the
context of independently and identically distributed (IID) data (henceforth referred to as the
IID bootstrap) [34]. The IID bootstrap is a conceptually simple way to make inferences
regarding the distributional properties of an unknown distribution. In this method, the
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empirical distribution is resampled with replacement to create replicates of the original ob-
servations. This process is commonly referred to as bootstrapping. Bootstrap replicates can
be used to estimate the standard error, bias, and confidence interval of parameters. A very
nice introduction to the bootstrapping techniques can be found in [35]. The IID bootstrap
quickly became popular due to its simplicity and the advancements in computational power.
It found applications in large variety of statistical problems. Shortly after Efron introduced
the IID bootstrap, in 1981 Singh described its limitation for dependent data [36], and in
1986 Carlstein proposed the non-overlapping block method to deal with weakly dependent
data [37]. Independently, Kunsch [38] and Liu and Singh [39] formulated a new resampling
scheme called the moving block bootstrap in 1989 and 1992, respectively. The name moving
block bootstrap (MBB hereafter) was coined by Liu and Singh [39]. In contrast to the IID
bootstrap, where only single observations are resampled, in the MBB approach blocks of
consecutive observations are resampled at random and with replacement. The resampled
blocks are then concatenated together to form a bootstrapped version of the original series.
Note that the blocks defined in the MBB method are one-dimensional, and thus, they cannot
be used for estimating statitics that are based on sample lag correlations. For example, for
estimating the variogram we need to incorporate the lagged version of the original sequence
into the definition of the blocks. A variant of MBB that covers such statistics was proposed
by Kunsch [38], and it was further explored by Politis and Romano [40]. The modified block-
ing scheme was called vectorized block bootstrap [38] or block of blocks [40]. We will refer to
the block of blocks bootstrap method as BBB hereafter. In the following, we illustrate the
difference between the MBB and BBB. Let the original sequence be denoted as {Rn}. In
the BBB method, we define a new sequence that includes the lagged version of the original
sequence such that

Yj = (Rj, . . . , Rj+h), 1 ≤ j ≤ (n− h).

We then define blocks of in terms of consecutive Y -values instead of R, and subsequently,
resample and concatenate these blocks as in the MBB method. A graphical illustration of
block of blocks method is shown in Figures 2.5 and 2.6. In the MBB method, the blocks
are defined as shown in Figure 2.6, albeit directly for the original sequence {Rn} instead of
{Yn}. A detailed exposition of the bootstrap methods and their properties for dependent
data can be found in [30].

2.4.1 Procedure

In the following discussion, we will describe the application of the BBB method for estimating
the weights used in fitting the variogram as well as estimating the standard error (or variance)
in the LWR parameters. Consider the framework defined in the beginning of section 2.3.
Our objective here is to estimate the LWR parameters (σ̂, ξ̂, and α̂) and their respective
standard error or variance. The steps in our extraction algorithm using BBB are as follows:

1. Let eis = Xis − X̄i, s = 1, . . . , L, i = 1, . . . ,M denote the residuals. Define a new
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sequence of centered residuals

Rn ≡ {Ris = eis − ē : s = 1, . . . , L, i = 1, . . . ,M}.

where ē ≡ (ML)−1
∑M

i=1

∑L
s=1 eis is the grand average of all eis’s.

2. Given Rn and lag h, define a new sequence

Yip ≡
(
Rip, . . . , Ri(p+h)

)′
, p = 1, . . . , (L− h), i = 1, . . . ,M.

For later use, we also denote the components of Yip (that is Ris’s) as Yip,1, . . . , Yip,(1+h).
Figure 2.5 shows a graphical representation of the new sequence Yip formed based on
lagged version of the sequence Ris.

Figure 2.5: Graphical representation of the new sequence Yip formed based on lagged version
of the sequence Ris. Note that the i subscripts are dropped from Yip and Rip for clarity.

3. For a block length (` : 1 < ` < (L − h0)), let k ≡ dL/`e where k ∈ Z, and h0 is the
maximum lag defined in (2.3.9). Here, dxe denotes the ceiling of x, i.e. the smallest
integer greater than or equal to x.

4. Define B(i, j) to be the block of ` consecutive observations of Yip within each line such
that

B(i, j) ≡
(
Yij, . . . , Yi(j+`−1)

)
, j = 1, . . . , (L− h− `+ 1), i = 1, . . . ,M. (2.4.1)

Figure 2.6 shows a graphical representation of the block definition.



CHAPTER 2. ROBUST ESTIMATION OF LWR PARAMETERS 23

Figure 2.6: Graphical representation of the blocks under the block of blocks method. Note
that the i subscripts are dropped from Yip and B(i, j) for clarity.

5. Resample Mk-many blocks at random and with replacement, and reconstruct the MBB
version of the Yip series by concatenating the values in the resampled blocks. Following
the discussion in [41], note that it is not always possible to define the block size ` that
satisfies L = kl where k ∈ Z. In such cases, we let k ≡ dL/`e, delete the last (kl − L)
observations, and retain only the first L resampled values for the reconstruction of each
line [41].

6. From step 5, we have a bootstrapped version of Yip series for which we can compute
the bootstrapped version of sample variance (2.3.12)

(σ2
LWR)∗ =

1

ML

M∑

i=1

L∑

p=1

(Y ∗ip,1 − Ȳ ∗i,1)2. (2.4.2)

Here Ȳ ∗i,1 = L−1
∑L

p=1 Y
∗
ip,1.

7. To define the BB version of 2γ̂(h) of (2.3.3), note that in terms of Yip’s, we can write

2γ̂(h) =
1

M(L− h)

M∑

i=1

L−h∑

p=1

(
Yip,1 − Yip,(1+h)

)2

.

Hence, we define the bootstrapped variogram 2γ∗ as

2γ∗(h) =
1

M(L− h)

M∑

i=1

L−h∑

p=1

(
Y ∗ip,1 − Y ∗ip,1+h

)2

, (2.4.3)
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obtained by replacing {Yip : p = 1, . . . , L − h, i = 1, . . . ,M} by the resampled values
{Y ∗ip : p = 1, . . . , L− h, i = 1, . . . ,M}

8. Repeat steps 5 through 7 a large number of times (say, B = 500+ times), independently
(i.e., select the Mk blocks from the collection (2.4.1) at random, every time). B denotes
the number of bootstrap samples. Thus, we have B bootstrap sets of (2.4.2) and (2.4.3).

9. Compute the variance of γ̂(h) using

V̂ar(2γ̂(h)) = [w(h)]−1 =
1

B − 1

B∑

b=1

[
2γ∗b(h)− 2γ̄∗(h)

]2

, (2.4.4)

where 2γ∗b is the estimate of 2γ computed using the b-th bootstrap sample data set in
step 7, and γ̄∗ is the average of {2γ∗b : b = 1, . . . , B}.

10. Using (2.4.4) and (2.3.5), compute θ∗ ≡ (α∗, ξ∗)′ for each of the B bootstrap sets of
variogram from step 8.

11. From step 10, we have B = 500+ values of α∗ and ξ∗ that can be used for setting
confidence limits for the parameters, as well as for estimating the standard errors of
our estimators. Estimator of the variance of α is given by the sample variance of the
B replicates as

V̂ar(α̂) =
1

B − 1

B∑

b=1

[
α∗b − ᾱ∗

]2

, {α∗b : b = 1, . . . , B}, (2.4.5)

where α∗b is the estimate of α computed using the bth resampled data set in step (c),
and where ᾱ∗ is the average of {α∗b : b = 1, . . . , B}. Similarly, the estimator of variance
of ξ̂ is given by

V̂ar(ξ̂) =
1

B − 1

B∑

b=1

[
ξ∗b − ξ̄∗

]2

, {ξ∗b : b = 1, . . . , B}, (2.4.6)

where ξ∗b is the estimate of ξ computed using the bth resampled data set in step (c),
and where ξ̄∗ is the average of {ξ∗b : b = 1, . . . , B}.

12. To compute the standard error in σ̂2
BBB, we proceed similarly. For each of the B

bootstrap replicates, we compute (σ̂2
BBB)∗b using the corresponding values of α∗b, ξ∗b

and (σ2
LWR)∗b in (2.3.16). Then, the block bootstrap estimator of the variance of σ̂2

BBB

is given by

V̂ar(σ̂2
BBB) =

1

B − 1

B∑

b=1

[
(σ2

BBB)∗b − (σ̄2
BBB)∗

]2

, (2.4.7)

where (σ̄2
BBB)∗ is the average of {(σ2

BBB)∗b : b = 1, . . . , B}.
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2.4.2 Optimal Block Length

The accuracy of the block bootstrap (BB) methods critically depends on the choice of the
block length [30]. Large block sizes reduce the bias, but inflate the variance of the block
bootstrap estimator, and smaller block sizes tend to have the opposite effects. The optimal
block length is chosen such that the mean-squared error or MSE (that takes into account
the combined effect of a block length on both the bias and the variance parts) of the block
bootstrap estimator is minimized. In the literature, more than one data dependent methods
for choosing the optimal block size has been proposed; see, for example, Chapter 7 of [30].
A computationally simple method for block length selection is given by Politis and White
([42]). We now provide a description of the main steps of this method.

Main Steps:

1. Compute

Ĉ(k) =
1

M(L− |k|)
M∑

i=1

L−|k|∑

p=1

(Yip,1 − Ȳi)(Yip,(1+|k|))− Ȳi),

a version of the sample autocovariance of {Yip} at lag k, where

Ȳi =
1

(L− |k|)

L−|k|∑

p=1

Yip,1.

2. Choose k0 such that Ĉ(k) ≈ 0 for all k > k0. In other words, find the smallest integer
k0 beyond which Ĉ(k) is not significantly different from zero.

3. Compute

Ĝ =

2k0∑

k=−2k0

λ(k/[2k0])|k|Ĉ(k),

where λ(·) is the flat-top kernel of Politis and Romano (1995):

λ(t) =





1 if |t| ∈ [0, 1/2)
2(1− |t|) if |t| ∈ [1/2, 1]
0 otherwise.

4. Compute D̂ =
∑2k0

k=−2k0
λ(k/[2k0])Ĉ(k).

5. Compute the estimated optimal block size by

`opt =

[(
3Ĝ2

2D̂2

)
L

]1/3
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2.5 Results and Discussion

Equation (2.2.10) provides us a functional form of the variogram model using LWR param-
eters. In order to extract the LWR parameters from (2.2.10), we need roughness profiles
to estimate the variogram. In this work, simulated roughness data was used to test and
validate our procedure. A brief description of the procedure used to generate simulated
data is provided below. Once the procedure was validated using simulated data, we applied
it to actual roughness profiles obtained by inline metrology. Details regarding SEM image
acquisition and post-processing will be discussed in the next chapter.

2.5.1 Simulated Data

We generate simulated roughness profile with the desired LWR parameter using the convo-
lution method described in [24]. The outline of the procedure is roughly as follows:

1. Compute ρ(h) using (2.2.9) for desired values of ξ and α.

2. Compute the power spectrum P (k) by taking the Fourier transform of ρ(h) computed
in step 1.

3. Compute the amplitude pn =
√
P (k).

4. Numerically generate a Gaussian white noise sequence Xn and compute its Fourier
transform xn.

5. Compute the Fourier transform of the roughness profile yn = xnpn.

6. Compute the inverse Fourier transform of yn to obtain the roughness profile Yn with
unit variance.

The roughness profile thus obtained has a unit variance. To obtain a sampled roughness
profile of length L from a process with a desired variance, we generate a unit variance profile
of length N � L using the method described above. The resulting sequence can subsequently
be scaled to have the desired variance, and L values can be sampled from the middle to avoid
any discrete FFT edge artifacts on a finite series.

2.5.2 Validation Using Simulated Data

The choice of optimal block length is of paramount importance in determination of the shape
parameters ξ and α. First, we investigate the MSE of each shape parameter as well as the
total MSE in terms of the choice of block length. For α = 0.5, we can see in Figure 2.7
that the total MSE stabilizes to a low value for a block length of approximately 25. The
results are based on 200 sample Monte-Carlo simulation. For longer correlation length, MSE



CHAPTER 2. ROBUST ESTIMATION OF LWR PARAMETERS 27

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

Block Length

 

 

Total MSE
MSE ξ
MSE α

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Block Length

 

 

Total MSE
MSE ξ
MSE α

(a) (b)

Figure 2.7: Mean-squared error (MSE) in α and ξ as a function of the block length for (a)
ξ = 10, and (b) ξ = 20. Total MSE is the normalized sum of MSE of α and ξ. The roughness
profiles were simulated with α = 0.5, σ = 1, M = 8, and L = 500. The results shown here
are from 200 sample Monte-Carlo simulation.
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Figure 2.8: Optimal block length computed using Politis and White method ([42]) for (a)
ξ = 10, and (b) ξ = 20. The roughness profiles were simulated with α = 0.5, σ = 1, M = 8
and L = 500. The block length was computed using the same data set as in Figure 2.7.
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Figure 2.9: Comparison of two methods of estimating WLS weights for shape parameters
(a) ξ and α based on 200 sample Monte-Carlo experiment. The roughness profiles were
simulated with ξ = 10, α = 0.5, σ = 1, M = 8, and L = 500.

in ξ stabilizes at longer block lengths as expected. Similar results were observed for α = 1.
Figure 2.8 shows the optimal block length computed using Politis and White method [42].
In this instance, the block length was computed using the same data set as was used for
computing the MSE in Figure 2.7. We can see that Politis and White method consistently
finds optimal block length in the region of minimum total MSE. Similar results were observed
for other values of ξ and α. For all subsequent discussions, we will use the Politis and White
method to compute the optimal block length.

In the WLS method, estimation of the shape parameters ξ and α is also critically depen-
dent on the weights given to each lag. In section 2.3, we defined the weights for the WLS
method as in (2.3.6). In this context, we discussed two methods of estimating Var(2γ̂(h)):
the Cressie approximation (2.3.7) and the bootstrap method (2.4.4). Figure 2.9 shows a 200
sample Monte-Carlo comparision of the shape parameters ξ and α. We can see that the
Cressie approximation has a larger variance in the estimate of α than the bootstrap method.
The bootstrap method for estimating weights has a lower MSE for both ξ and α. Similar
results were observed for other values of α and ξ. Going forward, the Var(2γ̂(h)) will be
estimated using the bootstrap method.

Based on 200 sample Monte-Carlo simulation, in Figure 2.10 we compare the four avail-
able estimators of σ. In an ideal scenario (Figure 2.10(a)), when no local systematic variation
is present, performance of all estimators is roughly similar. The bias in σ̂LWR is clearly visi-
ble, and all of the unbiased estimators (σ̂BBB, σ̂WLS, and σ̂LLE) appear to perform equally
well. However, if there is any unknown local variation in the lines of the SEM image, the
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Figure 2.10: Comparison of four different estimates of σ based on 200 sample Monte-Carlo
simulation in two scenarios: (a) in absence of any local CD variation (“Ideal”), and (b) in
presence of a local variation N (0, 0.25) (“Gaussian”). The roughness profiles were simulated
with σ = 1, ξ = 10, α = 0.5, M = 8, and L = 500. In terms of estimating the σ, σ̂WLS

and σ̂BBB appear to perform equally well, whereas σ̂LLE estimate is inflated due to local
variation.
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Figure 2.11: Sample fit of variogram using WLS and BBB. The solid line represents the
fitted variogram (2.2.10). The dotted horizontal and vertical lines indicate estimated values
of σ̂WLS and ξ̂, respectively.

choice of estimator becomes important. The source of such variation can be from the lithog-
raphy mask or proximity related. Furthermore, the nature of the variation can be random or
systematic. Although process optimization and OPC can minimize such variation, residual
variation is unavoidable. In Figure 2.10(b), we explore the possibility of a local Gaussian
CD variation. The estimators σ̂WLS and σ̂BBB perform equally well since they are both bias-
corrected values derived from the variogram. The estimator σ̂LLE does not perform as well
as the estimators σ̂WLS and σ̂BBB. The LLE estimator of σ is sensitive to these unwanted
variation due the second term in (2.3.13). The BBB estimator performs robustly under such
scenarios.

2.5.3 Experimental Data

In the preceding discussion, we validated the optimal block length and provided a method to
estimate WLS weights (i.e. Var(2γ̂(h))). We also validated the choice of estimator of σ2 by
minimizing total MSE of LWR parameters using simulated data. Figure 2.11 shows a sample
fit of variogram using the WLS and BBB using actual roughness profile. In Figure 2.10,
using simulated data, it was shown that the estimate of σLLE can be corrupted by the
presence of some local CD variation. Figure 2.12 compares σ̂BBB and σ̂LLE for variety of
different NGL processes such as litho-freeze-litho-etch (LFLE) double patterning lithography
(DPL), self-aligned double patterning (SADP), EUV, directed self-assembly (DSA), and
nano-imprint lithography (NIL). We observe that in most cases, σ̂LLE is significantly higher
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Figure 2.12: Comparison of σ̂BBB and σ̂LLE for various NGL processes.

that σ̂BBB. In certain cases (SADP, NIL, DSA), we observed odd and even effects in CD of
adjacent lines in SEM image; these effects were unrelated to LWR. In such instances, the
σ̂LLE estimator attributed the systematic effect to LWR, and it provided an inflated estimate
compared to σ̂BBB. A brief discussion on each of the NGL processes as well as their detailed
results will be presented in the next chapter.

2.6 Summary

In summary, we presented a robust method to estimate LWR parameters—σ̂, ξ̂, and α̂.
Our procedure is shown to perform robustly in practical scenarios with limited data. The
proposed method is stable in the presence of limited data without the central assumption of a
Gaussian process. Moreover, our procedure works even in the presence of some unknown local
CD variation or if there is a systematic difference in CD (by design or otherwise) between the
lines. This aspect of our procedure, (a) prevents non-LER sources of variation from being
attributed to LER, and (b) it allows for more flexibility in capturing SEM images in that we
do not need a special test structure with all lines with same designed CD. The latter aspect
allows one to use any IC layout region with straight lines and arbitrary CDs (as opposed
to test structures in the kerf area) for LWR parameter extraction. Using experimental data
from a variety of next-generation lithography processes, it was shown that σ can erroneously
be over-estimated by over 2X if local variation is not treated properly.
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Chapter 3

Line Width Roughness (LWR) in
Next-Generation Lithography (NGL)
Processes

3.1 Introduction

In the previous chapter we introduced line width roughness (LWR) parameters, and provided
physical interpretation to each parameter. We also developed a robust method to estimate
the LWR parameters. In this chapter, our objective is to use the newly developed estimation
method to explore the LWR characteristics of many next-generation lithography (NGL) pro-
cesses. We investigate mainstream lithography options such as litho-freeze-litho-etch double
patterning (DPL), self-aligned double patterning (SADP), and extreme ultra-violet (EUV),
as well as alternatives such as directed self-assembly (DSA) and nano-imprint lithography
(NIL). Using EUV as an example, we will demonstrate the importance of process optimiza-
tion.

Although LWR is an intrinsic phenomenon to resist processing, roughness is transferred
to the underlying layers in subsequent process steps. It has been recognized that during
the transfer process, the characteristics of the roughness, namely the RMS amplitude and
frequency are altered [43, 44]. Amongst the NGL options considered, the exact transfer
mechanisms for LWR differ widely. It is, therefore, also intriguing to compare these processes
in terms of LWR characteristics at the initial, intermediate, and final stages. The rest of
the chapter is organized as follows: Detailed discussion on image analysis and estimation
methodology can be found in section 3.2. Each NGL technology is briefly described in
section 3.3. Our results are discussed in section 3.4.
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(a) (b) (c) (d)

Figure 3.1: Representative SEM images for 64nm pitch SADP: (a) Resist, (b) APF Mandrel,
(c) Post-spacer definition, and (d) Nitride substrate.

3.2 Estimation of LWR Parameters

There are two widely used tools available for LWR metrology: scanning electron microscope
(SEM) and atomic force microscope (AFM). AFM measurements are made by using a spe-
cialized probe tip to physically scan the feature sidewalls. SEM measurements are made
by rastering an electron beam to recreate a high-resolution top-down image of the feature
lines. A detailed comparison between the two techniques has shown that LER quantification
through SEM image analysis is a reliable method [17, 45]. Estimation of LWR parameters
through SEM image analysis is commonly referred to as off-line analysis. Off-line estima-
tion of LWR parameters can broadly be described as a two-step process: (1) SEM image
acquistion and processing, and (2) estimation of LWR parameters from the processed SEM
image.

3.2.1 SEM Image Acquisition and Processing

Standard line and space arrays were used as image targets for this work. Automated CD-
SEM tools were employed for acquiring images for LFLE, EUV, SADP, and NIL. Fields of
view with edge lengths ranging from 0.7 to 0.8 µm were used, with corresponding pixel edge
lengths ranging from 1.36 to 1.66 nm. Typical accelerating voltages between 500 and 800 V
were employed. Integration times were adjusted to produce images with SNR ranging from
10-15 [46]. A Hitachi S4800 analytical SEM was employed for some EUV resist, NIL, and
DSA image acquisition. A 1.2 µm horizontal field of view was used, with corresponding pixel
edge length of 0.94 nm. Images were captured at 2 mm working distance with 2 kV nominal
accelerating voltage. 128 frame captures yielded uncompressed TIFF files with SNR ranging
from 15-20. Figure 3.1 shows sample images for SADP process flow.

Image quality poses numerous practical challenges for analysis of LWR. Ideally, these
challenges may be addressed by acquiring images for all patterns being compared using a
single SEM with stable and known imaging performance. In this study, features are produced
by a large variety of patterning techniques that are at varying stages of process maturity.
As such, a single SEM approach proved untenable. Nevertheless, we present one test case
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(64nm pitch NIL) in which, with acquisition and analysis optimization, consistent results
are obtained using an analytical SEM and an automated CD-SEM. We follow the previously
described guidelines for optimal image acquisition and processing [45, 47, 46, 48].

Following the acquisition, the images were processed through the SuMMIT software pack-
age for line edge extraction [49]. Numerous systematic distortions are typical in CD-SEM im-
ages. Accordingly, we pre-screened images for LWR characterization and eliminated images
with uncorrectable edge artifacts, tilt, intensity skew, defocus, feature charging distortions,
etc.. Correctable global image curvature and tilt were removed prior to LWR analysis. We
pre-filtered images to further enhance SNR using a pseudo-Lorentzian filter adapted from
resist diffusion studies [50]. Similar image filters are used in image reconstruction to enhance
edge contrast while attenuating white noise without causing ringing artifacts [51]. Metrol-
ogy noise was removed for spatial frequencies beyond the Nyquist frequency. Optimally
pre-filtered CD-SEM images had SNR of approximately 20, and pre-filtered analytical SEM
images had SNR of approximately 30. Edges were defined at line edge intensity threshold
of 50% using a linear intensity edge fit interpolation algorithm [49]. After image selection
and pre-filter optimization, a sufficient number (8 to 15) of images were acquired for each
process step.

3.2.2 Estimation Procedure

The line edge extraction procedure described above transforms the SEM image into a numeric
array of roughness data. The data is available in the same framework as the one previously
described in Figure 2.4. LWR parameters were estimated using the robust estimation method
developed in the previous chapter.

3.3 Next-Generation Lithography (NGL) Processes

LWR has been recognized as a major challenge to be overcome for all NGL options [15].
It is understood that a number of factors affect LER—photomask, ILS, resist composition,
etch process, etc., are just a few such factors. Sidewall protrusions of polymer aggregates
have been shown to block the etch [52]. This causes the roughness from the resist pattern is
transferred to the underlying substrate during the etch process. In the following discussion,
we will discuss each NGL technology in detail from the perspective of LWR. As we shall see,
many of the NGL options go through a number of intermediate processing steps before the
final pattern in the substrate is defined. LWR characteristics have been reported to change
through these processing steps [43, 44].
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Figure 3.2: Litho-freeze-litho-etch (LFLE) process flow using chemical freezing agent. (after
[22])

3.3.1 Double Patterning Lithography (DPL)

Generally speaking, DPL comprises two lithographic processes in which every alternate line
belongs to the same lithographic process. There are several variations of DPL documented
in the literature [15]. For discussion purposes here, we broadly categorize them in two
types—processes with two coupled patterning and etch steps (litho-etch-litho-etch; LELE),
and processes with two patterning steps that are transferred in a single etch (litho-freeze-
litho-etch; LFLE). For our study of DPL, we have chosen the LFLE process.

Due to the high overall LELE cost, methods that simplify integration of lithographic
and etch processes are of growing importance. Efforts in this area center on the LFLE
processes in which independent lithographic patterns are generated in sequentially applied
resist films prior to etch transfer. In the LFLE process flow, a stabilization step that freezes
the first photoresist pattern, is required to protect the first pattern from being damaged
during the second resist pattern. Implementation of the LFLE as a successful NGL for
semiconductor manufacturing is dependent on demonstration of superior cost effectiveness
and layout compatibility. In this study, we present pre- and post-etch LWR analysis of a
40 nm final pitch LFLE process that employs a stabilizing polymeric coating to freeze the
first resist pattern [22]. Figure 3.2 shows a graphical illustration of the main steps of this
flow. After the first lithography step, the wafer is coated with a freezing agent composed
of resin and cross-linker, along with the appropriate casting solvent. After the unreacted
freezing agent is developed away, the second lithographic step is performed. Materials to
support this LFLE method have been developed by JSR Micro [22], and more recently by
Dow Chemical as well [53].
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Figure 3.3: Self-aligned Double-Patterning process flow. (Courtesy: Chris Bencher, Applied
Materials)

3.3.2 Self-Aligned Double Patterning Lithography (SADP)

The SADP process uses deposition of conformal coatings to generate frequency doubled
features at the sidewalls of pre-patterned features. Process integration plays a key role in
determining the success of SADP: although SADP eases the lithographic burden associated
with sub-80 nm patterning, much of the burden is transferred to increased film stack and
deposition complexity.

Here, we present post-lithographic and through-etch LWR analysis for a 64 nm pitch
baseline SADP process as implemented by Applied Materials [54]. LWR is analyzed at
several intermediate stages in the etch transfer process. Figure 3.3 provides a graphical il-
lustration of the main steps in the SADP process flow. For our study, we acquired images
at steps (1), (2), (4), and (6). We note that the SADP process creates spacer patterns that
are fundamentally different in their LWR behavior compared to patterns created using dou-
ble patterning and EUV. The difference arises from the conformal spacer deposition which
creates highly correlated spacer edges. As a result, patterning tone becomes an important
consideration. If spacers are used to define the final product features, highly correlated,
low LWR features will result. Alternatively, a tone inversion, in which trenches in between
spacers are used to define the final product features, will produce features with more con-
ventional uncorrelated edges. Coupled with integration and CD uniformity considerations,
this unique LWR behavior of SADP is important for choice of patterning tone, particularly
for BEOL applications.
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Figure 3.4: Directed Self-Assembly process flow. (Courtesy: Chi-Chun Liu, Adam Welander
and Paul Nealey, Univ. of Wisconsin)

3.3.3 Extreme Ultraviolet Lithography (EUV)

EUV lithography continues to promise a relatively constraint-free single patterning solution
for pitches below the 193 nm immersion limit. As a result, process flows are very conventional
in comparison with other NGL candidates. Overall high infrastructure development cost,
lithographic tool cost, and technical issues centering on reticle defectivity, source power and
stability, and limits of photoresist performance, continue to pose challenges for adoption in
high volume manufacturing [15].

In this study, we present pre- and post-etch LWR analysis for 80 nm pitch baseline
EUV process implemented using the full-field 0.25 NA ASML alpha-demo tool located in
Albany, NY. Additionally, we present post-lithography LWR analysis of 64 nm pitch resist
processes implemented on both the ASML alpha-demo tool and the LBNL/SEMATECH 0.3
NA micro-exposure tool (MET).

3.3.4 Directed Self-Assembly Lithography (DSA)

The DSA process used in this study is described in detail elsewhere [55]. We briefly describe
the DSA process here for completeness. Figure 3.4 provides a graphical illustration of the
main steps in SADP process flow. DSA employs a thin blend of immiscible diblock copolymer
(e.g. PMMA and polystyrene) that, upon coating and annealing, forms spontaneously or-
dered and thermodynamically stable arrays of chemically distinct polymer domains. The mi-
crophase separation occurs as a result of surface and interfacial forces between the substrate
surface and the two blocks of the copolymer. This process uses “conventional lithography”
(EUV in the case presented here) to define a template or pre-pattern for forming lamellae
that are oriented perpendicular to the substrate and aligned along predefined grooves. Sub-
sequent domain separation occurs perpendicular to the grooves and results in pitch-splitting.
A wide variety of array structures can be created at defined pitches with judicious choice
of pre-pattern, block copolymer composition and molecular weight, and film thickness. One
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Figure 3.5: Nano-imprint lithography S-FILTM process flow. (Source: Molecular Imprints
Inc.)

key feature of DSA is that high-fidelity self assembly is possible even if “sparse” pre-patterns
are used. This allows the creation of frequency multiplied (double, triple, or even quadruple)
DSA patterns relative to the pitch of the pre-pattern. Pre-patterns may be created using
relief structures such as edges etched in a substrate or using thin films with chemical affinity
for one of the block copolymer components. Recent progress in DSA patterning has resulted
in growing interest in commercial applications such as patterned media.

Implementation of DSA as a successful NGL for semiconductor manufacturing is depen-
dent on successful resolution of critical technical challenges including all aspects of process
integration and maturity, as well as layout compatibility with geometric restrictions im-
posed by DSA. In this study, we present LWR analysis of DSA patterns at 40 nm pitch
using poly(styrene)-b-poly(methyl methacrylate) diblock copolymer films, and track LWR
through multiple process steps including pre-patterning at 80 nm pitch, self-assembly, and
etch transfer into a silicon substrate.

3.3.5 Nano-imprint Lithography (NIL)

NIL has been considered a viable alternative to optical lithography [15]. In this study, we
evaluate step and flash imprint lithography or S-FILTM process reported earlier at the 2008
SPIE for sub-64nm full pitch node [56]. Figure 3.4 provides a graphical illustration of the
main steps in S-FILTM process flow. In NIL, a silica mask with patterned trenches is used
to physically imprint the desired pattern into a thin layer of low viscosity resist. The resist
is physically squeezed out of regions with clear pattern in the template. Subsequently, the
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resist is exposed to UV light while it is embedded inside the template, and then the mask
is removed. Upon removal of the mask, a thin residual layer of the imprint resist remains
underneath the imprinted pattern. The thickness of this residual layer is controlled by the
imprint process, and it is removed by a short trim etch. Typically, the resist layer is too thin
to be of any practical use, and therefore, the pattern is then transferred to the underlying
hardmask layer.

In contrast to optical lithography, NIL patterns are physically transferred to resist using
a template or mold. The S-FIL process makes use of photo-polymerization of a low-viscosity
resist precursor fluid inside the template. The template is created by using an anisotropic
plasma etch to transfer a pattern created using electon-beam lithography. We note that NIL
does not employ pattern reduction in either generation of the template or substrate pattern-
ing (i.e imprint mask is 1× demagnification). Since no frequency filtering due to a reduction
optic occurs, the photo-polymerized substrate pattern approaches a perfect inverted tone
replica of the template. Also, when the resist is exposed inside the template, unlike conven-
tional optical lithography, there is no Gaussian diffusion of acid molecules across the pattern
edge. The template pattern in turn is expected to retain all characteristics, including rough-
ness, of the lithographic and etch transfer steps used in its creation.

NIL is finding commercial acceptance in creation of patterned media for hard disk storage
as well as other applications. Implementation of NIL as a successful NGL for semiconductor
manufacturing is dependent on successful resolution of critical technical challenges including
overlay, template cleaning, defectivity, and throughput. Overlay limitations specifically have
slowed the successful implementation of mix-and-match technology demonstrations. As a
result, access to integration process flow data including etch transfer is limited. Here, we
present LWR analysis of NIL resist patterns at 64 nm, but do not include results from
subsequent etch transfer steps. NIL patterns studied here were created using a Molecular
Imprints Imprio300TM tool located at SEMATECH in Albany, NY. All materials and process
conditions were standard for the ImprioTM tool.

An outgrowth of these considerations is of practical concern for LWR analysis: repeat
steppings across a wafer produce NIL patterns that are deterministic from stepping to step-
ping. Image sampling across a wafer must be implemented so as not to repeatedly capture
features that were created by the identical template site. In this study, we have made use
of repeated pattern macros present on the NIL template to generate sets of images in which
each image represents a unique template site.

3.4 Results and Discussion

In our evaluation of various technology options, we took substantial measures to ensure that
we did not introduce any undue bias in the results. The SEM images for each technology
were consistently acquired and processed using the methodology discussed in section 3.2. In
our reporting of LWR parameters, we adopt the following labeling convention: <process>–
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Figure 3.6: LWR (3σ) in nm for various NGL processes. The dotted lines indicate ITRS
roadmap values [15].

<pitch>–<type of SEM used for acquisition>–<process sequence>. Automated CD-SEM
and analytical SEM are abbreviated as CDSEM and ASEM respectively. With the exception
of NIL, we monitored the evolution of LER at all intermediate process steps from resist
processing to final substrate definition. With the exception of LFLE, 8 to 15 images were
captured for each process step at constant process condition (dose, focus, etc.). In case of
LFLE, minor differences in LWR between first and second lithography have been reported
[22]. In our study, we did not find these differences to be statistically significant, and
therefore, all LFLE LWR parameters reported below represent an aggregate value of the two
lithography steps.

Conventionally, the RMS amplitude of LWR (σ) is reported as 3σ figure of merit, and
it is commonly referred to as LWR. And as such, we use the same convention to report our
results. Figure 3.6 shows LWR (in nm) for LFLE, DSA, EUV, NIL, and SADP processes
at a variety of full pitch values. The general trend in each technology is LWR attenuation
from resist to etch. Also shown in Figure 3.6 are ITRS roadmap values corresponding to
full pitch and not technology nodes [15]. Figure 3.6 also indicates that the difference in LWR
due to different SEM tools (but same wafers) is statistically insignificant. The processes
reported here come from widely disparate stages in development—although some versions
are implemented in mass production others show very promising results in the development
phase. Given the fact that each technology is reported for different pitch values, we present
normalized LWR results in Figure 3.7. ITRS roadmap stipulates LWR values < 8% at resist
[15]. At resist, we observe that NIL and EUV processes are the only two that meet this
criteria. However, note that each NGL process option has < 10% final LWR contribution;
SADP has ∼ 5% LWR.
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Figure 3.7: Normalized LWR (3σ as % of CD) for various NGL processes.

Correlation length was recently added as a figure of merit to the ITRS roadmap [15].
Figure 3.8 compares the correlation lengths observed for different NGL processes with ITRS
roadmap values corresponding to full pitch and not to technology nodes. The correlation
lengths range from approximately 8 to 24 nm, and it meets the requirements set forth by
the ITRS. Note that the correlation length increases when LER is transferred through an
etch of an inorganic film. This finding is consistent with an earlier report of increased
correlation length [44]. For DSA, the correlation length was found to decrease from PMMA
to polystyrene (PS) lines. For SADP, the change in correlation length is a bit peculiar.
It is interesting to note the increase in ξ is very stark for SADP, where it approximately
doubled from resist to mandrel etch, and also from spacer to substrate etch. The decrease in
correlation length from mandrel to spacer requires further investigation; each spacer defined
line inherits characteristics of one edge from the mandrel and the other from the conformal
spacer deposition and anisotropic etch.

Figure 3.9 shows the roughness exponent for a variety of different NGL processes. As
mentioned previously, α values close to 1 indicate a locally smooth roughness profile whose
autocorrelation function has a Gaussian shape. Amongst the various processes considered
here, DSA produces the most locally smooth profile. The DSA profile seems to undergo a
transformation during the self-assembly phase of the diblock copolymer. The block copoly-
mer assembly process has been reported to self-heal irregularities, because the thermody-
namics of the block copolymer system determine the overall shape and size of the domains
[55]. Also, the conformal spacer deposition brings about a dramatic change in α for SADP; a
significantly smooth profile is found after spacer formation compared to that after Mandrel
etch. However, when the spacer lines are used to define the substrate, the value of α drops
significantly. This behavior needs to be investigated further. For LFLE, EUV, and SADP
(resist to mandrel), although there appears to be a slight reduction in value of α from resist
to etch, the change has not been found to be statistically significant.
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Figure 3.8: Correlation length (ξ) for various NGL processes. The dotted lines indicate ITRS
roadmap values [15].

Figure 3.9: Roughness exponent (α) for various NGL processes. The ideal value for α is 1.
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Table 3.1: Summary of LWR parameters in resist and final substrate for NGL technologies
considered in this work. The numbers have been rounded to the nearest meaningful decimal
place.

Numerical values of the LWR parameters for each of the NGL technologies is shown
in Table 3.1. LER is a dynamic phenomenon; its characteristics evolve with processing
steps. Although conventionally the parameters σ, ξ, and α provide a complete description
of LWR, it is interesting to observe the changes in spatial frequency content of LWR with
the progressive processing from resist to final substrate etch. Figure 3.10 shows the power
spectral density plot for LFLE and EUV. The suppression of mid-frequencies (10-100 µm−1)
for LFLE and EUV following etch is consistent with earlier findings for conventional lithog-
raphy [43, 44]. Figure 3.11 shows the power spectral density plot for DSA and SADP. To the
best of our knowledge, this is the first time PSDs of DSA and SADP have been reported.
In the case of DSA, we observed some low frequency meandering of lines as well as defects
in the X-PS underlayer. There is clear suppression of power in the entire frequency range
for DSA. For SADP, typical mid-range (10-100 µm−1) frequency suppression can be seen for
resist to mandrel and spacer to substrate transfers. Following the spacer formation, there is
substantial reduction of power in the low frequency regime.

There are many factors that affect LWR such as lithography (resist type/thickness, fo-
cus/exposure, ILS, etc.), etch (wafer temperature, power, chemistry, pressure, etc.), lithog-
raphy system (ILS, shot noise, mask LER, etc.), and process integration scheme. Significant
reduction in LWR can be achieved by careful process optimization. Figure 3.12 shows the
impact of process optimization on LWR for EUV. Experiments were conducted on 64nm
pitch EUV to optimize the resist chemistry, and underlayer type and its thickness. Post-
develop smoothing techniques were also employed. The learning was applied to 80nm pitch
EUV. The improvements achieved with these process factors appear to be additive in nature.



CHAPTER 3. LWR IN NEXT-GENERATION LITHOGRAPHY PROCESSES 44

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 10 100 1000

P
SD

 [
n

m
2
/m

m
-1

]

Spatial Frequency [mm-1]

Resist

Substrate

40nm Pitch LFLE

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 10 100 1000

P
SD

 [
n

m
2
/m

m
-1

]

Spatial Frequency [mm-1]

80nm Pitch EUV

Resist

Substrate

(a) (b)

Figure 3.10: Power Spectral Density (PSD) for (a) 40nm pitch LFLE, and (b) 80nm pitch
EUV.
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Figure 3.11: Power Spectral Density (PSD) for (a) 40nm pitch DSA, and (b) 64nm pitch
SADP.
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Figure 3.12: Results of process optimization from 64nm pitch EUV (unoptimized) to 80nm
(optimized).

3.5 Summary

In summary, we explored variety of next-generation lithography processes in terms of their
LWR characteristics. NIL and EUV processes are the only two that meet the < 8% LWR
criteria at resist; however, note that each NGL process option has < 10% final LWR con-
tribution. Minimizing the roughness in resist is still a prerequisite to ultimately minimizing
roughness in the substrate. In terms of the roughness exponent, technologies such as DSA
that produce a more locally smooth profile (α→ 1), are desirable. Each of the NGL process
meets the ITRS roadmap values for correlation length. However, a fundamental understand-
ing of process conditions causing the increase in correlation length during etch is required.
Whereas the technologies considered here are promising in terms of their LWR performance,
for these technologies to be adopted in mass production, many technical (process integration)
and economic challenges must first be overcome.
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Chapter 4

Gate Line Edge Roughness Model for
Estimation of FinFET Performance

4.1 Introduction

Intrinsic process parameter fluctuations cause undesirable performance mismatch in iden-
tically designed transistors. As the dimensions of the transistors are scaled down, this
mismatch increases, and hence it has greater impact on circuit performance and yield. The
primary sources of transistor performance variability that have emerged are line edge rough-
ness (LER), gate dielectric thickness (tox) variation, random dopant fluctuations (RDF),
and metal-gate work-function (WFV) [14, 57]. Advanced transistor structures such as the
double-gate (DG) FinFET [58] are more robust to tox variation and RDF because a thin body
is used to suppress short-channel effects (SCE), without the need for channel/body doping.
In a recent study, FinFETs have been found to have lower threshold voltage variability due
to line edge roughness [59]. Due to the challenges with scaling planar bulk MOSFETs, ad-
vanced structures such as FinFET may be adopted as early as the 25nm CMOS technology
node [60].

Earlier work on understanding the effects of the LER on device performance was either
focused on planar bulk CMOS [61] or followed a computationally expensive Monte-Carlo
(M-C) approach [62]. Due to the stochastic nature of LER, an accurate estimate of device
performance variability can only be achieved through full M-C three-dimensional (3-D) device
simulation. However, this computational approach is prohibitively expensive, and it does
not provide any insight into how the LER impacts device performance. Our premise here is
that LER manifests itself in the form of offset between the front-gate (FG) and the back-gate
(BG) as well as difference in FG and BG critical dimensions. As such, we believe that the
2D transistor structure is sufficient to capture the effects due to the mismatched FG and
BG. Therefore, in this chapter, we develop a computationally efficient statistical model that
is formulated to link the characteristic LER descriptors to device performance variability.
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The organization of this chapter is as follows: In section 2, we briefly describe how LER
and LWR are related. In section 3, we describe the details of the 2-D device simulation
and the formulation of our model. Our simulated device structure is designed to meet ITRS
specifications for the 32nm high-performance (HP) CMOS technology node. Finally, in
section 4, we discuss the results of our work. The impact of gate length variation and lateral
offset between the FG and BG is studied. Sensitivity of key performance parameters such as
saturation threshold voltage (Vt,sat), on-state saturation drive current (Id,sat), and off-state
leakage current (Ioff ) to the various LER parameters is discussed.

4.2 Line Edge Roughness

4.2.1 Background

Line edge roughness (LER) and line width roughness (LWR) are often used synonymously.
Mathematically, they are related but different. As shown in Figure 4.1, LER refers to the

Figure 4.1: Comparison of LER and LWR. Line edge roughness (LER) is the fluctuation of
a line about its mean value for a given edge. Line width roughness (LWR) is the fluctuation
of line width Li about its mean value L̄ averaged over the width W .

fluctuations of a given line edge about its mean value while LWR corresponds to fluctuations
in line width about its own mean value. For a line sampled at N points along the width W ,



CHAPTER 4. GATE LER MODEL FOR FINFET PERFORMANCE 48

LWR is described by the variance in line width, as

σ2
LWR =

1

N − 1

N∑

i=1

(Li − L̄)2. (4.2.1)

LWR can also be described in terms of variability of each individual edges, as

σ2
LWR = σ2

L + σ2
R − 2ρXσLσR, (4.2.2)

where the subscripts ‘L’ and ‘R’ refer to the left and right edges of a line respectively, and
ρX is the cross-correlation coefficient between them. The value of ρX depends primarily
on the method of line formation, as described later in this chapter. If we assume that
σL = σR ≡ σLER, then we can simplify (4.2.2) to

σ2
LWR = 2σ2

LER(1− ρX). (4.2.3)

As mentioned previously in chapter 2, LWR can be completely described by three parameters:
correlation length (ξ), RMS amplitude or standard deviation (σ) of line edge from its mean
value, and roughness exponent (α) [6, 63]. In order to capture that spectral content of
roughness along the edge, we invoke the formulation of the auto-correlation function and use
the same closed-form expression as (2.2.9)

ρA(y) = exp

[
−
(
y

ξ

)2α
]
, (4.2.4)

where y is the lag. It should be pointed out that (4.2.4) represents just one form of a plausible
auto-correlation function. Other forms such as exponentially decaying sinusoid can also be
used [64].

4.2.2 Spacer vs. Resist Lithography

In a FinFET fabrication process, the gate electrode can be defined in one of two ways: using
resist as the mask (“resist-defined”), and using a spacer as the mask (“spacer-defined”).
Conventional resist-defined lines produce edges with uncorrelated roughness, and so ρX = 0
can be assumed in (4.2.3). This is due to the fact that erosion of polymer aggregates is a
random process for each resist edge. In contrast, spacer-defined lines have line edges that
are well correlated. This is because a spacer mask is formed along the sidewall of a dummy
resist-defined feature, via a conformal thin-film deposition process followed by highly uniform
anisotropic etch process (Figure 4.2). If the spacer width (corresponding to the thickness
of the deposited film) is much smaller than the inverse of the LWR spatial cutoff frequency,
spacer-defined lines will have uniform width, and so ρX = 1 can be assumed in (4.2.3).



CHAPTER 4. GATE LER MODEL FOR FINFET PERFORMANCE 49

Figure 4.2: Illustration of methods of defining gates with (a) identical (and therefore corre-
lated) edges, and (b) uncorrelated edges.

It should be noted that resist pattern transfer to an underlying layer acts a low-pass filter
[65], so that LWR of a patterned film will have reduced high-spatial-frequency components as
compared to the resist that was used to define it. For a bulk MOSFET structure, gate LWR
affects device performance, because the gate length (Lg) is modulated along the width of
the channel. Several approaches to modeling this effect have been reported in the literature;
slice approximation [66] and full 3-D device simulation [61, 62, 67] are the most commonly
used approaches. In the slice approximation approach, gate LWR is approximated by regu-
larly sampling Lg along the width of the channel, and modeling the transistor as a parallel
combination of individual transistors with channel width equal to the sampling interval and
Lg values corresponding to the sampled values. (Gate LWR is zero for each individual tran-
sistor.) This approach can yield reasonably accurate estimations of performance parameters
for planar bulk MOSFETs. Unfortunately, it is not applicable to the FinFET structure,
because the channel length (along the fin sidewalls) is not impacted by gate LWR in the
same manner.

4.3 Simulation Details and Model Formulation

4.3.1 FinFET Structure

A FinFET can be formed in a straightforward manner by first patterning a silicon-on-
insulator (SOI) layer of thickness hfin into a narrow fin of width tfin and height hfin. After
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the gate stack layers are grown or deposited, either resist or a spacer is used to define the
gate electrode that crosses over the active area (i.e. the fin). After the gate layer is etched
using the resist or spacer mask, the resultant gate electrode straddles the fin, to gate the
channels along the front and back fin sidewalls. Thus, the fin height hfin determines the
effective width of both the front and back channels of the transistor. Figure 4.3 shows how

Figure 4.3: Illustration of fin LER and gate LER components in a tri-gate FinFET. The
magnitude of LER is exaggerated here for illustration purpose. (a) FinFET with LER,
(b) electrical diagram showing three transistors, and (c) bulk CMOS equivalent component
transistors are shown separately to distinguish the difference in effects of the two LER
components.

LWR affects both the fin and gate in a FinFET structure. If a thin gate dielectric (rather
than a thick dielectric hard mask) exists between the gate and the top surface of the fin,
a channel can also be formed along the top surface of the fin. In this case, the FinFET
may be considered as a parallel combination of three field effect transistors (FET) with
channels along the front, back, and top fin surfaces. The top FET has a smooth channel
surface, but has non-uniform Lg due to gate LWR. In contrast, the front FET and back FET
have a rough channel surface due to fin LWR, but relatively uniform Lg (dependent on the
gate-etch process). Fin-sidewall roughness can significantly degrade carrier mobility due to
surface scattering. Fortunately, the sidewall surfaces and fin corners can be smoothed prior
to gate-stack formation by a suitable thermal anneal to improve carrier mobility, reduce gate
leakage current, and improve device reliability [68, 69]. Additionally, it has been shown that
fin LWR primarily affects the device performance by changing the average fin width in the
channel region [62]. Thus, in this work, we focus primarily on gate LWR. The fin width must
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be smaller than the effective channel length in order to suppress short channel effects (SCE)
without the need for heavy fin/body doping. Indeed, light fin/body doping is desirable to
minimize variability due to RDF effects. In this case, the volume of the fin is inverted when
the FinFET is turned on [70] so that current flows in the body of the fin, rather than at
the fin surfaces. Consequently, gating of the top fin surface (i.e. the top FET) contributes
negligibly to off-state leakage and on-state drive current [71]. Therefore, in this study, we
focus only on DG FinFET performance. Figure 4.4 illustrates how gate LWR can result in

Figure 4.4: Schematic views of a DG FinFET: (a) top view of a FinFET, (b) 3-D top view
of a FinFET illustrating various gate-electrode features. The FG and BG gate lengths, and
their placements, are defined by the points labeled 1-4.

different Lg values and misalignment between the FG and BG. Gate length values for the
FG and BG (Lfg and Lbg, respectively) are determined by “sampling” the auto-correlated
LWR function along each edge of the gate electrode at the front and back surfaces of the
fin; thus the locations of points 1-4 are affected by the fin width, since it determines the
sampling distance. Although the primary criterion for the choice of fin width (tfin) is SCE
control, mitigation of gate LWR effects to reduce variability may be an important secondary
consideration. As discussed earlier, spacer-defined lines have highly correlated edges so that
gate-length variations are negligible if spacer lithography is used to pattern the gate elec-
trode. Nevertheless, the FG and BG can be misaligned. Thus, it is important to also study
the case where the FG and BG have the same gate length, but are offset by some distance.
If a highly anisotropic and uniform etch is used to form the gate electrode, the locations of
points 1-4 (as determined by gate LWR and fin width) are transferred uniformly from the top
of the fin to the bottom of the fin. In reality, the etch bias can vary from the top of the fin
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Table 4.1: 2-D Device Simulation Parameters

to the bottom of the fin, resulting in a tapered profile. The gate sidewall along the fin height
may have a rough profile, and it has been shown that this behavior is adequately modeled by
using gate length that has been averaged along the height of the fin [62]. Moreover, the fin
itself can have a tapered profile; this has been studied by other researchers [72, 73]. These
aforementioned non-idealities of gate and fin profile are not considered in this work.

4.3.2 Simulation Details

Table 4.1 lists the values of process and device parameters that were used, generally following
ITRS HP 32nm node specifications. Figure 4.5 shows the simulated 2-D device structure

Figure 4.5: 2-D simulated device cross-section of DG-FET structure shown with non-
idealities (misaligned and with gate length difference between FG and BG).
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with FG and BG non-idealities. Source and drain doping profiles are Gaussian, peaked at
the edges of the gate-sidewall spacers (defined by the implant baseline in Figure 4.5), and
assumed to have lateral S/D doping gradient S/D=4nm/dec [74]. This implant profile pro-
duces a gate-underlapped source/drain structure, which has been found to be optimal for
the sub-20nm physical Lg regime [75]. Assuming inversion carrier density of 1 × 19 cm−3,
the effective gate length of the nominal device is 23.4nm. Ideal metallic contacts are made to
the surfaces of the uniformly doped S/D regions. All simulations were performed using the
Sentaurus device simulator [76], with coupled Poisson, quantum, and high-field saturation
models. In hydrodynamic (HD) simulations, the carrier velocity is assumed to depend on
the local carrier temperature, and in near ballistic regime, it tends to overestimate velocity
overshoot and drain current. In a study performed by Granzer et al. [77], it was found that
for 20nm gate length double gate devices, the on-current and sub-threshold leakage current
from hydrodynamic simulation were both overestimated by 80% compared to Monte-Carlo
simulation. In order to accurately relate simulation data to experimentally determined values
of on-current and sub-threshold leakage current, one would be required to carefully calibrate
the HD model parameters such as the energy relaxation time (among other parameters).
Nayfeh et al. [78] calibrated hydrodynamic parameters using full-band Monte-Carlo simula-
tion. In our simulation, we used the energy relaxation time (τE) of 0.14ps and energy flux
parameter (rn) of 0.3 [74].

4.3.3 Model Formulation

First, we formulate a simple statistical model to describe the variability in geometrical param-
eters in terms of characteristic LWR descriptors. Consider the model parameters illustrated
in Figure 4.6. Using point u2 as the reference, we need to describe the relationship of points
u1, u3, and u4 in terms of the characteristic LWR descriptors. Misalignment between the
FG and BG can occur due to presence of an offset (between the points u1 and u3 and/or
between the points u2 and u4), with or without a difference in the gate critical dimension of
the FG and BG. Therefore, the geometry depicted in Figure 4.5 can alternately be described
by our choice of three parameters: front gate length (Lfg), offset between the FG and BG
(δ), and gate length difference between the FG and BG (∆L). By definition, the variability
in Lfg is identically equal to the line width variability given by (4.2.3).

For any linear combination of n correlated Gaussian random variables,

U =
n∑

i=1

aiui, (4.3.5)

the variance of the linear combination can be given by [79]

Var(U) =
n∑

i=1

a2
iσ

2
i + 2

n∑

i=1

∑

j>i

aiajσiσjρij. (4.3.6)
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Figure 4.6: Definition of model parameters. The bold lines represent the left and right edges
of the gate electrode. Points u1-u4 are the locations where gate electrode intersects the fin.
The drain is arbitrarily assumed to be on the right side.

Indices i and j are points on the LWR profile as described in Figure 4.4, σ is their respective
standard deviation, and ρij is correlation between points i and j. Let us first define the
offset parameter δ as the difference between the right edges of FG and BG, namely, points
u2 and u4 in Figure 4.6.

δ = (Lbg,re − Lfg,re) = (u1 − u2). (4.3.7)

Therefore, using (4.3.6), we can write

σ2
δ = a2

2σ
2
2 + a2

4σ
2
4 + 2a2a4σ2σ4ρ24. (4.3.8)

Substituting, a2 = −1, a4 = 1, σ2 = σ4 = σLER and ρ24 = ρA(tfin), we can express the
variation in the offset parameter δ as

σ2
δ = 2σ2

LER (1− ρA(tfin)) . (4.3.9)

As mentioned previously, the fin thickness (tfin) determines the sampling distance in the
auto-correlated LWR function along each edge of the gate electrode as defined in (4.2.4).
The difference in gate length ( L) between the FG and BG is given by

∆L ≡ (Lbg − Lfg) = (u3 − u4)− (u1 − u2). (4.3.10)

The locations of points u1, u3, and u4 relative to point u2 are random, but related variables.
Again, we invoke the use of (4.3.6) by substituting a1 = −1, a2 = 1, a3 = 1, a4 = −1,
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σ1 = σ2 = σ3 = σ4 = σLER, and:

ρ12 = ρ34 = ρX(0),
ρ14 = ρ23 = ρX(tfin),
ρ13 = ρ24 = ρA(tfin),

(4.3.11)

where ρX(0) and ρX(tfin) are the cross-correlation terms between the left and the right
edges evaluated at lag 0 and tfin, respectively. ρA(tfin) is the auto-correlation term defined
in (4.2.4) and evaluated at lag tfin. For resist-defined gate electrode, we have ρX(0) = 0 and
ρX(tfin) = 0, and the variation in ∆L is given by

σ2
∆L = 4σ2

LER (1− ρA(tfin)) . (4.3.12)

It should be noted that for a given σLER, the variability in ∆L is twice the variability in δ.
Similarly, for a spacer-defined gate electrode, we have ρX(0) = 1 and ρX(tfin) = ρA(tfin).
The latter equality holds true because for spacer-defined gate electrode the left and right
edges are assumed to be identical. Thus, for spacer-defined gate electrode, the variation in
∆L is zero:

σ2
∆L = 0. (4.3.13)

Overall variability in device parameter P depends on many process factors; gate and fin
geometries are two important factors. It has been previously shown that fin LWR primarily
affects the device performance by changing the average fin width in the channel region [62].
Therefore, to the first order, the variability in device parameter P due to fin LWR can be
modeled as

σ2
P,F =

(
∂P

∂tfin

)2

σ2
F,LWR, (4.3.14)

where σ2
F,LWR is the variance in the fin width due to LWR. The variability in device parameter

P , purely in terms of gate and fin geometries, can be written as

σ2
P = σ2

P,F + σ2
P,G. (4.3.15)

Here the subscripts ‘F’ and ‘G’ refer to the fin and gate contributions to device parameter
variance respectively. Since fin and gate electrodes are formed independently, their variance
can be assumed to be statistically independent. In this chapter, we focus primarily on
the contribution of gate to device performance variability. In the following section, we
estimate the device parameter sensitivity to the model parameters Lfg, δ, and ∆L via 2-D
device simulations using a deterministic grid of values for these parameters. Variability in
these geometrical model parameters is transformed into variability in device parameters via
probability density functions generated from the deterministic set.
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Table 4.2: 2-D Nominal Device Performance Parameters

4.4 Results and Discussion

Nominal transistor performance parameters obtained from 2-D device simulation are shown
in Table 4.2. They roughly matches the ITRS roadmap values for 32nm HP node [60].
Hereafter, device parameters will be referenced to the nominal device where no offset or gate
length difference exists between the FG and BG. The saturation threshold voltage refers to
the value of Vgs corresponding to 100nA/ m, for Vds=0.9V.

Let us first understand the fin LWR contribution to device parameter variability. The
ITRS does not specify any LWR requirements for fin width [60]. We assume that the fin
LWR budget for the 32nm node (7.5nm fin width) is the same as the gate LWR budget for
the 18nm node (7nm physical gate length). Thus, 3σF,LWR is assumed to be 1nm. Figure 4.7
shows the fin width dependence of saturation threshold voltage. It should be noted that
at 28mV/nm, the threshold voltage is quite sensitive to the fin width thickness variation.
Thus, using (4.3.14), the fin LWR is estimated to contribute 28mV (3σ) to the total variation
in Vt,sat. Fin width dependence of saturation current and sub-threshold leakage current are
shown in Figure 4.8. Fin LWR is estimated to induce 82µA/µm and 0.5 log(A)/µm variation
in Id,sat and Ioff , respectively.

Given the complex statistical nature of LWR, M-C approach is an obvious choice. How-
ever, since M-C TCAD simulations are computationally expensive, and they require a large
number of runs in each case to determine the statistical parameters with reasonable accu-
racy, we employed a methodology based on experimental design techniques to eliminate the
need for full M-C simulations. First, we performed 2-D simulations for a pre-determined set
of values for Lfg, ∆L, and δ at 0.5nm interval within 6nm range (-3nm to +3nm) around
their respective means. The computational cost for the exploratory simulation of the three
aforementioned parameters is O(n3), where n is the number of steps in each of the three pa-
rameter dimensions (Lfg, ∆L, and δ). The choice of 0.5nm step size was based on a trade-off
between the TCAD computational time and the investigative range of each parameter.

Figure 4.9 shows a three-dimensional plot of threshold voltage sensitivity to ∆L and δ for
a device with nominal FG. Figure 4.10(a) shows that when the BG is smaller than FG, the
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Figure 4.7: Fin width dependence of saturation threshold voltage. Vt,sat is defined to be Vgs
corresponding to 100 nA/mm Ids, for Vds = 0.9V.

Figure 4.8: Fin width dependence of saturation current and sub-threshold leakage current.
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Figure 4.9: Threshold voltage variation over ∆L (CD difference) and δ (FG to BG offset)
space. A 13nm FG gate length is assumed.

Figure 4.10: Threshold voltage dependence on δ and ∆L. FG gate length of 13nm is assumed.
Positive values of DL correspond to larger BG compared to FG while positive values of δ
correspond to BG shifted more towards the drain as compared to FG.
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threshold voltage is lowered more for the BG shifted towards the drain vs. the BG shifted
towards the source. This effect is reversed when BG is larger than FG. Another important
observation from Figure 4.10(a) is that for a given CD mismatch between the FG and BG,
FinFET threshold voltage is relatively invariant over some range of gate offset. In contrast,
even for no gate offset, the threshold voltage is fairly sensitive to CD mismatch as shown in
Figure 4.10(b). Thus, CD mismatch between the FG and BG is more critical than the gate
offset.

By performing device simulation for this “grid”, basically we mapped out the variability
space for model parameters Lfg, ∆L, and δ. The computational efficiency of our approach
is enabled by the structure of our model that parameterizes the FinFET structure in terms
of Lfg, ∆L, and δ and relates them to LWR descriptors ξ, σ, and α. In other words, we
have Lfg ∼ N (Lfg, σ

2
LWR), δ ∼ N (0, σ2

δ ), and ∆L ∼ N (0, σ2
∆L) where σ2

LWR, σ2
δ , and σ2

∆L

are defined by (4.2.3), (4.3.9), and (4.3.12) or (4.3.13), respectively Any realization of gate
LWR is translated into corresponding values of Lfg, ∆L, and δ, and subsequently, the device
performance can then be estimated through straightforward interpolation using the pre-
simulated grid. Thus, expensive TCAD simulations need to be performed only once at each
of the grid values, and for any future set of LWR parameters (ξ, σ, and α), a M-C experiment
can be performed outside of the TCAD environment (in any tool such as MATLAB [32]).
A lithography process engineer may need to evaluate several scenarios of LWR descriptors
before settling for a given process. An accurate assessment of each scenario would warrant
a minimum of 200 M-C run. Thus, the initial “investment” of TCAD simulation is quickly
paid off if many such scenarios need to be evaluated.

We generated 2000 M-C samples of Lfg, ∆L, and δ using (4.2.3), (4.3.9), and (4.3.12).
We assumed α = 0.5, ξ = 10, and σLWR = 0.5. This M-C set was directly simulated with
Sentaurus; each run took approximately 200 seconds on 2GHz quad CPU running 64-bit
Linux. The same M-C set was also approximated by interpolation using the pre-simulated
grid values. Interpolation in MATLAB was completed in less than 5 seconds. The resulting
probability density functions are compared in Figure 4.11, and we conclude that our “grid”
approach produces reasonably accurate results with very good computational efficiency. For
all subsequent analysis, the probability density function for each device parameter was ap-
proximated by interpolating 10,000 values of Lfg, ∆L, and δ using the pre-simulated basis
set. α = 1 was assumed for all roughness profiles. Figure 4.12 shows the impact of LWR
parameters σLWR and ξ on the variability in saturation threshold voltage Vt,sat for a resist-
defined gate electrode. An increase in σLWR or a decrease in ξ results in greater variation in
δ, and hence, in the effective channel length. Thus, the variation in the threshold voltage in-
creases due to SCE. Among the gate resist requirements specified by the ITRS for the 32nm
node, the allocated 3σ budget for low-frequency LWR is 1.7nm [60]. From Figure 4.12(a), it
should be noted that for the ITRS roadmap stipulated value of 1.7nm for 3σLWR, we observe
21-30mV variation (3σ) in Vt,sat as compared to 16mV (1σ) variation reported due to WFV
[57]. Additionally, we observe that Vt,sat sensitivity to σLWR ranges from 14-17mV/nm. This
is roughly half compared to 28mV/nm Vt,sat sensitivity to tfin variation observed in Fig-
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Figure 4.11: Comparison of threshold voltage distributions obtained via direct Monte-Carlo
simulation and experimental grid for Lfg, ∆L, and δ. For the Monte-Carlo approach, 2000
random values of Lfg, ∆L, and δ were generated and directly simulated with Sentaurus. For
the grid approach, pre-determined values of Lfg, ∆L, and δ at 0.5nm spacing were simulated,
and then the same random values were interpolated to this grid.
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Figure 4.12: Variability in saturation threshold voltage Vt,sat for resist-defined gate electrode,
(a) as a function of LWR amplitude, and (b) as a function of correlation length. Note that
variability in Vt,sat is a much stronger function of LWR amplitude than it is of correlation
length. The fin width in both plots is 7.5nm.

ure 4.7. Thus, the fin width variation is the more significant component than gate line width
roughness. Variability trends for Id,sat and log10(Ioff ) are consistent with the trends observed
for Vt,sat, as shown in Figure 4.13 and Figure 4.14. Figure 4.15 shows that the variability in
Vt,sat is further lowered when the gate electrode is spacer-defined. In the spacer-defined case,
σ2
LWR = 2σ2

LER is assumed. Consistent reductions in variability were also seen for Id,sat and
log10(Ioff ) (not shown). It should be noted these trends observed for DG FinFETs contrast
with those reported for planar bulk MOSFETs [80]. Constantoudis et al. observed that a
larger correlation length increased threshold-voltage variability, and thus, lowered the yield
(defined as 10% tolerance in threshold voltage) [80]. However, for FinFETs with either resist-
or spacer-defined gate electrodes, an increase in correlation length reduces the variation in
Vt,sat.

4.5 Summary

The impact of gate LWR on FinFET performance variability is studied in this work. Using a
simple analytical model that relates LWR parameters to DG structure parameters, we were
able to gain physical insight into LWR, and assess its impact on DG-FET performance. For
any given LWR profile, we showed that the framework presented in this chapter can be used to
assess device performance variability quickly without having the need to perform extensive
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Figure 4.13: Variability in saturation drive current (filled symbols, left y-axis) and off-state
leakage current (open symbols, right y-axis) for resist-defined gate electrode as a function of
LWR amplitude. The fin width is 7.5nm.

Figure 4.14: Variability in saturation drive current (filled symbols, left y-axis) and off-state
leakage current (open symbols, right y-axis) for resist-defined gate electrode as a function of
correlation length. The fin width is 7.5nm.
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Figure 4.15: Comparison of variability in saturation threshold voltage Vt,sat for resist-defined
vs. spacer-defined gate electrode (a) as a function of LWR amplitude for ξ = 10nm, and (b)
as a function of correlation length for σLWR = 0.5nm. The fin width in both plots is 7.5nm.

Monte-Carlo TCAD simulations each time a new LWR profile needs to be investigated.
Furthermore, if a compact model for DG-FET were to be developed, and parameterized
in terms of gate geometrical parameters, then our framework can be used to estimate the
variability of any device parameter of interest.
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Chapter 5

Decomposition of Semiconductor
Process Variation

5.1 Introduction

Variability means lack of uniformity. Uniformity implies predictable performance while lack
thereof results in yield loss or degraded circuit performance. Variability is experienced at all
levels of semiconductor circuit fabrication hierarchy—lot, wafer, die, and devices or struc-
tures within a die. Variability arises from the multitude of processing steps it takes to
fabricate a wafer (the unit of production), and it causes undesired variation in the perfor-
mance of electrical circuits on a die or chip (unit of merit). Random (or intrinsic) and
systematic (or deterministic) variation can be observed at all levels of the aforementioned
hierarchy. Systematic spatial variation, at large or small scale, can cause spatial dependen-
cies or correlation between collection of structures on a die. Devices or structures that are in
close proximity behave much more similarly than those that are spaced farther apart. Several
efforts have been made to incorporate a priori knowledge of variability (especially spatial
correlation) in characterization of timing issues in digital logic circuits through statistical
static timing analysis (SSTA) [8, 9, 10, 11, 12, 13]. However, the same level of attention has
not been devoted to the extraction of model parameters from actual silicon data.

One of the early works in the area of variability modeling was due to Stine et al [81].
They provided methods for decomposing variability hierarchically, however, they did not
address the statistics of across-wafer spatial variation, and also no method was provided to
model spatial correlation. Reda and Nassif [82] presented a method of modeling the statistics
of wafer-level variation through multivariate normal (MVN) approach, but their work did
not address the intra-die variation. Xiong et al [83] emphasized the extraction of a valid
correlation matrix, but the proposed model was isotropic, wafer-level systematic variation
was ignored, and validation was not performed on actual silicon data. Sato et al [84] only
addressed intra-die systematic and random variation, and they ignored the inter-die and
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spatial correlation aspects of variation. Recently, there have been two publications that
advocate variogram-based modeling of spatial correlation [85, 86]. Chopra et al [85] high-
lighted the anisotropic nature of spatial correlation through the use of variogram. However,
they ignored intra-die systematic spatial variation, and they did not address the statistics
of across-wafer spatial variation. Liu [86] used the universal kriging concept to capture the
intra-die correlation. Kriging, however, is a prediction tool that uses the observed spatial
correlation in data to predict values at unobserved locations. In case of semiconductor vari-
ability models, new simulation data needs to be generated for use in Monte-Carlo simulations
with the express goal of emulating observed variance. Furthermore, the kriging variance is
lower than the observed variance in the data, and so using it would result in simulated data
with underestimated variance. As such, kriging is ill-suited for our application. However,
Liu [86] did recognize the influence large-scale variation on intra-die spatial correlation; the
median-polishing method was used to remove it. As expected, very weak correlation was
observed as a result.

In this work, we use actual silicon data from a high-volume fabrication line to provide
a holistic view of variability. Our proposed methodology uses multivariate normal (MVN)
framework for modeling of the statistics of wafer-scale variation. Outliers and transient ob-
servations tend to corrupt the model estimates, and it can potentially have dire consequences
on decision-making use of the model. In this work, the MVN framework is used to reject
outlier wafers, and it is also used to enable cluster analysis as a wafer selection tool prior
to model extraction. Variogram is used to estimate the spatial correlation structure of the
residuals. The rest of the chapter is organized as follows: section 5.2 provides a background
on process variation. Variability models are presented in section 5.4. Representation of
wafer-level and die-level model terms are discussed in section 5.5 and section 5.7, respec-
tively. The wafer-selection procedure is presented in section 5.6. Variogram-based method
for residual analysis is presented in section 5.8. Lastly, results and concluding remarks are
presented in section 5.9 and section 5.10, respectively.

5.2 Semiconductor Process Variation

In semiconductor device fabrication, there are three classes of parameters: structural, ma-
terial, and electrical [87]. Film thickness and transistor gate length/width are examples of
structural parameters. Compressive or tensile stress and doping variations are examples of
material parameters. Threshold voltage (VT ) and effective electrical channel length (Leff )
are examples of electrical parameters. Any of the aforementioned class of parameters may
be used for modeling. The choice of modeling parameter should be based on its ease of being
incorporated in circuit simulation.

Figure 5.1 provides an overview of various components and attributes of variability and
different factors affecting it. Semiconductor process variation can broadly be described by
three attributes: (a) factors affecting the variation, (b) position or location of variation, and
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(c) nature or type of variation. The factors affecting variation can be classified as environ-
mental, physical and temporal. Environmental factors such as temperature, power supply
voltage, noise coupling in networks, etc., impact the IC during its operation. Physical fac-
tors such as mask imperfections and manufacturing process variations also affect variability.
Reliability degradation such as NBTI and oxide traps are examples of temporal factors that
increase variability over time.

Figure 5.1: Overview of various components and attributes of variability and different fac-
tor affecting it. Any physical or electrical parameter is affected by enviromental (such as
temperature, power supply voltage and noise coupling in networks), physical (such mask
imperfections and manufacturing process variations, etc.), and temporal (such as NBTI and
oxide traps) factors. Variation can be either intra-die (or local) or inter-die (or global).
Variation may also have systematic (or deterministic) and random components.

Semiconductor circuit fabrication has a naturally occurring hierarchy—lot, wafer, die, and
devices or structures within a die. Figure 5.2 partially depicts the semiconductor process
variation hierarchy. Variation of any electrical or physical parameter is generally decomposed
in a manner that respects this hierarchy. However, from circuit design perspective, the
variation is simply either inter-die or intra-die. Inter-die variation is the deviation observed
from one die to next. It equally affects all devices or structures on a given die. Intra-
die variation is the deviation observed among the devices or structures within a given die.
Inter-die and intra-die variation are also commonly referred to as global and local variation,
respectively. Lot-to-lot, wafer-to-wafer, and across-wafer variation contribute to inter-die
variation. On a larger scale, fab-to-fab variation also acts as an additional source of inter-die
variation. Within-die variation is synonymous with intra-die variation.
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Figure 5.2: Illustration of semiconductor process variation hierarchy. Lot-to-lot, wafer-to-
wafer, and across-wafer variation contribute to inter-die variation. Within-die variation is
synonymous with intra-die variation. Graphic courtesy of Kun Qian (UC Berkeley).

We have thus far discussed the various hierarchical components of variation and the
factors influencing these components. One final distinction of increased importance is the
nature of variation. Variation may be random or systematic in nature. Random variation
represents the uncertain component of variation. Random variation causes differentiation
within a collection of devices on the same die. It is often assumed to be Gaussian. Random
dopant, line edge roughness, metal gate granularity, high-k granularity, interface roughness,
etc., are examples of random variation [4]. These sources of variation are intrinsic to semi-
conductor processing, and as such, the random variation is also interchangeably referred to
a intrinsic variation.

Systematic spatial variation can occur at large (lot or wafer) or small (die) scale. Wafer-
level systematic spatial variation is typically found to be a slowly varying, smooth function
across the wafer. It is often due to thermal gradients in annealing, non-uniformity of film
thickness, chemical-mechanical polishing (CMP), etc.. Systematic spatial variation across a
die can be caused due to layout (lithography mask) variation or topography (pattern density
for CMP). However, systematic variation need not be limited to die or wafer alone. It can
also be observed at the lot-level. A temporal drift in a process chamber for single-wafer
processing or non-uniformity of fluid flow in a chemical tank can cause systematic variation
for individual wafers in lot.
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5.3 Spatial Correlation

Spatial correlation helps us quantify spatial dependencies or correlation between collection
of structures on a die. Devices or structures that are in close proximity behave much more
similarly than those that are spaced farther apart. In this section, we demonstrate how the
systematic wafer-level spatial variation is related to intra-die spatial correlation.

(a) (b)

Figure 5.3: Source of spatial correlation due to wafer-level variation. (a) The unknown
large-scale variation (assumed to be parabolic; denoted by the red curve) across the wafer is
estimated as piecewise constant (flat gray horizontal lines) term ωijk in (5.4.3). (b) Removing
ωijk does not remove the influence of the gradient of wafer-level variation, it merely zero
centers it. As shown in (b), the amount of wafer-die interaction depends on the sampling
dimension d. Lower d reduces the significance of wafer-die interaction, and it may even make
this interaction negligible. Also, as shown in (b), lower gradient in wafer-level variation
results in more effective removal of the influence of wafer-level variation.

Consider the across-wafer spatial variation in some observed variable as depicted in Fig-
ure 5.3. For simplicity, let us assume this variation is parabolic (as denoted by the solid line
in Figure 5.3(a)), and that it is smooth and continuous over the entire wafer. This assumed
parabolic variation is unknown to us. It is important to recognize it as being unknown,
because we can only estimate it based on the observations made available to us. We have
intra-die observations in each die, with many such die across the wafer and many wafers



CHAPTER 5. DECOMPOSITION OF SEMICONDUCTOR PROCESS VARIATION 69

across different lots. Suppose that we approximated this smooth across-wafer spatial varia-
tion as an average of intra-die observations at each die location. Subtracting the piecewise
constant average values from intra-die observations simply zero-centers the variation over
the individual die. As shown in Figure 5.3(b), the resulting residuals capture a segment of
the across-wafer variation. If we were to estimate the auto-correlation at the die-level, the
residuals would appear to be correlated. Note that one cannot estimate the auto-correlation
using lags larger than the die dimensions, because doing so would result in erroneously high
variation when the lag pair is across the die boundary. Using multiple wafers as observations
is, however, perfectly valid and recommended.
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Figure 5.4: Example of the factors influencing our ability to estimate spatial correlation.
Red curve is the unknown variation in the modeling parameter. Gray bars indicate the
average of the red curve for a given die size. Red dots indicate the residual effect of curve
on within-die locations after the die averages have been subtracted.

The amount of auto-correlation observed in the within-die residuals depends on the gra-
dient of the wafer-level variation as well as the die dimension d. Figure 5.4 shows that as the
die size is reduced, the wafer-level variation is better approximated. Note the reduction in
variability of residuals as the die size is reduced. In practice, for a sufficiently small die size,
the spatial correlation in the residuals could be undetectable due to “noise”. The “noise”
is due to the within-die independent variation, and also due to the variation in across-wafer
spatial variation from wafer to wafer. Thus, the limit to which spatial correlation in the
residuals is observable is determined by the granularity of the observations, the gradient of
the wafer-level spatial variation and the within-die “noise”.
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5.4 Decomposition of Process Variation

In dealing with spatial data, the decomposition of a parameter p

p = large-scale variation + small-scale variation

cannot be specified uniquely and is largely operational in nature [28]. For instance, for the
hierarchy described in Figure 5.2, a simple lumped model [87]

p = p0 + pinter−die + pintra−die + pε (5.4.1)

can be refined further as [87]

pinter−die = plot−to−lot + pwafer−to−wafer(lot) + pdie−to−die(wafer). (5.4.2)

Here p0 is the nominal design value, pX is the variation due to source “X” and pε is the un-
explained or random variation. An important consideration in the decomposition of process
variation comes from the proposed application of the model. The circuit performance often
needs to be evaluated very early in the design cycle, when the physical design (chip layout) is
not available. In such a context, an elaborate model that characterizes the intra-die spatial
variation is useless and pintra−die and pε in (5.4.1) might as well be combined and treated
as random [87]. In this section, we present a model for the benefit of the circuit designer.
We include terms for global variation as well as systematic and random local variation. We
implicitly assume that the location based within-die variation information can be utilized by
the circuit designer. However, the model can also be collapsed to randomize the within-die
location if it is used in the pre-layout context.

5.4.1 Nomenclature

In this work, the modeling parameter being modeled will be denoted as p, and as discussed
previously, p can represent a structural, material, or electrical parameter. In this section,
greek letters will be used to denote model terms, although, greek letters will also be used in
subsequent sections for describing procedural details. Estimated model components will be
accentuated by ‘∧’. Table 5.1 shows subscript notation used in this work. pijkl represents a
specific observation of parameter p. p̄ denotes an averaged observation with a (·) denoting
the subscript over which the averaging was performed. For example, p̄···· indicates the global
average, p̄i··· indicates a vector of lot averages (average of all observations for the i-th lot),
and so forth.

5.4.2 Modeling Choices

One way of decomposing the process variation is

pijkl = η + ωijk + δl + εijkl. (5.4.3)
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Index Attribute

i Lot

j Wafer within a lot

k Die within a wafer

l Location within a die

Table 5.1: Subscript notations used in this work.

S. No. Model Term Estimator Description

1. η̂ = p̄···· Global average

2. ω̂ijk = p̄ijk· − p̄···· Die average; Global (inter-die) component

3. δ̂l = p̄···l − p̄···· Average die; Local (intra-die) systematic component

4. ε̂ijkl = pijkl − p̄ijk· − p̄···l + p̄···· Residual; Local (intra-die) random component

Table 5.2: Estimation of model terms in (5.4.3). The estimation of its terms is done in an
hierarchical fashion—the residuals from one estimator become input to the next estimator.

Table 5.2 shows how each model term can be estimated from the observed data. The model
represented by (5.4.3) is a hierarchical model. The estimation of its terms is done in an
hierarchical fashion—the residuals from one estimator become input to the next estimator.
For example, ω̂ijk is estimated by subtracting the global average term from the observation
pijkl, followed by averaging the result over index l. The model (5.4.3) decomposes the
observation pijkl into a global average (η), die averages across all wafers and lots (ωijk),
average die (δl), and a residual(εijkl) term. The global average term is used as reference value
for all other estimators. As indicated in Table 5.2, ωijk represents the global component of
variation. It contains information regarding across-wafer spatial variation as well as temporal
variation observed across individual wafers in different lots. If the purpose of decomposition
was to include the temporal variation (beyond the scope of this work), one would further
decompose ωijk into a separate lot term. Similarly, if the observed data had a systematic
drift in processing of individual wafers in a lot, then the lot-wafer interaction term would be
included in the decomposition. The δl term captures all systematic spatial variation observed
across a die, and its relative contribution can be significant [11].
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5.5 Wafer-Level Variation

In dealing with systematic spatial variation, only single wafer examples are typically ad-
dressed, i.e. some form of spatial variation on a specific wafer is modeled [88]. In practice,
however, there are variations in the spatial signatures. Typically, each wafer exhibits sta-
tistically significant “individuality” in its across-wafer spatial signature. The statistics of
wafer-level systematic spatial variation are seldom discussed [82]. In this section, we closely
follow the methodology proposed in [82] and model ω̂ijk using a multivariate normal frame-
work.

5.5.1 Multivariate Normal Model

Let there be M wafers each comprised of n dice. Mathematically, we can represent each
wafer as a vector w consisting of n measurements. Thus, w1,w2, . . . ,wM denote obser-
vations from M wafers. Let us further assume that the data is drawn from a multivariate
normal distribution (MVN) with mean µ and covariance matrix Σ. The maximum likelihood
estimators (MLE) of µ and Σ can be given as

µ̂ =
1

M

M∑

j=1

wj (5.5.4)

and

Σ̂ =
1

M

M∑

j=1

(wj − µ̂)(wj − µ̂)′, (5.5.5)

where µ̂ is a vector of length n representing the average wafer, and Σ̂ is a n× n covariance
matrix of all die locations on the wafer. In practice, the computation of Σ̂ is quite often
complicated by the missing values (die) on wafers. Ignoring missing values decreases the
accuracy of the estimates. The missing data can be estimated by a simple polynomial fit
[88, 84], universal kriging [86], or by using an expectation maximization (EM) algorithm [82].
The detailed steps of these procedures are not repeated here, but they can be found in the
cited literature.

5.5.2 Normality Test and Outlier Rejection

Before using µ̂ and Σ̂, the underlying MVN assumption must be ascertained. This can be
accomplished by using the Mahalanobis distance. Given the MVN model parameters µ̂ and
Σ̂, the Mahalanobis distance dj of each wafer observation [82, 89] can be defined as

d2
j = (wj − µ̂)′Σ̂−1(wj − µ̂). (5.5.6)
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For multivariate normally distributed data, d2
j is approximately chi-square distributed, i.e.

d2
j ∼ χ2

n, where χ2
n represents the chi-squared distribution with n degrees of freedom [89].

As discussed previously in section 5.2, the wafer is the unit of production. In selecting the
wafers for model extraction, one must ensure that the data set does not contain any outlier
wafers. Outlier wafers can be detected by plotting d2

j against the quantiles of χ2
n [82]. Outlier

points are identified by a cut-off value χ2
n,1−α for certain small α (e.g. α = 0.05).

5.6 Wafer Selection

Rejecting the outlier wafers is an essential requirement to qualify a given data set for model
estimation. Often large industrial data sets (from test chips or kerf structures) are used for
modeling purposes. Such data sets may span significant period in time during which transient
events such as process tool drifts, excursions, and experiments may occur. Within a given
data set, there could be groups of lots with multiple systematic spatial patterns across-wafer
such as “bull’s eye” or “donut”. One of the basic principles in statistics is that one must only
aggregate similar observations (formally defined as being derived from the same distribution).
Aggregating diverse spatial patterns should therefore be avoided. As such, we need some
method to classify the wafers in groups based on their spatial similarities. Once wafers have
been classified, one can choose which wafers should be allowed for model estimation. Such
classification can also serve as a process diagnostic tool. In this work, we propose a method
for classification based on hierarchical clustering. Wafers are clustered based on their across-
wafer spatial similarities. Our proposed methodology can be summarized as follows: first
we use principal component analysis (PCA) to generate some basis functions. Regression
is then performed for each wafer using a technique called least angle regression (LAR), and
parsimony in the regression coefficients is achieved by performing selection using Cp statistic
[90]. Lastly, the parsimonious coefficient set is used to perform agglomerative hierarchical
clustering.

5.6.1 Least Angle Regression Using PCA Basis Functions

The eigenvalue equation for n × n covariance matrix Σ (computed in section 5.5) can be
expressed as

ΣU = UΛ, (5.6.7)

were U is the eigenvector matrix of Σ of size n× n, and Λ is a diagonal matrix of dimension
n× n with non-negative diagonal elements (eigenvalues) in decreasing order. The matrix Λ
describes the amount of variance explained by each eigenvector (orthonormal column of U),
and it can easily be expressed as percentage. Since the columns of U are orthonormal, they
can be used as basis functions for regression. However, it is usually preferred to reduce the
dimension of the data. Here we choose m < n eigenvectors such that they capture 95% of
total variance. X will denote the n×m eigenvector matrix to be used as basis functions.
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At this point, one can use ordinary least squares (OLS) to fit each wafer using the basis
function set X. Let x1,x2, . . . ,xm be m covariate vectors each of length n (corresponding to
die position on wafer). That is, Xn×m = [x1,x2, . . . ,xm]. Let y be the vector of responses

for the n die locations. For a candidate vector of regression coefficients β̂ = (β̂1, β̂2, . . . , β̂m)′

and a prediction vector ŷ

ŷ =
m∑

j=1

xj β̂j = Xβ̂, (5.6.8)

the OLS problem can be stated as

β̂LS = argmin
β





n∑

i=1

(
yi −

m∑

j=1

xj β̂j

)2


 . (5.6.9)

For purposes of clustering, we seek parsimony in a coefficient set, i.e. we seek to represent
each wafer with the minimal needed number of coefficients and not the full least squares set
β̂ = (β̂1, β̂2, . . . , β̂m)′. Lasso and LAR are a subclass of linear methods known as shrinkage
methods that can be used to achieve parsimony [91]. Shrinkage methods shrink the regression
coefficients by imposing a penalty on their size. They are in essence a constrained version of
OLS. For example, the constrained Lasso problem is stated as

β̂LASSO = argmin
β





n∑

i=1

(
yi −

m∑

j=1

xj β̂j

)2




subject to
m∑

j=1

|β̂j| ≤ t.

Due to the nature of the constraint, a sufficiently small t will cause some of the coefficients
to be identically zero. The amount of shrinkage in the regression coefficients is usually
standardized to the least squares value as s = t/

∑m
j=1 |β̂LS,j|.

LAR was developed recently in the seminal work by Efron et al [90]. LAR and Lasso differ
in the manner in which the covariates are chosen [90]. LAR is described as a democratic
version of forward stepwise regression in that it only enters “as much” of a predictor as it
deserves [91]. The detailed steps of the LAR procedure can be found in [90] and we describe
only the high-level algorithmic steps below:

1. Standardize covariates to have zero mean and unit length and that the response to
have zero mean

n∑

i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = 1 for j = 1, 2, . . . ,m (5.6.10)
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2. Starting with β̂1, β̂2, . . . , β̂m = 0, compute the current correlation ĉ = c(ŷ) = X ′(y−ŷ)
so that ĉj is proportional to the correlation between covariate xj and the current
residual r = (y − ŷ).

3. Find the covariate xj most correlated with the residual r and include xj into the active
set A

Ĉ = max{|ĉj|} and A = {j : |ĉj| = Ĉ}
4. Increase βj from 0 towards its least squares value

ĵ = argmax|ĉj| and ŷ → ŷ + ε · sign(ĉĵ) · xĵ
with some “small” constant ε. Continue until a competing covariate xp is equally
correlated to the current residual as xj.

5. Include xp into the active set A, and move βj and βp in the direction defined by
their joint least squares coefficient of the current residual. Continue until yet another
competing covariate xq is equally correlated to r. Include xq into the active set A.

6. At the k-th step, the active set A will have k members. Letting

Xk = {xj : j ∈ Ak} and Gk = X ′kXk, (5.6.11)

the k-th step LARS estimator ŷk and the corresponding current residual are given as

ŷk = XkGk−1X ′ky and
rk = (y − ŷk),

(5.6.12)

respectively. At each step k, the regression coefficient set is given as

βk = {βj : j ∈ Ak}. (5.6.13)

7. Repeat until all m covariates have entered the active set, and a full least squares
solution is reached.

A principled choice among the range of possible LARS estimates is made by choosing
the optimal step. The optimal step is determined as the one that minimizes the expected
prediction error. There are many methods available for model selection such as AIC, Cp
selection, k-fold cross-validation, etc. [91]. Reference [91] provides an excellent discussion
on this subject. In this work, we chose the Cp selection criteria to determine the optimal
step as proposed in [90]. We can estimate the risk of a k-step LARS estimator ŷk using the
statistic [90]

Cp(k)
.
=
‖ y − ŷk ‖2

σ
− n+ 2k. (5.6.14)

The optimal step kopt is chosen as

kopt = argmin
k
{Cp(k)}. (5.6.15)
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5.6.2 Cluster Analysis

Cluster analysis relates to grouping objects into subsets or “clusters” based on some common
attributes [92, 93]. Clustering is performed such that the objects within a given cluster are
more closely related to each other than with the objects in other clusters. In the present
context, the object is a wafer, and the attributes are the optimal set of regression coefficients.

Let β̂ij denote the regression coefficient of the j-th covariate for the i-th wafer. Since
the degree of similarity (or dissimilarity) between the individual wafers is the central idea of
cluster analysis, we must define a measure of dissimilarity. There are many available choices
for the dissimilarity measure, but the most popular choice is the squared distance [91]. The
dissimilarity or distance between wafers i and i′ can be stated in terms of squared distance
between the j-th attribute as

Dii′ =
m∑

j=1

(β̂ij − β̂i′j)2. (5.6.16)

Given the dissimilarity measure between the wafers, we need an algorithm to perform the
grouping. In hierarchical clustering, clusters are arranged into a natural hierarchy. There
are two methods of hierarchical clustering: agglomerative (bottom-up) and divisive (top-
down) [92, 91]. In this work, we employ agglomerative clustering in which new clusters are
formed by pairing two clusters with the smallest dissimilarity. As wafers are clustered in
hierarchical fashion, each cluster would ostensibly contain multiple wafers. Thus, in order
to discern the dissimilarity between two clusters, each containing multiple wafers, we must
define a measure of intergroup dissimilarity. Again, there are several methods available:
single linkage (nearest-distance), complete linkage (farthest-distance), group average (un-
weighted average distance), centroid (un-weighted center of mass distance), median (weighted
center of mass distance) to name a few [91]. Reference [92] presents an excellent discussion on
these methods. The choice of intergroup dissimilarity measure is heuristic in nature. If the
wafers exhibit strong clustering tendency, then all methods would produce similar results.

The hierarchical structure derived from clustering is graphically displayed as a dendro-
gram, where the objects appear individually at the bottom, and gain membership into clus-
ters as the cophenetic distance increases. The cophenetic distance cii′ is the intergroup
distance at which two objects (i.e. wafers) i and i′ are first joined together in the same clus-
ter. Hierarchical clustering methods impose a hierarchical structure on the data irrespective
of its actual existence [91, 92]. As such, the efficacy of clustering needs to be ascertained.
The cophenetic correlation coefficient judges the extent to which the hierarchical structure
“faithfully” represents the data itself. It is a kind of a measure of distortion in the classi-
fication structure. It indicates the amount of correlation between the n(n − 1)/2 pairwise
observation distances dii′ and their corresponding cophenetic distance cii′ derived from the
dendrogram. Discussion on several other measures of distortion can be found in [92].
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5.7 Die-Level Variation

In the preceding sections, we proposed methods to capture the statistics of wafer-level spatial
variation, and we also showed how to perform wafer selection for model estimation. In this
section, we focus on the modeling aspects of within-die systematic spatial variation. The
residuals of the model described by (5.4.3) deserve a more involved discussion; the following
section is dedicated to it.

The die-level systematic spatial variation is generally modeled using polynomial basis
functions [84, 94]. Let z(x, y) describe the systematic spatial variation at the within-die
location (x, y). We estimate z using a k-th order polynomial

ẑ(x, y) = X ′c

X = (1, x, y, x2, y2, . . . , xk, yk)′ and c = (c0, c1, c2, . . . , ck−1, ck)
′

The polynomial coefficients c are determined using the least-squares procedure that mini-
mizes the residual sum of squares (RSS) error. The choice of polynomial order k here is
critical: a large k would produce a model with low bias, but large variance in the estimate
of p. The Akaike information criterion (AIC) or its corrected version (AICc) can be used
to determine the appropriate polynomial order [95]. AICc balances the RSS error in the fit
with the number of parameters in the model, and it is defined as [95]

AICc = log


 1

n

∑

(x,y)

(z(x, y)− ẑ(x, y))2


+

n+ k

n− k − 2
, (5.7.17)

where the summation is performed over all available within-die locations n. Note that while
a higher value of k reduces the RSS (first term in (5.7.17)) of the fit, the AICc is penalized
by the increase in second term for higher values of k. Thus, the value of k that minimizes
the AICc in (5.7.17) is the optimal order of the polynomial. As is customary, the residuals
of the fit should be checked for normality, homoscedasticity, and independence. We should
point out, however, that the k-th order polynomial is not parsimonious. The coefficients of
many terms may not be significant. If a parsimonious within-die model is desired, then there
are methods available for performing subset selection of polynomial terms [91].

5.8 Residual Analysis

The nature of the residuals greatly depends on how the variation model was formulated.
As previously discussed in section 5.2, the extent to which such approach successfully re-
sults in white residuals greatly depends the granularity of observations, the gradient of the
wafer-level spatial variation, and the within-die uncorrelated variation. In specific cases, it
may be possible to realize uncorrelated residuals. In [88], it was accomplished by fitting
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a paraboloid to wafer-level systematic variation. However, general applicability of such a
parabolic assumption has not yet been demonstrated. Thus, we need a practical method
of analyzing the residuals. In this study, we advocate a variogram-based numerical treat-
ment of the residuals. Recently, the use of variogram for modeling spatial correlation has
been proposed by two other studies [86, 85], but only [85] used the variogram in the proper
context.

5.8.1 Variogram of Residuals

In this section, we shall briefly discuss the theoretical foundation of the variogram. A spatial
sequence is considered intrinsically stationary if its finite dimensional joint distributions do
not change when shifted in position. Consider a intrinsically stationary spatial process in
region R, i.e. let Xs = {X(s) : s ∈ R} be a collection of random variables with an unknown
mean µ ∈ IR observed at certain points {si : i ∈ Z} such that

E(X(s)−X(s+ h)) = 0 (5.8.18)

and

Var(X(s)−X(s+ h)) = Var(X(0)−X(h)) = E [X(0)−X(h)]2 = 2γ(h) (5.8.19)

for all s ∈ R. (5.8.18) implies that the mean is constant everywhere in region R. (5.8.19)
implies that the variance of the difference is constant everywhere in region R, and that it
depends only on h. In spatial statistics, 2γ is known as the variogram and γ is known as the
semi-variogram. Additionally, if Xs is second-order or weakly stationary, then (5.8.18) holds,
and Xs has a common auto-covariance function C(h) = Cov(X(s), X(s+ h)) such that

Var(X(s)−X(s+ h)) = Var(X(s)) + Var(s+ h)− 2Cov(X(s), X(s+ h)) (5.8.20)

= 2 [C(0)− C(h)] . (5.8.21)

Thus, the second-order stationarity implies intrinsic stationarity, and we have

2γ(h) = 2 [C(0)− C(h)] . (5.8.22)

Usually, the spatial correlation is described using an auto-correlation function (ACF) ρ(h)
[88, 94, 83]. The auto-correlation function (or correlogram) can be defined in terms of auto-
covariance function (or covariogram) as

ρ(h) ≡ C(h)

C(0)
, (5.8.23)

where C(0) = σ2 is the finite sample bias-corrected variance of spatial sequence Xs. Using
(5.8.22) and (5.8.23), we can alternately define the variogram in terms of the ACF as

2γ(h) = 2σ2 [1− ρ(h)] . (5.8.24)
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5.8.2 Variogram Estimation

Generally speaking, there are four issues that are commonly encountered in the estimation
of variogram. They are:

• Presence of outlier observations in the data.

• Recovering the covariogram (auto-covariance function) from the variogram.

• Anisotropy in the variogram.

• Insufficient observations to estimate the variogram accurately.

Each of the above issues will be addressed in this section.
A version of Matheron’s classical variogram estimator is given as [28]

2γ̂(h) =
1

N(h)

∑

N(h)

(
X(si)−X(sj)

)2

, h ∈ IRd, (5.8.25)

where
N(h)

.
= {(si, sj) :‖ si − sj ‖= h; i, j = 1, 2, . . . , n} (5.8.26)

denotes the number of distinct pairs available at lag h. Note that in the classical estimator,
the square operation inside the summation greatly magnifies any outlier observation. A more
robust estimator was proposed by Cressie and Hawkins [96]

2γ̂(h) =
1

0.457 + 0.494/N(h)


 1

N(h)

∑

N(h)

∣∣∣X(si)−X(sj)
∣∣∣
1/2




4

, h ∈ IRd, (5.8.27)

where N(h) is given by (5.8.26). The estimator (5.8.27) has been found to be robust against
outliers [96, 29]. In our context, X represents the residuals of our model (5.4.3) and s =
{(xi, yi) : i ∈ Z} is the set of within-die observations at location (x, y).

In this work, our end goal is to use the estimated spatial correlation information to gen-
erate simulated data. For this purpose, we need to estimate the auto-covariance function
or covariogram. Recall that the variogram and covariogram are related by (5.8.22). We
prefer using variogram estimation over covariogram estimation, because it completely avoids
the estimation of the mean (which is of little interest in this case). Additional statistical
arguments in favor of the variogram have also been made [28]. The problem in recovering
the covariogram from the variogram is that their respective estimators do not preserve the

property (5.8.22) [28]. In other words, 2γ̂(h) 6= 2
[
Ĉ(0)− Ĉ(h)

]
. To circumvent this prob-

lem, the estimated variogram can be fit to a valid parametric variogram expressed in terms
of valid parametric ACF. Several valid analytic forms for ACF exist [28]. Adequacy of any
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chosen form should be ascertained by examining its applicability to the given data. We use
a specific functional form proposed for isotropic process by [7],

ρ(h; ξ, φ) = exp

(
−
[ ||h||

ξ

]2φ
)
, h ∈ IRd. (5.8.28)

ξ is the characteristic dimension of ACF called the correlation length and it is defined as
ρ(ξ) ≡ 1/e. For h ∼ ξ, any two observations can be considered to be correlated, whereas
for h � ξ, independence can be assumed. Using the Taylor expansion of the exponential
function, it can be shown that the ACF exhibits power law behavior ρ ∼ h2φ for h � ξ.
Thus, φ determines correlation at extremely short-range, and as such, we will refer to it as
short-range correlation factor. It can be shown that 0 ≤ φ ≤ 1 [23]. The ACF described by
(5.8.28) has the following additional important properties:

1. ρ(0) = 1

2. ρ(h) = ρ(−h)

3. |ρ(h)| ≤ ρ(0)

4. limh→∞ ρ(h) = 0

The last relation holds for a wide class of stationary processes, including the spatial process
considered here, but not in general. Using the definition (5.8.22) for the variogram, it is clear
that γ(0) = 0. However, in practice γ(h)→ c0 as h→ 0. c0 has been called the nugget effect
by Matheron [28]. Although, mathematically the discontinuity at zero lag cannot occur, the
existence of c0 is attributed as measurement or estimation error. Thus, we must modify
(5.8.24) as

2γ(h) = 2c0 + 2σ2 [1− ρ(h)] . (5.8.29)

The nugget can be interpreted as the independent (i.e. uncorrelated) component of variation,
as it does not depend on the lag. The 2σ2 value is referred to as the sill, and the value of h
at which 2γ(h) reaches the sill is known as the range.

The ACF (5.8.28) is defined only for isotropic processes. However, the process Xs can
also be anisotropic (i.e the dependence between X(s) and X(s + h) is a function of both
magnitude and direction of h). The most common form of anisotropy is geometric anisotropy.
In geometric anisotropy, the range changes with direction, but the sill remains constant [97].
Geometric anisotropy can be corrected by scale and rotation transformation of the directional
vector h as [97]

h′ = ||Ah||2 with

A =

(
1/ax 0

0 1/ay

)[
cosα sinα
− sinα cosα

]
=

1

a

(
1 0
0 λ

)[
cosα sinα
− sinα cosα

]
,

(5.8.30)
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where || · ||2 denotes the Euclidean length of vector. Thus, the matrix A transforms the lags
from anisotropic space (circle of radius a) to isotropic space (ellipse). The ratio ax/ay is
known as anisotropy ratio λ. It is the ratio of minor range to major range, and 0 ≤ λ ≤ 1.
The rotation angle α is chosen as the direction of maximum range.

Using (5.8.28) and (5.8.30) in (5.8.29), we can restate the parametric form of variogram
as

2γ(h;θ) = 2c0 + 2σ2
[
1− exp

(
−
[ ||Ah||2

ξ

]2φ)]
, h ∈ IRd. (5.8.31)

Figure 5.5 graphically illustrates various parameters used to describe the variogram. Let

Figure 5.5: Graphically illustration of various parameters used to describe the variogram 2γ.

θ ≡ (c0, σ
2, φ, ξ, α, λ, a)′ denote the vector of parameters that need to be estimated

for characterizing the variogram. The subset of parameters (φ, ξ, α, λ, a) are commonly
referred to as the structure parameters as they define the structure or shape of the vari-
ogram. In this work, we will use the weighted least squares (WLS) method [27] to estimate
(5.8.31). Several other methods have been proposed for fitting variogram models [28], but
the robustness of WLS, and the absence of any distributional assumptions, makes it the most
practical method for fitting the variogram [29]. Note that (5.8.26) indicates that fewer pairs
are available at higher lag values. Thus, the variogram error increases at higher lags. The
WLS method automatically provides heigher weights for the early lags and lower weights for
the lags at which number of contributing pairs is low [27]. Assuming heteroskedasticity, the
WLS criterion is to minimize

(2γ̂ − 2γ(θ))′ V −1 (2γ̂ − 2γ(θ)) ,
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where V is the diagonal matrix of variances of the variogram. Thus, we can define the WLS
estimator of θ as

θ̂ = argmin
θ

h0∑

h=1

N(h)

[
2γ̂(h)

2γ(h;θ)
− 1

]2

. (5.8.32)

where 2γ̂(h) and 2γ(h;θ) are given by (5.8.27) and (5.8.31) respectively, N(h) is given by
(5.8.26), and h0 is a user-specified upper range of lag values. A practical choice of h0 is [27]

h0 = argmax{h : h ≤ H/2 and N(h) ≥ 30}, (5.8.33)

where H denotes the largest possible lag. The WLS estimator for θ, defined in (5.8.32), can
be solved by any non-linear optimization procedure. Most mathematical packages, such as
MATLAB, provide built-in functions for constrained non-linear optimization [32].

Based on our earlier discussion in section 5.3, we concluded that if the die averages are
removed from the intra-die observations, then the lag pairs used for the variogram estimation
must be restricted to be within die. In other words, the lag pairs used for the variogram
estimation cannot cross the die boundaries. The hierarchical model (5.4.3) proposed in this
work does indeed remove the die averages (ωijk) in the estimation of residuals. We, therefore,
need to estimate the variogram at the die-level. For reliable and accurate estimation of
the variogram (5.8.27), we need many within-die observations to cover a wide range of
lags. Depending on the source of the data, this may not always be possible. In order to
circumvent this problem, we propose estimating the structure parameters (φ, ξ, α, λ, a)
of the variogram at the wafer-level. However, in order to do so, we temporarily redefine our
model as

pijkl = η + δl + εijkl. (5.8.34)

In (5.8.34), we have dropped the ωijk term from (5.4.3). The terms η̂ and δ̂l are estimated
as previously defined in Table 5.2 and the residuals are estimated as ε̂ijkl = pijkl − p̄···l.
Note that we can only estimate the structure parameters using the residuals ε̂ijkl. The sill
and nugget of ε̂ijkl (temporary model) and ε̂ijkl (actual model) will be different. Thus, in
the final parametric representation of the variogram (5.8.31), the structure parameters will
be estimated using ε̂ijkl and the sill will be estimated using ε̂ijkl. Die-level estimation of
variogram is more advantageous than wafer-level estimation because the latter method does
not allow us to estimate the nugget (independent or uncorrelated component) of ε̂ijkl.

5.9 Results and Discussion

In order to model the process variation effectively, the data needs to be available at a level of
abstraction that is conducive to be used in circuit simulation. For instance, if the modeled
parameter is an electrical parameter like VT , then it can be used much more easily in circuit
simulation than a material parameter such as film stress. The latter choice would involve
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more elaborate simulation setups, and in many cases it may require simplifying assumptions.
Generally speaking, electrical parameters are a more desirable choice for modeling purposes,
as they tend to incorporate all underlying physical and material phenomenona. In this
work, we present ring oscillator frequency measurement data from 65nm technology process
from a high-volume manufacturing line. In the early stages of a process development cycle,
there is often scarcity of rich enough spatial and temporal data to accurately model process
variation. Accuracy or reliability of any estimated variation model is directly proportional
to the amount of data available during the extraction phase. Our data set consisted of 331
wafers spanning 23 lots with 104 die per wafer and 14 measurements per die. Due to the
proprietary nature of the data, the measured frequency, die size, and the sampling distances
are presented in arbitrary units with no loss in the generality of model or the proposed
procedures. All numerical data analysis was performed using MATLAB [32].

5.9.1 Wafer Selection

We begin our analysis with wafer selection. Figure 5.6 shows the distribution of raw data. It
is quite clear that our data set contains outlier wafers that need to be removed. We identified
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Figure 5.6: Probability density plot of raw data p̄ijk·. Dotted line denotes the normal
approximation of the data and it is evident that the data is not normally distributed.

outliers wafers using the Mahalanobis distance as described in section 5.5. Figure 5.7 shows
the squared Mahalanobis distance plotted against the quantiles of the χ2

n distribution. For
our data, 56 outlier wafers were identified and rejected at the 95% quantile of χ2

n distribution.
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Figure 5.7: Mahalanobis distance before and after rejecting outlier wafers. Wafers were
rejected at the 95% quantile of χ2

n distribution.

Next we proceed to perform cluster analysis as described in section 5.6. In this work, we
chose to perform PCA on model term ωijk. The first 10 principal components were chosen
as the orthonormal basis for the LAR. LAR was performed as described in subsection 5.6.1.
Figure 5.8 shows an example of results from the LAR. Figure 5.8(a) shows the Cp selection
plot indicating that optimal step kopt is 4. Figure 5.8(b) shows the evolution of the regression
coefficients in the LAR. The x-axis represents the step number and the y-axis indicates the
value of the regression coefficient (between -1 and 1). Recall that at each step in the LAR,
a new predictor (coefficient) joins the active set, and at the end of the LAR algorithm,
the coefficients arrive at the least-squares solution. In other words, the right most step in
Figure 5.8(b) shows the least-squares solution with all 10 predictors. We also observe that
the first predictor (first principal component) quickly saturates to its least-squares value. At
step 4, there are 3 predictors (or coefficients) in the active set, and the 4th one about to join
the active set. Similar LAR was performed on each of the 275 wafers.

Cluster analysis, as described in subsection 5.6.2, was then performed using the 275× 10
regression coefficient matrix. Figure 5.9 shows a dendrogram for the 275 wafers. In our
cluster analysis, we limited the maximum number of clusters to 20. Clustering algorithms
discussed in subsection 5.6.2 always produce a hierarchical classification, even when it is
inappropriate. One must therefore validate the results of any classification. As discussed
previously, the cophenetic correlation coefficient is one measure of fidelity of the proposed
hierarchical structure. For the dendrogram displayed in Figure 5.9, the cophenetic correlation
coefficient was 0.84. The dendrogram shown in Figure 5.9 can be used to explore the number
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Figure 5.8: Example of Least Angle Regression: (a) Cp selection plot, and (b) evolution
of regression coefficients at each LAR step. Optimal step k (which is 4 in this example)
is determined by the minimum value of the Cp statistic (using (5.6.14) and (5.6.15)). The
optimal value of kopt determines the optimal regression coefficients. As shown in (b), at step
4 there are three coefficients selected by the Cp statistic.
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Figure 5.9: Dendrogram of hierarchy discovered in our data set. The cophenetic correlation
coefficient is one measure of fidelity of the proposed hierarchical structure. The cophenetic
correlation coefficient for this structure is 0.84, which indicates that this hierarchical structure
is a fairly good representation of data.

of clusters present in the data. For example, if a distance of 9 was used to partition the
clusters, then we would have two clusters. If a distance of 6.5 is used, then we would have
four clusters, and so forth. In order to discover the optimal number of clusters (or “natural”
clusters), several indices or methods can be used [93]. Here we explore three different indices:
proportion of variance, C-index, and CH-index [93]. The proportion of variance (POV) is
the ratio of norms of intra-cluster distance and original distances as defined by (5.6.16). The
optimal number of clusters is determined when the rate of change in this ratio is maximum.
It indicates the amount of order introduced by the particular cluster configuration. The
C-index is computed as [dw −min(dw)]/[max(dw) −min(SSw)], where dw is the sum of the
within cluster distances. Here the minimum value indicates the optimal number of clusters.
The CH-index is defined as (SSb/(k− 1))/(SSw/(M − k)), where SSb and SSw are between
and within the cluster sum of squares for k clusters, and M total number of objects (wafers).
The optimal number of clusters is the value which maximizes this measure. However, we
must examine the clusters to avoid dubious classification. Figure 5.10 shows the optimal
cluster size identified by the three indices. The POV method indicates the presence of 11
clusters. Although, there was big dip in the C-index at 11 clusters, there was no global
minima, and as such its results are inconclusive. Also, in case of the CH-index there was
large jump in value at 11, but this was not a global maxima, and as such it too is deemed
inconclusive. Indeed, the identification of the number of clusters present in a given data
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Figure 5.10: Procedures to determine the number of clusters (a) Proportion of Variance
(POV), (b) C-index and (c) CH-index. The POV method indicates the presence of 11
clusters, whereas the C-index (no minima) and the CH-index (no maxima) are inconclusive.

set is still largely heuristic. Milligan and Cooper [93] explored 30 different procedures to
conclude that a universally prescribed method does not yet exist. For the most part, cluster
analysis correctly grouped wafers with common lot number together based entirely on the
similarity of spatial characteristics. It also helped correctly identify an experimental group
of wafers which were previously unknown to us. Cluster analysis, such as the one described
here, can be a powerful tool that can be used to explore the data set to further segregate
and remove atypical wafers from model estimation process.

5.9.2 Model Estimators

For the results presented in this section, we restricted our data to a group of lots with
interesting across-wafer spatial pattern. Although the selection of the group of wafers made
here was somewhat arbitrarily, under other circumstances, it could have been made based
on more legitimate reasons.

First, we examine the global variation component ωijk. Figure 5.11 displays the multi-
variate normal representation of ωijk as described in section 5.5. Figure 5.11(a) shows the
spatial variation in the average wafer. The average wafer can also be represented by a poly-
nomial fit as described in section 5.7. However, this polynomial would be intractable for an
analytical treatment of spatial correlation as was proposed by [88]. Figure 5.11(b) shows the
covariance of 104 dice on the wafer. Note the variation along the diagonal as well as the
off-diagonal components.

Next, we estimate the die-level variation term δl. Figure 5.12 shows the spatial variation
in the average die. Here the average die is represented by a polynomial of order 7 using
procedure described in section 5.7. Note that the intra-die systematic spatial variation is
significantly stronger than wafer-level systematic spatial variation observed in Figure 5.11(a).
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Figure 5.11: Multivariate normal representation of ωijk: (a) systematic spatial variation of

average wafer (µ̂), and (b) covariance matrix (Σ̂)
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(5.4.3).
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Lastly, we examine the residuals εijkl from the model (5.4.3). Probability plot of εijkl is
shown in Figure 5.13. The distribution appears to be normal for the most part. Figure 5.14
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Figure 5.13: Probability plot of the residuals εijkl from model (5.4.3). The distribution
appears to be normal for the most part with some outlier observations.

shows the estimated variogram γ̂(h) in X and Y directions. The variogram was estimated
using the robust estimator defined by (2). Ideally, the variogram should be computed at the
die level. However, in our case, since we had only 14 observations per die, the variogram
was estimated at the wafer-level using technique described in subsection 5.8.2. Note the
anisotropy in variogram in X and Y directions. One can observe noise at higher lags due to
fewer lag pairs being available at long lag values. It is due to this noise that the parametric fit
is performed at a maximum lag h0 = H/2 as defined by (5.8.33). Figure 5.15 shows the para-
metric variogram γ(h, θ) fitted using weighted-least squares technique. The fitting residuals
appear to be normally distributed. Note that only the structure parameters are to be used
from this fit as it was computed at the wafer level. The parametric form used in this work
(see (5.8.31)) is characterized by the structure parameters ξ (correlation length), φ (short-
range correlation factor), and the anisotropy matrix A (characterized by θ, λ, and a). The
estimated values of structure parameters were (φ, ξ, α, λ, a) = (0.24, 3.48, 1.56, 0.08, 38.34).
As a reminder, correlations among transistors need to be established in two ranges: h � ξ
and h ∼ O(ξ). For h� ξ, independence is naturally assumed. Also, recall that value of φ is
important at very short-lags as it implies higher correlation (ρ ∼ h2φ for h� ξ). Note that
θ ' π/2 and λ� 1 are in line with the observed γ̂(h) in Figure 5.14.
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long lag values. It is due to this noise that the parametric fit is performed at a maximum
lag h0 = H/2 as defined by (5.8.33).
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Figure 5.15: (a) Parametric variogram γ(h, θ) fitted using weighted-least squares and (b)
Residuals of variogram fitting, γ̂(h) − γ(h, θ). The fit was performed at a maximum lag
h0 defined by (5.8.33) using WLS method as described in subsection 5.8.2. The estimated
values of structure parameters were (φ, ξ, α, λ, a) = (0.24, 3.48, 1.56, 0.08, 38.34).
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5.10 Summary

In this chapter, we performed a hierarchical decomposition of semiconductor process varia-
tion. We examined the across-wafer and across-die components of variation in depth. We
also provided a robust method for estimating spatial correlation in the intra-die observations.
With the increasing complexity of advanced high speed circuits, sophisticated simulations
can utilize the information from variability models to achieve better performance. Our pro-
posed modeling approach provides circuit designer with on-demand views of global and local
variation. The multivariate normal framework proposed for wafer-level variation is capa-
ble of estimating an unknown distribution of across-wafer spatial variation. Wafer selection
procedure was demonstrated using the least angle regression procedure and agglomerative
hierarchical clustering. The intended use of our proposed model is as an input to Monte-
Carlo circuit simulation. The extracted model enables the circuit designer to use it in either
of the two desired contexts—pre-layout or post-layout. It should be noted that the extracted
model may not be viable if layout of the structures used for estimation is different than the
one intended in the final circuit. For instance, in terms of CMP, similar local and global
pattern densities must exist in the test chip which generated the data and the final circuit.
Similar argument can be made in terms of local stress. In other words, layout style and
environment are of critical importance.



92

Chapter 6

Conclusion

In depth understanding of the sources of variability, and their influence on design pa-
rameters, is critical for design robustness, manufacturing, and yield. Process variations are
inevitable and with the ever increasing process complexity, accurate models are required to
identify critical areas of improvement. The robust estimation of existing model parameters is
more important than increasing the level of sophistication of the model. Process variability is
not stationary in time. Model parameters should be re-estimated periodically to ensure the
soundness of assumptions and adequacy of coverage. Implicit assumptions, such as equiva-
lency of final product design layout and the test structure design layout that generated data
for estimation, must be ascertained. Other commonly made assumptions, such as normality
of data, must also be scrutinized and validated.

6.1 Summary of Contributions

The key contributions of this work can be summarized as follows:

• In chapter 2, we developed a method for robustly estimating line width roughness
(LWR) parameters. Specifically, our proposed method provides a better unbiased es-
timate of roughness amplitude σ than existing method. Our rigorous treatment also
provides estimated error in LWR parameter estimates—which has sorely been missing
from the existing method [21, 5, 6]. We reported a critical finding that the value of
σ can be overestimated by a factor greater than 2, if the local variation in CD is not
accounted for and removed in the estimation process. Lastly, our proposed method
allows for more flexibility in capturing SEM images in that we do not need a special
test structure with all lines with same designed CD; any IC layout region with straight
lines and arbitrary CDs would suffice.

• It is now generally accepted that LWR is completely characterized by three parameters:
σ is root-mean squared amplitude of roughness, α is the roughness exponent, and ξ is



CHAPTER 6. CONCLUSION 93

the correlation length [5, 6]. However, generally only σ is reported in literature; ξ is
reported in extremely rare studies. The least appreciated of all the parameters is α.
α = 0.5 or α = 1 is often assumed either due to lack of data or for sake of convenience.
The latter reason is due to closed form of power spectral density function for α = 0.5
and α = 1. In chapter 3, we utilized the robust method of estimation developed in
chapter 2 to uniformly and comprehensively compare many next-generation lithography
(NGL) processes in terms of their LWR characteristics. We studied the evolution of
LWR parameters from resist to final substrate for each of the NGL processes. In this
study, it was discovered that directed self-assembly is the most promising technology
purely in terms of LWR characteristics.

• In chapter 4, we examined the impact of LWR on the device performance of double-
gate FinFET. We incorporated the aforementioned LWR parameters into the FinFET
framework. Our study provided useful physical insights into how the gate line edge
roughness impacts the FinFET performance. It was found that the spacer-defined
gate electrode (vs. a resist-defined gate electrode) provides for reduced variability in
performance, indicating that gate-length mismatch has more impact than lateral offset
between the front and the back gates.

• In chapter 5, we performed a hierarchical decomposition of semiconductor process
variation. We provided a holistic view of variability that incorporated all aspects of
variability that are important to the circuit designer, namely, global and local variation,
and spatial correlation. In doing so, we discovered anisotropy in the intra-die corre-
lation structure and highlighted the need it in future improvement of SSTA. We also
proposed employing cluster analysis to avoid using atypical wafers in model estimation.

6.2 Suggested Future Work

In the robust method of estimation proposed in chapter 2, there is room for improvement
in estimating the optimal block length. We used computationally simple method for block
length selection as proposed by Politis and White [42]. A better method to assess the
optimality of block length would be to simultaneously minimize the MSE of α, ξ, and σ.

In chapter 3, we studied self-aligned double patterning (SADP) based on the use of spacer
technology. We extracted the LWR parameters at each intermediate steps by examining
the lines. The inner and outer edges of spacers could potentially have different roughness
characteristics. As such, it would be useful to study line edge roughness than line width
roughness.

In chapter 4, we only investigated the impact of gate line edge roughness. During the for-
mation of the fin (body) of FinFET, line edge roughness of the fin uniquely creates roughness
in the vertical sidewall surfaces. Front and back transistors are formed on these surfaces,
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and as such, it would be meaningful to study variation in the device performance to this
aspect.

In chapter 5, we discovered anisotropy in the intra-die variogram. It would be interesting
to perform a Monte-Carlo simulation of ISCAS’85 benchmark circuit to estimate the impact
of anisotropy on timing.
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Appendix A

Bias in Finite Length Variance

Consider Xn as defined in (2.3.1). We can rewrite (biased) sample variance (2.3.12) as

σ̂2
LWR =

1

M

M∑

i=1

σ̂2
i (L), (A.0.1)

where the sample variance of i-th line is given by

σ̂2
i (L) =

1

L

L∑

s=1

(
Xis −

1

L

L∑

t=1

Xit

)2

(A.0.2)

X̄i = L−1
∑L

t=1 Xit is the sample average of i-th line. Note that we write σ̂2
i as σ̂2

i (L) to
explicitly highlight its dependence on L. If this sample variance is averaged over many
length L sequences, then this estimate will approach its mean. We can find an expression
for the mean of σ̂2 as a function of L from (A.0.2). We begin by adding and subtracting the
population mean inside the square,

σ̂2
i (L) =

1

L

L∑

s=1

[
(Xis − µi)−

1

L

L∑

t=1

(Xit − µi)
]2

=
1

L

L∑

s=1

(Xis − µi)2 −
(
X̄i − µi

)2
.

Now using the identity

E



(

N∑

i=1

(Yi − EYi)
)2

 =

N∑

i=1

N∑

j=1

E[(Yi − EYi)(Yj − EYj)], (A.0.3)
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and the stationarity property of Xn (2.3.2), we get

E
[
σ̂2
i (L)

]
=

1

L

L∑

s=1

E
[
(Xis − µi)2

]
− 1

L2

L∑

s=1

L∑

t=1

E [(Xis − µi)(Xit − µi)]

= σ2

(
1− 1

L2

L∑

s=1

L∑

t=1

ρ(s− t)
)
. (A.0.4)

Finally, taking the expectation of (A.0.1) and substituting (A.0.4) in it, we get

E[σ̂2
LWR(L)] = σ2

(
1− 1

L2

L∑

s=1

L∑

t=1

ρ(s− t)
)
. (A.0.5)

We can capture the length dependence in (A.0.5) by defining

f(L) ≡
(

1− 1

L2

L∑

s=1

L∑

t=1

ρ(s− t)
)
. (A.0.6)

Thus, we have shown that E[σ̂2
LWR(L)] = σ2f(L).

For the assumed form of the auto-correlation function given by (2.2.9), it is possible to
derive a closed form expression for f(L) for α = 0.5 and α = 1. We will simply state the
result below:

f(L) =





1− 2ξ
L2

[
L+ ξ

(
exp(−L

ξ
)− 1

)]
for α = 0.5

1− ξ
L2

[
L
√
π erf(L

ξ
) + ξ

(
exp(−L2

ξ2
)− 1

)]
for α = 1

. (A.0.7)

In A.0.7, erf(·) indicates the error function [98]. Note that in (A.0.7), the length of line L is
used as a physical quantity and not as number of grid points at regular spacing.
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Appendix B

Validity of LLE Approach

Consider Xn as defined in (2.3.1) and let the variance in CD be estimated by (2.3.11).
Let Zis = Xis − µi, Z̄i = L−1

∑L
s=1 Zis, and Z̄ = (ML)−1

∑M
i=1

∑L
s=1 Zis. Note that Z̄ =

M−1
∑M

i=1 Z̄i and that the Z̄i’s are independent. Hence, assuming µ1 = . . . = µM , we have,
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1 (by independence )
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1
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Substituting (2.3.2) in the above expression, we get,

E
[
σ̂2
CD(L)

]
=
σ2

L2

L∑

s=1

L∑

t=1

ρ(s− t). (B.0.1)

Finally, adding (A.0.5) and (B.0.1), we get

E
[
σ̂2
LWR(L) + σ̂2

CD(L)
]

= σ2. (B.0.2)

Note that the above result is valid only as long as σ̂2
CD term is not influenced by non-

LER sources of variation. In reality, some residual local CD (systematic or local) variation
always exists and as such σ̂2

CD term represents the sum of bias correction term and non-LER
variation term.
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